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Abstract

With the exponential increase of online content, search engines have assumed an

essential role in order to help users search for relevant documents and multimedia

resources. However, expressing the information need as a query is a challenging

task due to the inherent ambiguity of languages and lack of context. Due to this

fact, Query Auto-Completion (QAC) has become a prominent functionality offered by

retrieval systems to help users formulate their search requirements in a well-defined

and structured manner. To be more specific, given a query prefix, QAC systems present

users with a ranked list of query completions that should align with their search intent.

However, due to the long-tail nature of search queries, traditional neural and non-neural

approaches often struggle to provide meaningful completions for previously unseen

prefixes. Therefore, this project explores how the inherent nature of current State-of-

the-Art pre-trained Transformer-based models can be leveraged to address the QAC

task and provide meaningful completions for unseen prefixes. Our findings suggest that,

despite the superior performance of non-neural methods, Transformer-based models can

effectively tackle the QAC problem by generating completions for Out-of-Vocabulary

tokens. However, the data format, the models’ architecture, and the tokenisation strategy

deeply affect the models’ performance and behaviour.
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Chapter 1

Introduction

1.1 Motivation & Project Scope

In the present day, search engines have assumed a critical role in facilitating users

to effectively explore the exponentially growing online content by expressing their

information need through free-text queries [12, 30]. However, the capability of search

engines to retrieve relevant documents is limited by the semantic ambiguity and lack of

context typical of free-text queries [8].

Consequently, Query Auto-Completion (QAC) has emerged as a prominent feature

offered by search engines to guide users in formulating well-structured and error-free

queries [8]. To be more specific, QAC systems aim to present users with a ranked list of

candidate completions given a potentially partial input prefix [7]. For instance, given the

input prefix Order f, viable completions could be Order food online and Order flowers.

Hence, QAC systems aid users in formulating clear and concise queries, requiring

minimal keystrokes, to find documents that align with their search requirements [79].

In light of this, diverse methods have been researched over time to address the QAC

task. To be more specific, traditional QAC methods exploit hierarchical data structures

in order to leverage statistical information derived from search logs to generate and

rank query completions [7, 72]. However, while traditional QAC approaches often offer

an effective solution to the problem, they tend to fail for previously unseen prefixes

(Out of Vocabulary - OOV, tokens not present in the training data) [8, 78]. Therefore, to

overcome these limitations, the utilisation of conventional deep neural networks gained

traction in QAC research due to their inherent capability of generalising well to unseen

data and to learn patterns implicitly without the need for manually engineered features

[29]. Nonetheless, in recent years, Transformer-based models have gained increased

1



Chapter 1. Introduction 2

popularity in fields such as natural language processing and computer vision due to

their powerful capabilities and versatility [41, 76]. However, despite their superior

performance over traditional neural networks, there has been limited research regarding

their adoption for QAC. Therefore, this project aims to delve into the potential of

exploring the intrinsic capabilities of Transformer-based models to address QAC by

generating meaningful completions and tackling the OOV problem. Our findings suggest

that while Transformer-based models can effectively provide semantically correct and

structured query completions even for unseen prefixes, their performance is far from

optimal. To be more specific, these models were found to perform poorly compared to

more traditional and non-neural approaches that leverage statistical properties derived

from data to generate and rank completions.

1.2 Research Objectives

This project focuses on exploring the potential of large pre-trained Transformer-based

language models for the QAC task. To be more specific, and as previously mentioned,

Transformer-based models were discovered to outperform traditional neural approaches

in several tasks, from question-answering to machine translation [50, 75]. Despite their

popularity in several domains, a very limited amount of research has been conducted

on their adoption for QAC, possibly due to their computationally expensive and slow

nature [36]. Therefore, the primary objective of this project is to investigate whether the

pre-trained nature of Transformer-based language models can be leveraged to generate

query completions solely from an input prefix and to effectively handle the OOV issue

associated with the long-tail aspect of search log queries [71]. It is essential to mention

that Transformer-based models have already demonstrated successful to QAC related

tasks, including query suggestion [49], predicting the following query in session-based

contexts [48], code auto-completion [2], and real-time smart email completion [9].

However, these tasks fall outside the specific research scope of this project.

In light of this, in this report, we aim to address the following research questions:

• RQ1: Can the pre-trained nature of Transformer-based language models be

exploited to address the QAC task and provide completions for unseen prefixes?

• RQ2: Does the data format affect the models’ capabilities and learning be-

haviour?
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1.3 Report Outline

This report has been structured in a format that should guide the reader through the

different key QAC and Transformer-related aspects. More precisely, this report aims to

cover the essential concepts required to understand the subject matter. In light of this,

the dissertation is structured as follows:

• Chapter 2 - Background: This Chapter introduces the topics and definitions

required to contextualise the QAC task. This involves a brief summary of studies

conducted in the QAC domain, an introduction to Transformer-based models and

evaluation metrics required to compare QAC systems.

• Chapter 3 - Design & Implementation: This Chapter presents the core com-

ponents underlying a QAC system. More specifically, this Chapter introduces

the QAC pipeline developed as part of this project, including its architecture,

requirements and the technologies utilised for its implementation.

• Chapter 4 - Methodology: This Chapter fully describes the experimental setup

followed in order to promote this study’s replicability. This involves informa-

tion regarding the datasets, data preprocessing steps, the baselines, the models

considered and their fine-tuning and decoding processes.

• Chapter 5 - Evaluation: This Chapter reports the evaluation results of the

Transformer-based models considered for the QAC task with respect to the

baselines. This concerns their overall performance and generalisation capabilities.

Moreover, QAC systems are evaluated intrinsically by exploring generated query

completions. Lastly, the key findings are discussed and tied back to the two

research questions mentioned.

• Chapter 6 - Conclusion: The Conclusion provides a brief project summary

by reinstating the project’s goals and key findings. Furthermore, this Chapter

outlines this project’s limitations and suggests possible directions for future work.

Lastly, it is worth noting that some of the Sections in this report are based and

extend upon the Informatics Project Proposal and MSc Progress Report coursework.1

1Note that Sections 1.1 and 1.2 in Chapter 1, Sections 2.1.1, 2.1.2, 2.1.3, 2.3 in Chapter 2 and Sections
4.1.1, 4.1.2 in Chapter 4 in this report, are based and extend upon the Informatics Project Proposal [67]
and the MSc Progress Report Coursework [68].



Chapter 2

Background

2.1 Query Auto-Completion

2.1.1 Problem Definition

The primary function of Query Auto-completion is to provide users with a ranked list

of possible query completions given an input prefix [72]. In other words, QAC systems

aim to help users express their search requirements as a free-text query to identify the

ideal query that most accurately matches their information need [30].

For instance, and as shown in Figure 2.1, given the query prefix “what to visit in”,

plausible completions could be “Rome”, “Florence” or “Milan”.

Figure 2.1: Query completion provided by Google.com using an example prefix.

In light of this, the QAC problem can be mathematically expressed as follows: for a

partial input prefix p of arbitrary length, a QAC system returns a ranked set of query

completions R̂(p), obtained from a pool of query candidates C(p) by reducing a certain

loss function L, measuring the disparity between the generated query candidates R(p)

and the ideal target query q [8]. The full QAC equation can be expressed as follows [8]:

4



Chapter 2. Background 5

R̂(p) = min
R(p)⊂C(p)

L(q,R(p))

However, despite the successful adoption of reinforcement learning and hierarchical-

based approaches to the QAC problem, in the context of this project, we focus primarily

on two main classes of QAC methods: Traditional and Learning-Based QAC method-

ologies [45, 78, 79, 80].

2.1.2 Traditional QAC Approaches

Traditional QAC approaches can be categorised as those leveraging specific data struc-

tures for query completions generation [78]. To elaborate further, Traditional QAC

methods construct data structures, such as prefix tries, and lookup-tables, directly from

search logs data [25]. Consequently, extracting query candidates from an input pre-

fix becomes a straightforward and efficient lookup operation executed directly on the

custom-built data structure [25]. Moreover, candidate completions are often ordered

based on statistical properties and metadata derived directly from the search logs [7].

Taking this into consideration, Most Popular Completion (MPC) is a widely adopted

approach which often offers a strong baseline when comparing QAC systems [16].

More precisely, MPC relies on a prefix trie data structure to extract query completions

that match the given prefix and subsequently rank them according to their frequency in

the search logs [16]. Therefore, MPC works on the premise that popular and frequent

queries are often viable prefix completions [5]. Similarly to MPC, other approaches

adopt data structures for the query candidates generation process but rely on different

features for the ranking component. Such features include temporal factors as well as

user-specific statistics (i.e. location) to provide timely and personalised completions

[28, 65]. Nevertheless, a significant drawback of Traditional QAC approaches lies

in their inability to provide completions for previously unseen prefixes [78]. This

limitation stems from their dependence on knowledge derived solely from the data

available in the search logs [78]. Hence, to address the shortcomings, researchers have

turned to the Learning-Based approaches outlined in the next Section.

2.1.3 Learning-Based QAC Approaches

Learning-Based QAC methodologies directly overcome the mentioned limitations by

learning features for completions generation and ranking directly from data [29]. In
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this context, the adoption of deep learning models, in conjunction with more traditional

approaches, has become predominant in the field to enhance the efficacy and accuracy

of QAC systems [29]. For instance, in the work of Mitra and Craswell (2015), query

candidates generated from synthetic prefix-suffix pairs are then ranked based on feature

vectors learnt with Convolutional Latent Semantic models (CLSM) [47]. Furthermore,

in other related studies, Long Short-Term Memory (LSTM) and Gated Recurrent Units

(GRU) networks are utilised as sub-word/character-language models (LM) to generate

query candidates and better handle the OOV issue due to the long-tail natures of search

logs queries [20, 29, 35, 54, 78]. However, due to the elevated computational cost

associated with training word/character-based language models, a recent unnormalised

LSTM-based language model was introduced to score query candidates by computing

the log probability marginalisation term in an efficient manner [79]. Lastly, a recent

non-neural method for QAC, known as QueryBlazer, outperformed neural alternatives,

both in accuracy and efficiency, by exploiting a sub-word-level n-gram language model

to pre-compute completions prior to runtime [31].

