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Abstract

The negative effects of air pollution are extensive, spanning from respiratory problems to

harm to the environment and ecosystems. Consequently, the monitoring and forecasting

of air pollution have become critically important. The Centre for Speckled Computing

at the University of Edinburgh has developed AirSpeck, an air quality monitoring sensor

that can either be worn by an individual or set up in a fixed location. This sensor

is capable of recording the concentration of various pollutants in the air, including

PM2.5. In recent times, numerous models have been developed to estimate PM2.5 levels

spatially, temporally and spatio-temporally. In this study, a framework will be created

to train spatial and spatio-temporal models for estimating PM2.5 concentrations across

three datasets, comparing various machine learning techniques. The best-performing

spatial model was the feed-forward neural network trained on personal AirSpeck data

from the INHALE study, which yielded a MAPE of 42.27%. The best performing

spatio-temporal model was trained to predict INHALE stationary sensor AirSpeck data

one hour into the future and combined spatial predictions of a feed-forward neural

network with a long short term memory (LSTM) network. This model yielded a MAPE

of 42.08%. Furthermore, a transfer learning approach to spatial PM2.5 estimation was

devised to improve predictive performance in scenarios with limited training data. This

involved pre-training a feed-forward neural network architecture with data from another

geographic location and then fine-tuning this model on the target dataset. For subsets

of the INHALE and DAPHNE stationary datasets, this method results in reductions

in MAPE from 53.72% to 48.49% and from 61.82% to 54.86%, respectively, relative

to the second-best model. Additionally, the transfer learning method outperforms all

other spatial estimation models on the Leon and Guadalajara personal sensor datasets,

yielding MAPEs of 20.84% for Leon and 19.69% for Guadalajara.
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Chapter 1

Introduction

1.1 Motivation

Monitoring air pollution levels is of critical importance due to its negative health

[1, 2, 3], environmental [4, 5], and socio-economic impacts [6, 7]. In 2019, 99% of

people worldwide were living in places where World Health Organisation guidelines on

air pollution were not met [8]. Moreover, in that same year, 4.2 million premature deaths

were linked to ambient air pollution. Given the significance of studying air pollution

levels, considerable efforts have been dedicated to developing efficient air quality

monitoring sensors [9, 10, 11]. “The Centre for Speckled Computing” at the University

of Edinburgh has developed a compact air quality monitoring sensor named AirSpeck

that can either be worn on the body (AirSpeck personal) or deployed in a fixed location

(AirSpeck stationary) [12]. The AirSpeck personal sensor captures spatio-temporal data

at 30-second intervals, while the AirSpeck stationary sensor records time series data

with time intervals ranging from five to 30 minutes depending on seasonal variations

in the number of daylight hours for charging the solar cells. These sensors record the

concentration of airborne particulate matter classified by diameter: PM1, PM2.5, and

PM10, as well as temperature and humidity. They also measure the concentration of

nitrogen dioxide (NO2) and ozone (O3). These sensors have been utilised to collect

data in various global locations, including London (United Kingdom), Delhi (India),

Leon and Guadalajara (both Mexico). Previous studies utilising AirSpeck pollution

data have sought to estimate the concentration of PM2.5 spatially (i.e., predicting the

concentration in one location based on the concentration in another location and other

relevant factors) and temporally (i.e., predicting the concentration at a specific location

based on time series data). Some studies have even estimated the PM2.5 concentration

1



Chapter 1. Introduction 2

spatio-temporally based on the data collected by both the stationary and personal

AirSpeck sensors. A model capable of predicting air quality for a specific location at a

future time has numerous downstream benefits such as helping people plan walking and

cycling routes that minimise pollution and informing environmental policy-making. In

another MSc Dissertation from the School of Informatics, Estrada (2023) utilised the

spatial INHALE personal sensor model from this study for route planning to minimize

PM2.5 exposure [13]. All previous contributions have produced models which are

trained on data from a certain city (e.g. London) and predict exposure in the same city.

This has led to strong predictive performance, but these models struggle to extend to

new cities due to disparate PM2.5 distributions [14]. It would be useful to produce a

general method of spatial PM2.5 estimation which can be applied to cities with little

air quality data. In this work, a transfer learning approach will be devised to leverage

information from larger datasets to aid predictive performance when there is a smaller

quantity of air pollution data. This transfer learning framework will be used to train and

evaluate spatial models on four different datasets.

1.2 Objectives

Robust estimation of particulate matter concentration is crucial. An accurate estimation

model to predict personal PM2.5 exposure in urban environments will generate many

downstream benefits, including planning mitigation strategies that may have profound

effects on public health and urban planning. One objective of this study is to create a ro-

bust framework for training spatio-temporal PM2.5 estimation models. This framework

will be used to train spatio-temporal models on various datasets. A further objective of

this work is to develop a transfer learning approach to spatial PM2.5 estimation whereby

knowledge is leveraged from one model to another to improve spatial prediction when

training estimation models with limited data.

1.3 Summary of Models and Results

Spatial estimation models have been trained on the INHALE stationary sensor, DAPHNE

stationary sensor, and INHALE personal sensor datasets in order to predict the PM2.5

concentration recorded by these sensors. For each of these datasets, the feed-forward

neural network achieved the lowest MAPE, yielding values of 49.49%, 56.14%, and

42.27%, respectively. The spatio-temporal models for the INHALE and DAPHNE
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stationary datasets integrate their spatial interpolations with a single-layer LSTM. How-

ever, the INHALE personal sensor model combines a two-layer stacked LSTM with

its spatial interpolations. These optimised configurations result in MAPEs of 42.08%,

54.27%, and 43.04% for each dataset, respectively. For subsets of the INHALE and

DAPHNE stationary sensor datasets, models trained using transfer learning techniques

outperform all other algorithms, with MAPEs of 48.49% and 54.86%. Furthermore, for

the Leon and Guadalajara personal sensor datasets, the transfer learning method yields

MAPEs of 20.84% and 19.69%, respectively, surpassing the performance of the other

machine learning techniques.

