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Abstract

This study investigates the specific mechanisms of lossy audio codec compression

techniques and their impact on speech intelligibility, assessed using Automated Speech

Recognition (ASR) platforms and measured via Word Error Rates (WER). We present a

comprehensive review of the development of audio codecs, detailing their compression

methodologies and anticipated performance efficiencies. Experiments were conducted

using ASR systems to empirically measure the codecs’ performances. Our findings

reveal a clear relationship between the intricacy of encoding methods and speech

intelligibility, notably under low bit rate scenarios. In testing conditions involving

background noise, speech intelligibility was surprisingly improved through the use

of codecs, indicating that these codecs possess noise suppression capabilities. By

leveraging ASR systems for speech quality assessment, we offer a reliable and consistent

evaluation method, establishing ASR platforms as novel evaluation tools for upcoming

research in compression and speech processing.
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Chapter 1

Introduction

In today’s digital age, many of our spoken words and conversations are captured and

stored in digital formats like podcasts, audio recordings, and voice messages. While this

digitisation has made information more accessible and manageable, it has also created

challenges in storing and transmitting large volumes of speech data. Compression,

which reduces data size while trying to retain its quality, has become essential in

addressing these challenges. However, there are trade-offs. While lossy compression

techniques can achieve higher compression ratios, they might also compromise the

intelligibility of the speech due to information loss.

A significant amount of research has explored how compression affects our ability

to understand speech in terms of evaluating the intelligibility. Yet, there is a notable gap

when it comes to understanding how Automated Speech Recognition (ASR) systems

fare under similar evaluations. ASR systems, now a regular part of our lives, might

handle compressed speech differently than humans. This project aims to understand how

compression techniques impact the accuracy of ASR systems in transcribing speech.

Two key developments not only enable the foundation of this study but also under-

score its relevance. First, ASR systems are not only widely used, but their services have

also become extensively available, paving the way for our experiments. Second, due to

more recent technological advancements, today’s ASR systems produce reliable results

that allow for meaningful and valid assessments. Their refined capability to transcribe

compressed audio might even exceed human abilities in specific instances. The findings

from this research could highlight potential challenges with certain codecs and provide

direction for the development of codecs that are ideally suited for ASR applications.

This report is structured as follows. We will first review the concepts and principles

of audio data compression in Chapter 2. The chapter includes a survey of several com-

1



Chapter 1. Introduction 2

pression techniques, as well as a basic tutorial of a critical speech model used in many

of the techniques. In Chapter 3, we review our experimental design, considerations,

scope and set up. The results of our experiments are then shown in Chapter 4. Important

trends and topics that emerged from our results are discussed and further analysed in

Chapter 5, before we end the report with our concluding remarks in Chapter 6.



Chapter 2

Background

This chapter aims to illuminate some of the underlying principles of audio data compres-

sion. We surveyed algorithms and techniques that are commonly used in the industry,

and assembled a cohesive account of how these techniques build upon each other to

achieve higher degrees of sophistication and efficiency. We regard this synthesis of

concepts from multiple sources and perspectives as a significant contribution to the

project. This narrative not only presents the landscape of digital audio encoding but

also provides clarity and insights into the evolution of techniques and innovations that

have shaped this field.

In the realm of digital audio, compression is performed by algorithms known as

‘codecs’, an abbreviation for ‘coder-decoder’. These are systems designed not only to

perform compression during the encoding stage, but also to decode and reconstruct the

data for playback at the receiving end. Many of these techniques described here are

used in the codecs that will be visited in our experiments.

The primary objective of compression, applicable to both speech and general audio,

is to decrease redundancy in the signal. This reduces the bandwidth of the audio stream

while retaining acceptable or minimal loss to its quality, as perceived by listeners. Audio

signals can exhibit various forms of redundancy. For instance, temporal redundancy

refers to a signal’s tendency to have adjacent samples that are either similar to each other,

or are repeated. On the other hand, there is spectral redundancy at frequencies that

exceed the typical human hearing threshold of 20kHz. By understanding how listening

works, it is possible to design techniques that preserve the most critical characteristics

of a signal, discard unusable information, and handle repetition in ways that are more

data efficient.

Broadly, speech compression techniques fall into two categories—waveform-based

3



Chapter 2. Background 4

and parametric-based compression. The former is typically concerned with encoding

the individual samples themselves, whereas the latter requires some signal analyses to

extract deeper representations of the same signal. Modern codecs will usually employ a

mixture of several techniques spanning both classes.

We will also examine the role of psychoacoustics in audio data compression, which

is the science of how humans perceive sound, and how this understanding contributes

to more effective compression strategies.

2.1 Waveform Compression

In this section, we will start by understanding Linear Pulse-code Modulation, a standard

‘non-compressive’ technique for representing a digital audio signal, before examining

ways of improving its efficiency.

2.1.1 Linear Pulse-code Modulation (Linear PCM)

When an analog signal is converted into a digital form, the amplitude of the signal is

sampled at uniform intervals determined by the sampling frequency. Where the analog

signal’s amplitude spanned a continuous range, it now also has to be quantised into

discrete levels so that it can be digitally represented.

Linear PCM represents the most straight-forward way of doing this quantisation -

the amplitudes are rounded to discrete steps determined by the bit depth. These steps are

evenly spaced apart, hence the linear term. Quantisation noise is inevitably introduced

from the rounding off of the original signal to the nearest step. A higher bit depth

results in more quantisation steps, lower quantisation noise, and better audio quality.

For example, the Compact Disc Digital Audio (CDDA), which is the standard format

for audio CDs, uses 16-bit Linear PCM for encoding audio data.

Because Linear PCM mainly concerns itself with representing the waveform as

accurately as possible at the specified bit depth and sampling rate, and does not involve

any means to compress or otherwise improve on its efficiency, it can generally be viewed

as being an uncompressed format. Linear PCM is also not considered a compression

technique, but rather a technique for audio recording and representation, forming the

basis upon which subsequent compression techniques can be applied.
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2.1.2 Non-Linear Pulse-code Modulation

Human hearing is more sensitive to quieter sounds than to louder sounds. We are thus

able to better distinguish fluctuations at the quieter end, than we can for pertubations

at the louder end. This is similar to a logarithmic response, where sensitivity declines

non-linearly with increasing amplitudes.

Non-linear PCM codecs like the G.711 A-law and G.711 µ-law [21], both standard-

ised by the International Telecommunication Union (ITU), take advantage of this. By

applying a logarithmic scale to the quantisation levels, these codecs provide a greater

resolution for quieter sounds, which aligns with our sensitivity to these sounds. Con-

versely, a lower resolution is used for louder sounds, as our hearing is not as sensitive at

these levels anyway.

This strategy reduces quantisation noise in quieter, more sensitive parts of the audio

signal, while any increased noise in the louder sections is less perceivable. Overall, this

achieves a better audio experience to the listener and presents an improvement in terms

of bandwidth efficiency. The improvement in efficiency enables strategic reductions in

bandwidth by reducing the encoding bit depth without significantly compromising the

audio experience.

2.1.3 Differential Pulse-code Modulation (DPCM)

Although the amplitudes of audio signals can span the entire range within the limits,

successive samples of the signal are more likely to be similar rather than swinging from

one limit to its polar opposite. Differential PCM exploits this property by encoding the

differences in amplitude instead of the absolute values for each sample. This allows

DPCM to sequentially map the most likely amplitudes with a lower bit depth. In this

way, DPCM can be more efficient in its encoding when applied to audio signals.

Adaptive Differential Pulse Code Modulation (ADPCM) takes DPCM a step further

by varying the size of the quantisation step differences. The step sizes are dynamically

adjusted depending on the expected size of the fluctuations, operating on the expectation

that the size of the current fluctuation will be similar to that of recent fluctuations.

