
Fine-tuning Large Language Models for

Non-autoregressive Code Generation

Junjie Xu

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2023

Abstract

Autoregressive generation involves a process of left-to-right token generation that mir-

rors a natural, human-like manner. It draws upon previously generated tokens to estab-

lish contextual cues and inter-token relationships. However, this step-by-step approach

slows down inference due to its lack of parallelism. Conversely, Non-Autoregressive

generation was conceived to expedite inference by generating all tokens simultane-

ously. Nonetheless, Non-Autoregressive models struggle to attain dependency within

the sequence due to the difficulty of directly modelling the collective distribution of

all tokens, leading to reduced accuracy compared to the autoregressive method. How-

ever, it’s notable that programming languages display fewer left-to-right dependencies

compared to natural languages. The structured and syntactical rules inherent in pro-

gramming languages empower a token generation with reduced reliance on preceding

tokens, making the programming languages easy to be predicted for Non-autoregressive

Method. Additionally, some pre-trained large language encoder models don’t adhere

to the left-to-right autoregressive pattern, while the impact of these models and their

potential for aiding non-autoregressive generation remains unexplored. Our project

centres on fine-tuning pre-trained large language models to facilitate non-autoregressive

token generation in code intelligence field. We also delve into exploring and evaluating

conventional techniques commonly employed in this domain. Moreover, we leverage

structured program representations to enhance the Non-Autoregressive model’s ability

to capture code sequence dependencies. Our experimentation reveals substantial im-

provements compared to prior methods in Non-autoregressive area. Furthermore, Our

results indicate that our model performs nearly as well as the Autoregressive model

when the output sequence length is restricted to 100 tokens, while achieving a notable

decrease in inference time.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy.

It did not involve any aspects that required approval from the Informatics Research

Ethics committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Junjie Xu)

ii

Acknowledgements

I want to express my heartfelt gratitude to my supervisor, Prarit Agarwal, Camille

Tiennont, and Prof. Iain Murray for their tremendous help and guidance throughout this

thesis. I’m also thankful to the School of Informatics at the University of Edinburgh for

providing the necessary computational resources. Special thanks to my friends, Patrick

Chen and Yijun Yang, for their helpful advice on my experiments.

Most importantly, I’m truly appreciative of the support and encouragement I received

from my family members, Heping Xu, Yazhen Liao, and Yixin Tian.

iii

Table of Contents

1 Introduction 1

2 Background 5
2.1 Seq2Seq Model . 5

2.2 Task Formulation . 7

2.3 Problem Statement . 7

2.4 Non-Autoregressive Decoding and Related Work 9

2.5 Structured Program Representation 10

3 Methodology 12
3.1 Hidden Variable Modeling . 12

3.1.1 Statistical Method . 12

3.1.2 Deep Learning Method . 13

3.2 Guidance from AR model . 14

3.3 Hint from Structured Program Representation 14

4 Experiment Settings 16
4.1 Dataset . 16

4.2 pre-trained LLM . 17

4.3 Evaluation Metrics . 17

4.4 Model Settings . 18

5 Results and Analysis 20
5.1 Baseline Method . 20

5.2 Hidden Variables Modeling . 23

5.3 Guidance from AR model . 26

5.4 Hint from Data Flow . 28

5.5 Trade-off Study . 29

iv

5.6 Robustness Test . 33

6 Conclusions 35
6.1 Future Work . 36

Bibliography 38

A Comparative Examples of AR and NAR Model Outputs 43

v

Chapter 1

Introduction

In recent years, there has been a notable upsurge in the interest and implementation of

AI-driven tools aimed at simplifying code generation tasks. These tools have gained

attention from both academia and industry, holding the potential to revolutionize soft-

ware development by boosting efficiency and accuracy, and providing valuable support

to developers in their work. Noteworthy examples of such tools include Github Copilot

[12], Amazon CodeWhisperer [1], and OPEN-AI ChatGPT [31]. These tools show-

case impressive capabilities in tasks like code suggestions, function completions, and

code snippet generation. They are based on Neural sequence-to-sequence (seq2seq)

models[2, 35, 38]. Given their impressive features and significant advantages, these

AI-driven solutions have garnered widespread recognition and popularity among users.

However, an essential aspect that profoundly impacts user satisfaction is the speed

of these tools. Users prioritize responsiveness, as swift performance is crucial for

seamless integration into developers’ workflows and overall productivity. Sluggish

or unresponsive behaviour can lead to frustration, disrupting the coding process and

potentially discouraging users from adopting the tool.

In the field of seq2seq models and advanced deep learning architectures, token

generation typically follows an autoregressive (AR) approach. This implies that each

token prediction relies on the sequence of tokens generated before it. However, this

autoregressive generation process inherently occurs sequentially, making it challenging

to parallelize during inference. As a consequence, this approach leads to slower and

computationally intensive performance [41]. The model must wait for the preceding

token to be generated before it can predict the subsequent one, resulting in a linear

increase in inference time as the length of the output sequences increases.

To expedite the inference process, a line of research has emerged, focusing on the

1

Chapter 1. Introduction 2

development of non-autoregressive(NAR) translation models. These innovative models

aim to overcome the autoregressive dependency by adopting a different approach: they

decompose the joint conditional probability and directly generate all tokens simultane-

ously. However, The loss of autoregressive dependency in non-autoregressive models

can significantly impact the consistency of the output sentences, making the learning

process more challenging and resulting in lower-quality translations. To address these

limitations, previous research has primarily explored two main directions for improving

non-autoregressive translation models:

1. Enhancing the expressiveness of the NAR model: One approach involves aug-

menting the NAR model with different components to improve the network

structure’s expressiveness. For instance, iteratively refining the target sentence

generated by the NAR model [19, 11] or introducing additional modules to model

hidden variables that capture dependencies between outputs [13, 28]. By intro-

ducing these additional components, the NAR model becomes more capable of

generating high-quality translations that closely resemble those produced by AR

models.

2. Training under the guidance of an AR model: Another direction of research

focuses on training the NAR model with the assistance of an AR model. The AR

model provides valuable information and guidance during the training process,

helping the NAR model maintain coherence and context in its generated output.

By leveraging the knowledge and structure of an AR model, the NAR model can

learn to produce more consistent and accurate translations [21, 25, 16].

One notable aspect missing from the previously mentioned research directions is

the exploration and utilization of the powerful pretraining capabilities of modern large

language models (LLMs), such as BERT (Bidirectional Encoder Representations from

Transformers) [7] and GPT (Generative Pre-trained Transformer) [4]. Also, none of

them investiage the NAR generation on programming language that has less dependency

need to be captured with the help of conditioning mechanism. In the current landscape

of deep learning, transfer learning has emerged as a dominant paradigm, fine-tuning

LLMs makes them capable of different downstream tasks including code generation.

This project aims to explore the potential impact of pre-trained LLMs on the field of

NAR methods, focusing on leveraging the knowledge stored within LLMs to improve

generation speed while still benefiting from the comprehensive language understanding

Chapter 1. Introduction 3

captured during pretraining. We will primarily employ a Code-to-Code translation

dataset to evaluate the performance of our NAR generation model. However, the

ultimate goal is to make NAR decoding applicable to a wide range of tasks that require

sequence generation. As such, we also intend to test our model’s performance on

code-to-natural language summarization tasks. The main contributions of this project

are as follows:

1. Confirmation of Pretraining Benefits: Our experiments validate that leveraging

pre-trained LLMs can be highly advantageous for NAR decoding. Furthermore,

we establish that NAR models derive more substantial benefits from this approach

compared to AR models.

2. Evaluation of Existing NAR Techniques: We systematically examine conventional

methods employed in NAR models and assess their effectiveness after integrating

pre-trained LLMs. Interestingly, we observe a reduction in the significance and

improvement provided by these methods, owing to the mitigating effect of the

pretraining process on the issues these methods aim to address.

3. Significant Enhancement via Data Flow: We investigate and test the impact of

a specific structured program Representation, the data flow, on NAR decoding.

The results highlight a substantial improvement in NAR decoding performance

achieved by incorporating this data structure.