1.4 Novelty

This project introduces a deep learning methodology for enhanced spatio-temporal esti-

mation of PM2.5 as well as a transfer learning framework for training spatial estimation

models in scenarios with limited data. The explicit novel contributions of this work are

outlined below.

• Application of deep learning to both spatial and temporal modeling of PM2.5 and

amalgamating this into a unified spatio-temporal predictive model, trained on

AirSpeck pollution data.

• Application of transfer learning to spatial PM2.5 estimation in locations with

limited data.

• Introduction of novel features based on proximity to various types of roads.

1.5 Report Structure

The data sources for this study along with the different machine learning algorithms and

deep learning models are outlined in the ‘Background’ section. Previous approaches

to PM2.5 estimation are reviewed in the ‘Related Work’ section. In the ‘Methodology’

section, the data pre-processing steps as well as the implementation of the stationary

and personal sensor models will be explained. Following this, the results of all the

trained models will be presented, discussed and summarised in the ‘Experiments and

Results’ section. In the ‘Conclusions and Future Work’ section, the findings of the

research will be examined and the scope of future work discussed.
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Background

2.1 Particulate Matter

Particulate Matter (PM) is a complex mixture of extremely small solid and liquid

particles suspended in the air. Some of these particles are emitted directly from sources

such as vehicle exhausts and industrial processes while others are formed via chemical

reactions in the air. PM2.5 refers to particles that have an aerodynamic diameter of

less than 2.5µm (which is approximately 3% of the diameter of a human hair). The

composition of PM2.5 can vary, a study into its constituents found that these often

include sulfates, nitrates, ammonium and carbon [15]. Due to their minute size, these

particles can remain suspended in the air for long periods and as a result they can pose

significant health risks, including respiratory and cardiovascular diseases [16, 17].

2.2 Data Sources

The air quality data used in this study was obtained by the AirSpeck personal and

AirSpeck stationary sensors from various studies conducted in different cities worldwide

[12]. These sensors use an optical particle counter to separate particles into 16 bins.

From these bins, the concentrations of PM1, PM2.5 and PM10 can be calculated. The

sensors also record temperature and humidity. Moreover, every measurement comes

with a corresponding timestamp and geographic coordinates. The AirSpeck personal

sensor records data at intervals of 30 seconds and the AirSpeck stationary sensor

records data at anywhere from five-minute to 30-minute intervals. In this study, PM2.5

data obtained in various deployments of the AirSpeck sensors will be used as either

the ground truth for training prediction models or as reference data to aid predictive
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Chapter 2. Background 5

performance.

2.2.1 DAPHNE

The goal of this study was to examine the health impact of exposure to PM2.5 in Delhi,

India. There were two big cohorts of subjects, asthmatic adolescents and pregnant

women. The asthmatic adolescents wore the AirSpeck personal sensor for 48 hours in

three cycles, while the pregnant mothers wore the AirSpeck personal sensor for a period

of 48 hours in each trimester of the pregnancy [18]. Stationary AirSpeck sensors were

deployed in the home, community and schools of the subjects involved in the study.

Data collection for this study began in July 2018 and concluded in March 2020. In this

study, only the air pollution data obtained by the AirSpeck stationary sensors will be

used.

2.2.2 INHALE

The goal of this study was to analyse the health effects of air pollution on subjects

in London. Subjects wore the mobile AirSpeck personal sensor for a period of two

weeks and there were also a number of stationary sensors deployed in various locations

around London. This study is ongoing, the data used in this work was collected between

February 2021 and June 2023 [19]. In this work, the data from both the stationary and

personal sensors will be used to train spatial and spatio-temporal models. In Figure 2.1.,

the geographic locations of personal sensor readings for one of the subjects over a 24

hour period are plotted alongside the locations of all of the stationary AirSpeck sensor

locations.

(a) AirSpeck personal sensor readings for

subject INH002 over a 24-hour period (b) INHALE stationary sensor locations

Figure 2.1: INHALE personal sensor data and stationary sensor locations
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2.2.3 Leon

In this study, the AirSpeck personal sensor collected data for one hour a day, from

9am to 10am. The data collection period spanned 31 weekdays between the 21st of

October 2019 and the 2nd of December 2019. Each day, the subjects followed the

same route. The GPS locations of the sensors throughout the data collection are plotted

in Figure 2.2a. Furthermore, six stationary AirSpeck sensors collected data in fixed

locations in Leon between the 19th of December 2019 and the 17th of February 2020.

The locations of these sensors are plotted in Figure 2.2a. The quantity of data collected

in this deployment is far smaller than for the INHALE and DAPHNE deployments in

London and Delhi, respectively.

(a) Leon personal sensor data is plotted

along with the locations of the stationary

AirSpeck sensors

(b) Guadalajara personal sensor data is plot-

ted along with the locations of the stationary

AirSpeck sensors

Figure 2.2: GPS locations of minute averaged readings as well as the locations of the

stationary AirSpeck sensors are plotted for the Leon and Guadalajara datasets

2.2.4 Guadalajara

In Guadalajara, the AirSpeck personal sensors collected one hour of data per day, also

between 9am and 10am. This was done between the 13th of January 2020 and the 14th of

February 2020. The subjects followed a predetermined route while wearing the mobile

AirSpeck sensor, and as a result all of the readings are taken outdoors. Furthermore,

five AirSpeck stationary sensors were deployed throughout Guadalajara for a period of

time between the 19th of December 2019 and the 17th of February 2020. The locations

of these stationary sensors can be observed in Figure 2.2b.
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2.2.5 Air Quality Reference Data

Reliable PM2.5 data from air quality monitoring stations is crucial for a spatial estimation

model. For the Leon and Guadalajara datasets, the AirSpeck stationary sensors which

were deployed at the same time as the mobile sensors are used as reference data. The

DAPHNE dataset utilises reference data collected from multiple monitoring stations,

all of which are managed by the Central Pollution Control Board (CPCB) [20]. The

locations of these CPCB monitoring sensors are plotted in Figure 2.3a. For the INHALE

study, PM2.5 reference data is obtained from three different sources: Automatic Urban

and Rural Network [21], London Air Quality Network [22] and two AirSpeck stationary

sensors which were deployed in and around the Kensington area of London.