While this requires some additional processing to analyse past samples and make

predictions, ADPCM codecs, such as G.726 [22], standardised by the ITU, can reduce

overall quantisation noise with the same bit depth, making it a more effective form of

compression compared to DPCM.
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2.2 Parametric Compression

PCM and its variants such as DPCM and ADPCM are techniques used in waveform

representation and compression. They work by sampling the waveforms at regular

intervals and quantising them, allowing a reproduction of the original waveform that is

as accurate as the bit depth and sampling rate allow. In the following sections, we will

shift our focus to a different paradigm - parametric compression. Instead of encoding

raw waveform data at every interval, parametric compression captures characteristics

of the signal such as pitch, gain, and spectral information, using certain models of

sound production. This model-based approach allows parametric compression to

achieve higher compression ratios than waveform-based methods, with minimal losses

to perceived audio quality.

The predominant model adopted in many compression techniques is the source-filter

model. We begin this section by first understanding the relationship between the time

and frequency domains, which is foundational to the source-filter model.

2.2.1 Time and Frequency Domains

The waveforms that we have discussed earlier are the signals’ representation in the

time domain. A waveform is a functions of time, showing how the signal’s amplitude

changes as time progresses. Conversely, the frequency domain reveals how the signal’s

energy is distributed across different frequencies. This distribution is often referred to

as the spectrum, and it represents the signal as if it were a combination of sine waves of

various frequencies, each with its own amplitude. By understanding the spectrum, we

can identify the constituent parts of a complex signal, aiding us in tasks like recognising

harmonics, fundamental frequencies, or sources of noise.

The connection between the time and frequency domains is made through the

Fourier transform and its inverse [16]. The Fourier transform, given by the equation

F( f ) =
∫

∞

−∞
f (t) · e− j2π f t dt, breaks down a complex waveform into the constituent

sinusoids, moving from the time domain to the frequency domain. The inverse transform

does the opposite, recombining those sinusoids into the original waveform.

Consider the relationship between pure sinusoidal tones and their representations

in the frequency domain shown in Figure 2.1. In the frequency domain, pure tones

manifest as single spikes, each positioned at their respective frequencies and with

heights corresponding to their amplitudes. The sum of individual waveforms results in a

more intricate waveform in the time domain. However, analyzing this composite signal
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Figure 2.1: Waveforms (top) and their representations in the frequency domain (bottom).

In this example, a pure tone of lower frequency and higher amplitude (left) is added

to another pure tone of higher frequency and lower amplitude (centre) to form a more

complex waveform. Equivalently, complex waveforms such as the one on the right can

be decomposed into its constituent sinusoids via the Fourier transform.

in the frequency domain via the Fourier transform reveals its individual constituent

tones, given by distinct spikes, which is simpler and more intuitive to interpret.

Converting a time-based signal to the frequency domain typically involves selecting

a window (or frame) of a certain length, setting the time boundaries of the transformation.

Because the Fourier transform integrates the signal over this time period, the signal is

assumed to be stationary within the window. For speech signals, it is common to use

window lengths of between 20ms to 30ms, which correspond to the quasi-stationary

nature of speech.

This windowing approach ensures that we are analyzing a finite segment of the

signal, providing a snapshot of its frequency content during that interval. Using shorter

windows allows for better frequency resolution, enabling more detailed insights into the

signal’s components. Conversely, longer windows offer a broader view of the signal

but would reduce the frequency resolution, making it more difficult to discern specific

components.

Understanding the interplay between the time and frequency domains is essential in

signal processing. The time domain provides a view of ‘when’ things are happening in

a signal, giving a complete picture at every instant. Conversely, the frequency domain

tells you ‘what’ frequencies are present by dissecting the signal into its basic frequency

components. With an understanding of how signals can be represented in both time and

frequency domains, we will now build on these principles and examine the source-filter

model, which plays a critical role in speech compression techniques.
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Figure 2.2: Interaction of source and filter functions in the time domain (top) and

frequency domain (bottom). The interaction is characterised by the convolution operation

in the time domain, and multiplication in the frequency domain, which results in the

output spectrum (bottom right) for a frame of speech.

2.2.2 Source-filter Model

Speech possesses unique characteristics that make it distinct from other types of sounds.

It is a complex process involving the production of sounds by the vocal folds, which

then propagate along the vocal tract, where it is shaped by the curvature and length

of the tract as well as the articulators, such as the tongue, palate, teeth, and lips. The

source-filter model approximates this understanding by describing speech production as

involving two main processes: the generation of a source signal, and the modification

of that signal through a filter [28].

Figure 2.2 shows a simplified version of the two processes at work. The source

signal, which mimics the sound produced by the vocal folds, can be approximated

as a uniform pulse train with fixed period T . If we were to do the Fourier transform,

the source signal can be equivalently represented as a combination of sinusoids with

frequencies that are multiples of the fundamental frequency F0, or 1
T . These evenly

spaced frequency components (not to be confused with a pulse train) are the harmonics

of the fundamental frequency.

The source signal is then modified by the filter function, which emulates the resonant

structures of the vocal tract. In the time domain, this interaction is characterised by the

so-called convolution operation. When performed in the frequency domain however,

the relationship is frequency-wise multiplicative and easier to compute.
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This multiplicative relationship between the two functions allows us to consider

speech frames as a product of their source and filter components. Many of the subse-

quent techniques described aim to separate aspects of the source and filter functions

and parameterise them as part of their compression encoding.

2.2.3 Linear Predictive Coding and Excitation Signal

In Linear Predictive Coding (LPC), the vocal tract’s filter function is approximated as

an infinite impulse response (IIR) filter. An IIR filter can be understood through its

difference equation representing the relationship between the input and the output of

the filter.

The difference equation of an IIR filter is given by

y[n] = b0 · x[n]+b1 · x[n−1]+ . . .+bM · x[n−M]−a1 · y[n−1]− . . .−aN · y[n−N]

where y[n] is the output of the filter at time n, x[n] is the input to the filter at time n, M

and N are the number of past input and output samples, respectively, used for the filter’s

history, and ai and bi are some coefficients used to weigh the outputs and inputs. The

equation shows that the output depends not only on present and past inputs, but also

the past outputs, which are controlled by the ai coefficients. This effectively sets up a

feedback mechanism across outputs, whereby the current output is recursively linked to

all past outputs. It is through this relationship that the filter gets its ‘infinite’ nature.

There are two reasons for this approximation. Firstly, the vocal tract resembles a

resonant tube with resonant frequencies (or formants) indicated by the peaks of the

filter function. Similarly, an IIR filter is also capable of possessing several resonant

frequencies, also known as the filter’s poles [29]. Secondly, the output of an IIR filter is

dependent not just on the current input sample, but also on the previous outputs. This

property is also observed in speech signals—within a short time frame, speech samples

are highly correlated.

During LPC analysis, the current sample is assumed to be a linear combination of a

fixed number of past samples. The coefficients of this combination, often referred to as

LPC coefficients, are computed in such a way that minimises the prediction error [18].

These coefficients, akin to the ai coefficients of the idealised IIR filter, also capture

the essential information about the vocal tract’s filter function, including the resonant

frequencies or formants, which are crucial features of speech. Through the assumptions

made above, LPC is thus able to parametrically encode the spectral envelope of speech

signals, providing a compact yet informative representation.
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With the filter component of the source-filter model taken care of, we can now focus

on the source component to complete the signal reconstruction. Passing the original

signal through the inverse of the newly obtained filter function will yield a residual

signal. This residual, often referred to as the excitation signal is the driving signal

behind the speech production and is analogous to the aforementioned source.

The simplest way of representing the excitation signal is to assume it to be a uniform

pulse train with fixed amplitude and frequency. The signal would thus exhibit perfect

harmonics, not unlike those shown in Figure 2.2. To parameterise this, the residual

signal will be analysed to determine the fundamental frequency and its appropriate gain.

However, not all speech can be modelled in this way. Unvoiced segments of speech,

such as ‘s’ or ‘f’ sounds, are more akin to random noise than a harmonious pulse train.

In these cases, the excitation signal is modelled as white noise, which lacks any clear

periodic structure. Therefore, depending on whether voicing is detected, the excitation

signal is either a pulse train of a specified frequency, or white noise.

Despite its simplicity, this combination of the LPC filter and a basic excitation signal

has proven to be effective. It has been used in the LPC-10 codec, a standard for low bit

rate voice communication [30].