2.1.4 Evaluating a QAC system

When evaluating a QAC system, the metrics vary depending on the task under con-

sideration (i.e. personalised or temporal query completions). As this project focuses

on generating ranked completions based solely on a given input prefix, we consider

three metrics that capture the overall QAC system’s accuracy and behaviour: Mean

Reciprocal Rank, Partial-Matching Mean Reciprocal Rank and Success Rate.

2.1.4.1 Mean Reciprocal Rank

Mean Reciprocal Rank (MRR@k) is the most widely adopted statistical metric for QAC,

defined as the average reciprocal rank (RR) computed at a specific rank k (completions

at ranks greater than k are disregarded) [8]. Hence, MRR@k allows to evaluate a system

performance based on the rank at which the ground truth completion appears in a ranked

pool of candidates [8]. More formally, given a set of prefixes P, MRR can be expressed

as follows [8]:

MRR =
1
|P| ∑

p∈P

1
rankp

where rankp identifies the rank at which the prefix-based generated completion

matching the ground truth query appears in the ranked set of candidates [8, 54].
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2.1.4.2 Partial-Matching Mean Reciprocal Rank

Similarly to MRR, also Partial-Matching Mean Reciprocal Rank (PMRR@k) measures

the quality of a ranked set of query completions based on the rank at which the ground

truth query appears [54]. However, while MRR requires an exact match with the ground

truth query, with PMRR, also partial matches between completions and true query are

deemed as relevant (i.e. the generated query order food, would “partially match” the

gold query order food online) [54]. In light of this, PMRR can be formalised as follows

[54]:

PMRR =
1
|P| ∑

p∈P

1
partial rankp

2.1.4.3 Success Rate

Success Rate (SR@k) can be defined as the average ratio of ground truth queries found

within the top k query completion ranks [8]. However, as SR only measures whether

the ground truth query appears in the ranked list, but not its rank, the value the metric

can assume is always equal or greater than MRR [31].

2.2 An Overview of Transformer Models

In this Section, we aim to provide the background knowledge required in order to

contextualise and define the role of Transformer models and their suitability for the

QAC task.

2.2.1 From Sequence-To-Sequence to Transformer Models

Sequence-To-Sequence models can be defined as a broad category of models suitable for

all those tasks requiring a mapping from a source sentence to target one (i.e. Machine

Translation and Text Summarisation) [52]. For instance, as shown in Figure 2.2, a text

translation task requires the conversion from one source language (i.e. English) to a

target language (i.e. Italian) [70].

In this context, Sequence-To-Sequence models are often composed of two main

building blocks: an Encoder and a Decoder [52, 70]. Encoder and Decoder, often

implemented as a stack of Deep Neural Networks (i.e. Recurrent Neural Network

(RNN) or LSTMs [64]), are responsible for “encoding” the source sequence as a
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Figure 2.2: Example of a Sequence-To-Sequence Target to Source Translation from

English to Italian. The Figure, which has been adapted from [52], schematises a

Sequence-to-Sequence model’s architecture from a high-level point of view.

condensed hidden representation of fixed-length and then utilise it to sequentially

“decode” the next word in a sequence given its probability over the vocabulary [52].

Taking this into consideration, Transformer models, which belong to the broad

family of Sequence-to-Sequence models, gained popularity in recent years by achieving

State-of-the-Art (SOTA) performance in multiple domains spanning from Computer

Vision to Natural Language Processing (NLP) [14, 33]. In this context, the Transform-

ers’ architecture stems and extends the Sequence-To-Sequence models’ architecture

previously mentioned. To be more specific, the original Transformer model introduced

in the study conducted by Vaswani et al. (2017) consists of several identical En-

coder/Decoder layers in conjunction with newly designed and implemented components

such as Positional Encodings and Attention [76].

As shown in Figure 2.3, Positional Encodings, derived from sine and cosine func-

tions of different frequencies, are added to the input and output embeddings in order

to preserve and enforce the tokens’ order within the provided sequences [76]. As a

consequence, tokenised sentences such as “It is sunny today” and “It today sunny is”

are treated differently by the model. Furthermore, one of the crucial elements charac-

terising Transformer models is the concept of Attention. More precisely, and without

focusing on the technicalities, Attention can be defined as a mechanism that allows

Transformers to focus selectively on different parts of a sequence to learn their relative

importance with respect to the rest of the sequence [76]. In other words, Attention helps

models learn connections between tokens and their significance in context [76].

Furthermore, Transformer models leverage Transfer Learning to exploit pre-acquired

knowledge and apply it to an unrelated problem and domain [59]. Specifically, Trans-
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Figure 2.3: Schematic Representation of a Transformer model. The Figure, adapted

form [76], simplifies the original Transformer architecture.

former models are often pre-trained on large corpora of diverse documents in order to

acquire the knowledge to exploit later when fine-tuned on a downstream task [59]. The

aim is to improve the models’ versatility and ability to generalise effectively [59].

Consequently, it becomes evident that, within this project’s scope, formalising the

QAC task as a source-target mapping becomes an intuitive approach where a source

prefix can be converted directly to a target query completion. Therefore, multiple

Transformer-based models have been considered in order to leverage their inherent

capabilities and pre-acquired knowledge for the QAC task.

2.2.2 T5

Text-to-Text Transfer Transformer, also known as T5, is a versatile large language model

introduced by the authors of the paper “Exploring the Limits of Transfer Learning with

a Unified Text-to-Text Transformer” [59]. The authors proposed the T5 model, which

adopts the same architecture shown in Figure 2.3 and acts as a unified framework

capable of handling multiple tasks framed as text-to-text objectives [59]. Consequently,

T5 is capable of tackling problems such as summarisation and machine translation

by simply structuring the model’s input according to the task under consideration (i.e.

summarize: input / translate English to Italian: input) [59].

In light of this, the model’s great flexibility comes from the fact that it was pre-
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trained on a diverse set of documents extracted from multiple sources and unified into

a sole dataset known as C4 [59]. Hence, as a direct consequence, T5 can effectively

apply task-specific knowledge to new domains (Transfer Learning) [59]. Lastly, it is

worth noting that sentences provided as input to the model are tokenised as WordPiece

tokens using the SentencePiece library [39, 59]. Therefore, the WordPiece algorithm

allows processing tokens at a sub-word level, offering more flexibility over character

and word level tokenisers [81].

2.2.3 ByT5

ByT5 is a Byte-to-Byte Transformer-based model released by Google Research in

2022 [82]. The model shares the same Encoder/Decoder architecture of T5 and mT5

(Massively Multilingual Pre-trained Text-to-Text Transformer) but introduces minor

changes in order to handle Byte-to-Byte input sequences [82, 83]. For instance, with

respect to T5 and mT5, ByT5 has a much smaller embedded hidden size of 256

(corresponding to its vocabulary size) compared to the much larger vocabularies for

the other two models [82]. Furthermore, apart from having a different pre-training

objective, ByT5 has a much denser Encoder (more layers in Encoder than Decoder),

similarly to Encoder-only models such as BERT (Bidirectional Encoder Representations

from Transformers) [15, 82].

Nonetheless, the main advantage offered by ByT5 is its ability to operate directly

on raw sentences on a byte-level, eliminating the need for text-tokenisation and offering

a robust token-free model with virtually no modifications to the original T5 architec-

ture [82]. As a direct consequence, ByT5 outperformed models adopting sub-word

tokenisation for noisy tasks where spelling, pronunciation, and OOV tokens were cru-

cial components to consider during the training process [82]. Hence, the mentioned

capabilities make ByT5 suitable for the task investigated in this project, where noisy

and partial prefixes are often provided as input to QAC systems.

2.2.4 GPT-2

Similarly to T5 and ByT5, also the Generative Pretrained Transformer 2 model (GPT-

2) has been designed to leverage Transfer Learning in order to address various NLP

tasks. More precisely, GPT-2 was pre-trained in an unsupervised manner on several

millions of documents and later fine-tuned on a wide variety of tasks in order to improve

the model’s robustness and generalisation capabilities [58]. Moreover, as for other
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GPT models, GPT-2 is auto-regressive, as tokens are generated sequentially based

on their likelihood conditioned upon the previous context (previously seen tokens)

[18, 57, 58]. However, GPT-2 differs from T5 and ByT5 as it employs a Decoder-Only

architecture [58]. Furthermore, GPT-2 uses Byte Pair Encoding (BPE) to represent input

sequences [58]. In this context, BPE offers a tokenisation solution between character

and word-level algorithms that operates at a byte-level [73]. As a direct consequence,

BPE offers a robust solution to multiple languages, and OOV tokens [73]. Lastly, it

is worth mentioning that GPT-2 proved to be effective and accurate in a multitude of

text generation tasks, including text summarisation and question answering, making it

suitable for the QAC task addressed in this report [58].

2.2.5 Decoding Algorithms

In order to generate an output sequence given an input as prompt, generative models

such as T5 and GPT-2 leverage a softmax function in order to compute a “discrete

probability distribution over the vocabulary” [37]. More formally, given a source

sequence X = {x1,x2, ...,x|X |} and a target sequence Y = {y1,y2, ...,y|X |}, the goal

of a decoding algorithm is to find the sequence Y which maximises the conditional

probability P(Y |X) [89]. Hence, in order to achieve so, several decoding algorithms

such as greedy/beam search and top-k sampling are often adopted in order to produce

an output from the derived probability distribution [37].