(a) Locations of the CPCB monitoring sta-

tions in Delhi, India

(b) Locations of the London air quality refer-

ence sensors

Figure 2.3: Locations of air quality reference sensors in Delhi and London

2.2.6 Meteorological Data

Meteorological data for the relevant locations and times was obtained from the website

rp5.ru [23]. This website contains data archives for several cities worldwide and this

data includes various weather related fields which may be useful for estimation pollution

levels such as air pressure, humidity, wind direction and wind speed.

2.2.7 Road and Land Data

Road and land usage data was extracted from the OpenStreetMap (OSM) platform for

London, Delhi, Leon and Guadalajara [24]. This data is extracted in geojson format and

contains details on roads, footways and land usage patterns within a specified region

and will be used to incorporate several road type and land usage features into the spatial

models.
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2.3 Machine Learning Algorithms

2.3.1 Random Forests

Random Forests is a machine learning algorithm that involves the creation of multiple

decision trees. Each decision tree is trained on a different sample of the data and for

each tree, only a random subset of features is considered when deciding how to split the

nodes. This randomness helps the model to be more robust and reduce the likelihood

of overfitting. When making a prediction, the outputs of all the individual trees are

averaged [25].

2.3.2 Extra Trees

Extremely Randomized Trees (also known as Extra Trees) is an ensemble learning

method similar to Random Forests. When splitting attributes, a Random Forest algo-

rithm will choose the optimal split point, while Extra Trees selects these split points

completely at random. This additional randomness often leads to better model generali-

sation, making it a robust tool for complex machine learning tasks [26].

2.3.3 Gradient Boosting Regression

Gradient Boosting Decision Trees (GBDT) is an ensemble learning method that creates

decision trees in a sequential fashion. Starting with a simple model it calculates the

errors of this model and then builds a new decision tree specifically to predict these

errors. This means that each subsequent tree in the sequence is learning from the

mistakes of its predecessors. The final prediction is the sum of the predictions from all

individual trees [27].

2.3.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) often outperform tree-based models in capturing

intricate, non-linear relationships within data sets due to the inherent ability of the

architecture to model such complexity. ANNs are inspired by biological neural networks,

incorporating layers of interconnected nodes that allow for the modeling of non-linear

relationships in data that tree-based models may not be able to efficiently capture [28].

Feed-forward neural networks (FFNNs) are a type of ANN where the information flows

in one direction from an input layer through one or more hidden layers to an output



Chapter 2. Background 9

layer. The nodes in each layer take as input the output from the previous layer and pass

the information forward [29].

2.3.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of artificial neural network architecture

designed to model patterns in sequential data [30]. Unlike feed-forward neural net-

works, RNNs take as input information from previous states in the sequence with this

information being stored in a cell called the hidden state. However, conventional RNNs

can struggle to learn long-term dependencies due to issues known as vanishing and

exploding gradients. This limitation led to the development of more advanced types of

RNNs, such as Long Short-Term Memory networks (LSTMs) [31] and Gated Recurrent

Units (GRUs) [32] which are designed to better capture long-term dependencies by

using gating mechanisms. These gates learn to make decisions on which information

to retain and which information to forget thus ensuring that only the most relevant

information is propagated through the network.



Chapter 3

Related Work

Khan (2021) utilises data obtained by the AirSpeck sensor in Leon, Guadalajara and

Delhi in order to train spatio-temporal models for prediction in each location [14]. The

best spatial model in all cases was an Extra Trees model, giving rise to mean absolute

percentage errors of 31.69%,39.33% and 11.02% for Leon, Guadalajara and Delhi,

respectively. These spatial predictions are based on, amongst other factors, air pollution

information from previous time steps. These spatial interpolations are used as input

to an LSTM which is trained to predict the PM2.5 level for the next time-step. This

architecture leads to a MAPE of 27.01%,32.12% and 5.17% for each dataset. Despite

the effectiveness of these models, this approach fails to generalise well to new cities

with a lack of input features cited as the main reason for this. This study includes

meteorological features such as wind speed, wind direction and atmospheric pressure

as well as some land use features.

Porchelvan (2021) also aims to estimate PM2.5 spatio-temporally with AirSpeck sensor

data [33]. Stationary and personal sensor data from the INHALE and DAPHNE studies

is used to train separate predictive models for each dataset. In the stationary sensor

spatial model, recorded pollution levels of the other AirSpeck sensor(s) are used as input

features. This study includes air quality monitoring data for the city of London from the

Automatic Urban and Rural Network (AURN) [21] as reference data to aid prediction.

Our study will expand this approach by incorporating air quality monitoring data from

three sources: AURN (Automatic Urban and Rural Network) [21] and London Air

Quality Network (LAQN) [22] for London, and data from the Central Pollution Control

Board (CPCB) [20] for Delhi.

Xhang (2023) [34] adopts a method similar to those described in both [14, 33] for spatio-

temporal particulate matter estimation. This study includes weather, road type and

10
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land use features as well as data from the three closest air quality monitoring stations.