2.2.4 Improving the Post-LPC Excitation Signal

LPC is a useful technique to represent spectral information like resonant structures, but

itself is unable to determine the excitation signal. Post-LPC, a pulse train is the simplest

implementation of an excitation signal, but nevertheless results in unnatural sounding

voices with a ‘mechanical buzz’ when the speech is resynthesised at the decoding end.

This inadvertently affects the intelligibility and perceived quality of the output.

The following subsections explore how, after LPC is performed, the residual signal

can be better approximated other than by using a uniform pulse train, providing it with

more complexity and nuance.

2.2.4.1 Regular Pulse Excitation-Long Term Prediction (RPE-LTP)

The post-LPC residual signal in RPE-LTP is analysed in two stages to obtain more

parameters that can encode a richer excitation signal.

First, a long term prediction (LTP) analysis is performed to calculate the overall

periodicity and gain of the signal. This is similar to determining the pitch and gain of a

uniform pulse train as if it were the excitation signal. However, the driving signal is not
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assumed to be a uniform pulse train, and further analysis is done in a second stage to

determine more nuances.

In the RPE stage, an inverse LTP filter is constructed using the results from the

LTP analysis. Applying the filter on the signal removes the longer-term periodicity and

gain that LTP had predicted, yielding another residual innovation signal that exhibits

more short-term unpredictability and variability. RPE then encodes this residual by

segmenting it into subframes of equal length, and assigning excitation pulses that best

represent each subframe. The result is a series of pulses that have non-uniform positions,

amplitudes and polarities. Although the pulses are non-uniform, they each represent

a regularised subframe, giving RPE its name. While RPE is limited in expressing

fuller complexities of the excitation signal, it nevertheless captures some of its dynamic

variations that a uniform pulse train wholly fails at.

The GSM 06.10 codec (commonly known as GSM Fullrate) uses RPE-LTP in

conjunction with LPC to encode speech signals [11]. It was developed by the European

Telecommunications Standards Institute (ETSI) for use in the Global System for Mobile

Communications (GSM).

2.2.4.2 Code Excited Linear Prediction (CELP)

Another way of handling the excitation signal can be seen in CELP, which also employs

a two-stage approach. The post-LPC residual is first analysed against an adaptive

codebook, which stores a buffer of the previous samples. The analysis applies different

delays on the buffer until a shifted block of past samples best matches the current

analysis block. The delay is recorded as the pitch lag, and the signal gain determined

[18]. This is similar to the LTP stage in obtaining the overall pitch and gain of the

analysis frame. After subtracting the best matching delayed block from the input, we

are left with yet another residual signal. This final signal is matched against a fixed

codebook of predefined innovation signals with pulses in varied positions, amplitudes,

and polarities. This step captures the finer detail in the signal that could not be predicted

in the adaptive stage, and is analogous to the RPE stage or RPE-LTP.

Using a system of codebooks, CELP relies more on encoding codebook indexes and

less on speech parameters. Indexes can be thought of as generally requiring less data to

store and transmit. Given a wide repertoire of coded candidate signals, CELP is able to

achieve better efficiency in its compression. Codecs such as Speex, developed by the

Xiph.Org Foundation, utilise CELP in speech encoding [37].
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2.2.4.3 Algebraic Code Excited Linear Prediction (ACELP)

The utilisation of codebooks can yet be further enhanced. In contrast to CELP, which

uses fixed codebooks, codecs like the Adaptive Multi-Rate (AMR) implement algebraic

codebooks [12]. In this scenario, excitation signals are calculated on-the-fly using

predefined algebraic rules and functions. These rules have been designed to capture

the expected characteristics, patterns, and variations in speech signals. ACELP thus

encodes algebraic parameters for the excitation signal, whereas CELP encodes signal

indexes.

ACELP’s algebraic rules are tailored to speech signals and thus align closely with

the nuances of speech. It is thus more effective than CELP’s generalist codebook at

handling speech applications, given the same bit depth or bit rate.

Importantly, ACELP calculates the best-fitting algebraic parameters during analysis,

whereas CELP is limited by a search for the best-matching signal. This difference also

allows ACELP to express more dynamism in the excitation signal than CELP typically

would allow with its finite codebook.

Overall, this results in ACELP encoding a closer representation of the original

signal, lower quantisation noise and distortion, and better speech quality than CELP.

2.2.4.4 Conjugate-Structure ACELP (CS-ACELP)

Algebraic codebooks can also be adapted for computational efficiency. In CS-ACELP,

two sub-codebooks are utilised instead of the one in ACELP. The post-LTP excitation

signal is divided into two tracks, which can be viewed as complementary sub-samplings

of the original residual signal. Each track’s signal is then analysed against its correspond-

ing sub-codebook to find the best match. All told, two matching pulse patterns will be

selected, allowing potentially more nuance to be captured compared to ACELP’s single

pattern. Codecs such as G.729 implement CS-ACELP techniques in their encoding

[23].

2.2.5 SILK: Jointly Optimising LPC and LTP

The Opus codec comprises two sub-codecs: SILK and CELT [36][38]. During encoding,

Opus decides between SILK and CELT based on the input’s characteristics. Typically,

SILK, which is optimised for speech, is used for lower bit rates and more tonal sounds.

On the other hand, CELT, designed for generic audio, is applied for higher bit rates
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and sounds with a wider frequency spectrum. In this subsection, we will focus on

understanding SILK, which is the predominant sub-codec used for speech signals.

SILK offers a unique approach in how it conducts LPC and LTP. In contrast to

traditional methods where LPC precedes LTP (such as in GSM), SILK conducts LTP

ahead of LPC with the aim of performing pitch estimation before it moves on to spectral

envelope modelling. This choice of order implies that details in the representation of

pitch is first removed, inadvertently causing the loss of certain spectral details related

to pitch harmonics, which could compromise the subsequent LPC analysis. However,

SILK employs a feedback mechanism that enables joint optimisation of the LTP and

LPC operations. After the initial LPC analysis, the resulting spectral model informs

and refines the LTP coefficients, using the original signal as a reference. Similarly, the

updated LTP result, now bearing a closer resemblance to the original signal, provides

a more accurate foundation for the ensuing LPC stage, improving the overall spectral

envelope estimation.

This joint optimisation strikes a strong balance between preserving spectral and

pitch details, respectively attributed to the LPC and LTP operations. Despite introducing

more computational complexity due to this iterative process, SILK (and Opus) is able

to produce efficient and high quality voice encodings.

2.2.6 Codec 2: Harmonic Sinusoidal Coding (HSC)

Novel encoding methods can pave the way for more efficient compression, which is

especially relevant in challenging communication environments. Recognising that

voiced signals prominently display strong harmonics of the fundamental frequency or

pitch, Codec 2 utilises Harmonic Sinusoidal Coding (HSC) [14] to focus on encoding

these harmonics. In HSC, the signal is represented almost exclusively as a combination

of harmonic sinusoids with varying amplitudes. Unlike most codecs that encode

parameters for both the spectrum and the excitation signal, Codec 2 primarily encodes a

single set of parameters: the amplitudes of these harmonic sinusoids. As a result, its

data stream is able to achieve extremely low bit rates.

The fundamental frequency of the signal is first determined by analysing the input

signal. The frequencies of the HSC sinusoids can then be derived by simply working

out multiples of the fundamental frequency.

The next step involves sorting out the corresponding amplitudes of each of the

HSC sinusoids. This is done through LPC, which is effective in capturing the spectral
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envelope. Although the spectral envelope isn’t directly encoded, it shapes the harmonic

structures by modulating the amplitudes of all component frequencies within, and

therefore can be used to infer the required amplitudes.

Having determined both the fundamental frequency and the harmonic amplitudes,

the essential parameters required are sorted and can be encoded. This approach focuses

on the core structures of voiced signals, ensuring that only the most salient features are

preserved while drastically reducing the data rate. As a result, Codec 2 stands out for its

efficiency and ability to operate in scenarios demanding ultra-low bit rate transmissions.

2.3 Perceptual Compression

Perceptual codecs operate based on the understanding that uncompressed audio carries

a significant amount of information that human cognitive functions do not process.

This concept is deeply rooted in the study of psychoacoustics, which explores how

humans perceive sound, considering the interactions between the ear, the brain, and

their inherent limitations.