4. Trade-off Analysis: Our study includes a comprehensive analysis of the trade-offs

between performance, speed, and the robustness of NAR models. We identify

that when the speed factor is balanced, the performance of AR and NAR models

becomes remarkably similar.

The main structure of this thesis is as follows. Chapter 2 offers an in-depth overview

of the NAR and AR models, along with a detailed discussion of the task and problems

associated with NAR models in the code intelligence field. Chapter 3 gives an examina-

tion of previous methodologies used in this field. It provides insights into the approaches

and techniques employed in prior work. Chapter 4 outlines the experiment settings,

including the parameters, configurations, and details about the evaluation datasets used

in the project. In Chapter 5, the experimental results are presented, and a comprehen-

sive analysis of these results is provided, offering insights into the performance and

behaviour of the models. The final chapter concludes the project, summarizing the

Chapter 1. Introduction 4

findings and contributions. It also highlights the limitations of the study and proposes

potential areas for future research.

Chapter 2

Background

This chapter aims to establish the necessary foundational knowledge for this project. In

Section 2.1, we will present a concise overview of the Seq2Seq model, thereby setting

the stage for comprehending the conventional deep learning method for sequence

generation. Moving on, Section 2.2 will introduce the Task Formulation, providing a

clear context for the problem being tackled. In Section 2.3, we will delineate the specific

motivations, key issues, and project objectives. Additionally, Section 2.4 will delve into

the existing landscape of Non-Autoregressive models, detailing various approaches that

strive to overcome the autoregressive limitations and facilitate parallel token generation.

Finally, section 2.5 provide an introduction to structured program representation and

some related works that show its importance in code intelligence task.

2.1 Seq2Seq Model

Currently, two main types of Seq2Seq models are popular: the Encoder-Decoder model

like BART, T5 [23, 34] and the Decoder-only model like GPT family, LLaMA[4, 33, 37].

While Decoder-only models tend to be larger in size, their computational resource

requirements can be substantial. For the scope of this project, we will primarily focus

on the more widely used Encoder-Decoder Architecture.

Modern deep learning models heavily rely on the Transformer architecture [39].

This architecture is widely used in various tasks, and in the case of encoder-decoder

models, both the encoder and decoder components are based on the Transformer module

as shown in Figure 2.1.

In the encoder part, the input sequence undergoes a series of transformations through

the Transformer module and outputs the hidden states representation. This module

5

Chapter 2. Background 6

Source Inputs

Padding to Max sequence length

Embedding Layer

Pretrained Encoder

Hidden States

Decoder

Target Input

MLP (mapping back to vocabulary)

Target Outputs

Encoder-Decoder Attention

Figure 2.1: The overall structure of a seq2seq autoregressive encoder-deocder model,

the decoder’s input is target ids.

enables tokens in the sequence to attend to each other, allowing the model to gather

information and comprehend the context of the entire sequence in both forward and

backward directions. This bi-directional attention mechanism significantly enhances

the model’s ability to capture rich contextual dependencies. After obtaining the output

from the encoder, the decoder component in the Transformer-based model takes the

encoder’s hidden state as input using the encoder-decoder attention mechanism and also

conditions on the previous tokens to generate the outputs.

During the training process, the actual correct token from the previous time step is

available, allowing for parallelization using masks to ensure that the model does not

attend to future tokens. During inference time, when generating the output sequence,

the AR model encounters a challenge due to the absence of actual correct former tokens.

Since the model needs to wait for the preceding token before predicting the next one.

This sequential generation process leads to slower inference. To find the most likely

sequence, AR models also employ beam search [2], which explores multiple possible

sequences in parallel. Beam search maintains a set of candidate sequences and expands

them by predicting the next token for each candidate. This process continues until the

maximum sequence length or a stopping condition is met. Thus, the actual inference

time complexity is the sequence length (n) times the beam search size (b) (using the big

O notation [5]: O(b×n)). Figure 2.2 is a visualisation of this comparison.

Chapter 2. Background 7

AR Decoder

Target Input

Attention Mask

AR Decoder

Target Input

Attention Mask

Training Stage Inference Stage

Figure 2.2: The decoder part of the Seq2Seq model during training and inference stage.

The training stage use the exact target ids as input, the triangular attention mask make

sure model does not attend the correct token at current position. During the inference

stage, the predicted token from the previous time step will be used as input for the

following steps. The First Token is the start of sentence token < s >, so is always

available.

2.2 Task Formulation

It is a common belief that natural language exhibits strong dependencies, leading to the

conventional use of autoregressive Seq2Seq models. These models generate the output

sequence Y = y1, ...yt ′ by decoupling the joint distribution Pθ(Y|X) (where X is the

source sequence) into conditional probabilities
t
′

∏
t=0

Pθ(yt+1|X,yt), where Pθ represents

the learned distribution from deep learning structures. This approach effectively captures

the dependencies between the output tokens, ensuring coherence and context in the

generated sequence. In contrast, non-autoregressive methods predict each token yt solely

based on the input sequence X without considering the previously generated tokens.

Therefore, non-autoregressive methods need to find a way to model the dependency in

the output by utilizing the source input.

2.3 Problem Statement

This lack of capturing the inter-token dependency in the output sequence leads to

the main problem that harms the performance of NAR known as the ”multimodality

Chapter 2. Background 8

< s >

Thank You

Many Thanks

Encoder Decoder

< s >

Thank Thanks

Many You

Encoder Decoder

Figure 2.3: Examples of the ”multimodality problem” occur when there are multiple

correct outputs for a given input, but the model struggles to choose between them. For

instance, if the phrases ”Thank You” and ”Many Thanks” are equally likely in the dataset,

the model might assign similar probabilities to tokens at each position. Without knowing

the first token generated in the previous time step, the model may give equal probabilities

to ”Thanks” and ”You,” leading to an incorrect translation like ”Thank Thanks” and ”Many

You”.

problem” [42]. For instance, shown in Figure 2.3, consider the task of generating

phrases that express gratitude, if phrases such as ”Thank you” and ”Many thanks”, both

of which carry the same meaning and appear with close frequency in the dataset, due to

the lack of inter-token dependencies, the NAR model may not correctly associate words

to form coherent phrases. It will assign equal probabilities to the tokens in them at each

position. This could lead to the generation of nonsensical and incoherent outputs, such

as ”Many you” and ”Thanks thank,” where words from different phrases are mistakenly

combined.

However, in the context of code generation, this challenge is somewhat less severe

due to the inherent characteristics of code data. Unlike natural language, where word

order and multiple synonyms introduce ambiguity, code data tends to have a smaller,

constrained vocabulary. The code structure is more rigid, leading to fewer ways of

expressing the same functionality. Consequently, the ”multimodality problem” is less

pronounced in code generation tasks. The structured and concise nature of code allows

NAR models to perform well. The limited vocabulary and strict syntactic rules enable

accurate code sequence generation with reduced ambiguity.

An approach to mitigating the ”multimodality problem” in natural language tasks

is using part-of-speech (POS) tags as additional inputs, as demonstrated by Yang et

al. [42], POS tags can help narrow down the possible translations (even though there

might be several correct options) by imposing constraints based on the tags, and also

reducing the overall ambiguity in the sequence. In code generation, a similar effect

Chapter 2. Background 9

can be achieved through structured program representation such as Abstract Syntax

Trees (AST), Data Flow and Intermediate representation(IR). These representations

provide clear insights into the dependencies and structure of code sequences, mirroring

the advantages of POS tags in natural language tasks. Furthermore, obtaining these

representations is generally more straightforward than acquiring POS tags in natural

language scenarios, primarily due to the inherently structured nature of code data that

we previously discussed.

2.4 Non-Autoregressive Decoding and Related Work

AR Decoder

Target Input

Attention Mask

Inference Stage

NAR Decoder

Decoder Input

Attention Mask

Figure 2.4: The figure shows a difference between the way AR and NAR models generate

tokens during the inference stage. In the AR model, each token is generated step by step,

using previous predictions as input and an attention mask. In the NAR model, there’s

no need for such iterative generation or attention mask. Instead, NAR models can limit

token attention to a small ”window” around each token, which helps them work better

without attending too much padding tokens. The example in the figure demonstrates a

window size of 1, meaning each token only looks at its immediate neighbors.