Spatial interpolation models are trained on both the mobile and stationary AirSpeck data

from the INHALE study conducted in London. Among the techniques used, gradient

boosting regression yielded the lowest mean absolute percentage error. The spatial

predictions are fed through a temporal model to predict PM2.5 spatio-temporally with a

stacked LSTM model corresponding to the lowest MAPE in both cases. The stationary

and personal sensor spatio-temporal models give rise to MAPEs of 38.09% and 73.48%,

respectively. The road and land based features had minimal impact on the personal

sensor model in this study, perhaps as the GPS latitude and longitude readings are

averaged by hour thus capturing an average location of each subject every hour. In

theory, a subject could walk along busy roads for the best part of an hour, yet the

averaged GPS reading might pinpoint a spacious green area like a park. In light of this,

spatial models will be trained on mobile AirSpeck data at the minute level granularity

in this study.

Machine learning based approaches are common when it comes to spatial air pollution

estimation. Baawain et al. (2014) train an artificial neural network to predict daily

concentrations of several pollutants including PM10, ozone and nitrogen dioxide [35].

They observed that factors such as temperature, wind direction and wind speed all play a

significant role in determining PM10 concentration. Aditya et al. (2018) find that logistic

regression and auto-regression can be used to detect air quality and predict future PM2.5

concentration [36]. Alimissis et al. (2018) train a multiple linear regression model as

well as a feed-forward ANN to estimate spatially the concentration of five different air

pollutants including nitrogen dioxide and ozone [37]. This study finds that the neural

network model significantly outperforms the linear interpolation model with regards

to the mean absolute error and root mean squared error metrics. This improvement is

attributed to the neural model’s ability to comprehend the complex spatial variability of

pollution levels. Mahalingam et al. (2019) use data from the CPCB to train a support

vector machine and a neural network to predict the air quality index (AQI) [38]. It

is found that the support vector machine predicts the AQI with a considerably higher

accuracy than the neural network. Nevertheless, feed-forward neural networks stand

out as a prominent and efficacious approach to spatial air quality estimation.

Huang et al. (2015) train a feed-forward neural network to forecast PM2.5 concentration

with input features including the forecast for weather on a given day, weather conditions

the day before, the air quality index two days beforehand and the pollution levels in

nearby cities the previous day [39]. Due to their innate ability to capture dependencies
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in sequential data, residual neural network architectures (which include LSTMs and

GRUs) have been widely employed for temporal forecasting of air pollution. Tsai et

al. (2018) train an LSTM network to forecast PM2.5 concentration using air quality

monitoring data from Taiwan [40]. Window sizes based on the last 3, 8, 24 and 72

hours PM2.5 concentration are used to predict future values with a history size of 72

hours leading to the lowest mean absolute error. Intuitively, the mean absolute error is

lower when predicting a shorter time into the future. Furthermore, the LSTM network

is compared to a feed-forward ANN and the LSTM forecasts PM2.5 concentration with

a considerably lower mean absolute error. Tao et al. (2019) combine a one dimensional

convolutional neural network with a bi-directional GRU to perform temporal forecasting

[41]. This method exhibits improved temporal forecasting when compared to machine

learning algorithms such as support vector regression and gradient boosting regression.

Chang et al. (2020) presents an aggregated LSTM approach to temporal forecasting

of air pollution up to eight hours into the future [42]. This LSTM model aggregates

three separate LSTM models, each trained on different monitoring station data, into a

single model. It evaluates with a considerably lower mean absolute error and root mean

squared error than a support vector regression model as well as a gradient boosting

decision trees model. It is evident that residual neural networks are a popular and

powerful tool for temporal forecasting of air quality.

Transfer learning is a powerful technique in machine learning that leverages knowledge

from one task and applies it to a different but related task. Models can benefit from

pre-trained representations, which can significantly reduce the need for large labeled

datasets. Transfer learning can help models to generalise better to unseen data as a

result of the knowledge transfer. Numerous studies have shown the effectiveness of

transfer learning in computer vision tasks [43, 44] and natural language processing

tasks [45, 46]. The volume of training data is pivotal for regression tasks, and if there is

insufficient data, the model can struggle to capture trends and relationships in the data

[47]. Where there doesn’t exist a sufficiently large dataset to train a neural network,

fine-tuning, a form of transfer learning, is a potential solution [48]. This is when the

weights of a neural model are pre-trained on some dataset for a similar task and then

the pre-trained model is further trained, or fine-tuned, on the task specific dataset.

The advantage of this approach is that it leverages the knowledge gained from the

larger dataset to improve pattern recognition in the smaller dataset, thereby potentially

improving the performance even with limited data.
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Methodology

4.1 Data Preprocessing and Feature Selection

(a) Histogram of PM2.5 concentration for the

INHALE personal sensor data

(b) Histogram of log PM2.5 concentration for

the INHALE personal sensor data

Figure 4.1: Contrasting the distribution of PM2.5 concentration and its logarithmic trans-

formation for the INHALE personal sensor dataset

As is common in data processing, outliers are removed from the stationary and personal

AirSpeck data. Observe in Figure 4.1 that the distribution of PM2.5 readings for the

INHALE personal sensor dataset is positively skewed and has a rather long tail while

taking the natural logarithm of the PM2.5 concentrations leads to a far more symmetrical

distribution. Similar distributions are observed for all of the datasets considered in this

study. Hence, removing outliers on the logarithmic scale is reasonable as it ensures a

more balanced removal of extreme values from both ends of the scale instead of mostly

omitting high PM2.5 values which are very important to be able to predict. Outlier

13
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removal is done on a subject-by-subject basis using Tukey’s fences method of outlier

detection [49]. Data points where the following identity is not satisfied are dropped

from the dataset,

Q1− k.IQR < x < Q3+ k.IQR. (4.1)

In this equation, Q1 and Q3 are the lower and upper quartiles, IQR is the inter-quartile

range and k is some positive constant. In this study, k = 1.5 is chosen as this is a popular

option for statistical analysis tasks [50]. Furthermore, any readings with GPS locations

outside the specific city under investigation are excluded, as these readings are likely to

be the result of reading errors. The logarithmic distributions of PM2.5 concentration

before and after outlier removal are plotted for 12 subjects of the INHALE personal

sensor study in Figure 4.2. As desired, several outliers below the lower fence and above

the upper fence are removed for each of the subjects in the plots. Removing outliers on

the log scale leads to a more even balance of small and large outliers being removed.