2.2.5.1 Greedy Search

Computing P(Y |X) is an intractable problem, as there are infinite possible sequences Y

for which such conditional probability would have to be computed [10]. In this context,

greedy search offers a simple solution to decode output sequences in a computationally

efficient manner. More precisely, at each time step, greedy search selects the token

with the highest probability conditioned on the given input sequence and output tokens

generated so far [10]. Hence, while greedy search offers an efficient solution, outputs

generated are rarely optimal [10]. More precisely, the algorithm operated shortsightedly

as tokens are selected greedily by disregarding possible future high probability tokens

[10].
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2.2.5.2 Beam Search

Beam search offers a more robust solution between greedy search and exhaustive

search [26]. To be more specific, beam search keeps track of the top k most likely

hypotheses (token sequences generated so far) [10]. Furthermore, at each time step,

the algorithm selects the next most likely tokens conditioned on the current hypothesis

under consideration [10]. Hence, the algorithm repeats the process until the termination

criterion is met, and the top output candidate (the one that maximises the overall

conditional probability) is returned [89]. However, it is worth noting that also beam

search leads to a globally sub-optimal solution which often deteriorates as k increases

[21].

2.2.5.3 Top-k Sampling

Another popular approach often adopted in order to decode and generate output sen-

tences is top-k sampling [17]. In top-k sampling, instead of selecting the successive

token based on the probability distribution over the entire vocabulary, the next token

is sampled only among the top-k most likely tokens in the “truncated” distribution

[24]. However, while top-k sampling often leads to better generations than beam

search, selecting an appropriate k value becomes challenging, with low k values leading

to repeated outputs (just a few k tokens considered at each step) and high k values

producing out-of-context and degraded generations [24]. In order to address some

of the limitations mentioned, an additional parameter known as temperature can be

introduced in order to adjust the probability distribution prior top-k sampling [24]. In

this context, temperature provides control over the diversity of the generated output,

with low values leading to more deterministic sequences and high values increasing the

output randomness [6].

2.2.6 Evaluating Transformers Output

Evaluating Language Models is crucial to assessing models’ performance and accu-

racy. In this context, models fine-tuned on a specific downstream task (i.e. question-

answering) are often evaluated using task-specific metrics (i.e. Accuracy, F1-Score)

[51]. However, when ground-truth target sentences are available, models’ generations

are evaluated with respect to the gold references by computing metrics such as Bilingual

Evaluation Understudy (BLEU), Metric for Evaluation of Translation with Explicit

Ordering (METEOR) and BertScore [3, 53, 88]. In the context of this project, we
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consider BLEU solely, despite its known limitations, due to its wide popularity in the

research community [3].

2.2.6.1 Bilingual Evaluation Understudy

Bilingual Evaluation Understudy (BLEU) is a computationally effective and language-

independent evaluation metric proposed initially to evaluate generations for machine

translation tasks but later adopted in various NLP domains [53, 60]. More precisely,

BLEU allows to measure the average phrase overlap between a model’s generations

and gold references in order to quantify their “translation closeness” [53]. Therefore,

the BLEU score, in the range [0,1] (where a value of 1 represents a perfect match

between generation and gold reference), provides a measure of similarity that strongly

corresponds to human evaluations [53].

2.3 QAC Systems & Transformers Limitations

As highlighted in this Chapter, Transformers are very powerful and versatile models

that leverage mechanisms such as Attention and Transfer Learning in order to gener-

ate coherent and semantically correct sentences. However, training Transformers is

computationally and resource intensive as Transformers often require many iterations

over large quantities of data in order to achieve satisfactory performance [41]. In this

context, the little research conducted on Transformers for QAC could be explained

by the scarcity of high-quality datasets accessible to the general public due to the

sensitive nature of search logs data [62]. Furthermore, the application of QAC systems

requires low-latency solutions, which are unsuitable for the relatively slow inference

capabilities of Transformer models [22]. Nonetheless, QAC systems could still leverage

Transformers’ generalisation capabilities to address the OOV issue by framing the QAC

task as a sequence-to-sequence problem.



Chapter 3

Design & Implementation

This Chapter aims to introduce the core components underlying a QAC pipeline. More

precisely, this Chapter starts by summarising the QAC task, its core units and the

requirements a QAC system must satisfy. Moreover, it presents how the QAC pipeline

has been designed and implemented for this project as separate modules. Lastly, the

technologies utilised are briefly summarised to contextualise the computational costs

and resources employed.

3.1 The QAC Task

3.1.1 Formalising the QAC Problem

As mentioned in Section 2.1, the goal of a QAC system is to produce a ranked list of

candidate completions given an input prefix. Hence, a complete QAC pipeline requires

multiple sequential steps in order to produce query completions.

Figure 3.1: General Overiview of a QAC Pipeline.

14
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To be more specific, and as shown in Figure 3.1, a QAC pipeline often comprises

three main components: one or more datasets, a QAC system and an evaluation module.

Firstly, queries in the search logs (dataset), are normalised in order to clean and remove

noisy data points. Secondly, normalised queries, and often additional metadata, are fed

to a QAC System as training data to learn patterns and infer dataset-specific statistical

properties. Furthermore, prefixes extracted from the test data are provided as input to

the QAC system in order to produce a ranked list of query completions. Lastly, ranked

completions are evaluated with respect to the gold queries (ground truth) in order to

compute evaluation metrics (i.e. MRR) and assess the system’s performance.

3.1.2 QAC Pipeline Requirements

Considering the overall pipeline introduced in the previous Section and considering the

project’s goal, we can list the requirements a QAC pipeline must satisfy as follows:

• The pipeline should support multiple datasets. This involves formatting, splitting

and normalising data in a standard and reproducible manner.

• The pipeline should expose functionalities to extract prefixes and ground truth

directly from search logs queries (according to a predefined criterion).

• The QAC system should expose the completion candidates’ generation and rank-

ing processes. Also, input and output files should be standardised in order to

easily extend the system.

• It should be possible to evaluate the QAC system directly from ranked completions

and gold queries only.

• Several evaluation metrics should be available, and new ones quickly added as

required.

3.2 Core Modules Design

In this Section, we present in more detail the core modules designed and implemented

as part of this project. The goal is to provide the reader with a more detailed and

project-specific overview of the main components and their inter-dependencies. In light

of this, the QAC/experimental pipeline is structured as three separate core modules,

which are outlined below and shown in Figure 3.2.
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Figure 3.2: The Figure shows the detailed QAC pipeline and its core modules and units.

The diagram also shows how data flows from one component to another and closely

follows the methodology followed in this project and presented in Chapter 4. Also, note

that inspiration has been taken from [66] for the Figure design and overall structure only.

• Data Manipulation Module: The data manipulation module offers all the func-

tionalities required in order to convert and standardise the search logs datasets

for training models and evaluating QAC systems. To be more specific, queries

in the dataset under consideration are first split into train, validation and test

partitions and successively normalised by adopting standard normalisation steps

as described in related studies [31]. Furthermore, as part of this normalisation

step, prefixes and gold queries are extracted from the test set for subsequent

completions generation and evaluation. Lastly, normalised queries are then for-

matted as required in order to be compatible with the model/approach under

consideration (i.e. baselines/Transformer-based QAC systems).

• QAC Module: The QAC module provides all the tools required to run a complete

QAC system. More precisely, the module offers all the scripts for configuring and

fine-tuning Transformer-based models, identifying the best decoding parameters

and generating and ranking candidate completions. The module also incorporates
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the code required to replicate the baselines results considered in this project.

• Evaluation Module: Lastly, the evaluation module exposes all the metrics

required to compare QAC systems (i.e. MRR, PMRR, SR). In this context, the

evaluation module also provides functionalities to plot training and validation

loss graphs, scripts to evaluate query completions intrinsically and functions to

perform statistical hypothesis testing. Hence, this module aims to provide all the

tools required to explore QAC systems’ behaviour and understand where they fail

and succeed.

Lastly, it is worth noting that the QAC pipeline has been designed in a modular

and easily configurable manner. To be more specific, the three core modules have been

implemented by unifying and standardising inputs, outputs and parameter configurations.

Therefore, as a direct consequence, the current system implementation can be easily

extended with additional datasets, models and evaluation metrics as long as input and

output file formats are kept consistent.

3.3 Software & Hardware

The QAC pipeline described in the previous Section has been implemented using Python

and PyTorch as the primary programming language and deep learning framework of

choice [56, 69]. This decision’s rationale lies in PyTorch’s great flexibility, modularity

and scalability, with support for sequential and parallel models’ training and decoding

[56]. In this context, all the experiments presented in this report have been conducted

on an NVIDIA A100 SXM4 80GB and a Quadro RTX 6000 GPUs.



Chapter 4

Methodology

This Chapter presents the methodology and experimental setup followed in this project.

This includes information about the datasets, data preprocessing steps, Transformer-

based models fine-tuning, query completions generation and ranking. The goal is to

introduce and define the main experimental pipeline in enough detail to facilitate the

reproducibility of the experiments and results.

4.1 Datasets & Data Preprocessing

This Section presents the datasets used for the experiments, including steps such as data

normalisation and formatting required to fine-tune Transformer-based models.

4.1.1 Datasets

4.1.1.1 AOL Search Logs

The America Online (AOL) search logs dataset is one of the most widely adopted

datasets by the research community to explore tasks such as query auto-completion,

session-based search and search personalisation [43, 55]. The dataset includes queries

issued on the AOL platform from the 1st of March 2006 to the 31st of May 2006 [32].