Research has demonstrated that human hearing can be partitioned into roughly 24

critical bands [7][27]. The locations and spacing of these frequency bands adhere to the

logarithmic relationships outlined by psychoacoustics. Dominant sounds within these

bands introduce a masking effect, essentially hiding weaker sounds within the same

critical band. This phenomenon, known as simultaneous auditory masking or simply

simultaneous masking, takes place in the frequency domain [9][15].

Notably, masking can also occur in the temporal domain, where dominant sounds

assert a similar masking effect on weaker sounds occurring within a short time before

and after them. The duration of the masking is dependent on the strength and length of

the dominant sound, but typically lasts about 50ms for pre-masked sounds and up to

300ms for post-masked ones.

Psychoacoustic phenomena indicate that certain information can be omitted without

significantly affecting human perception of the sound. When encoding an audio sample,

the most dominant sounds can be used to determine which quieter sounds—both in

terms of frequency and timing—are effectively masked by them. These masked sounds

can be removed, resulting in reduced data sizes, while maintaining audio quality to the

human ear.

Perceptual audio codecs, such as MPEG-1 Audio Layer 3 (MP3), and Advanced

Audio Coding (AAC) leverage these principles. They discard data following this logic
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to save on storage space. For instance, these methods minimise signal amplitude

redundancy by employing fewer quantisation steps than a human can discern. Together

with a subsequent lossless compression step (such as Huffman coding), perceptual

codecs like MP3 and AAC are able to significantly reduce the size of audio files while

maintaining a high perceived audio quality.



Chapter 3

Implementation

This chapter discusses how our experiments were set up, their scope, and our con-

siderations. We start by reviewing our selection and scoping process for the speech

dataset, list of audio codecs for testing, and choice of ASR systems. The experimental

procedure is then explained. Finally, we examine some of the limitations and gaps of

the experimental scope.

3.1 Speech Dataset

We reviewed several speech corpora including LibriSpeech [17] and Noizeus [10],

before settling on the corpus developed and referenced by [33] and [34]. This corpus,

available at [32], was deemed suitable because it contained a large amount of speech

data. This ensured that our results came from a large enough population and were

sufficiently robust.

Secondly, the speech data was also recorded at a high original resolution of 48kHz.

This gave us more flexibility to experiment with altering the data’s quality through

different combinations of downsampling and compression.

Thirdly, the corpus included transcripts for all the speech samples. This was

advantageous for us because these could be used as the reference transcripts in the

calculation of WER.

Finally, the corpus had two parallel sets of data. The first set was sourced directly

from the original Voice Bank Corpus developed by the Centre for Speech Technology

Research at the University of Edinburgh [39], and represents the unadulterated ‘quiet’

speech set. The second set in the corpus, referred to as the ‘noisy’ speech set, was

derived from the original samples by incorporating various types of noise at varying

16
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Signal-to-Noise Ratio (SNR) levels of 0dB to 15dB. The noises include environmental

sounds, mechanical disturbances, and background conversations, among others. This

range of noise conditions was selected to simulate a variety of real world scenarios.

With both sets, we are thus able to measure the effects of audio compression in quiet

and simulated noisy environments.

To maintain a manageable total submission size, we further streamlined the speaker

population in the dataset, reducing the count from 56 to just 6 speakers. The selected

group of six speakers consisted of a gender-balanced pair from each of the following re-

gions: America, Ireland, and Scotland. Despite the reduction in speaker population, our

6-speaker dataset provided over 105 minutes of speech—a duration deemed reasonable

and substantial enough for our subsequent experimentation.

3.2 Audio Compression

We identified 9 lossy audio codecs to investigate their individual and comparative

performances. They are: G.726, GSM (Fullrate), Speex, AMR, G.729, Opus, Codec 2,

MP3, and AAC, and their techniques have been reviewed in Chapter 2.

These codecs were also selected because they supported the compression of narrow-

band audio (audio sampled at 8kHz) to low bit rate (32kbps and below) streams, which

is the focus of this study. By constraining and controlling our scope to this specific

range of audio settings, we are able to provide sharper comparisons of performances

based solely on the codec designs. This focus is particularly relevant for applications

where bandwidth is limited and low bit rates are necessary, a common scenario in our

world with an ever-increasing demand for efficient use of bandwidth.

Compression using G.726, GSM, Speex, AMR, Opus, and MP3 was performed

using the ffmpeg tool [3][8] running on a Windows operating system. The correspond-

ing libraries required for each codec are shown in Table 3.1. ffmpeg was used to

downsample the original audio from 48kHz to 8kHz and perform codec encoding in a

single command.

In the case of Opus, two application types were specified to the encoder, yielding

two different configurations. The first was the default audio configuration, which

Opus recommends to use when the application requires a faithful reproduction of the

original input. In this configuration, we forced the encoder to operate in constant bit rate

(CBR) mode, as it was observed to deviate from our specified bit rates when the default

variable bit rate (VBR) mode was used. The second setting was the voip configuration,
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Table 3.1: Software encoders, libraries and bit rates used in our experiments

Codec Encoder Library Bit rates (kbps)

G.726 ffmpeg libavcodec 16, 24, 32

GSM ffmpeg libavcodec 13

Speex ffmpeg libspeex
2.15, 3.95, 5.95, 8, 11, 15,

18.2, 24.6

AMR ffmpeg libopencore-amrnb
4.75, 5.15, 5.9, 6.7, 7.4, 7.95,

10.2, 12.2

G.729 Asterisk - 8

Opus ffmpeg libopus 6, 8, 10, 12, 16, 24, 32

Codec 2
c2enc

c2dec
- 0.45, 0.7, 1.2, 1.6, 2.4, 3.2

MP3 ffmpeg libmp3lame 8, 16, 24, 32

AAC qaac - 8, 12, 16, 20, 24

which was recommended for applications demanding higher levels of intelligibility.

Presumably this would influence the decision process to favour the SILK sub-codec

rather than CELT. The default VBR mode was used here, and the encoder was found to

adhere to our specified bit rates.

For the AAC codec, we used the qaac command line utility [2] running in a

Windows environment. Like ffmpeg, qaac was able to downsample and encode the

audio at the same time.

To encode with G.729 and Codec 2, we used the Asterisk tool [1] and utilties

available at [20] respectively. These tools were operated within a Linux environment. In

both cases, the sox tool was used to downsample the files to 8khz prior to compression.

The primary goal of the experiments was to fully understand the behaviors and

performances of these codecs under different compression conditions, particularly at

lower bit rates. To this end, speech was compressed at varying bit rates below 32kbps.

These bit rates were chosen based on the options the codecs supported, and for us to

achieve a reasonable spread of data collection. These details and the specific ranges

used for each codec in our experiments are summarised in Table 3.1.
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3.3 ASR Services

We used ASR services offered by Rev AI [5] and Google Cloud Platform [6] to obtain the

transcripts of our submitted samples. Having two ASR systems allowed us to establish

a system of cross-validation where the outputs of one service could corroborate the

findings of the other. This would enhance the robustness and interpretability of our

results, strengthening their validity and mitigating the risk of reliance on a single ASR

service.

Both ASR services were assessed to be ideal for our purposes. At the time of writing,

they were both reputable players in the field, producing transcriptions with market-

leading accuracy. Their high accuracies, considered state-of-the-art within the industry,

ensured that our experiments could be focused on the effects of compression, and not be

bottlenecked by transcription ineffectiveness. In addition, they offered reliable services

with high uptime and availability. All of these characteristics made them suitable for

our experiments, ensuring that large amounts of data could be processed reliably and

expediently.

Both services were accessed using their exposed Python Application Programming

Interfaces (APIs). English was specified as the language, and we opted to disable

speaker diarisation (distinguishing between different speakers in a recording) in the

transcripts because only a single intended speaker was present in the recordings.

Rev AI rejected the transcription of audio that were shorter than two seconds. For

this reason, we only submitted samples longer than that threshold to both ASR services.

Altogether, each submitted batch of files comprised over 105 minutes of audio data.