The overall architecture of NAR and AR models bears similarity, but the key

distinction lies in the decoder part as presented in Figure 2.4. In the AR model, the

decoder relies on the previously generated token, following an autoregressive process,

where each token is predicted sequentially. On the other hand, NAR models deviate from

this sequential prediction approach. They attempt to decode all tokens simultaneously,

without the need to wait for the previous token, resulting in the time complexity

Chapter 2. Background 10

at inference time being O(1). Thus, NAR models must adopt alternative decoding

strategies instead of taking previous tokens as decoding input, as discussed in Chapter 1.

Research on NAR models primarily focuses on two main directions: discovering more

expressive representations for the decoding input and leveraging representations from

autoregressive models.

In the first type of research direction, non-autoregressive models have explored inno-

vative approaches to improve decoding. For instance, Gu et al. [13] proposed a method

involving the modelling of hidden variables Z that effectively matches input source

tokens to their corresponding target output tokens. By conditioning on these hidden

variables, the model can generate tokens by copying input tokens, thereby reducing the

dependency on sequential generation. Similarly, Ma et al. [28] introduced a different

strategy by decoupling the conditional distribution Pθ(yt+1|X,yt) into Pθ(Y|X,Z). In

this approach, an additional hidden variable Z is learned, which helps to reduce or reflect

the dependency between output tokens. By incorporating Z into the decoding process,

the model gains more flexibility and can generate tokens more efficiently, without strict

sequential constraints. In addition, decode on the output of the NAR model itself is also

available, Kasai et al. [19] and Ghazvininejad et al. [11] involve iteratively refining the

target sentence generated by the NAR to improve the initial prediction which may not

be perfect due to the challenges of non-autoregressive decoding and the multimodality

problem. The second research direction aims to leverage the knowledge from AR

models, often referred to as ”teacher AG,” to improve the Non-Autoregressive decoding

process. It has been observed that the hidden states produced by AR models exhibit

much smaller similarities with each other compared to NAR models. This difference

in hidden state similarities is a significant factor contributing to the ”multimodality

problem” in NAR models. To address this issue, researchers have explored techniques

such as sequence-level knowledge distillation [21]. Additionally, alignment between

the AR and NAR models is used in conjunction with the attention mechanism to guide

the NAR decoding process [25, 16].

2.5 Structured Program Representation

Numerous prior studies have highlighted the advantages of incorporating structured

program representations such as Abstract Syntax Trees (AST), data flow, and Inter-

mediate Representations (IR) into Language Model architectures for tasks related to

code intelligence[3, 17, 20]. Those data are foundational components in computer

Chapter 2. Background 11

science and software engineering that provides structured, abstract information of vari-

ous aspects of a program’s structure, semantics, and flow. They encompass essential

components used in the development and analysis of software, particularly in the context

of compilers, interpreters, and static analysis tools. Structured Program Representation

facilitates the transformation of human-readable source code into machine-executable

instructions, enables optimization techniques, and aids in program understanding.

These structured program representations are particularly advantageous for NAR

decoding. They provide valuable hints and guidance for modelling token dependencies

and constraints, thereby helping to address the ”multimodality” problem. For instance,

when dealing with NAR models, the existence of multiple valid translation versions

for a single input can pose challenges. However, the presence of specific data flow or

AST structures serves as a constraint, limiting the translations to be consistent within

that particular structure. This information serves as guidance to aid the NAR model

in identifying the global optimum rather than getting stuck in local optima at each

sequence position.

Chapter 3

Methodology

3.1 Hidden Variable Modeling

In non-autoregressive models, both the encoder and decoder parts employ the Transformer-

based architecture. However, unlike autoregressive models, NAR models have the

distinct characteristic of generating all words in parallel. This parallel generation pro-

cess necessitates a different approach, as NAR models cannot use time-shifted target

outputs or previously predicted outputs as inputs to the first decoder layer. As a result,

there arises a need to identify a suitable representation that can serve as input for the

decoder’s functioning.

The decoder’s input in NAR models is crucial for generating the initial output.

It has been demonstrated that omitting inputs entirely to the first decoder layer or

relying solely on positional embeddings can lead to significantly poor performance [13].

Without relevant inputs, the model lacks the necessary context and dependencies to

guide the generation process effectively. Therefore, it is imperative to explore effective

ways to model hidden variables that can enhance the decoding input to the NAR models.

In this project, we aim to investigate two methods of finding better hidden variables that

can serve as the decoder’s input, we introduce them below.

3.1.1 Statistical Method

In this section, we build upon existing work that utilizes variational inference and

training techniques. [28]. In addition to the standard encoder and decoder components,

we introduce an additional part called the posterior part during the training process.

The posterior part’s role is to learn the distribution of PΦ(Z|µ(X,Y),σ2(X,Y)) (µ and

12

Chapter 3. Methodology 13

σ2 is the learnable mean and variance for the hidden variable Z) to model this additional

hidden variable, z. which serves as the decoder’s input for the NAR model. Since

NAR models attend to all decoding inputs at each time step, it is crucial to ensure

that the learned z does not simply copy the target tokens but captures the contextual

interdependence among the tokens. To achieve this, we employ mask or token dropout

strategies during training. These techniques help guide the learning process of z,

preventing it from merely replicating the target tokens and encouraging it to grasp the

underlying dependencies among the tokens [30, 7].

During inference time, we have no target sequence Y to feed to the posterior part,

so we introduce another component, the prior, which directly models the distribution

P(Z|X), it based on Glow [22], a flow-based architecture that ensuring the gradients

remain tractable even for complex distributions so the standard back-propagation is

feasible. Then the Kullback-Leibler (KL) divergence [6] between the prior and posterior

distributions is employed to encourage the two distributions to be close to each other,

allowing the prior to reconstruct the latent variable z without access to target input

data. By incorporating the prior and posterior components in our framework, we

leverage data to effectively decouple the dependency between the output sequence and

the uncertainty in the generative process.

3.1.2 Deep Learning Method

The encoder part of modern large language models (LLMs) has become significantly

large in size, offering substantial contextual understanding and language representation

capabilities [7, 26, 14]. Unlike the autoregressive decoders that progress sequentially

from left to right autoregressively, LLM encoders are bidirectional, allowing them

to capture comprehensive contextual information from both directions in the input

sequence. In this project, we propose that the hidden state output from a large pre-

trained LLM contains valuable contextual information, which can potentially assist in

modelling dependencies and improving the performance of non-autoregressive decoding.

Given that the decoder will still require the hidden states of the source input via encoder-

decoder attention mechanisms, too many modifications to the pretraining segment are

ill-advised to prevent disruption of the acquired knowledge. Instead, we propose the

integration of an additional deep learning module (such as extra transformer layers)

to construct a proficient representation of the hidden variable, serving as input for the

decoder. This module is similar to the aforementioned flow-based method. Moreover,

Chapter 3. Methodology 14

we can introduce hints or guidance by incorporating a loss function into the outputs

from this module to tailor the process of learning the hidden variables.

3.2 Guidance from AR model

In the context of the NAR models, a pivotal factor that holds sway over their per-

formance is the representation of the hidden state. Previous research indicates that

hidden states learned in an AR manner tend to exhibit enhanced attention distribution

and superior representation capabilities. These attributes provide essential hints to

the hidden state, facilitating the capture of sequence dependencies [2]. To capitalize

on this insight, researchers have explored methods to effectively imbue NAR models

with guidance from AR models during the decoding process. One approach involves

the incorporation of loss functions that encourage the alignment of the NAR model’s

hidden state representation with that of a Teacher AR model, alongside a loss function

that enhances word alignment [25]. Given this, our project will also delve into the

consequences of integrating guidance from a large pre-trained autoregressive language

model. To be more precise, we intend to introduce supplementary components crafted

to harness the hidden state representations garnered from an AR model. The ultimate

objective is to reshape the NAR model’s hidden state, aligning it more closely with the

context and dependencies discerned by the AR model.