The dataset consists of approximately 20 million queries (10 million unique) issued

by 650,000 users during the mentioned period [55, 65]. Furthermore, each entry in the

dataset comprises of an anonymised user id, the free-text query issued on the search

engine, the query submission timestamp, the domain section of the URL clicked as a

result of the search action and its corresponding rank (within the list of results retrieved)

[55].

18
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However, it is worth noting that despite the AOL dataset’s popularity, there is much

disagreement in the research community regarding its use and application [4]. Firstly,

there is a privacy concern regarding using AOL data due to the limited and inadequate

anonymisation process applied to user data [23]. Secondly, AOL logs have not been

filtered or cleaned and therefore include sensitive categories such as porn [27]. Lastly,

the AOL dataset is often deemed to be outdated due to the time period when queries

were collected (i.e. 2006) [90]. Despite the mentioned limitations, AOL is still the

primary dataset used for research in this field [72].

4.1.1.2 ORCAS Search Logs

The Open Resource for Click Analysis in Search (ORCAS) dataset is a click logs dataset

released as part of the TREC Deep Learning Track in 2020 [11]. The dataset comprises

18 million queries (10 million unique queries) extracted from a subset of Bing’s search

logs gathered during a period of twenty-six months until January 2020 [11]. In this

context, it is worth noting that, conversely to AOL data, ORCAS search logs have been

aggregated and strictly filtered in order to avoid leaking users’ personal information

[11]. For instance, k-anonymity filter was applied to ensure that only queries issued by

at least k users were present in the dataset to avoid personal information from being

easily inferred [11].

In light of this, the metadata associated with ORCAS search logs includes query

IDs, free-text queries, document IDs corresponding to the TREC Corpus and clicked

URLs (without their ranking) [11].

4.1.1.3 Data Augmentation with Wikipedia Anchors

As a preliminary study, we explored the direction of augmenting both the AOL and

ORCAS datasets by enriching them with anchor text extracted from Wikipedia [46]. To

be more specific, approximately 114 million anchors (with duplicates) were extracted

from 23 GBs of articles obtained from a publicly available Wikipedia dump 1. The

assumption underlying this choice was based on the fact that anchors text (text pointing

to other Wikipedia pages) could be treated as queries and consequently enrich the

datasets [13]. However, preliminary experiments on the augmented datasets revealed a

degraded performance for all the baselines considered, possibly due to the difference in

the nature of anchors text and search log queries. Due to this fact, this approach is only

1https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
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mentioned in this Section and explored no further.

4.1.2 Data Normalisation & Splitting

As aforementioned, this project aims to investigate the role of Transformer-based models

for QAC in a modular and reproducible manner. Due to this fact, we adopt the same data

normalisation and splitting steps applied by several other studies in the field [31, 35].

Therefore, we applied the following normalisation steps to both AOL and ORCAS

queries [31, 35]:

• Case folding.

• Removed non-ASCII characters, preserved only a subset of punctuation symbols

and performed Unicode NFKC normalisation

• Replaced multiple spaces with single spaces and removed spaces at the beginning

and end of queries.

• Removed multiple queries issued by the same user within a very short time frame.

• Filtered out queries with less than three characters.

Queries from both datasets are then split in a standard manner according to their times-

tamp, for AOL, and randomly for ORCAS [31, 35]. The splits with the corresponding

numbers of queries are shown in the Table below:

Train Valid Test

AOL 17,521,031 1,521,971 1,317,632

ORCAS 15,011,856 1,876,480 1,876,480

Table 4.1: AOL and ORCAS Dataset Splits.

Finally, it is essential to highlight that while both AOL and ORCAS datasets provide

supplementary metadata, such as click-through data, we solely utilise raw queries for

training and evaluating models in this project. To be more specific, as our primary

objective is to generate completions directly from prefixes, we disregard personalised

and session-based metadata.
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4.1.3 Prefix Extraction

Before delving into specific data formats required when fine-tuning Transformer-based

models for the QAC task, it is essential to define how prefixes have been extracted from

AOL and ORCAS queries in order to fine-tune, validate and test models. More precisely,

prefixes had to be extracted from the train/valid/test partitions (shown in Table 4.1)

in order to construct the QAC-specific training set as well as to generate test prefixes

required to run inference and evaluate QAC systems. In light of this, for each query q

of length lq, prefixes have been extracted by randomly selecting a prefix length value lp,

in the range 2 ≤ lp ≤ lq −1 as per similar studies in the field [31].

4.1.4 Data Formatting for Transformer-based Models

As mentioned in Section 2.2, one of the main advantages of Transformer-based models

is their ability to leverage transfer learning in order to tackle cross-domain problems by

formalising tasks as a sequence-to-sequence objective. In this context, the QAC task

addressed in this report can also be framed as a sequence-to-sequence problem, where

a source sequence (query prefix) is mapped to a target sequence (query completion).

However, it is worth noting that as one of our aims is to explore whether different data

formats affect how Transformers learn and decode outputs, we investigate two possible

conditions for source-target mappings:

1. The first data format treats the sequence-to-sequence problem as a mapping from

source (prefix) to target (full query completion) (i.e. what to vis → what to visit

in Paris). From now on, we denote this mapping as prefix → query.

2. By contrast, the second data format considered frames the task as a mapping from

query prefix to suffix (i.e. what to vis → it in Paris) and denoted as prefix →
suffix.

Nonetheless, framing the QAC task as a sequence-to-sequence problem is insuffi-

cient, as different Transformer-based models require diverse input formats in order to

learn and produce coherent and semantically correct outputs. Hence, in the next two

Sections (4.1.4.1 & 4.1.4.2), we outline how queries have been formatted in order to be

consumed by T5, ByT5 and GPT-2.
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4.1.4.1 T5 & ByT5

The learning objective of both T5 and ByT5 is to generate a target sequence given an

input sequence [59, 82]. Therefore, when fine-tuning the models, source-target pairs

are provided as input to the models directly as textual data [59].

However, in the context of T5, and as a result of preliminary experiments, additional

task-specific strings have been appended at the beginning of both source and target

sentences. To be more specific, this templated addition aims to aid the model in learning

the new QAC task and discriminate more effectively with respect to the prior learnt

tasks (i.e. summarisation). In light of this, source and target sequences have been

formatted as follows:

• Source: prefix:prefix (i.e. prefix:how to build)

• Target: completion:full query (i.e. completion:how to build a house)

Nonetheless, it is worth noting that a slightly different format had to be used when

fine-tuning on the second data format presented in Section 4.1.4 (prefix → suffix). More

precisely, after several experimental runs, it was noted that models struggled to generate

completions for prefixes terminating mid-word. To elaborate further, models could not

identify whether the target was a continuation of the prefix or if the generation had to

produce a completely new word. As a direct consequence, models were inconsistent

in generating spaces at the beginning of the target sequence, making it impossible

to extract the full completion. For instance, for the source prefix Lond, a generated

target suffix might have included a space as the first character producing the incorrect

completion Lond on.

Therefore, in order to address this issue, a new token (<|space|>) was introduced

at the beginning of target sequences, but only under two conditions: when the source

prefix terminated with whitespace or when the target sequence started with one. The

underlying assumption was that, with the addition of this supplementary token, models

would have learnt to generate the space token when required (i.e. suffix starts with a

new word), making it possible to reconstruct completions during inference.

Hence, for a source terminating with whitespace, the formatting would have been

the following:

• Source: prefix:prefix (i.e. prefix:how to build)

• Target: completion:<|space|>suffix (i.e. completion:<|space|>a house)
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Lastly, data formatting for ByT5 follows the same structure outlined for T5. How-

ever, when constructing source and target sequences, no prefix: and completion:

strings have been prepended as not required when fine-tuning ByT5 models for one

unique task (as per documentation2).

4.1.4.2 GPT-2

Compared to T5 and ByT5, GPT-2 is auto-regressive in nature [58]. To be more specific,

during the decoding/inference phase, the model behaves more like a traditional language

model, as it processes sequences left to right and generates the next tokens based on the

probability distribution over the vocabulary [18, 57, 58]. Therefore, when fine-tuning

GPT-2 for the QAC task, it is impossible to provide training data in the form of two

distinct source/target sequences (as done for the other two models) but needs to be fed

to the model as a single string. Consequently, to address this issue, training data can

be formatted by unifying source and target sequences as a single input capturing all

the required task-specific information3. Hence, training data has been formatted by

introducing three additional tokens, as shown in Figure 4.1.

Figure 4.1: GPT-2 Training/Inference data formats for prefix → query/suffix pairs.

In this context, the tokens startoftext and endtoftext are adopted to clearly

define the sentence boundaries. By contrast, the separator token is instead introduced

in order to clearly separate the source from the target, which is particularly crucial at

inference time (as shown in Figure 4.1). Lastly, as for T5 and ByT5, an additional

space token has been introduced when operating with the prefix → suffix data format

under the same conditions discussed in Section 4.1.4.1 and as shown in Figure 4.2.

2https://huggingface.co/docs/transformers/model doc/byt5
3The idea of unifying source/target sequences for GPT-2 training as a single string as well

as the introduction of a new custom separator token was inspired by the following GitHub issue
https://github.com/huggingface/transformers/issues/1464 and expanded upon a very similar data format-
ting methodology outlined in [66] for GPT-2 fine-tuning.



Chapter 4. Methodology 24

Figure 4.2: GPT-2 Training data format for query → suffix pairs.

4.2 QAC Module

This Section introduces the core components behind the QAC systems considered in

the project. Firstly, baselines and their configurations are briefly outlined. Secondly,

details regarding how Transformer-based models have been fine-tuned are provided for

reproducibility. Furthermore, inference settings are described for candidate generation

from test prefixes. Lastly, the ranking algorithm adopted to rank the generated candidates

is briefly summarised.