3.4 Intelligibility and Word Error Rates

Given a generated transcript and a reference transcript, the word error rate (WER) can

be derived using the equation WER = S+D+I
N , where S, D, and I are the number of

substitution, deletion and insertion errors found in the generated transcript, and N is

the total number of words in the reference. For example, if the reference of N = 6 is “a

cat sat on the mat” while the generated transcript reads ”her cat on mat hat”, it will be

determined that S = 1 (“a”/“her”), D = 2 (“sat”, “the”), and I = 1 (“hat”). Further, this

results in a WER = .66.

WER provide a straightforward metric for assessing the intelligibility of ASR

output. One notable limitation of using WER, however, is that it does not differentiate
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between major and minor errors. For instance, a transcription of “it’s” will register

two errors (WER = 1.0) if the reference is “it is”, despite these two phrases having

identical meanings. A more sophisticated metric could potentially account for the

varying severities of errors, yielding a more nuanced intelligibility score. Nevertheless,

we chose to use WER due to its ease of implementation and its widespread acceptance

as a measure of ASR output. Importantly, our study aims to investigate the impact

of compression on speech intelligibility, which requires relative rather than absolute

measures. Therefore, we are primarily utilising WER as a relative metric, to compare

the performance of different ASR outputs under various levels of compression, rather

than treating it as an absolute measure of intelligibility.

Generated transcripts from the ASR platforms and reference transcripts were first

normalised by removing special characters and lowercasting, so that subsequent textual

comparison would be streamlined. The WER can then be determined by considering

the Levenshtein distances [13] or edit distances between the words across both strings.

This calculation was performed using an adapted Python script from [40]. In order to

generate intelligibility scores for entire batches, overall WER were then calculated by

aggregating the word errors and word counts from each sample file’s transcripts.

3.5 Experimental Procedure

From the master corpora [36], we retrieved the entire set of speech samples from

the 6 identified speakers, alongside their transcripts. Both the clean and noisy sets

were obtained, corresponding to speech in quiet and simulated noisy environments

respectively. The 6 speakers contributed a total of 2301 files, which were recordings of

speech ranging from short phrases to entire sentences. We will henceforth refer to each

set of 2301 files as a batch.

The batches of speech are then compressed using the software, libraries, and accord-

ing to the bit rates outlined in Table 3.1. Separate batches of speech were resampled at

8kHz using sox, but were not compressed. These batches would be used to establish

the baselines for downsampled, uncompressed speech.

Python scripts based on Jupyter Notebooks were written to interface with the Google

Cloud Platform and Rev AI ASR APIs. Using the API, speech files were successively

uploaded to the platforms and the transcribed results returned. Because Rev AI rejected

the transcribing of files shorter than 2 seconds in duration, our scripts did not submit

these files to either Rev AI or Google Cloud services.
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After some text normalisation, the returned transcripts were compared to the original

transcripts to find errors. The Python code from [40] was incorporated to detect word

substitution, deletion, and insertion errors and thereby determine each file’s WER.

Finally, the total errors for all the files in a batch were aggregated and the batch’s WER

calculated. These WER were then recorded, and the process repeated for each other

batch with differing codec, bit rate, or noise setting.

3.6 Assumptions and Limitations

In the course of our experiments, several assumptions were made in the face of chal-

lenges or limitations in the set up. This section addresses these issues and their potential

impact to give the reader a more comprehensive understanding of the circumstances of

our findings.

3.6.1 Effects of Varying Noise Conditions Within Noisy Set

As we have mentioned in Section 3.1, different noises were used to layer over the

original speech samples and create the noisy set of data. Each speech file underwent

different noise conditions, involving a variety of sounds—from environmental noises to

mechanical disturbances and background conversations—with SNR levels ranging from

0dB to 15dB. Given this non-uniform application of noise, it is plausible that certain

noise conditions would affect ASR transcription accuracy and WER more than others.

While the intricate landscape of noise variation holds potential implications for

interpreting the ASR performances, our study did not probe into the detailed influence

of individual noise types or SNR levels on the WER. Nevertheless, we surmise that

these variations are unlikely to significantly skew our overall findings. WER were

aggregated over a large numbers of diverse samples, dispersing the impact that any

individual noise condition might have on the overarching trends.

Furthermore, the focus was to study the degradation of speech quality across varying

codecs and bit rates. In this context, we note that while SNR levels and noise types

varied from one sample to another, the noise condition applied to each individual sample

remained consistent across different compression and bit rate settings. This ensured that

any comparisons or trends we observed among the codecs or bit rates was unaffected

by varying noise characteristics across the batches.
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3.6.2 Effects of Using Alternative Software or Libraries for Com-

pression

While the software and libraries presented in Table 3.1 are some of the recommended

tools to use for encoding audio, we note that in some cases there are alternative tools

that can be used for the same codec. For example, although we used ffmpeg with

the libopus library to encode with Opus, an alternate encoder opusenc is offered by

the Opus project at [4]. Such variants of tools and their versions are likely to have

differences in their algorithmic implementations at the code level, thereby introducing

subtle differences in encoding quality.

Considering every encoding tool and its multiple versions While recognising these

differences from varied algorithmic implementations, we deem these differences to be

negligible. The encoding tools used nevertheless align with the published standards

of the codecs, making them representative of the codecs’ intended performance. Fur-

thermore, given our emphasis on broader trends and overarching patterns, we believe

that any minor discrepancies will be eclipsed, diminishing their influence on our final

conclusions.

3.6.3 Effects of Additional Conversions to Linear PCM

The online ASR systems were found to only accept audio files in certain formats and

extensions. For example, Google Cloud Platform rejected the .g729 and .mp4 formats

corresponding to files encoded using the G.729 and AAC codecs respectively. On the

other hand, certain formats like .amr were directly accepted by the platform. For these

formats that were not directly accepted, we converted the audio files into 16-bit linear

PCM files inside .wav containers before submission. LPCM was specifically chosen

because it is a lossless format, ensuring minimal data degradation during this additional

step.

We recognise that converting audio to 16-bit LPCM might nevertheless introduced

unwanted effects such as added quantisation noise. This is an inevitable byproduct of

any encoding process itself. In theory, this could lead to slightly skewed comparisons,

especially when set against batches like the .amr files that did not require this extra

step. That said, a bit depth of 16 bits was specifically chosen to minimise the impact

of such quantisation noise. Moreover, any subtle degradation effects arising from this

additional step are likely to be overshadowed by the more pronounced effects inherent

to codec compression, which this study is focused on. Consequently, this study assumes
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that the impact of this conversion on the ASR results is insignificant.

3.6.4 Periodic Updates or Changes to ASR Services

ASR systems are dynamic and undergo modifications over time. These modifications

can result from improved algorithms, better training data, platform upgrades, or evolving

speech patterns. While intended to enhance accuracy and applicability, these updates

can subtly alter the system’s behavior and its transcription results.

During our study, we treated the ASR systems’ consistency as an assumption

rather than a certainty. Silent updates to the platforms might have occured without

our knowledge. To counteract the potential variability introduced by such changes,

we condensed our experiments into a short timeframe, reducing the risk of significant

system changes during our study.

Given the variable nature of ASR systems, outcomes such as ASR transcripts and

WER might not be entirely reproducible in future iterations of our experiments. Yet, the

overarching trends observed in our research should hold in similar studies. Since any

modifications to the ASR systems would uniformly impact all submissions, a diverse

dataset should ensure that the primary trends persist. In summary, while exact outcomes

from ASR systems might fluctuate, the core insights from our research are transferable

to future studies.
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Results

This chapter summarises the results from our experiments detailed earlier. We will first

review the collected WER data from the various tested scenarios. Then, we will examine

the results and provide commentary on our observations in the following chapter.

4.1 Speech in a Quiet Environment

The WER of the transcribed speech files, downsampled to 8kHz and compressed using

the various codecs, are plotted across the varying bit rates specified as shown in Figures

4.1 and 4.2 for the Google Cloud and Rev AI ASR platforms respectively. Along with

the plotted data, trendlines have been drawn to illustrate the correlations between the

bit rates and their corresponding error rates. Baseline WER for the original speech

(Uncompressed 48kHz), and downsampled but uncompressed speech (Uncompressed

8Khz) are shown for comparative purposes. The detailed results for each submitted

batch can be found in Appendix A.1.