3.3 Hint from Structured Program Representation

Linguistic structure prediction has been a subject of extensive investigation in natural

language processing. In previous works, researchers have explored various techniques

to model and leverage syntactic structures (e.g. syntactic dependency trees and part-

of-speech tags), primarily focusing on the decoder side [40, 8]. And it is also helpful

for the parallel decoding process as it gives hints to capture word dependency [42].

In the domain of code generation, similar to the role of Part-of-Speech (POS) and

syntactic dependency trees in natural language processing, code syntax information

such as Abstract Syntax Trees (ASTs) and data flow play a crucial role in capturing

the dependencies and structure of the code sequences. Numerous research efforts have

demonstrated the significance of them in code generation tasks, and their adoption has

been proven to be beneficial [15, 10].

We argue that since the NAR model can not exploit the dependency present in

Chapter 3. Methodology 15

the output tokens by conditioning on the previous tokens, the additional information

provided by Abstract Syntax Trees (ASTs) and data flow becomes more beneficial to

them. For instance, consider a simple example where the AST or data flow provides

information about the parent node and its children. In such cases, the model should

learn that the dependency between the children of the same parent node should be lower

or nonexistent.

Chapter 4

Experiment Settings

4.1 Dataset

In our study, our main emphasis will be on evaluating the NAR model’s performance

in code-to-code translation tasks using various methods. Additionally, we will explore

the model’s generalization capabilities by applying it to code-to-natural language sum-

marization tasks. This broader testing will help us understand how well the model can

adapt to different types of tasks beyond its primary focus. Below are descriptions of the

two datasets:

1. Code-to-Code Translation: In this task, we will explore the capability of our

model to translate code from one programming language to another. The dataset

consists of parallel functions within both the Java and C # versions of the codes

that come from several public repos collected by CodeXGLUE [27]. The dataset

has 10,300 training examples, 500 validation examples and 1000 test examples,

the examples that cannot be parsed into an abstract syntax tree are removed, so we

make sure we can get the structure program representation to test our hypothesis.

2. Code-to-Natural Language Summarization: In this task, we will investigate how

our model can generate human-readable natural language summaries for given

code snippets. We utilize Python data from CodeSearchNet [18], the examples

that cannot be parsed into an abstract syntax tree (AST) and the token lengths

that are either too long or too short are filtered out, resulting in 251,820 training

examples, 13,914 validation examples, and 14,918 test examples.

The dataset we have chosen is commonly employed in the domain of code intelli-

gence [15, 14, 24].

16

Chapter 4. Experiment Settings 17

4.2 pre-trained LLM

To ensure meaningful and effective fine-tuning, it’s essential that our pre-trained Large

Language Model (LLM) is exposed to a substantial volume of code language data

during its pretraining phase, particularly in the programming language of the dataset

we have selected. For instance, if our dataset consists of Python code, it’s crucial that

the pre-trained model has undergone pretraining on a significant amount of Python

language data. For our research, we leverage the encoder component of CodeBert [9],

which encompasses 12 transformer layers. CodeBert has been pre-trained in a diverse

range of programming languages, including Python, Java, JavaScript, PHP, Ruby, and

Go. This diversity in pretraining makes CodeBert suitable for our chosen dataset. To

maintain consistency and coherence in our architecture, we align our decoder with 6

transformer layers, following the design principles of CodeBert.

4.3 Evaluation Metrics

To evaluate our model’s performance, we employ the bilingual evaluation understudy

(BLEU) metric [32]. BLEU is commonly used in natural language processing tasks,

including code intelligence, to assess the quality of generated text compared to a

reference or ground truth. It consists of n-gram precision for each n-gram up to a

specified maximum value (typically up to 4-gram), and also the brevity penalty (BP)

that penalizes short translations by reducing the BLEU score:

BLUE = BP∗ exp(∑wn ∗ log(Pn))

where BP = min(1,(Lgenerated)/(Lre f erence))
(4.1)

wn are the weights assigned to different n-grams, and Pn is the precision for n-grams.

For both tasks, we present the smoothed BLEU-4 score as our primary evaluation

metric. Additionally, in the context of the code-to-code translation task, we complement

the evaluation with an additional metric called CodeBlue [29]. CodeBlue is a specialized

metric explicitly designed to assess the effectiveness of code translations, offering a

more detailed evaluation that is tailored to programming language contexts. It combines

several components, including the n-gram match, weighted n-gram match, syntax

match, and dataflow match, resulting in a more fine-grained analysis of the translation

effectiveness in a programming context.

Chapter 4. Experiment Settings 18

4.4 Model Settings

To set the hyperparameters for our models, we thoroughly examined and considered the

choices made in previous studies. Through testing on the validation set using the AR

model, we identified the optimal hyperparameters that yield the best performance.

The hyperparameter settings presented in Table 4.1 serve as a foundational con-

figuration for all models. However, for specific models that incorporate additional

components such as ”posterior” or employ alternative methods, we provide clear expla-

nations of the parameter modifications made. Any changes to the hyperparameters for

such specific models are explicitly detailed.

Category Hyperparameter

encoder transformers layers 12

decoder transformers layers 6

architecture max sequence length 300

beam size 3

Learning rate 5.00E-05

weight decay 1.00E-03

Learning rate schedule AdamW

Optimization # training steps 100000

gradient clip 1

Dropout rate 0.2

Training Batch Size 32

Evaluation Batch Size 8

Table 4.1: hyperparameters setting for the experiments

As the NAR model demonstrates a more significant speed advantage when dealing

with longer sequences, our primary focus will be on the code-code translation task,

which involves longer target sequences in the dataset. And we use the code-nl dataset

to further test the robustness and adaptability of our model when the difference between

source and target is large.

For all the additional modules incorporated into the encoder-decoder architecture,

we ensure that each module is a 4-layer Transformer or with equivalent parameters.

Additionally, we opt to freeze the lowest 4 layers of the encoder in these models. This

approach aims to prevent excessive modification of the pretraining model’s acquired

understanding in the process of modelling hidden variables. By maintaining an equal

Chapter 4. Experiment Settings 19

number of learnable parameters, we also ensure a more fair and meaningful comparison

between the different models.

In our NAR model, we employ an attention mask with a window size of 2. This

design enables tokens at each position to attend to their two neighbouring tokens.

Additionally, the CLS token (i.e. The first token) is made attendable at all positions.

Including the CLS token in all time steps is beneficial due to its role as an overarching

representation of the sentence’s meaning. This inclusion aids in predicting tokens across

all positions and offers guidance for aligning the source and target sequences within the

sequence-to-sequence model.

Chapter 5

Results and Analysis

Analyzing NAR and AR models inevitably involves a trade-off between speed and

performance. Initially, we will establish a baseline model and assess the impact of

pretraining Language Model Models (LLMs) on NAR models’ performance. By setting

this initial benchmark, we can analyze how various model enhancements and optimiza-

tions impact performance while keeping computational speed as a critical constraint. our

experimental approach follows the routine outlined in chapter 3, including investigating

the effects of incorporating hidden variables, the guidance from the AR model and

structured program representation. Once we identify the most effective model achieved

through the methodology discussed in Chapter 3, our next step will be to compare it

with the AR model. In this comparative analysis, we will examine the trade-off between

the two models, considering both their performance and computational efficiency.

5.1 Baseline Method

As discussed in the preceding chapter, the NAR model can iteratively build the input by

incorporating each output, it needs all decoder’s input at the beginning for its parallel

decoding. A simple way in previous machine translation studies is to ”Copy” source

input as the decoder input [13]. This method can encounter situations where the output

translation at a specific position is not inherently linked to the corresponding input

position. This can result in non-trivial alignments, as the translation text’s order may

not necessarily mirror that of the source input. Moreover, instances might arise where a

single token in the source reflects multiple tokens in the translation, or conversely, mul-

tiple tokens are condensed into one. These scenarios can introduce intricate challenges

in preserving positional order and alignment between the translated sequence and the

20

Chapter 5. Results and Analysis 21

source, further exacerbating the complexity of the decoding process using the source

inputs.