4.2.1 Baselines

In the context of this project, two main baselines have been considered: Most Popular

Completion (MPC) [16] and QueryBlazer [31]. The primary motive behind this decision

is that both baselines generate query completions directly and solely from raw queries

and do not rely on additional metadata (i.e. click-through rate). Due to this fact, we

can effectively compare the approaches evaluated in this project. Moreover, despite the

two baselines being non-neural, they provide strong baselines that outperform neural

approaches for the same task [31].

In light of this, the MPC baseline has been implemented by adapting code released

as part of the study conducted by Kim & Gyuwan (2019), which offers all the function-

alities required to build a prefix-trie from raw training queries as well as to extract and

rank completions given test prefixes [35]. Similarly, to evaluate and replicate Query-

Blazer results on both AOL and ORCAS datasets, we modified the code published

alongside the research paper by Kang et al. (2021) [31]. In this context, the code

provided allows to easily extract the vocabulary by utilising SentencePiece with BPE

tokenisation, building a Finite State Transducer Encoder, and training an n-gram tradi-

tional language model on raw queries [31]. Lastly, both MPC and QueryBlazer have

been evaluated by using the same parameter configurations presented in the study by

Kang et al. (2021) [31]. To be more specific, two QueryBlazer configurations have been

considered, with vocabulary sizes equal to 256 and 4096 (denoted QueryBlazer-256

and QueryBlazer-4096), n-gram size equal to 5 and count cutoff set as follows [00000].
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4.2.2 Transformer-based Models Fine-Tuning

The QAC module incorporates all the scripts required to fine-tune Transformer-based

models in a structured and defined manner. This includes all the functionalities utilised

to process the training data in the format described in Section 4.1.4 as well as utilities

to fine-tune models and monitor the training and validation losses.

As will be described in Chapter 5, the three Transformer-based models consid-

ered have been fine-tuned on the two data formats previously presented (prefix →
query/suffix). In this context, is it worth noting that, for both AOL and ORCAS datasets,

the entire training set, including duplicated queries, has been utilised to fine-tune models.

To elaborate further, while it might be argued that removing duplicates from the training

data might improve language models’ performance [40], in the context of this project,

we operate under the assumption that preserving duplicates is more suitable for the

QAC task. In other words, preserving query duplicates keeps the underlying distribution

of queries intact, leading models to be slightly biased towards more popular queries,

which might benefit the QAC system’s overall performance.

In light of this, three Transformer-based models have been considered for the QAC

task: T5-Small (60 million parameters), ByT5-Small (300 million parameters) and

GPT-2-Small (117 million parameters).

In this context, as fine-tuning Transformer-based models is an expensive and time-

consuming task, we quickly prototyped by fine-tuning models on a subset of one million

documents randomly sampled from the AOL training set (on the prefix → query data

format) and for ten epochs. The primary rationale behind this standard approach was to

understand the models’ behaviour and identify the minimal number of epochs required

(a) GPT-2-Small (b) T5-Small

Figure 4.3: GPT-2 and T5 Train/Validation losses on the AOL Prefix → Query Format.
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for the models to specialise in the QAC task without overfitting [1].

Consequently, and as shown in Figure 4.3, for both GPT-2 and T5, the training

and validation losses rapidly decrease after the first two epochs and stabilise after the

third one. By contrast, while GPT-2 clearly starts overfitting during the fourth epoch

(4.3a - increase in validation loss and decrease in training loss), T5 overfits during

the fifth epoch. However, as shown in Figure 4.3b, training and validation losses

start diverging noticeably towards the end of the fourth epoch, indicating potential

overfitting. Therefore, as a direct consequence of this preliminary analysis, and despite

the models’ size differences, we decided to fine-tune them by adopting the same training

hyper-parameters to avoid introducing additional variability during the training process.

Hence, models have been fine-tuned for three epochs, with Adam with decoupled weight

decay (AdamW) Optimiser [42] and learning rate of 5×10−4, warmup steps set to 5000,

and epsilon value equal to 1×10−8. Moreover, we used a batch size of 64, and input

sentences were truncated to 32 tokens as the average number of tokens per input was

found to be approximately 16 tokens. Lastly, it is essential to state that we are aware of

the limitations of selecting hyper-parameters based solely on the models’ performance

on a subset of the data, as models’ effectiveness could drastically vary due to their

difference in size and when trained on the full dataset. Nonetheless, this decision was

dictated due to time and computational constraints, and we leave hyper-parameters

tuning as possible directions for future work.

4.2.3 Inference & Hyper-parameters Search

As mentioned in Section 2.2.5, different decoding algorithms produce diverse outputs,

with some producing more coherent and deterministic generations and others decoding

more random and variable sequences. In the context of QAC, and due to the nature

of the task, we need to consider a decoding algorithm that allows to generate n di-

verse completions given an input prefix p. Therefore, as greedy search was found to

produce mostly repetitive and less-diverse outputs, we focused solely on beam search

and top-k sampling to generate completions [86]. However, similarly to fine-tuning

Transformer-based models, also inference is a costly task [77]. Hence, conducting grid

search, a standard approach adopted in multiple studies for optimal hyper-parameters

identification, on the entirety of the validation set becomes infeasible [38, 44, 66, 84].

Consequently, in order to address the shortcomings, we explored the hyper-parameters

space by conducting inference (beam search & top-k sampling) on a subset of 1000
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Temperature

0.2 0.4 0.6 0.8 1.0

Q S Q S Q S Q S Q S

20 0.547 0.547 0.544 0.549 0.541 0.536 0.530 0.531 0.520 0.515

40 0.551 0.546 0.548 0.548 0.539 0.544 0.530 0.533 0.514 0.515

60 0.548 0.548 0.544 0.546 0.543 0.541 0.530 0.527 0.511 0.517

80 0.552 0.548 0.546 0.545 0.539 0.541 0.531 0.523 0.508 0.511

Top-k

100 0.548 0.547 0.546 0.545 0.542 0.536 0.529 0.526 0.512 0.515

Table 4.2: GPT-2-Small Top-k Sampling Hyper-parameters Search on a subset of 1000

prefixes from the AOL validation set. Results report the average BLEU score computed

by generating one candidate completion per prefix. Scores are shown for models trained

on the Prefix → Query (denoted as Q) and Prefix → Suffix (denoted as S) Data formats.

prefixes randomly extracted from the AOL validation set as such approach was found to

be effective if performed on a representative subsets of data [34, 77]. More precisely,

for each model, decoding algorithm, and parameter configuration, the average BLEU

score has been computed over the set of sequences generated (one per prefix) with

respect to the gold query. In this context, the parameters explored for beam search are

length penalty and number of beams while for top-k sampling, we considered top-k and

temperature. Taking this into consideration, beam search and top-k sampling results for

GPT-2-Small are reported in Tables 4.2 and 4.3 respectively. Results for T5-Small and

ByT5-Small are shown in the Appendix in Sections A.1 and A.2.

In light of this, as it is possible to see in Table 4.2, the top-k parameter does not

impact much on the BLEU scores for both the data formats considered (lowest scores

shown in red and highest scores shown in green). By contrast, temperature directly

affects the BLEU results, with low temperature producing higher average scores and

high temperature rapidly degrading the overall performance. This could be because

high-temperature values often lead to more random outputs, which are more likely to

diverge from the gold query [6]. However, the average BLEU scores obtained with

top-k sampling are lower overall than those computed by beam search. More precisely,

as shown in Table 4.3, a lower number of beams coupled with a low length penalty hurts

the model’s performance. By contrast, a higher number of beams in combination with a

higher length penalty leads to slightly better generations. In this context, length penalty

is a hyper-parameter that affects the generations’ length with higher values promoting

longer outputs [81]. Nonetheless, it is clear that results provided in Table 4.3 are only
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Length Penalty
0.0 0.2 0.4 0.6 0.8 1.0

Q S Q S Q S Q S Q S Q S

# Beams 10 0.550 0.549 0.551 0.552 0.552 0.553 0.553 0.555 0.554 0.557 0.554 0.558
15 0.550 0.549 0.552 0.551 0.553 0.553 0.553 0.555 0.555 0.557 0.555 0.558
20 0.551 0.549 0.552 0.552 0.554 0.553 0.554 0.556 0.555 0.557 0.556 0.558
30 0.551 0.549 0.552 0.551 0.554 0.553 0.554 0.555 0.555 0.557 0.555 0.558

Table 4.3: GPT-2-Small Beam Search Hyper-parameters Search on a subset of 1000

prefixes from the AOL validation set. Results report the average BLEU score computed

by generating one candidate completion per prefix. Scores are shown for models trained

on the Prefix → Query (denoted as Q) and Prefix → Suffix (denoted as S) Data formats.

marginally better as parameters change. Therefore, as this behaviour was consistent

across models, we opted to run inference on the complete test set by selecting a number

of beams value equal to 10 and a length penalty equal to 0.0. To be more specific,

the marginally worse average BLEU scores obtained by selecting a lower number of

beams give the advantage of a faster and more computationally efficient decoding phase

[19]. Furthermore, a length penalty value of 0.0 allows to rank candidate generations

according to their conditional probability (more details in the next Section), at the cost

of promoting shorter generations.

4.2.4 Ranking Query Candidates

One of the core components of a QAC system is the ranking module. To be more

precise, once candidate completions have been generated/extracted given a query prefix,

they need to be ranked according to a defined criterion (i.e. most probable completions

ranked higher). As previously mentioned in Section 2.1, several approaches have

been leveraged to rank candidates, such as frequency-based ranking and unnormalised

language models [16, 79]. However, as this project aims to explore the capabilities of

Transformer-based models for generating QAC candidates, not much focus is invested in

exploring ranking methodologies. Nonetheless, as beam search is adopted as decoding

algorithm, its scoring function is leveraged in order to rank generation during inference.