WER was observed to consistently worsen as bit rates were reduced, a trend in line

with our experimental expectations as reducing bit rates results in decreasing the amount

of information available and should lead to higher inaccuracies. This observation held

true when considering variations within a single codec, and also as a broader trend

across all codecs. Additionally, the degradation of WER was more pronounced at lower

bit rates, where even slight reductions led to substantial increases in error rates. On the

other hand, improvements to WER at the higher bit rates were less noticeable.

With both ASR systems, the effect of downsampling of the speech samples from

48kHz to 8kHz is seen to have a slight but measurable impact to WER. Irrespective

of codec choices or the encoding bit rates, WER were not seen to improve past the

24
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Figure 4.1: WER of speech samples in a quiet environment, downsampled to 8kHz,

using different codecs at varying bit rates, and transcribed using Google Cloud ASR.

WER for uncompressed speech, at 48kHz and 8kHz resolutions are also shown.

Figure 4.2: WER of speech samples in a quiet environment, downsampled to 8kHz,

using different codecs at varying bit rates, transcribed using Rev AI ASR. WER for

uncompressed speech, at 48kHz and 8kHz resolutions are also shown.



Chapter 4. Results 26

baseline of uncompressed, but downsampled speech.

Without the introduction of noise, error rates were also observed to be maintained

at reasonable levels despite the effects of compression. WER were generally below

0.2 for bit rates above 1kbps. While not an absolute judgement of accuracy by itself, it

is notable that modern ASR systems are able to transcribe speech that has undergone

substantial levels of compression with relative accuracy.

4.2 Speech in Simulated Noisy Environments

Similar to the previous section, we plotted the WER of the transcribed speech in

simulated noisy environments, downsampled to 8kHz and compressed at varying bit

rates using the different codecs codecs. Corresponding plots to Google Cloud’s and Rev

AI’s ASR services are shown in Figures 4.3 and 4.4 respectively, with trendlines further

demonstrating the correlations between the bit rates and transcription accuracy. Baseline

WER for uncompressed speech, at both the full 48kHz resolution and downsampled

8kHz, are also shown. The detailed results for each submitted batch can be found in

Appendix A.2.

WER across the board were noticeably worse than before, consistent with our

expectation that additive noise would have an adverse impact on ASR transcription

accuracy. Baseline WER of uncompressed speech at the full 48kHz resolution had

at least doubled from less than 0.05 in the quiet environment, to 0.10 or more in the

simulated noisy environments. At low bit rates, it was common for WER to exceed

values of 0.25, demonstrating the severe effects of added noise.

As with the previous results of speech in a quiet environment, WER was observed

to consistently worsen with reducing bit rates. The trend was similarly observed with

varying bit rates within the same codec, and also as a broader observation across all

codecs. Effects of worsening WER were also sharpened at lower bit rates, and less

pronounced at high bit rates.

An outlier was observed when speech compressed with the AAC codec and tran-

scribed by Google Cloud ASR. A WER of about 0.23 was measured when the speech

was compressed at a bit rate of 12kbps. This result significantly outperformed an

expected WER of 0.28, and even surpassed the WER of about 0.26 at 16kbps.

Interestingly, compression sometimes improved WER over the uncompressed base-

line. Uncompressed, downsampled speech posted a WER of about 0.21 on Google

Cloud ASR. Yet, WER were seen to improve when compression was further performed.
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Figure 4.3: WER of speech samples in simulated noisy environments, downsampled to

8kHz, using different codecs at varying bit rates, and transcribed using Google Cloud

ASR. WER for uncompressed speech at 48kHz and 8kHz resolutions are also shown.

Figure 4.4: WER of speech samples in a simulated noisy environments, downsampled

to 8kHz, using different codecs at varying bit rates, transcribed using Rev AI ASR. WER

for uncompressed speech, at 48kHz and 8kHz resolutions are also shown.
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This effect was most noticeable with the Opus codec at bit rates above 10kbps, and to a

lesser degree with Speex and MP3 at bit rates above 24kbps. This behaviour was not

seen with speech from the quiet environment, nor was it observed with submissions to

Rev AI’s ASR platform. Possible reasons for this will be discussed in Subsection 5.2.



Chapter 5

Discussions

In the sections that follow, we reflect on several notable observations from Chapter 4.

Specifically, we delve into the factors that influence variations in codec performance,

the unexpected finding that compression enhanced WER, and propose our experimental

approach as an alternative method to evaluate codec efficacy.

5.1 Relative Performances of Codecs

The trendlines in Figures 4.1 through 4.4 suggest that certain codecs perform better than

others. For example, the Opus codec is seen to impact transcription accuracy less than

Speex, based on the relative positions and inclinations of their curves. The former’s

WER and degradation of WER are overall less severe than the latter’s across the range

of bit rates tested. Similarly, the relative positions of MP3 and G.726 suggest that the

former consistently performs better than the latter, as far as transcription accuracy is

concerned.

Table 5.1: Banding of codecs by performance

Band Codecs

I AMR, G.729, Opus

II GSM, Speex

III AAC, MP3

IV G.726

To aid further discussion, we therefore propose the above banding of codecs in

Table 5.1 based on their performances. Codecs belonging to a higher band are judged

to generally have better WER than those of a lower band, while codecs within the same

29



Chapter 5. Discussions 30

band have similar WER that cannot be meaningfully differentiated based on the current

data alone.

Codec 2 stands out as a specialised codec operating at very low bit rate of 3.2kbps

and below. It was left out of the banding exercise because there was a lack of comparison

with other codecs operating at the same range of bit rates (0.45 to 3.2 kbps). We note,

however, that Codec 2 appeared to perform better than Speex between 2.15kbps and

3.95kbps.

5.1.1 Encoding Efficiencies Between Bands

We examined the performance differences in WER between the proposed bands and

formulate potential explanations, starting with the lower bands:

5.1.1.1 Band III (AAC, MP3) and Band IV (G.726)

The G.726 codec, utilised in Band IV, employed Differential Pulse-code Modulation

as detailed in Section 2.1.3. This approach sets G.726 apart from the other codecs we

examined, as it does not take advantage of parametric compression techniques. This

limitation hindered G.726 from reaching the encoding efficiency levels achieved by its

counterparts. As a consequence of this poorer efficiency, the audio quality was more

susceptible to degradation, leading to an increased WER.

In contrast, codecs in Band III (and those in the higher bands) make a pivotal shift

by incorporating elements of parametric compression, transcending mere waveform

compression. The shift in techniques allowed these codecs to characterise more features

of a sound signal using the same number of bits. By preserving more of the original

signal’s integrity in this manner, the encoding efficiency is notably enhanced. This

contrast between G.726 and its parametric counterparts illustrates the profound impact

that different paradigms of compression techniques can have on the resultant quality

and intelligibility of the audio.

5.1.1.2 Band II (GSM, Speex) and Band III (AAC, MP3)

Audio codecs like MP3 and AAC are designed for a wide range of applications and

often use perceptual coding (see Section 2.3) that considers the entire range of human

hearing, typically from 20 Hz to 20 kHz. While this makes them effective for various

types of audio such as music, it might cause them to handle unnecessary information
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when it comes to speech, such as frequencies that lie in the higher and lower extremes

of the above range.

Human speech primarily occupies a frequency range of 300 Hz to 3.4 kHz [21],

whereas general-purpose audio codecs like MP3 and AAC handle a broader spectrum.

These codecs are potentially less optimised at handling speech-specific properties

such as formants and coarticulation. This may then lead to relative inefficiencies in

compression when the target audio is primarily speech.

In contrast, speech-specific codecs in Band II (and Band I) like GSM and Speex

are crafted to focus on this narrower band and the specific characteristics of speech.

By concentrating on the relevant frequencies and speech phenomena, less critical

information, such as non-speechband frequencies, consume less of the allocated bit

depth. The result is a more efficient compression for speech, given the same bit rate.

5.1.1.3 Band I (AMR, G.729, Opus) and Band II (GSM, Speex)

The codecs listed in both bands are all tailored towards speech applications and use

the various parametric encoding techniques reviewed in Section 2.2. While they all

borrow from the same overarching principles of the source-filter model, the specific

techniques that they employ have varying degrees of sophistication, thereby contributing

to different levels of efficiency and performance.