Figure 5.1: Example of the alignment problems between the source input ids and the

generated translation. We can observe that the token ”failure” in the source input leads

to two tokens in the Chinese translation, while ”is the” corresponds to only one token.

Additionally, the order of tokens changes in the translation text. This phenomenon

demonstrates the complexities and challenges in maintaining consistent alignments and

dependencies between source and target tokens, particularly in the context of NAR

decoding that can not use target ids as input.

Thus, instead of simply copying source inputs uniformly, previous work can investi-

gate the effect of modelling additional hidden variables that indicate whether to copy

source tokens multiple times or change their order. Here for the baseline method, we

keep it simple by not introducing such hidden variables. The decoder inputs’ length

is the max sequence length we set and it learns to generate the EOS (end of sentence)

token to indicate the output should stop there.

We also introduced a modification that entails decoding not directly from the source

input but from the hidden states of the source input. The idea is that the similarity

between the hidden states of the source and target is higher than the source and target

inputs before encoding, so the hidden states may have more information that is helpful

to the decoding process and we leverage the benefits of pretraining in this way.

In our initial experiments, we aim to assess the utility of a pre-trained LLMs encoder

for NAR models. Since the pretraining process endeavours to capture contextual mean-

ings of the input, the encoder encodes inputs with similar meanings to be close to each

other, those captured information can be helpful for generating targets. Consequently,

the most straightforward representation for decoding input is the hidden state of the

source input. Due to the limited number of studies incorporating LLMs into the NAR

field, and the absence of such research specifically in the realm of code intelligence

Chapter 5. Results and Analysis 22

Source Inputs

Public void Padding Token

Padding to Max sequence length

Embedding Layer

Pretrained Encoder

Hidden States

Decoder

Decoder Input

MLP (mapping back to vocabulary)

Target Outputs

Figure 5.2: The baseline NAR model, where the decoder input consists of the hidden

states from the source input.

tasks, We will adopt this configuration as the baseline for our project and assess the

performance improvements we can achieve while operating within its speed constraints.

We compare it with a model that without any pretraining to see pre-trained LLMs is

helpful to NAR models. we ensure that the size and structure of the two models are the

same, the model’s structure is shown in the Figure 5.2.

It should be noticed that when we set the decoder input length to match the maximum

sequence length, there’s a possibility of having numerous padding tokens within each

input sequence. In the AR method, it employs a mask to mitigate the impact by

only allow each output to attend only to the former decoder’s input. In our case, we

restrict each input token to attend only to neighbouring tokens within a specified range

during the generation. This enables us to avoid excessive attention to padding tokens.

Interestingly, we find that the length of the neighbourhood within which each token

can attend doesn’t significantly influence performance (even if no mask is applied, i.e.

attending to the padding tokens, does not hurt the performance too much).

NAR Model BLEU-4

fully-random initialized 1.84(±0.45)

baseline(decode on source hidden state) 49.06(±0.88)

Table 5.1: Performance comparison between fully random initialized model and NAR

model that decoder on source hidden state.

Through our investigation shown in Table 5.1, we observed a substantial difference

Chapter 5. Results and Analysis 23

in performance when comparing the adoption of pre-trained encoders and randomly

initialized transformers in the NAR model, in contrast to similar comparison experiments

conducted in the AR model [27]. Our findings suggest that in the NAR model, the

task involves learning how to capture and disentangle dependencies within the input

sequence, which is distinct from the AR model’s ability to condition on previous tokens.

As a result, the complexity of the NAR task is considerably higher, making pretraining

significantly more crucial for enhancing the model’s performance. Also, another factor

is that the LLM encoder also be pre-trained in a way that predicts tokens using the

information from all the other tokens rather than autoregressively left-to-right, resulting

in the hidden states from it is more beneficial for NAR methods.

5.2 Hidden Variables Modeling

We first try the method of adopting a flow-based statistical inference approach to model

hidden variables for decoding input. In comparison to the baseline model, this approach

introduces a posterior module, which is designed to model hidden variables suitable for

decoding input while effectively capturing the dependencies and alignments discussed

earlier. During training, both the target and source are provided to the posterior module,

enabling it to learn and refine the hidden variables’ representation. However, during the

inference stage, the target input is not available. Despite this absence, we optimize the

prior distribution using the KL-divergence loss between it and the posterior, thereby

ensuring that it can generate the most accurate hidden variables even in the absence of

target information.

We set the posterior to be a 4-layers transformer architecture and the flow-based

prior module is similar to the previous work on Neural Machine Translation task

[28]. The model’s structure is illustrated in Figure 5.3. Through the experiments, we

encountered challenges during the training process. Notably, two losses conflicted,

impacting the model’s convergence and performance. The first loss, the reconstruction

loss, aimed to make the hidden variable with sufficient complexity to effectively convey

meaning for improved decoding outcomes. On the other hand, the second loss, the

KL-divergence loss, aimed to simplify the distribution of hidden variables, enabling the

prior distribution to approximate the posterior distribution.

Although this trend has also been shown in the original paper. We further notice

that introducing the pre-trained model leads the reconstruction error to be significantly

lower and the variance of the posterior becomes close to 0, making the KL loss to be

Chapter 5. Results and Analysis 24

Source Inputs

Public void Padding Token

Padding to Max sequence length

Embedding Layer

Pretrained Encoder

Hidden States

Decoder

Decoder Input

MLP (mapping back to vocabulary)

Target Outputs

Posterior Prior

Target Input

KL-Loss

Inference

Training

Figure 5.3: The structure of the model that utilizes a Flow-Based architecture for Hidden

Variable Modeling, where the hidden variables serve as inputs to the decoder.

high and hard to converge. so even the hidden variable from posterior can result in a

very good outcome, during the inference stage the performer is not comparable. and if

we give more weight to the KL-loss to make sure the prior can be close to the posterior,

the reconstruction loss will increase to the level as there is no pretraining encoder and

can not converge like before.

Hence, our investigation led us to a realization that the outcomes we could attain

appeared to be close to the original paper’s results, where pretraining was not employed

(adding a pre-trained encoder dose not help). Interestingly, introducing a pre-trained

encoder within this framework seemed to amplify training complexities, resulting in a

distribution that struggled to effectively model the hidden variable. This complexity

suggests that a more expansive model capacity might be necessary to accommodate the

nuances introduced by the pre-trained encoder.

The statistical inference approach involving posterior and prior modelling did not

yield satisfactory results. In response, we explored alternative solutions within the

conventional deep learning framework. Our approach involved incorporating a deep

learning hidden variable predictor module, serving as a predictor for modelling the

hidden variable both during training and inference, thereby it can not take the target

as the input and learn the dependencies and alignments in the targets as the posterior

module does. Instead, it needs other information to guide its behaviour. We tested that

Chapter 5. Results and Analysis 25

if we can use the target hidden states as the decoder’s inputs, we can get state-of-art

performance like AR models do, this means the hidden states presentation of pre-trained

encoder contains valuable information for non-autoregressive decoding. And we further

notice the pretraining will lead the hidden state of the source and target to share a high

similarity. Thus, To emulate the approach seen in the earlier statistical method, we

introduced a cosine similarity loss between the hidden variable predictor’s output and

the target hidden state. This strategic addition aims to facilitate learning of capturing the

intricate relationships required for accurate decoding, and also we believe this can help

to address non-trivial alignments and one-to-many and many-to-one matching problems

we mentioned above.

Source Inputs

Public void Padding Token

Padding to Max sequence length

Embedding Layer

Pretrained Encoder

Hidden States

Decoder

Decoder Input

MLP (mapping back to vocabulary)

Target Outputs

Hidden Variable Predictor

Figure 5.4: The structure of the model that utilizes a deep learning architecture for

Hidden Variable Modeling, where the hidden variables serve as inputs to the decoder.

NAR Model BLEU-4

baseline(decode on source hidden state) 49.06(±0.88)

baseline+hidden variable(flow-based) 9.12(±2.54)

baseline+hidden variable(dl-based) 50.62(±0.57)

Table 5.2: Performance comparison between baseline model and models that utilize the

additional hidden variables.