To be more specific, given an input sequence x, the goal of beam search is to produce

an output sequence with the highest conditional probability score for each token yi

conditioned on the input sequence and previous tokens [87]. More formally, the beam

search scoring function for the generated sentences can be formalised as follows [87]:
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1
Lα

logP(y1, ...,yL|x) =
1

Lα

L

∑
t ′=1

logP(yt ′, ...,yt ′−1,x)

where L is the decoded sequence length, and α, is the length penalty parameter

introduced in Section 4.2.3. It is worth noting that with the current scoring function,

candidate scores cannot be directly compared as normalised over different sequence

lengths. However, by setting α to be equal to 0.0, candidates are scored according to

the following equation [87]:

logP(y1, ...,yL|x) =
L

∑
t ′=1

logP(yt ′ , ...,yt ′−1,x)

This allows to reason in terms of the log likelihood, and consequently compare and

rank candidate generations based on their conditional probability [87].

4.3 Challenges & Limitations

In order to define the experimental pipeline described in this Chapter, several challenges

had to be addressed. Firstly, fine-tuning Transformer-based models for the QAC task

required exploring multiple data formats. More precisely, in our pilot experiments,

the data format profoundly impacted the models’ performance. Hence, identifying

the suitable input format for each model proved to be crucial to tackle the QAC task.

Moreover, training Transformer-based models on large datasets is computationally

expensive, sometimes requiring days per epoch. Therefore, fine-tuning models with a

subset of queries sampled from the training/validation data allowed to identify possible

fine-tuning and inference hyper-parameter configurations rapidly. However, we are

aware of the limitations of such an approach. To elaborate further, the parameters found

only provide an indication of a possible sub-optimal configuration that might work

with Transformer-based models. For instance, identifying the inference parameters by

computing the average BLEU score on a random subset is a limiting strategy, as there is

no guarantee for such a subset to be representative of the actual data distribution [77].

Furthermore, while setting the length penalty to 0.0 slightly hurts beam search results,

it comes with the advantage of providing a candidates’ ranking strategy. Consequently,

the rationale behind our choices was dictated by the time and resource constraints

imposed on this project. Therefore, further exploration with more data and parameter

configurations are clearly required directions for future work.
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Evaluation

In this Chapter, we provide results from the QAC experiments conducted with Transformer-

based models on the AOL and ORCAS datasets. More precisely, this Chapter aims to

explore how Transformer-based models perform with respect to the baselines in terms of

their performance and generalisation capabilities. Moreover, examples are provided to

outline where different models fail or succeed in producing query completions. Lastly,

results are discussed and tied back to the main research questions of this project.

5.1 Transformers for QAC Results

The Transformer-based models considered in this project (T5-Small, ByT5-Small and

GPT-2-Small) have been fine-tuned on both the AOL and ORCAS datasets under

the two data formats considered, prefix → query and prefix → suffix, and denoted as

PQ and PS respectively from now on (for the exact parameter configuration adopted,

refer back to Section 4.2.2). In this context, to evaluate models, ten completions per

prefix (extracted from the datasets test sets) have been generated with beam search as

decoding algorithms with a number of beams equal to 10 and length penalty set to 0.0.

Consequently, all the evaluation metrics (MRR, PMRR and Success Rate) computed

are reported at rank 10.

In light of this, results obtained on the AOL dataset are reported in Table 5.1 while

results for the ORCAS dataset are shown in Table 5.2. In this context, and as shown in

Table 5.1, it is clear that Transformer-based models effectively address the QAC task by

generating query completions for both seen and unseen queries. More specifically, all

the Transformer-based models outperform the MPC baseline for unseen queries and all

the evaluation metrics. This fact suggests that such models can effectively generalise to

30
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MRR@10 PMRR@10 SR@10
Seen Unseen All Seen Unseen All Seen Unseen All

MPC 0.608 0.000 0.310 0.651 0.091 0.376 0.764 0.000 0.389

QueryBlazer-256 0.562 0.210 0.389 0.646 0.417 0.534 0.723 0.290 0.510

QueryBlazer-4096 0.612 0.217 0.418 0.670 0.410 0.542 0.766 0.299 0.537

T5-Small-PQ 0.425 0.169 0.299 0.483 0.307 0.397 0.544 0.229 0.389

T5-Small-PS 0.407 0.159 0.284 0.467 0.295 0.382 0.550 0.233 0.395

ByT5-Small-PQ 0.426 0.149 0.290 0.496 0.338 0.418 0.539 0.200 0.373

ByT5-Small-PS 0.441 0.166 0.306 0.502 0.307 0.406 0.546 0.225 0.389

GPT-2-Small-PQ 0.463 0.176 0.322 0.513 0.308 0.413 0.587 0.243 0.418

GPT-2-Small-PS 0.444 0.172 0.311 0.498 0.304 0.403 0.564 0.237 0.404

Table 5.1: QAC Results Reported on the AOL datasets. The best results overall are

indicated in bold while the highest scores in italics represent the best results among

Transformer-based models. Notice that out of 1,317,632 test queries, 670,810 were

seen and 646,822 were unseen.

previously unseen data. Furthermore, it is evident that the data format adopted when

training Transformer-based models significantly affects their performance. To elabo-

rate further, both T5-Small-PQ and GPT-2-Small-PQ were found to outperform their

respective PS variant. By contrast, ByT5-Small-PS generally performed better than

ByT5-Small-PQ, suggesting that its token-free approach is beneficial when operating

with partial suffixes as target sequences. Nonetheless, among all Transformer-based

models, GPT-2-Small-PQ was found to be the best-performing model across metrics,

capable of achieving satisfactory performance with both seen and unseen queries. How-

ever, it is worth noting that, although some Transformer-based models have an overall

(all column in the Table) performance that is as least as good as MPC, both MPC and

QueryBlazer-256/4096 offer very strong baselines with QueryBlazer-4096 achieving

the best overall performance. More precisely, QueryBlazer-4096 consistently surpasses

all the other QAC systems for both seen and unseen queries showing robustness and

generalisation capabilities. In this context, it is worth noting that QueryBlazer-4096

MRR performance for seen queries is only marginally better than MPC. Therefore,

we conducted a two-tailed paired t-test with significance level α = 0.05 to evaluate

whether the difference between the two distributions of scores is statistically significant

[61]. Results of the two-tailed paired t-test conducted produced a p < 0.05 indicating

that the difference between QueryBlazer-4096 and MPC for seen queries is statistically

significant.
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Taking this into consideration, the same findings outlined for AOL apply to the

ORCAS dataset as shown in Table 5.2. However, conversely to findings for AOL,

ByT5-Small-PQ was found to generally produce better generations than its PS variant.

This could be justified because the noisy nature of the AOL dataset requires a model

that performs on a more fine-grained level (i.e. suffix level) instead of generating the

final query completion in its entirety.

MRR@10 PMRR@10 SR@10
Seen Unseen All Seen Unseen All Seen Unseen All

MPC 0.402 0.000 0.244 0.549 0.165 0.398 0.568 0.000 0.345

QueryBlazer-256 0.335 0.248 0.301 0.579 0.501 0.548 0.462 0.340 0.414

QueryBlazer-4096 0.415 0.257 0.353 0.637 0.517 0.590 0.565 0.362 0.485

T5-Small-PQ 0.259 0.202 0.237 0.411 0.359 0.390 0.350 0.275 0.320

T5-Small-PS 0.234 0.184 0.214 0.392 0.343 0.372 0.338 0.270 0.311

ByT5-Small-PQ 0.441 0.166 0.306 0.502 0.307 0.406 0.546 0.225 0.389

ByT5-Small-PS 0.268 0.203 0.243 0.436 0.373 0.411 0.366 0.282 0.333

GPT-2-Small-PQ 0.311 0.227 0.278 0.442 0.373 0.415 0.430 0.317 0.386

GPT-2-Small-PS 0.284 0.213 0.256 0.410 0.350 0.386 0.397 0.298 0.360

Table 5.2: Results Reported on the ORCAS datasets. The best results overall are

indicated in bold while the highest scores in italics represent the best results among

Transformer-based models. Notice that out of 1,876,480 test queries, 1,139,849 were

seen and 736,632 were unseen.

5.2 Generalisation Capabilities of QAC Systems

This Section aims to explore the generalisation capabilities of the QAC systems consid-

ered. More precisely, QAC systems (baselines and the best-performing Transformer-

based models), fine-tuned on the AOL dataset, have been evaluated on the ORCAS test

set (and vice versa). The goal is to explore how well diverse QAC systems perform

on a partially unrelated test set in order to simulate real-life QAC applications, where

prefixes provided as input might diverge from the data utilised during the training phase.

In light of this, Table 5.3 presents the results for QAC systems trained on the AOL

dataset and evaluated on the ORCAS test set. In this context, it can be noticed that MPC

still offers a robust baseline for seen queries. However, its overall performance (all
columns in the Table) is severely degraded as the split seen/unseen queries in the test

set is heavily imbalanced and consequently leading many completions to have a score
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MRR@10 PMRR@10 SR@10
Seen Unseen All Seen Unseen All Seen Unseen All

MPC 0.418 0.000 0.053 0.507 0.113 0.163 0.579 0.000 0.073

QueryBlazer-4096 0.450 0.210 0.241 0.576 0.445 0.462 0.600 0.288 0.327

T5-Small-PQ 0.261 0.164 0.177 0.365 0.318 0.324 0.359 0.224 0.241

ByT5-Small-PS 0.282 0.155 0.171 0.396 0.324 0.333 0.383 0.213 0.235

GPT-2-Small-PQ 0.297 0.160 0.177 0.393 0.306 0.317 0.412 0.223 0.247

Table 5.3: Results for QAC Systems Trained on the AOL dataset but evaluated on the

ORCAS dataset. Out of the 1,876,480 ORCAS test queries, 239,421 were seen and

1,637,060 unseen.

of 0.0. Moreover, Transformer-based models behave similarly as previously observed

and described in Section 5.1. To be more precise, GPT-2-Small-PQ demonstrated supe-

rior performance compared to both T5-Small-PQ and ByT5-Small-PS. The enhanced

generalisation capabilities of GPT-2-Small could be attributed to the higher quality

dataset (WebText) used during its pre-training phase [58]. More precisely, WebText

comprises diverse documents gathered from various sources without relying on the

noisy Common Crawl, as was done to construct C4 and mC4 datasets (used to train T5

and ByT5 models) [59, 82].