Data points with obviously erroneous latitude or longitude readings are also removed

from the datasets.

(a) Box plots of log PM2.5 concentration

prior to outlier removal

(b) Box plots of log PM2.5 concentration af-

ter outlier removal

Figure 4.2: Logarithmic Distribution of PM2.5 concentration before and after removing

outliers for mobile sensor data of 12 INHALE subjects

The PM2.5 readings are averaged by the minute for the mobile sensor data and by the

hour for the stationary sensor data. For the INHALE personal sensor data, measurements

are recorded at all times and it is important to attempt to isolate the readings taken
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outdoors. There is no perfectly accurate method of classifying data points as indoors or

outdoors however, readings taken between 12 am and 6 am are excluded as these will

likely correspond to instances where the subjects are indoors. Furthermore, consecutive

readings where the GPS location is near identical and measured PM2.5 concentration

is below 2µg/m3 are eliminated from the dataset. In this case, it is a reasonable

assumption that a subject is stationary indoors. This classification method is somewhat

crude and certainly doesn’t exclude all of the indoor readings from the dataset but will

reduce their influence. For each dataset, reference sensor, meteorological, road type

and land use features are created. The GPS latitude and longitude of a given sensor

reading are used to calculate the closest three reference sensors (either from air quality

monitoring stations e.g. AURN, LAQN, CPCB or stationary AirSpeck sensors) as well

as the distances to these sensors. Due to the spherical nature of the earth, the distance

calculations are carried out using the Haversine formula [51] which is defined as

d = 2r arcsin

(√
sin2

(
φ2 −φ1

2

)
+ cos(φ1)cos(φ2)sin2

(
λ2 −λ1

2

))
(4.2)

In this formula, d is the distance between the two points (along the surface of the

earth), r is the radius of the earth (≈ 6371km), φ1,φ2 are the latitudes of the two points,

and λ1,λ2 are the longitudes of the two points. The distances to the three closest

reference sensors, as well as the PM2.5 readings at these stations, are averaged to create

two features: Average Reference PM2.5 and Average Reference Distance. In Figure

4.3, the locations of the three closest reference sensors are plotted for two randomly

selected static AirSpeck sensors in Delhi, with the connecting lines corresponding to the

shortest distance between the AirSpeck sensor and the monitoring station in question, as

calculated by the Haversine formula. For the left-most AirSpeck sensor, the third closest

reference sensor is located quite far away, in fact, this distance is over 10 kilometres.

Even though data from 20 separate reference stations is utilised in this study, it is often

the case that even the closest monitoring stations can be located quite far away from the

AirSpeck sensor due to the vast size of the metropolitan area of Delhi.
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Figure 4.3: Illustration of the three closest reference sensor locations for two stationary

AirSpeck sensors in Delhi

(a) Box plots of PM2.5 concentration by hour

of the day for the INHALE stationary sen-

sors

(b) Box plots of PM2.5 concentration by hour

of the day for the DAPHNE stationary sen-

sors

Figure 4.4: Box plots illustrating the distribution of PM2.5 concentration by hour of the

day in London and Delhi

In both London and Delhi, the distribution of PM2.5 can vary significantly depending

on the hour of the day, see Figure 4.4. There seems to be a cyclic component between

the hour of the day and PM2.5. As is common practice for cyclical features, the cosine
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and sine transformations of the hour will be integrated into the baseline feature set

[34, 52]. Moreover, the cosine and sine of the day of the week will be incorporated,

considering the potential influence of weekly pollution patterns. For each city in

the study, meteorological data is sourced from the website www.rp5.ru at 30-minute

intervals [23]. For clarity, this data is averaged hourly. Using this data, the following

features were added: air temperature, humidity, atmospheric pressure (raw and sea-

level adjusted), wind speed, dew point temperature, horizontal visibility, and sine and

cosine of wind direction (as it’s cyclical). OpenStreetMap data is used to determine

the nearest road type and represents it using one-hot encoding — a method where

categorical variables are converted into a set of binary columns — and also calculates

the distance to it. Land use is categorised into three separate designations: green space,

commercial, and industrial. Distances to the nearest of each of these designations

are included as features. OSM designates a primary road as a key highway linking

towns, and a secondary road as a secondary highway [24]. Distances to the nearest

motorway, primary road, and secondary road are calculated for each data point, as

proximity may suggest increased pollution. The features are divided into three groups.

The baseline feature set comprises grid average PM2.5 concentration, average distance,

and the sine and cosine of hour of the day and day of the week. The OSM and the

weather features comprise the other two sets. To understand feature importance, five

machine learning algorithms are applied to the INHALE mobile sensor data. The top

performer was the Random Forest model. Observe in Figure 4.5 that weather features

tend to elevate the MAPE, while OSM features produce varied outcomes. Even though

the weather can greatly influence pollution [53], these features seem to confuse the

models, possibly due to intricate inter-feature relationships. The optimal model is the

Random Forest with only baseline features, though its MAPE is marginally better than

the Gradient Boosting Decision Tree with the full complement of features. Later, deep

neural network architectures will model the relationship between features and PM2.5.