Table 5.2 reveals that the pre-trained encoder is already proficient in providing an

optimal representation for non-autoregressive decoding. Interestingly, the introduction

Chapter 5. Results and Analysis 26

of an additional flow-based variational component, which has shown utility in certain

contexts, proves to be ineffective in our case. Furthermore, the additional guidance

derived from the target hidden state offers only little improvement. This suggests that

the challenges outlined earlier regarding non-trivial alignments and complex matching

problems do not significantly impact performance.

5.3 Guidance from AR model

As stated in previous work, the guidance from the hidden state output of an AR model

can help to improve the performance of NAR generation [25]. Research has shown

that when the hidden states exhibit higher similarity, there’s an increased likelihood of

encountering the ”multimodality problem”, and generally, the similarity in AR model

hidden states is notably lower compared to that observed in NAR models.

By leveraging the representations from a pre-trained encoder, we expect that the

similarity among the hidden state outputs might not exhibit a high degree of resemblance,

as would be the case in a fully randomly initialized NAR model. To validate this

hypothesis, we conducted a comparison between it and our best model above (hidden

variable(dl-based)) using only several input examples. The computed average similarity

for the randomly initialized NAR model was found to be approximately 0.9, whereas,

for our improved NAR model, the average similarity was around 0.6, but it remains

significantly lower than what is typically observed in an AR model, where previous

studies have indicated that approximately 95% of the similarity values between hidden

states fall below the threshold of 0.5.

Thus we adopt their method to utilize the hidden state from the AR model (use hint

from AR model) for getting better hidden states representations by introducing implicit

loss:

L =
2

(Ty −1)TyN

Ty−1

∑
s=1

Ty

∑
t=s+1

N

∑
l=1

φ(dst ,dtr)

where φ(dst ,dtr) =− log(1−dst)

(5.1)

where dst is the cosine similarity within NAR model, and dtr is the cosine similarity

within AR model. Also, it has additional hyperparameters to control the penalty.

The idea behind this approach is that straightforward regression such as regularising

the L1 or L2 loss on each hidden states pair has been shown will impede the learning

Chapter 5. Results and Analysis 27

Source Inputs

Public void Padding Token

Padding to Max sequence length

Embedding Layer

Pretrained Encoder

Hidden States

Decoder

Decoder Input

MLP (mapping back to vocabulary)

Target Outputs

Hidden Variable Predictor

Hidden States from AR model

Hidden state hint loss

Figure 5.5: The structure of the model that employs a deep learning architecture for

Hidden Variable Modeling, where the hidden variables are employed as inputs to the

decoder. Additionally, the model incorporates hints from an AR model to refine the

hidden state representation.

process and lead to unsuccessful outcomes.

We maintained the structure and model size, then adopt the loss equation 5.1 between

this AR model’s hidden state and the NAR model’s to guide the NAR model’s behaviour.

The model’s structure is illustrated in Figure 5.5. We find the average similarity between

the hidden states of our NAR model decreases to 0.5, around 55% of the similarity

values between hidden states fall below the threshold of 0.5 after using the guidance

from the AR model.

NAR Model BLEU-4

baseline(decode on source hidden state) 49.06(±0.88)

baseline+hidden variable(dl-based) 50.62(±0.57)

baseline+hidden variable(dl-based)+ hint from AR 52.32(±0.39)

Table 5.3: Performance comparison among the baseline model, the top-performing

model mentioned earlier, and the model that incorporates hints from an AR model.

Our experimental results indicate that our model has achieved an approximate

Chapter 5. Results and Analysis 28

4% improvement in performance, this improvement is notably smaller than the 30%

enhancement observed in the original paper (increasing from 17.69 to 25.20 on the

WMT14 dataset). We believe this is due to the utilization of a pre-trained encoder in

our approach. The pre-trained encoder enables our model to benefit from high-quality

hidden states, which may already possess a satisfactory level of quality. Furthermore,

the baseline model we employed initially demonstrated commendable performance.

Consequently, incorporating hints from the AR model to modify the hidden states ap-

pears to yield a relatively less significant impact, given the strong foundation established

by the pretraining and the baseline performance.

5.4 Hint from Data Flow

Extensive research into LLMs has consistently highlighted the benefits of integrating

data flow or Abstract Syntax Trees (AST) into the pretraining phase. This incorporation

has been shown to yield noticeable performance enhancements in various code intelli-

gence tasks [15, 36]. By leveraging the structural information provided by data flow

or AST, pretraining models can gain a deeper understanding of the underlying code

structures and the relationships between different program elements.

The utilization of data flow or AST as supplementary contextual information em-

powers the language model to capture intricate programming language nuances, help to

model the dependency between the tokens and improve NAR generation capabilities.

The CodeBleu serves as a valuable tool that goes beyond measuring simple n-gram

matches in code generation. It provides a comprehensive assessment by evaluating

not only n-gram matches but also syntax and dataflow alignment. We analyse the

CodeBlue of our best model above and find the data flow match score is much lower

compared to an AR model. This outcome aligns with our initial expectations. Data flow

inherently captures the data dependencies, indicating which variables originate from

specific sources. Given that the NAR model lacks the condition mechanism present in

the AR model, it becomes challenging for the NAR model to effectively capture these

intricate data dependencies.

To maintain fairness in our comparisons, we chose not to switch the base encoder to

one that has pre-trained on data flow, even though we anticipated enhanced performance

if such a switch were made. Instead, we use a simpler approach by integrating data flow

directly into the input and encoding it along with the source.

Table 5.4 and Table 5.5 demonstrate a significant benefit in incorporating data flow

Chapter 5. Results and Analysis 29

NAR Model BLEU-4

baseline(decode on source hidden state) 49.06(±0.88)

+hidden variable(dl-based)+ hint from AR 52.32(±0.39)

+hidden variable(dl-based)+ hint from AR and DF 60.31(±1.58)

Table 5.4: Performance comparison among the baseline model, the top-performing

model mentioned earlier, and the model that incorporates hints from data flow.

CODEBLEU ngram weighted ngram syntax match DF match

before adding DF 49.59 51.69 55.73 37.35

adding DF 64.04 65.09 68.26 61.44

Table 5.5: Detailed CodeBleu comparison between the model before adding hint data

flow and after including this enhancement.

information into the model. This augmentation notably enhances the model’s capacity

to capture the intricate dependencies and structural aspects present in programming

data, leading to a significant improvement in the data flow match metric. Consequently,

this enhancement significantly reduces the disparity between the data flow match metric

and other evaluated metrics. By integrating data flow information, the model achieves

a better understanding of how data elements interact and traverse within the program.

This enriched representation directly contributes to a better alignment of the generated

code with the desired outcomes, leading to a noteworthy enhancement in performance

across all the evaluated metrics.

These findings underscore the pivotal role of data flow information as a valuable con-

textual feature in the NAR generating process. Its incorporation substantially narrows

the gap between data flow match and other performance measures, ultimately elevating

the overall efficacy of the model in code intelligence tasks and further highlighting the

importance of domain-specific structures in driving performance improvements.

5.5 Trade-off Study

As previously discussed, a trade-off invariably exists between performance and speed.

The time complexity of AR is O(b), while that of NAR is a more efficient O(1). Con-

sidering this, if we maintain a consistent beam size, the NAR model yields time savings

Chapter 5. Results and Analysis 30

proportional to the length of the generated target sequence. Longer target sequences

considerably benefit from the NAR model’s constant time complexity, contributing to

more efficient processing and faster results compared to the AR model.

On the other hand, longer sequences present a challenge in capturing their inherent

dependencies, they are more likely to contain intricate structural complexities and long-

term dependencies, which can lead to difficulties for the NAR model. This observation

is clearly illustrated in Table 5.6 below, the model performs better on short target

sequences. We also provide a real-time measurement example in Table 5.7 to offer a

concrete understanding of the inference speed comparison between the NAR and AR

models.