GSM and Speex are dependent on the RPE-LTP and CELP techniques (see Sub-

sections 2.2.4.1 and 2.2.4.2) respectively. A major downside of RPE-LTP is that it

oversimplifies the complex characteristics of human speech by attempting to represent

the speech signal with a regularised pulse model. By design, the number of pulses

encoded is regulated, which limits the repertoire of possible excitation signals. On the

other hand, CELP’s final encoding stage relies on a fixed, predefined codebook, which

also limits its range of possible candidate signals. In both cases, the limited range of

excitation signals often lead to mismatches and quantisation errors between the original

speech signal and the encoded approximations.

In contrast, the ACELP and CS-ACELP techniques that AMR and G729 employ

(see Subsections 2.2.4.3 and 2.2.4.4) are more sophisticated and cater to a wider range

of excitation signals. Rather than constraining themselves to a finite codebook, these

techniques use algebraic representations that can flexibly adapt to many unanticipated

signals and variations. This significantly improves the accuracy of the encoded ap-

proximations by reducing signal mismatches and quantisation errors. Consequently,

this leads to fewer decoding artifacts and superior performance in terms of speech
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intelligibility.

Opus’ SILK subcodec is also able to enrich its repertoire of excitation signals be-

cause of its joint optimising of LPC and LTP (see Subsection 2.2.5). The concurrent

evaluation of the spectral shape and periodicity of the signal, through LPC and LTP

respectively, enables SILK to generate a varied, nuanced, and adaptive array of exci-

tation signals. Although this approach is computationally more demanding, speech

synthesised through SILK bears a closer resemblance to the original, with more natural

variations and fewer artifacts.

In summary, the differences in performance can be attributed to the encoding

techniques employed, which determine the extent of variability that excitation signals

can exhibit. Band II’s techniques of RPE-LTP and CELP limit themselves to a relatively

narrow range of excitation signals and are less effective at capturing the full nuances

and variability of speech. Conversely, ACELP, CS-ACELP, and SILK’s joint optimising

afford a wider range of signal adaptability, enabling a more dynamic representation

of speech patterns. This allows for the Band I codecs to provide richer and more

intelligible speech.

5.1.2 Summary

The relative performances of codecs across different bands highlight the significant

impact that encoding designs and techniques can have on transcription accuracy. While

adjustments to bit rates provide opportunities for performance tweaking, the encoding

strategies rooted in the principles of audio compression and psychoacoustics ultimately

dictate the broader success of the resultant speech intelligibility and transcription

accuracy.

5.2 Compression Leading to Improved WER

We observed that compression using Opus, Speex or MP3 resulted in an improvement to

WER, when a traditional understanding of audio fidelity suggests that WER should have

worsened instead. This unexpected deviation can be attributed to noise suppression,

clarity enhancement and the perceptual coding techniques found in these codecs.
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5.2.1 Noise Suppression and Clarity Enhancement

Besides audio compression, both the Speex and Opus codecs employ techniques to

mitigate noise and enhance voice clarity. Speex integrates a noise reduction feature in

its preprocessor module to ascertain and mitigate noise [35]. By analysing the speech

frames, differentiated gains are applied to each audio segment with the aim of optimising

and reducing the overall signal-to-noise ratio (SNR). Optimising the SNR in this way

effectively reduces the noise components and allows the speech components to stand

out against background disturbances.

Similarly, Opus offers its own suite of noise suppression tools within the codec

[38]. It establishes background noise levels by evaluating the averaged energies across

time frames. This method effectively computes the extent of background noise in the

audio and forms a distinction between the primary voice signal and other sources of

disturbances. By doing so, it is then able to isolate and suppress the background noise.

Secondly, Opus also employs an adaptive high-pass filter, which dynamically adjusts its

cutoff frequency based on the detected pitch period of the signal. In this way, the filter

systematically removes peripheral low frequency components that could potentially

obscure the speech signal. This combination of tools work in concert to enhance speech

clarity and definition.

Although lossy compression compromises on the audio fidelity itself, the enhance-

ments to speech clarity and definition can more than compensate for the degradation.

This would result in an improvement to the WER that surpasses the baseline of uncom-

pressed speech.

5.2.2 Enhancements Through Perceptual Coding

Perceptual coding and compression, which we reviewed in Section 2.3, can also have an

ancillary effect of enhancing speech signals. While the primary purpose of perceptual

coding is to discard data and reduce transmission sizes, it is possible that noise is

discarded in the process.

Recall that perceptual coding capitalises on psychoacoustics, which include the

human auditory system’s tendency to mask weaker sounds when faced with more

dominant counterparts, both in the temporal and frequency domain. Codecs like MP3

therefore discern and selectively discard these softer, ‘masked’ sounds, retaining only

the dominant audio components that resonate most with human ears.

Although MP3 was primarily designed for music, these psychoacoustical principles



Chapter 5. Discussions 34

can have beneficial outcomes in speech applications. For example, if there is ambient

noise or background interference that is being overshadowed by the primary speech

sounds, perceptual coding’s removal of ‘masked’ sounds could effectively pare down

these disturbances, yielding a clearer speech signal.

However, this very process of discarding information might inadvertently remove

subtle yet crucial speech components such as softer consonants. The loss of such

elements can prove detrimental to speech intelligibility, affecting the WER. The potential

for improving signal clarity by discarding noise is countered by the possibility of losing

intelligibility due to discarding speech information, and might explain why MP3’s WER

gains, while evident, do not match the gains seen with Opus.

5.2.3 Differences Between ASR Platforms

The above phenomenon was observed specifically on the Google Cloud Platform (GCP),

but not with Rev AI’s system. While we cannot ascertain the reasons without a thorough

examination of their proprietary systems, our hypothesis is that variations in the way

each platform preprocesses the submitted speech might account for the discrepancy.

We speculate that during preprocessing, Rev AI incorporated more substantial noise

suppression compared to GCP. This notion is further supported by our observations

that Rev AI consistently achieved lower WER than GCP across all tests with simulated

background noise. Furthermore, as depicted in the WER of speech in simulated noisy

environments (Figures 4.3 and 4.4), we see that the curves corresponding to various

codecs tend to converge at the baseline value of around 0.13 as bit rates increase. This

pattern contrasts with GCP, where the curves display a more pronounced dispersion.

These observations suggest a likelihood that Rev AI has implemented preprocessing

techniques that consistently impacted all codecs in a uniform manner, leading them to

converge around similar performance outcomes. In GCP’s case, such preprocessing

might not be as effective, or was entirely absent, which would account for its more

dispersed pattern of curves.

Rev AI’s suppression likely surpassed those of Opus, Speex, and MP3 covered

previously, as evidenced by the similar error rates and their inability to surpass the

uncompressed baseline WER of 0.13. Irrespective of the individual capabilities of each

codec, the preprocessing by Rev AI provided consistent and superior noise management

across the board. This distinct advantage in noise management, not observed in GCP,

offers a plausible explanation for the unique phenomenon.
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5.2.4 Summary

In summary, the paradoxical observation that audio compression can lead to improved

WER underscores the intricate balance between signal clarity and information preser-

vation. While compression codecs may degrade audio fidelity, their integrated noise

suppression and enhancement tools can improve speech clarity. However, the outcomes

can vary based on the specific ASR platform and its preprocessing capabilities. It

is crucial to consider both the inherent capabilities of codecs and the preprocessing

techniques of ASR platforms when evaluating the performances of codecs in speech

recognition tasks.

5.3 Benchmarking Speech Quality Using ASR WER

The endeavor to assess and rate the quality of speech is an ongoing field of study.

Diverse methods, both subjective and objective, have been employed to this end, each

presenting its unique set of challenges.