Therefore, it might be useful to include all features, as these networks can capture

intricate, non-linear relationships in data. So, despite the somewhat unsatisfactory

impact of extra feature sets, both the OSM and the weather features will be included

from now on in this study.
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Figure 4.5: Evaluation of the mean absolute percentage error (MAPE) across different

models and feature sets

4.2 Stationary Sensor Model

The AirSpeck stationary sensor data is augmented with the various features outlined in

Section 4.1 and is split into training and validation datasets using an 80/20 split — a

typical division in machine learning tasks [54]. The hour-averaged PM2.5 concentration

recorded by the static AirSpeck sensors is used as the ground truth to train and evaluate

the models. Essentially, the models aim to predict this based on the provided input

features. Land Use Regression (LUR) is a commonly used method for the spatial

prediction of pollutant concentration [14, 33, 34, 55]. LUR spatially models pollutant

concentration using land use and other geographical indicators as explanatory variables.

The features discussed in Section 4.1 serve as the explanatory variables in these models,

with the stationary PM2.5 concentration being the target to predict. For both the

DAPHNE and INHALE stationary sensor datasets, a simple five-layer fully connected

neural network is trained and evaluated in comparison with several machine learning

algorithms, namely: linear regression, ridge regression, extra trees, random forests,

and gradient boosting regression. For each dataset, the hyperparameters of the best-

performing spatial model will be tuned. This model will then be used to create a time

series of spatial interpolations to train the spatio-temporal model. This method proved
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more effective than first predicting temporally and then interpolating spatially as found

in [14]. The temporal model adopts the leave-one-subject-out method, where it is

trained on data from all subjects except one and then evaluated using the data of the

excluded subject. Three temporal models will be trained and evaluated: a single-layer

Long Short Term Memory network, a Gated Recurrent Unit network, and a stacked

LSTM, which consists of two LSTM layers. These models are trained for 100 epochs

with a mean absolute percentage error loss function. The learning rate and the number

of units in the feed-forward layer will be tuned for the model that achieves the lowest

MAPE.

4.2.1 Transfer Learning

A significant amount of data has been collected by the AirSpeck stationary sensors for

both the INHALE and DAPHNE studies, comprising 11483 and 19339 hour-averaged

data points respectively. To mimic a scenario where there exists far less data for one

of the locations, a small subset of the DAPHNE data will be extracted on a subject-by-

subject basis. Data from 10% of the subjects was included in this as this ensured that

the pre-training dataset (INHALE stationary sensor data) had over five times as many

data points as the target dataset. Several machine learning methods will be trained on

this small dataset as well as a simple fully connected neural network. These methods

will be compared to a neural network that is pre-trained on the INHALE data and then

fine-tuned on the subset of the DAPHNE dataset. It is hoped that the model can learn

patterns from the larger INHALE dataset which can improve the validation performance

on the target dataset.

Figure 4.6: A simple visualisation of the neural network architecture for the transfer

learning model

To force the network to retain information from the pre-training dataset, the first two
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layers of the network are frozen after pre-training. These layers are shaded blue in

Figure 4.6, with the orange layers representing those with trainable weights during the

fine-tuning process. If no layers are frozen and the network is trained for an extended

period on the target dataset, there is a risk of the model experiencing catastrophic

forgetting. This term refers to the phenomenon wherein the model loses the knowledge

encapsulated in its initial weights (learned during pre-training) as it overfits to the new

data. Despite the importance of weight initialization in deep learning models, the useful

generalisations acquired during pre-training can be unintentionally overridden during

fine-tuning if none of the layers are frozen [56]. The network will be fine-tuned for

the number of epochs that minimises the validation MAPE. The same process will be

followed in the reverse direction: a 25% the INHALE subjects will be taken (which

ensured that the pre-training dataset was at least five times as large as the target dataset),

and several machine learning prediction models will be trained on this dataset. These

will be evaluated alongside a neural network which is pre-trained on the entire DAPHNE

stationary dataset and fine-tuned on the small INHALE set. As discussed above, the

first two layers of this model will also be frozen during fine-tuning.

4.3 Personal Sensor Model

The personal sensor models use minute-averaged personal exposure data from the

mobile AirSpeck sensors as the ground truth for PM2.5 concentration. The mobile

sensor data is augmented with the various features outlined in Section 4.1 and split

into a training and a validation dataset using an 80/20 split. Several spatial models,

including a feed-forward neural network, are trained to predict the minute level PM2.5

concentration recorded by the INHALE personal sensors. The model that achieves the

lowest MAPE is then fine-tuned used to create spatial interpolations. Both the true

and interpolated PM2.5 concentrations are resampled, taking the mean on an hourly

basis, to prepare for temporal modeling. Due to the somewhat volatile nature of the

minute-by-minute readings and the evident cyclical nature of PM2.5 at the hourly level,

the spatio-temporal model is trained on hourly data points. Spatial interpolations from

the last three hours are employed to train a temporal model that predicts one hour into

the future. As discussed in Section 4.2, three different temporal models are trained

and evaluated: a single-layer LSTM, a Gated Recurrent Unit, and a two-layer stacked

LSTM. The model producing the lowest MAPE will be fine-tuned to establish the final

spatio-temporal model.
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4.3.1 Transfer Learning

Table 4.1: Comparison of AirSpeck mobile sensor datasets

Dataset No. of Data Points Mean PM2.5 Concentration (µg/m3)

INHALE 352,638 12.74

Leon 4,947 27.39

Guadalajara 2,993 23.51

The Leon and Guadalajara personal sensor datasets are dwarfed in size by the INHALE

personal sensor data, see Table 4.1. In a manner analogous to the stationary sensor

model, a neural network will be pre-trained on the entire INHALE personal sensor

dataset and then fine-tuned on each of the smaller datasets in order to predict personal

PM2.5 exposure. This approach aims to capture some of the insights gained by the model

from the much larger dataset. Even though the model is pre-trained on data from a

different city, which will inherently have a different distribution of PM2.5 concentration,

the hope is that by initialising the model with extensive training data from a similar task,

the model can discern patterns otherwise obscured due to the restricted data from the

target dataset. All personal sensor models are trained on minute-averaged data points,

with predictions made at this granularity. Given that some of the true values can be

notably volatile, the estimated exposure values are averaged on an hourly basis and

juxtaposed with the hourly averages of the true exposure values for evaluation. This

approach assesses the ability of the models to approximate PM2.5 concentration over

an hour, even while being trained on minute resolution data. By training on minute-

resolution data, the spatial model can swiftly and accurately adjust to abrupt transitions.