Sequence length NAR model Time complexity AR model Time complexity

300 60.31 O(1) 76.42 O(3×300)

150 72.91 O(1) 76.49 O(3×150)

100 75.29 O(1) 76.34 O(3×100)

Table 5.6: The model’s performances across various maximum sequence lengths. The

time complexity of NAR model remain unchange as the Max sequence length change, it

generate all tokens once. The time complexity of AR model is O(beam size × sequence

length), each token position need to wait for the generation for all former tokens, so it will

decrease as the sequence length of the output decreases.

Model Type Time for generating 500 examples

NAR model 40.86s

AR model 510.42s

Table 5.7: Speed comparsion of AR and NAR model. The table shows the time each

model need for generating 500 examples on 2080Ti GPU with batch size 8.

We noted a distinct pattern in the performance of the AR and NAR models based

on varying output sequence lengths. Specifically, the performance of the AR model

remains relatively stable and doesn’t deviate significantly across different output lengths.

In contrast, the NAR model exhibits a noteworthy increase in performance when dealing

with shorter output sequences. This observation aligns with our initial assumption that

the AR model inherently possesses the ability to capture long-term dependencies through

Chapter 5. Results and Analysis 31

its condition mechanism. As a result, its performance remains relatively consistent

despite changes in sequence length. Conversely, the NAR model’s performance is

more sensitive to sequence length variations, as it is more difficult for them to capture

dependencies within longer sequences.

Below, In Table 5.8 and Table 5.9, we present examples of both short and long

sequences generated from our model. We can see that for short sequences, both models

demonstrate commendable performance. However, when faced with the complexities

of longer sequences, the AR model demonstrates proficiency by producing coherent

outputs. In contrast, the NAR model encounters challenges, evident in the recurrence of

numerous tokens. This issue substantiates the concern previously underscored. Given

the NAR model’s inherent inability to exploit information from antecedent tokens, its

dependence on the source input becomes more pronounced. Consequently, the NAR

model tends to generate tokens that bear heightened similarity to the source input,

ultimately leading to inconsistencies and resulting errors.

Chapter 5. Results and Analysis 32

Source public String toString() {return pattern();}
Reference public override string ToString(){return Pattern();}
AR Model public override string ToString(){return Pattern();}

NAR Model public override string ToString(){return pattern();}

Table 5.8: Short sentence translated by AR model and NAR model. We can see NAR

model perform well can close to the AR model.

Source public Object get(CharSequence key) {List<TernaryTreeNode> list

= autocomplete.prefixCompletion(root, key, 0);if (list == null ||
list.isEmpty()) {return null;}for (TernaryTreeNode n : list) {if (charSe-

qEquals(n.token, key)) {return n.val;}}return null;}
Reference public virtual object Get(string key){IList<TernaryTreeNode> list

= autocomplete.PrefixCompletion(root, key, 0);if (list == null ||
list.Count == 0){return null;}foreach (TernaryTreeNode n in list){if

(CharSeqEquals(n.token, key)){return n.val;}}return null;}
AR Model public virtual object Get(string key){IList<TernaryTree> list =

default(root, key, 0);if (list == null){return null;}for (int i =

0; i < list.Length; i++){if (char)return null;}foreach (IEnu-

merator n.TokenEquals(n.TokenSequence, key)){return null;}return

null;}return null;}
NAR Model public virtual object Get(string key){listist<isternTernTreeTreeNode

>pleteannot =.CompleteompCompletion(rootroot, key,);.ififlist

(Empty || list ||. ==)){returnreturn;} null (ListernernTreeNodeNode

node in list){if (CharEquTreeEqu(alsrecogn.string,, key.)).}}return

null;}

Table 5.9: Long sentence translated by AR model and NAR model. We can observe that

NAR model has more repeated tokens and perform worse for the long sentence.

Chapter 5. Results and Analysis 33

5.6 Robustness Test

An inherent challenge when employing non-autoregressive methods is determining the

appropriate length for the decoder input. Unlike autoregressive methods, which can

iteratively build the input by incorporating each output, non-autoregressive methods

require a different approach. In our previous approach, we fixed the decoder’s input

length to be equal to the input sources’ length as the length of the code-to-code pair is

relatively close, and let the model learn to predict the EOS (end of sentence) token.

Previous research mainly relies on copy mechanisms to determine decoder input,

while our approach involves utilizing the source hidden states to learn the hidden

variables for decoding, incorporating guidance from target hidden states and AR models.

However, when applied to tasks such as code-to-nl summarization, we face unique

challenges. Notably, these challenges arise due to the substantial differences in sequence

lengths between the source code and the target natural language summary, resulting in

less inherent similarity between their respective hidden states. The primary challenges

in this context revolve around the model’s ability to accurately generate EOS tokens

and address the alignment issues highlighted earlier.

In general, this project aims to develop non-autoregressive generation methods that

are universally applicable across various generation tasks. While our primary focus

is on code-code translation datasets, we also need to extend our evaluation to assess

the compatibility of our method with code-NL summarization tasks. This additional

testing is meaningful, as it addresses the challenge posed by substantial differences in

source and target lengths. In contrast to translation tasks, the code-NL summarization

task involves source and target sequences of very different lengths. This distinction

introduces complexities in the alignment of hidden states, making the modelling of

decoding hidden variables more intricate.

Model NAR model

AR model 19.06

NAR model 12.79

Table 5.10: The performance comparison between the AR model and our top-performing

NAR model on the Code-NL summarization task.

The results presented in Table 5.10 demonstrate that our model is capable of handling

the code-nl task, even when dealing with differences in sequence lengths, alignment

Chapter 5. Results and Analysis 34

complexities, and variations in hidden state similarity. Although our model may not yet

reach the performance level of the AR model, the trade-off becomes more favourable

when we consider the time complexity saved. This reduced computational burden is

an essential factor in many real-world applications, making our approach practical and

efficient and it’s worth noting that the NAR model often refines its predicted output

multiple times, which can lead to higher-quality results, but it’s a trade-off between

time and performance. While this additional refinement process introduces complexity,

we will refrain from delving into this topic here to maintain focus on the discussion at

hand.

Chapter 6

Conclusions

In this project, our focus is on investigating the benefits of fine-tuning a pre-trained LLM

encoder to accelerate the inference process in Non-Autoregressive (NAR) decoding.

We experiment with several techniques that aid in NAR decoding and assess the impact

of integrating the LLM encoder. Then we take our best NAR model, compare its

performance with the AR model, and analyze trade-offs, finally, we also evaluate the

model’s Robustness. Our experiment findings lead us to the following conclusions:

1. The introduction of a pre-trained encoder into the NAR model offers a more

pronounced advantage compared to the AR model. We observed a Blue score

improvement from 50 to 72 when incorporating a pre-trained component into

the AR model. In contrast, for the NAR model, our experiments showcased

a substantial enhancement from a score of 2 to 50. These findings emphasize

the crucial role of pretraining in effectively capturing sequence dependencies,

resulting in a robust representation that addresses a significant challenge in NAR

decoding. Without the incorporation of pretraining, the NAR model would exhibit

considerably poorer performance in this aspect.

2. The knowledge and contextual understanding acquired and stored in the hidden

state of the pre-trained encoder yields valuable representations for NAR decod-

ing. Consequently, conventional methods used in previous NAR studies, such as

modelling hidden variables to untangle sequence dependencies and employing

guidance from an AR model’s hidden states, do not exhibit as significant improve-

ments as in cases where pre-trained models are not utilized. While we do observe

some enhancements in our experiments, they are not as substantial. This suggests

that the necessity of modifying the hidden state or explicitly modelling hidden

35

Chapter 6. Conclusions 36

variables has diminished due to the high-quality representations obtained from

the pre-trained encoder.

3. The information regarding the structure and interdependency stored in the data

flow, such as the origins of specific data, significantly benefits the NAR model.

Even in the absence of explicit pretraining to align with this data, the model

demonstrates an intrinsic ability to extract relevant information from it. Our

experiments do confirm that this capability notably enhances the data flow match,

thereby yielding overall improvements across various aspects.