Subjective measures are a common way to conduct evaluation of the quality of

speech. They are an obvious choice because they directly tap into the human experience,

capturing the intricacies and nuances of our auditory percepts. Methods such as using

Mean Opinion Scores (MOS) [24] or the MUltiple Stimuli with Hidden Reference and

Anchor (MUSHRA) [31] have become staples for these sorts of evaluation. These

methods involve subjects rating speech samples on a numerical scale, with and without

reference samples, respectively. While the results of subjective measures are straightfor-

ward to interpret, they naturally introduce variability and inconsistency. Factors such

as listener fatigue, cultural biases, and environmental variability can potentially skew

results in unpredictable ways [19].

On the other hand, objective measures seek to reduce such variabilities in the results.

The Perceptual Evaluation of Speech Quality (PESQ) [25] and Perceptual Objective

Listening Quality Assessment (POLQA) [26] instruments are two prime examples of

this category. These methods compare a degraded speech sample against an original ref-

erence, and by simulating human auditory processes such as auditory masking, produce

scores that reflect the extent of degradation. Despite their sophistication, these tools

sometimes grapple with mirroring the intricacies of human auditory processing. The

auditory experience is riddled with numerous physiological and psychological factors

that researchers are yet to fully understand, posing limitations on the robustness of such
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measures. Furthermore, the ratings produced by PESQ and POLQA are relational to

the reference sample, meaning that any inherent issues with the reference can affect

the final score, potentially leading to misrepresentations of the true quality of the test

sample.

We propose for the use of ASR systems either as an alternate, or supplementary

technique to the above means. Leveraging WER as an evaluative metric, ASR systems

present a level of consistency that is often challenging to maintain in human-centric

evaluations. Unlike human listeners whose judgements can be affected by factors such as

fatigue, biases, or external distractions, ASR evaluations remain stable across iterations.

The straightforward nature of WER also provides an objective and empirical lens to

speech quality in terms of its intelligibility and clarity. If an ASR system produces a

high WER, it could suggest potential comprehension issues mirrored in human listeners.

In this light, incorporating ASR-derived metrics like WER with established subjective

and objective measures promises a richer, multi-dimensional perspective on speech

quality assessment.



Chapter 6

Conclusions

Our paper delved into the realm of lossy audio codec compression and encoding

mechanisms, and their interplay with ASR systems. We started with a comprehensive

review that traced the evolution of audio compression techniques. The study charted

the progression from foundational constructs to the advanced algorithms that dominate

today’s digital audio landscape. Psychoacoustics further enriched our understanding,

illuminating the auditory cognitive experience that codecs can mirror to achieve higher

efficacies. Concurrently, we introduced the paradigms of parametric compression

against waveform compression, and explained how the former leveraged the peculiarities

of speech to achieve superior performance over the latter.

We explored these performance differences by compressing speech samples using

a multitude of codecs at low bit rate settings, where the differences were expected to

be more pronounced. Instead of the currently established means of evaluating speech

quality using subjective tests or objective algorithms like the PESQ and PQLOA, we

opted to use online ASR platforms, taking advantage of their consistency and availability.

Central to our approach was the adoption of WER as a robust and empirical measure of

performance, enhancing our ability to conduct nuanced comparisons and analyses of

codec performances.

Our data and comparative analyses echoed the anticipated trend that codec per-

formances directly corresponded to their sophistication of encoding techniques. This

was evident not only in terms of average WER across the tested bit rates, but also in

the rate of WER degradation as bit rates were reduced. These disparities underscored

the resilience of the more advanced codecs in preserving speech intelligibility under

constraints, whilst their less sophisticated counterparts faltered more noticeably.

Through our evaluations, we also discovered that certain codecs can enhance speech

37
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quality and intelligibility even though information was discarded during the process.

This was most evident in scenarios with background noise, where the codecs acted as

noise suppressors, focusing on and preserving the most salient parts of the audio.

The granularity of our findings validates not only the theoretical distinctions be-

tween encoding techniques, but also the effectiveness of our methodology of using ASR

systems to evaluate speech quality and intelligibility. We propose this ASR-based ap-

proach as a novel method for such assessments. The employment of ASR systems offers

a unique blend of consistency, stability, and interpretability that traditional practices

might find challenging to uphold. ASR systems therefore emerge as evaluative tools

that are indispensable for future research in compression and other speech manipulation

techniques.
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Appendix A

Detailed Experimental Results

A.1 Speech in a Quiet Environment

Table A.1: Aggregated WER of speech samples in a quiet environment

Codec
Sampling Rate

(kHz)
Bit Rate
(kbps)

Word Error Rate
Google Cloud Rev AI

(Uncompressed)1 48 768 .0391 .0329

(Uncompressed)2 8 (Resampled) 128 .0434 .0419

GSM 8 13 .0568 .0514

G.729 8 13 .0642 .0530

G.726 8

16 .0617 .0519

24 .0508 .0459

32 .0447 .0435

AMR 8

4.75 .0792 .0614

5.15 .0767 .0599

5.9 .0692 .0541

6.7 .0660 .0534

7.4 .0624 .0530

7.95 .0613 .0507

10.2 .0541 .0460

12.2 .0522 .0476

Speex 8 2.15 .2879 .1991

1Original audio was retrieved in 16-bit LPCM and stored in .wav containers
2Audio was resampled and encoded as 16-bit LPCM stored in .wav containers
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Speex 8

3.95 .1371 .0964

5.95 .0963 .0686

8 .0753 .0567

11 .0594 .0491

15 .0511 .0461

18.2 .0475 .0443

24.6 .0452 .0440

Opus

(audio

application)

8

6 .0997 .0569

8 .0607 .0483

10 .0518 .0453

12 .0503 .0433

16 .0463 .0426

24 .0443 .0418

32 .0426 .0415

Opus

(voip

application)

8

6 .0754 .0523

8 .0581 .0477

10 .0515 .0452

12 .0489 .0435

16 .0463 .0428

24 .0456 .0421

32 .0449 .0420

MP3 8

8 .1245 .1687

16 .0599 .0464

24 .0513 .0417

32 .0500 .0407

AAC 8

8 .1404 .1997

12 .0708 .0796

16 .0567 .0486

20 .0507 .0437

24 .0478 .0444

Codec 2 8

.45 .4869 .4645

.7 .4433 .3679

1.2 .1975 .1319

1.6 .2146 .1292
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Codec 2 8
2.4 .1237 .0853

3.2 .0931 .0656

A.2 Speech in Simulated Noisy Environments

Table A.2: Aggregated WER of speech samples in simulated noisy environments

Codec
Sampling Rate

(kHz)
Bit Rate
(kbps)

Word Error Rate
Google Cloud Rev AI

(Uncompressed)3 48 768 .1367 .0981

(Uncompressed)4 8 (Resampled) 128 .2086 .1327

GSM 8 13 .2420 .1577

G.729 8 13 .2281 .1821

G.726 8

16 .2905 .1785

24 .2451 .1477

32 .2207 .1377

AMR 8

4.75 .2808 .2209

5.15 .2692 .2133

5.9 .2455 .1938

6.7 .2347 .1855

7.4 .2268 .1741

7.95 .2284 .1738

10.2 .2105 .1599

12.2 .2079 .1531

Speex 8

2.15 .5730 .4539

3.95 .3842 .2968

5.95 .3126 .2350

8 .2647 .2043

11 .2311 .1667

15 .2104 .1484

18.2 .2155 .1401

24.6 .2068 .1349

3Original audio was retrieved in 16-bit LPCM and stored in .wav containers
4Audio was resampled and encoded as 16-bit LPCM stored in .wav containers
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Opus

(audio

application)

8

6 .3513 .2883

8 .2446 .1954

10 .2027 .1716

12 .1894 .1550

16 .1724 .1437

24 .1893 .1362

32 .1865 .1329

Opus

(voip

application)

8

6 .3202 .2217

8 .2358 .1778

10 .1992 .1670

12 .1869 .1506

16 .1714 .1497

24 .1656 .1401

32 .1655 .1374

MP3 8

8 .3808 .3405

16 .2363 .1533

24 .2053 .1388

32 .1994 .1330

AAC 8

8 .3237 .2795

12 .2270 .1763

16 .2578 .1495

20 .2444 .1424

24 .2342 .1403

Codec 2 8

.45 .7884 .7762

.7 .7606 .7113

1.2 .5436 .4751

1.6 .5541 .4845

2.4 .4109 .3584

3.2 .3607 .3110