For instance, one data point might represent a subject walking alongside a busy road,

and the subsequent data point might reflect them settling in a park for a brief interval.

These environmental shifts are more accurately captured at a finer time resolution.

4.4 Evaluation Metrics

In this study, two main metrics will be used to compare and analyse the performance

of the prediction models: mean absolute error (MAE) and mean absolute percentage

error (MAPE). Given a set of predictions y1,y2, ...,yN with corresponding true values

d1,d2, ...,dN , then the formula for mean absolute error is given in Equation 4.3.
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MAE =
1
N

N

∑
j=1

|y j −d j| (4.3)

Mean absolute error is expressed in the same units as the data being measured (in

this case µg/m3) and indicates how close the predictions are to the true values. Mean

absolute percentage error normalises the absolute error of each prediction by the true

value. The formula for mean absolute percentage error is defined in Equation 4.4.

MAPE =
100
N

N

∑
j=1

|
y j −d j

d j
| (4.4)

The dichotomy between MAE and MAPE is evident in their sensitivity to the magnitude

of true values. While MAE provides a direct measure in the same units as the data,

MAPE offers a normalised assessment that prevents larger true values from dispropor-

tionately influencing the error. Hence, while both metrics will be used to analyse and

evaluate predictive models in this study, greater emphasis will be placed on MAPE.
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Experiments and Results

5.1 Stationary Sensor Models

The stationary sensor models use all of the features outlined in Section 4.1 to predict

the PM2.5 concentration recorded by the stationary AirSpeck sensors for both the

INHALE and DAPHNE studies. For each dataset, different spatial prediction models are

compared by their MAEs and MAPEs with the best-performing model being combined

with the best performing of three temporal models to construct a spatio-temporal model

to predict PM2.5 concentration for the stationary AirSpeck sensors one hour into the

future.

5.1.1 INHALE

Figure 5.1: Evaluation of the spatial estimation models on the held-out data

23
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As observed in Figure 5.1, the artificial neural network model registers the smallest

MAPE with 52.77%. However, the MAE for the neural network is higher than that of

several other models. One possible explanation is that the neural network is specifically

trained to minimise MAPE, which isn’t the case for the other models. Alternatively, the

inherent nature of the neural network might enable it to discern intricate relationships

between the various input features that other machine learning models cannot grasp.

The learning rate, number of hidden units, and dropout probability of the neural network

model were adjusted, with the optimal hyperparameters yielding a reduction in MAPE

from 52.77% to 49.49%. The most significant contributor to this reduction was the

integration of dropout layers after each hidden layer with a dropout probability of

p = 0.5. Dropout often enhances the ability of neural networks to generalise by

diminishing overfitting [57]. Comprehensive results from the hyperparameter tuning

can be found in Appendix A.

Table 5.1: Evaluation of the spatio-temporal models for varying window sizes on the

held-out data

Model History Size (Hours) MAE (µg/m3) MAPE (%)

LSTM
3 5.902 42.08
5 6.057 42.99

8 6.160 43.29

GRU
3 5.935 42.37

5 5.964 42.58

8 5.952 42.70

Stacked LSTM
3 6.061 42.75

5 6.474 45.43

8 6.592 46.16

Of the models trained, the single-layer LSTM model trained on a window size of three

hours resulted in the lowest MAE and MAPE, as shown in Table 5.1. Perhaps counter-

intuitively, increasing the window size of previous spatial interpolations that the model

is trained on does not enhance performance. The shortest window size corresponds

to the lowest MAPE for all three temporal model architectures. This suggests that

forecasting one hour into the future doesn’t necessitate an extensive history of spatial

interpolations. For the rest of this study, all spatio-temporal models will be trained on a

three-hour history of spatial interpolations. After hyperparameter tuning, the optimal
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spatio-temporal model has a significantly lower MAPE (42.08%) than the spatial model

used for the interpolations (49.49%). The spatio-temporal prediction of the LSTM

combined with the feed-forward spatial model is illustrated for one of the subjects in

Figure 5.2. For this subject, the spatio-temporal model captures the cyclical nature of

the PM2.5 concentration very well.

Figure 5.2: Spatio-temporal predictions for the optimal model are plotted against the true

PM2.5 concentration for one of the stationary sensors associated with subject INH114 of

the INHALE study

5.1.1.1 Transfer Learning

A feed-forward neural network which was pre-trained on the DAPHNE dataset and then

fine-tuned on the target dataset was trialled for the entire INHALE dataset as well as

a 50% subset of it, however in both cases, it yielded a higher MAPE than the neural

network trained solely on the target dataset, see Appendix A. However, for the 25%

subset of the INHALE stationary dataset, the fine-tuned feed-forward neural network

attains a lower MAPE (48.61%) than all of the other machine learning techniques, as

shown in Figure 5.3.

The training curves depicted in Figure 5.4 illustrate the progression of MAE and MAPE

as the neural network adapts to the target data. Both the training and validation MAE

and MAPE are very high before the model is fine-tuned, since the model originally

trained on the DAPHNE data is being used to predict the PM2.5 concentration for the

INHALE dataset. It takes only six epochs of fine-tuning for the validation MAPE to
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Figure 5.3: Evaluation of spatial estimation models on the held-out data for a 25% subset

of the INHALE stationary sensor data

reach its minimum value. Both training and validation MAPE reduce rapidly, indicating

the model’s adeptness at fitting to the target data. The use of transfer learning evidently

induces a noticeable improvement in generalisation performance as it pertains to the

validation MAPE. However, the MAE achieved by the fine-tuned ANN exceeds that of

a few of the machine learning algorithms.