4. The NAR model’s performance improves notably as the sequence length de-

creases, in contrast to the AR model, which shows relatively consistent perfor-

mance across different sequence lengths. Interestingly, the NAR model gains

a significant speed advantage as the sequence length increases, underscoring

the trade-off between performance and speed. When prioritizing performance,

shorter sequences are preferable, but this leads to less noticeable speed differences

between the two models. Notably, for short sequences, the NAR model performs

comparably to the AR model. Furthermore, our model also exhibits commendable

performance on tasks with greater complexity.

6.1 Future Work

Due to the scope of our experiment, our experiment has following limitation and give

us the suggestions for future work:

1. In our NAR decoding experiment, we employed the encoder-decoder architecture.

However, the decoder-only model has been gaining prominence and currently

represents the state-of-the-art approach in natural language processing tasks. It is

intriguing to investigate the influence of the representation learned by a fully left-

to-right pre-trained decoder-only model. Experiment can be made to determine

if this representation contains valuable insights and information that can benefit

NAR decoding similarly to the benefits seen from the pre-trained encoder in

our experiment. Additionally, the strategies to leverage this representation for

faster inference times should be well designed. For instance, can we devise

parameter-efficient tuning techniques that maintain an acceptable computational

cost and modify the attention mask to enable a decoder-only model to perform

NAR decoding effectively.

Chapter 6. Conclusions 37

2. Our experiments demonstrated the utility of structured data, such as data flow, in

providing essential dependency information that aids in NAR decoding. However,

we did not pretrain with this data, which implies the model may lack awareness

of the alignment between code and its corresponding data flow. Numerous studies

have integrated data flow into pretraining, resulting in significant performance

improvements. Moreover, apart from data flow, incorporating other low-level

Intermediate Representations (IR) like Abstract Syntax Trees or LLVM can also

prove beneficial. Investigating how to effectively leverage these IR representations

and determining which one contributes most to enhancing our NAR model is a

meaningful direction for further exploration.

Bibliography

[1] Amazon. Amazon codewhispere. https://aws.amazon.com/codewhisperer/, 2022.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2014.

[3] Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, and Oleksandr

Polozov. Generative code modeling with graphs, 2019.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

et al. Language models are few-shot learners. Advances in neural information

processing systems, 33:1877–1901, 2020.

[5] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms. MIT press, 2022.

[6] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[8] Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun Cho. Learning to parse and

translate improves neural machine translation. arXiv preprint arXiv:1702.03525,

2017.

[9] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained

model for programming and natural languages. arXiv preprint arXiv:2002.08155,

2020.

38

Bibliography 39

[10] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,

Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A gen-

erative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999,

2022.

[11] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-

predict: Parallel decoding of conditional masked language models. arXiv preprint

arXiv:1904.09324, 2019.

[12] GitHub. Github copilot. https://copilot.github.com/, 2021.

[13] Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher.

Non-autoregressive neural machine translation. arXiv preprint arXiv:1711.02281,

2017.

[14] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unix-

coder: Unified cross-modal pre-training for code representation, 2022.

[15] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long

Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-

training code representations with data flow. arXiv preprint arXiv:2009.08366,

2020.

[16] Junliang Guo, Linli Xu, and Enhong Chen. Jointly masked sequence-to-sequence

model for non-autoregressive neural machine translation. In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, pages

376–385, 2020.

[17] Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David

Bieber. Global relational models of source code. In International conference on

learning representations, 2019.

[18] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc

Brockschmidt. Codesearchnet challenge: Evaluating the state of semantic code

search. arXiv preprint arXiv:1909.09436, 2019.

[19] Jungo Kasai, James Cross, Marjan Ghazvininejad, and Jiatao Gu. Non-

autoregressive machine translation with disentangled context transformer. In

International conference on machine learning, pages 5144–5155. PMLR, 2020.

Bibliography 40

[20] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code prediction by

feeding trees to transformers. In 2021 IEEE/ACM 43rd International Conference

on Software Engineering (ICSE), pages 150–162. IEEE, 2021.

[21] Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In

Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing, pages 1317–1327, Austin, Texas, November 2016. Association for

Computational Linguistics.

[22] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1

convolutions. Advances in neural information processing systems, 31, 2018.

[23] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising

sequence-to-sequence pre-training for natural language generation, translation,

and comprehension. arXiv preprint arXiv:1910.13461, 2019.

[24] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep

Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundaresan.

Automating code review activities by large-scale pre-training, 2022.

[25] Zhuohan Li, Zi Lin, Di He, Fei Tian, Tao Qin, Liwei Wang, and Tie-Yan Liu.

Hint-based training for non-autoregressive machine translation. In Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 5708–5713, Hong Kong, China, November 2019. Association for

Computational Linguistics.

[26] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A

robustly optimized bert pretraining approach, 2019.

[27] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio

Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue:

A machine learning benchmark dataset for code understanding and generation.

arXiv preprint arXiv:2102.04664, 2021.

[28] Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neubig, and Eduard Hovy. Flowseq:

Non-autoregressive conditional sequence generation with generative flow, 2019.

Bibliography 41

[29] David J Malan, Thaddeus Fulford-Jones, Matt Welsh, and Steve Moulton. Code-

blue: An ad hoc sensor network infrastructure for emergency medical care. In

International workshop on wearable and implantable body sensor networks, 2004.

[30] Oren Melamud, Jacob Goldberger, and Ido Dagan. context2vec: Learning generic

context embedding with bidirectional LSTM. In Proceedings of the 20th SIGNLL

Conference on Computational Natural Language Learning, pages 51–61, Berlin,

Germany, August 2016. Association for Computational Linguistics.

[31] OpenAI. Open-ai chatgpt. https://openai.com/, 2022.

[32] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method

for automatic evaluation of machine translation. In Proceedings of the 40th annual

meeting of the Association for Computational Linguistics, pages 311–318, 2002.

[33] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. Language models are unsupervised multitask learners. Ope-

nAI blog, 1(8):9, 2019.

[34] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of

transfer learning with a unified text-to-text transformer, 2020.

[35] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model

for abstractive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

[36] Marc Szafraniec, Baptiste Roziere, Hugh Leather, Francois Charton, Patrick

Labatut, and Gabriel Synnaeve. Code translation with compiler representations.

arXiv preprint arXiv:2207.03578, 2022.

[37] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-

ple. Llama: Open and efficient foundation language models, 2023.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

Bibliography 42

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

[40] Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li, and Ming Zhou. Sequence-

to-dependency neural machine translation. In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 698–707, Vancouver, Canada, July 2017. Association for Computational

Linguistics.

[41] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

Google’s neural machine translation system: Bridging the gap between human

and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[42] Kexin Yang, Wenqiang Lei, Dayiheng Liu, Weizhen Qi, and Jiancheng Lv. POS-

Constrained Parallel Decoding for Non-autoregressive Generation. In Proceedings

of the 59th Annual Meeting of the Association for Computational Linguistics

and the 11th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 5990–6000, Online, August 2021. Association

for Computational Linguistics.

Appendix A

Comparative Examples of AR and NAR

Model Outputs

We can see that when sequences are short, the AR and NAR models perform similarly.

But since the AR model’s time increases linearly while the NAR model’s time stays

the same as the length increases. This means the NAR model’s speed advantage is less

noticeable for shorter sequences. On the other hand, for long sequence the NAR model

generate output with many repeated words and incorrect tokens. This is the trade-off we

talked above, An interesting idea to explore is whether breaking down longer sentences

into shorter segments and using NAR decoding, and then combining them, could lead to

improved performance for longer sentences while maintaining a reasonable and efficient

time consumption.

43

Appendix A. Comparative Examples of AR and NAR Model Outputs 44

Figure A.1: Screenshot for the gold reference of the short sequence examples

Figure A.2: Screenshot for the AR model’s outputs of the short sequence examples

Appendix A. Comparative Examples of AR and NAR Model Outputs 45

Figure A.3: Screenshot for the NAR model’s outputs of the short sequence examples

Figure A.4: Screenshot for the gold reference of the short sequence examples

Appendix A. Comparative Examples of AR and NAR Model Outputs 46

Figure A.5: Screenshot for the AR model’s outputs of the short sequence examples

Figure A.6: Screenshot for the AR model’s outputs of the short sequence examples