Nonetheless, while ByT5-Small-PS was found to perform consistently better than

T5-Small-PQ, its performance is generally worse when analysing its generalisation

capabilities. Moreover, as for results shown in Tables 5.1 and 5.2, QueryBlazer-4096

achieves the highest performance overall, highlighting that its capabilities of computing

segmentation candidates at a sub-word level as weighted finite state transducer helps

the system to generalise well even for previously unseen queries [31].

MRR@10 PMRR@10 SR@10
Seen Unseen All Seen Unseen All Seen Unseen All

MPC 0.464 0.000 0.161 0.515 0.067 0.223 0.654 0.000 0.227

QueryBlazer-4096 0.547 0.202 0.322 0.622 0.371 0.459 0.702 0.271 0.421

T5-Small-PQ 0.340 0.153 0.218 0.394 0.259 0.306 0.447 0.205 0.289

ByT5-Small-PS 0.354 0.155 0.224 0.409 0.266 0.316 0.444 0.213 0.293

GPT-2-Small-PQ 0.345 0.153 0.220 0.384 0.250 0.296 0.453 0.208 0.293

Table 5.4: Results for QAC Systems Trained on the ORCAS dataset but evaluated on the

AOL dataset. Out of the 1,317,632 AOL test queries, 457,966 were seen and 859,666

unseen.
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Similarly, as shown in Table 5.4, results obtained by evaluating QAC systems fine-

tuned on the ORCAS dataset on the AOL test set share the same key findings mentioned.

Therefore, in this case, QueryBlazer-4096 was also the best-performing model for both

seen and unseen queries and for all the evaluation metrics considered. However, it

is worth mentioning that, in this case, GPT-2-Small-PQ was not found to be the best

among Transformer-based models. To be more specific, it is clear from Table 5.4 that

ByT5-Small-PS generalises and performs better. These findings align with what was

previously observed in Section 5.1 and suggest that ByT5-Small-PS provides a more

robust and versatile solution when operating with noisy data (i.e. AOL dataset).

5.3 Prefix Length Impact on QAC

One of the main obstacles that QAC systems face is the inherent lack of context as-

sociated with the QAC task [8]. To be more specific, inferring a user intent solely

from a very short input prefix is extremely challenging. For instance, for the short and

ambiguous input prefix www. with gold query www.pinerplantation.com, GPT-

2-Small-PQ would produce the following ranked completions [www.google.com,

www.yahoo.com, www.myspace.com, www.google]. In this context, while such

completions highlight that the model effectively captured information about the distribu-

tion of queries in the dataset, the lack of context impeded the model from generating the

user-intended query. This common behaviour, shared by all the QAC systems presented

in this report, is shown in Figure 5.1.

The Figure shows the percentage of successful completions at rank one based on

the ratio between the length of the prefix issued to the QAC system and the length

of the gold query (i.e. ground truth). Therefore, it is clear from Figure 5.1 that QAC

systems struggle to handle short prefixes due to the lack of contextual information.

Moreover, as the prefix length increases (with respect to the gold query length), so does

the QAC systems’ accuracy in producing correct completions. Therefore, while this fact

highlights the limitations of the current QAC system, it also suggests possible directions

for future work, where supplementary contextual information, such as click-through

rate and user-based data, might be required to generate meaningful completion.
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Figure 5.1: The plot shows GPT-2-Small-PQ successful completions at rank 1 based on

the ratio of the prefix length over the gold query length.

5.4 Intrinsic Evaluation

This Section aims to intrinsically investigate how different QAC systems succeed or fail

in providing successful completions. More precisely, the goal is to explore how QAC

systems behave by analysing the completions they produce given an arbitrary input

prefix. In light of this, the findings presented in Table 5.5 summarise the generated

outputs produced by different QAC systems for the AOL dataset. In this context, the

successful completions, where the gold query was accurately generated and present

in the ranked output list, are highlighted in green. On the other hand, completions

displayed in black indicate a complete failure in producing the gold query as part of the

returned results. Moreover, for each gold query, it is reported whether the query had

been seen when training the various QAC systems. Finally, it is essential to mention

that only completions ranked within the top two positions are reported due to space

limitations.

Taking this into consideration, and as shown in Table 5.5, it is clear that MPC fails to

generate completions for unseen queries (indicated with a slash symbol). However, this

is expected as MPC relies heavily on statistical information derived from the training

data. Nevertheless, despite this drawback, MPC successfully generates outputs for

seen and infrequent/specific queries (i.e. prr 2-10-0 4483) due to its ability to retain

information about previously encountered queries. By contrast, QueryBlazer-4096

and the Transformer-based QAC systems successfully produce completions for unseen
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Prefix
Golden
Query

Seen Rank MPC QueryBlazer-4096 T5-Small-PQ ByT5-Small-PQ GPT-2-Small-PQ

housego housegop.state.il.us True 1 housegop.state.il.us housegoogle housegoods housegoods.com housegoogle

2 housego accountancy uk housegop.org housego.com housegoods housegoo

prr 2-1 prr 2-10-0 4483 True 1 prr 2-10-0 4483 prr 2-10-2 prr 2-1-1 prr 2-10 prr 2-11

2 / prr 2-10 prr 2-106 prr 2-12 prr 2-10

fligim.com fligim.com False 1 / fligim.com fligim.comhttp fligim.comhttp fligim.comhttp

2 / fligim.comhttp fligim.com. fligim.com. fligim.com.

zip code mck zip code mckinney texas False 1 / zip code mckinney texas zip code mckinney tx zip code mckinney tx zip code mckinney tx

2 / zip code mckinney zip code mckinney zip code mckinney zip code mckinley

www.n.d. doc www.n.d. doctors.com False 1 / www.n.d. doctorates www.n.d. doctors.com www.n.d. doc.com www.n.d. doc.com

2 / www.n.d. doctor www.n.d. doctors www.n.d. doctors www.n.d. doctors

pink pink.com True 1 pinkworld pinkworld pink.com pinkworld pinkworld

2 pink pink pinks pink world pink eye

davey davey havoc True 1 davey havok davey havok daveys davey havoc davey jones

2 davey jones davey jones davey’s davey havok davey havok

mozila 20f mozila 20firefox False 1 / mozila 20fashion mozila 20foods mozila 20firefox mozila 20fishing

2 / mozila 20florida mozila 20food mozila 20fox mozila 20funds

intel versus a intel versus amd False 1 / intel versus andros intel versus aol intel versus aol intel versus amd

2 / intel versus art intel versus ad intel versus audio intel versus athlon

report report aol True 1 report report reports reporter report aol

2 report spam report spam report.com reports report cards

Table 5.5: The Table shows query completions generated by different QAC systems

trained on the AOL dataset and given an input prefix. Completions highlighted in green

identify QAC systems that successfully produce the reference completion (gold query)

as the first candidate. By contrast completions in black represent systems that do not

return the gold query as part of the output ranked list.

queries. However, while QueryBlazer-4096 generates a correct output for the prefix

fligim.com (corresponding exactly to the gold query), all the Transformer-based

models only partially match the gold query. More specifically, as a direct observation

of our empirical studies, it was noticed that Transformer-based models tend to always

generate a longer output given an arbitrary input prefix. For instance, for the prefix

fligim.com, T5-Small-PQ adds a dot at the end of the completion (fligim.com.),

causing only a partial match with the gold query. In this context, it is also clear from

the examples shown in Table 5.5 that T5-Small-PQ has the tendency of adding .com

directly to the input prefix. This could be a direct consequence of the nature of the AOL

dataset, which comprises many URLs and websites.

Considering now ByT5-Small-PQ, it can be noted that the model effectively pro-

duces completions for misspelt queries. To be more specific, both the gold queries

davey havoc and mozila 20firefox present spelling mistakes which are effectively

parsed and processed by the model, possibly due to its token-free nature. Hence, this

fact highlights that ByT5-Small, by operating on a byte-level, can produce semantically
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correct completions even for ill-formed prefixes. However, it is noteworthy that genera-

tions produced still include spelling errors and do not fix the issue. Lastly, considering

the prefix intel versus a, it is clear that GPT-2-Small-PQ successfully leverages

transfer learning to produce semantically correct and conceptually related generations

(intel versus amd) for previously unseen queries.

5.5 Discussion of Research Outcomes

This Section aims to summarise the main key findings and tie them back to the research

questions initially introduced in Chapter 1. To be more specific, the goal of this project

was to investigate how Transformer-based models could be utilised for the QAC task

and explore how different architectures and data formats would affect the models’

behaviour. The underlying assumption was based on the inherent capabilities of pre-

trained Transformer-based models to learn semantic patterns and correlation from one

task and apply them to a different one [59]. In light of this, and considering the RQ1 (Can

the pre-trained nature of Transformer-based language models be exploited to address

the QAC task and provide completions for unseen prefixes?) it is clear that Transformer

models can effectively learn how to tackle the QAC task and address the OOV issue.

More precisely, Transformer-based models were found to often outperform the MPC

baseline for unseen prefixes and perform better overall. However, the capability of MPC

to leverage statistical properties derived from data (i.e. query frequency) often proved

to be effective for queries seen during the training phase. Furthermore, considering the

performance among Transformer-based QAC systems, GPT-2-Small was found to be

the most effective model for the task. To be more precise, the model was capable of

generating meaningful completions by handling partial words. This behaviour could

be justified with GPT-2’s diverse learning objective and the tokenisation algorithm

(BPE) adopted [58]. Moreover, GPT-2-Small proved to be effective in handling OOV

prefixes and producing semantically coherent generations. This fact could be a direct

consequence of the auto-regressive nature of GPT-2, which makes the model focus

only on the prefix (rather than the entire sentence as for T5/ByT5) in order to produce

complete generations [85]. Therefore, due to this unidirectional aspect, GPT-2 utilises

only the prefix as context, which closely aligns with the QAC task.

Similarly to GPT-2-Small, also ByT5-Small was capable of leveraging its token-

free nature to produce completions for partial inputs and consequently outperform the

other Transformer-based approaches on the ORCAS dataset (shown in Table 5.2) [82].
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By contrast, T5-Small struggled to achieve satisfactory performance, suggesting that

WordPiece tokenisation might not be suitable for the task [59].

Considering now the RQ2 (Does the data format affect the models’ capabilities

and learning behaviour?), it is evident that different data formats significantly impact

models’ performance. To be more specific, formatting data as a mapping from prefix

to query often led to better query completions and, consequently, evaluation results.

However, ByT5-Small was found to better handle noisy data formatted as prefix →
suffix probably due to its token-free nature [82]. Nonetheless, it is essential to mention

that the non-neural QueryBlazer-4096 was found to be the best-performing model for

both AOL and ORCAS datasets. This fact highlights that QAC is a challenging task

requiring QAC systems to be capable of extracting and combining dataset-specific

knowledge to derive completions and generalise well to unseen data.

However, it is worth noting that despite the superior performance of QueryBlazer-

4096, the methodology presented in this report has limitations that need to be considered

when analysing results. To be more specific, due to time and resource constraints, sub-

optimal configurations had to be used in order to explore the role of Transformer-based

models for QAC. Therefore, additional experiments should be carried out to identify

optimal fine-tuning, decoding and ranking configurations specific to each model.
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Conclusions

6.1 Summary & Takeaways

Query Auto-Completion, has become a crucial feature of search engines which aids users

in formalising their search intent as a well-structured and free-text query [30]. However,

because of the limited contextual information provided as input by users, inferring the

user intent solely from a short prefix is a very challenging task [8]. Furthermore, due to

the long-tail nature of search log queries and the Out-of-Vocabulary issue, QAC systems

need to be robust and generalise well for previously unseen queries [8, 71]. To address

the shortcomings, several neural and non-neural approaches have been researched over

the years to learn and derive patterns directly from search logs data.

In light of this, this project aimed to explore whether the inherent capabilities of

pre-trained Transformer-based models could be leveraged for the QAC task and address

the OOV issue. In this context, three Transformer-based models, GPT-2, T5, and ByT5,

have been fine-tuned on two separate search logs datasets, AOL and ORCAS, with the

goal of generating query completions solely from an input prefix (i.e. no additional

metadata has been used to fine-tune models). Moreover, two diverse data formats have

been utilised to explore the impact of data on the models’ learning objectives. To

be more precise, models have been fine-tuned with the goal of generating full query

completions or suffixes given an input prefix.

Our findings suggest that Transformer-based models can effectively learn to generate

meaningful completions solely from an input prefix. More precisely, models can process

incomplete prefixes and decode completions even for previously unseen queries and

consequently address the OOV issue. Moreover, the data format used when fine-tuning

models significantly affects their performance, with generating full queries being a

39
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more effective learning objective than sole suffixes. In this context, and among models,

GPT-2 was found to be the most robust and versatile, showing good overall performance

and effective generalisation capabilities. Nonetheless, while Transformer-based models

often surpassed the Most Popular Completion baseline in terms of general performance,

non-neural approaches, such as QueryBlazer, proved to be the most effective and

robust among the QAC systems considered. This suggests that, because of the inner

mechanism underlying QueryBlazer, extracting patterns at a sub-word level and specific

to a dataset is a more suitable approach for QAC compared to leveraging transfer

learning for unseen queries. However, it is worth noting that while this study highlights

that Transformer-based models can be employed to address the QAC task, we are

aware of several limitations in our experimental setup that might affect the models’

performance. Therefore, we outline these limitations in the next Section by pointing

them as possible directions for future work.

6.2 Future Work

As aforementioned, the methodology presented in this report has multiple limitations

dictated by time and resource constraints. Therefore, multiple additional research

directions could be explored to improve and expand upon the current QAC systems.

Firstly, for the three Transformer-based models considered (GPT-2, T5 and ByT5), both

the fine-tuning and inference phases have been executed by adopting the same hyper-

parameter configurations. Hence, while such configurations have been identified by

observing the models’ behaviour on a subset of the data available, additional experiments

could be conducted to identify optimal model-specific parameters based on the entire

training set. Secondly, as ranking query generations based on beam search likelihood is

sub-optimal, QAC systems might benefit from a more sophisticated ranking function.

This might involve training a neural language model directly on the search log queries

and then ranking generations according to their sentence probability computed by the

language model. Moreover, fine-tuning models on randomly generated prefixes might

introduce bias if the distribution of prefixes length over queries length is imbalanced.

Consequently, data augmentation and re-balancing techniques could be adopted to

enrich the datasets and help models to better capture syntactic and semantic correlations

in text. Lastly, training larger models such as BLOOM [63] and LLaMA [74], as well

as smaller Transformer-based models, might help capture dataset-specific patterns and

provide latency-efficient solutions required for real-world applications of QAC systems.
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Appendix A

Additional Results

A.1 T5-Small Hyper-Parameters Search

Temperature
0.2 0.4 0.6 0.8 1.0

Q S Q S Q S Q S Q S

20 0.545 0.540 0.540 0.539 0.538 0.527 0.532 0.527 0.510 0.512

40 0.543 0.542 0.546 0.541 0.538 0.534 0.529 0.521 0.508 0.514

60 0.545 0.540 0.547 0.536 0.531 0.531 0.525 0.524 0.512 0.511

80 0.541 0.544 0.540 0.540 0.536 0.536 0.530 0.522 0.516 0.503
Top-k

100 0.545 0.541 0.545 0.538 0.537 0.533 0.527 0.528 0.515 0.509

Table A.1: T5-Small Top-k Sampling Search Hyper-parameters Search on a subset

of 1000 prefixes from the AOL validation set. Results report the average BLEU score

computed by generating one candidate completion per prefix. Scores are shown for

models trained on the Prefix → Query (denoted as Q) and Prefix → Suffix (denoted as

S) Data formats.
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Length Penalty
0.0 0.2 0.4 0.6 0.8 1.0

Q S Q S Q S Q S Q S Q S

# Beams 10 0.547 0.541 0.547 0.541 0.549 0.543 0.549 0.544 0.550 0.543 0.550 0.543

15 0.544 0.541 0.546 0.544 0.548 0.542 0.548 0.544 0.549 0.544 0.550 0.545
20 0.545 0.542 0.547 0.545 0.549 0.543 0.549 0.544 0.550 0.544 0.550 0.545
30 0.545 0.542 0.547 0.544 0.548 0.543 0.549 0.544 0.549 0.544 0.549 0.544

Table A.2: T5-Small Beam Search Hyper-parameters Search on a subset of 1000

prefixes from the AOL validation set. Results report the average BLEU score computed

by generating one candidate completion per prefix. Scores are also shown for models

trained on the Prefix → Query (denoted as Q) and Prefix → Suffix (denoted as S) Data

formats.

A.2 ByT5-Small Hyper-Parameters Search

Temperature
0.2 0.4 0.6 0.8 1.0

Q S Q S Q S Q S Q S

20 0.546 0.550 0.541 0.540 0.530 0.532 0.519 0.525 0.511 0.504
40 0.545 0.547 0.538 0.542 0.530 0.538 0.526 0.523 0.513 0.510

60 0.545 0.548 0.538 0.539 0.528 0.533 0.525 0.525 0.505 0.512

80 0.548 0.547 0.540 0.541 0.530 0.534 0.521 0.522 0.509 0.508

Top-k

100 0.546 0.550 0.539 0.542 0.527 0.536 0.528 0.521 0.519 0.513

Table A.3: ByT5-Small Top-k Sampling Hyper-parameters Search on a subset of 1000

prefixes from the AOL validation set. Results report the average BLEU score computed

by generating one candidate completion per prefix. Scores are shown for models trained

on the Prefix → Query (denoted as Q) and Prefix → Suffix (denoted as S) Data formats.
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Length Penalty
0.0 0.2 0.4 0.6 0.8 1.0

Q S Q S Q S Q S Q S Q S

# Beams 10 0.548 0.556 0.552 0.562 0.554 0.563 0.554 0.562 0.554 0.562 0.554 0.563

15 0.549 0.555 0.553 0.561 0.555 0.564 0.555 0.563 0.556 0.562 0.556 0.564
20 0.549 0.553 0.554 0.561 0.556 0.563 0.557 0.562 0.557 0.561 0.558 0.562

30 0.550 0.554 0.555 0.562 0.558 0.564 0.558 0.563 0.558 0.563 0.559 0.564

Table A.4: ByT5-Small Beam Search Hyper-parameters Search on a subset of 1000

prefixes from the AOL validation set. Results report the average BLEU score computed

by generating one candidate completion per prefix. Scores are shown for models trained

on the Prefix → Query (denoted as Q) and Prefix → Suffix (denoted as S) Data formats.