Figure 5.4: Training curves of the feed-forward neural network as it is fine-tuned to a

25% subset of the INHALE stationary data
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5.1.2 DAPHNE

Figure 5.5: Evaluation of spatial estimation models on the held-out data

Refer to Figure 5.5 to observe that the neural network estimation model yields the

smallest MAPE (58.06%). While this model has a higher MAE compared to a few

other models, its MAPE is substantially lower than all of the other models (the next

lowest is the Extra Trees model with a MAPE of 115.85%). After hyperparameter

tuning of the neural network, MAPE falls to 56.14% and the spatial interpolations from

the optimal model were applied to the DAPHNE dataset. This data was used to train

three different temporal models. The architecture that resulted in the lowest MAE and

MAPE was the single-layer LSTM network, as highlighted in Table 5.2. The MAPE of

this spatio-temporal model is marginally lower than that of the purely spatial model.

This indicates that introducing the task of predicting one data point (one hour) into the

future, based on the three most recent spatial interpolations, doesn’t lead to increased

error. After hyperparameter tuning, the MAPE is reduced to 54.27%, as detailed in

Appendix B.

Table 5.2: Performance comparison of spatio-temporal estimation models

Model MAE (µg/m3) MAPE (%)

Long Short Term Memory (LSTM) 67.08 54.65
Gated Recurrent Unit (GRU) 67.37 54.66

Stacked LSTM 69.00 55.05

Spatio-temporal predictions for one of the subjects are plotted in Figure 5.6. Over the
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course of 24 hours, the predictions effectively capture the peaks and dips in PM2.5

concentration. However, the highest peak is under-predicted, and the lowest trough

is over-predicted. Furthermore, it’s the very high true values for some of the other

subjects that this model struggles to estimate accurately, contributing to the relatively

high MAPE for this model.

Figure 5.6: Spatio-temporal predictions are plotted against true PM2.5 concentration for

one of the stationary sensors associated with one of the subjects of the DAPHNE study

5.1.2.1 Transfer Learning

Observe in Figure 5.7 that for the 10% subset of the DAPHNE stationary sensor dataset,

the fine-tuned neural network exhibits a lower MAPE than all the other predictive

models, with a slight improvement (54.86% vs 61.82%) on the neural network trained

on solely this dataset. Furthermore, there is a slight increase in MAE as well (from

29.29µg/m3 to 33.40µg/m3). These two deep learning models vastly outperform the

other machine learning algorithms. It would appear that for this dataset, building upon

existing knowledge by incorporating knowledge from a larger related dataset improves

the ability of the estimation model on the task-specific dataset.
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Figure 5.7: Evaluation of spatial estimation models on the held-out data for the 10%

subset of the DAPHNE dataset

Furthermore, it can be seen in Figure 5.8. that before any fine-tuning has been carried

out on the DAPHNE data, the MAPE is quite high and comes down significantly after

only one epoch of fine-tuning, with the validation MAPE reaching a minimum after two

epochs of fine-tuning. This backs up the intuition that the pre-trained network would

exhibit poor initial predictive performance since it was trained on data from a different

location. For both a 50% subset and the entire DAPHNE dataset, the transfer learning

approach doesn’t reduce the MAPE. This could be because the datasets are adequately

sized, rendering the pre-training unnecessary.

Figure 5.8: Training curves of the neural network as it is fine-tuned on the 10% subset of

the DAPHNE dataset



Chapter 5. Experiments and Results 30

5.2 Personal Sensor Models

The personal sensor models are trained to predict the PM2.5 exposure, as measured by

the mobile AirSpeck sensors, for the INHALE, Leon and Guadalajara datasets.

5.2.1 INHALE

Figure 5.9: Evaluation of spatial estimation models on the held-out data

Firstly, several models are trained on the INHALE personal data. The MAE and MAPE

achieved by each model are depicted in Figure 5.9. It is evident that the artificial neural

network (ANN) outperforms all other models; it attains a significantly lower MAE and

MAPE on the unseen validation data than all of the machine learning models. The

learning rate, number of hidden units, and dropout probability were tuned. The lowest

MAPE was achieved with a learning rate of 0.001, 32 hidden units, and a dropout

probability of 0.5. With these optimal parameters, the MAPE decreases from 45.54%

to 42.27%. The comprehensive results of the hyperparameter tuning are detailed in

Appendix C. Furthermore, the neural network aligns well with the objective of this

study: transferring knowledge from one model to another. The ANN trained on the

INHALE mobile sensor data serves as a foundation for the fine-tuned neural networks

that will estimate the spatial data for Leon and Guadalajara.
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Figure 5.10: Contour plot of estimated PM2.5 concentration (µg/m3) on the 20th of July

2023 at 7am [13]

Estrada (2023) uses this spatial predictive model to generate walking and cycling routes

which minimise airborne particulate matter pollution [13]. For a specific date and time,

the spatial estimates generated by the model exhibit minimal variance. Figure 5.10

offers a visualisation of this in the form of a contour plot, taken from [13]. Across an

area of around 50 square kilometers, the estimates consistently fall within the range of

4−8µg/m3. The estimates for the plot were calculated for a grid, with each grid point

representing the centroid of a 100m x 100m square. Only the OSM features, and in

certain cases the Grid Average PM2.5 and the Grid Average Distance features, differ for

each GPS locations that PM2.5 concentration was estimated for. As a result, it’s plausible

for the model to produce relatively consistent estimates across this area. Moreover,

there’s a trend of higher estimated PM2.5 concentrations in more built-up areas. For

instance, estimates in Hyde Park are generally lower than those in the surrounding

built-up regions. This appears to be influenced by the road type and land usage features

incorporated in the spatial model. In Figure 5.11, a journey for a subject from the held

out set in plotted. Colours toward to left hand side of the colour bar correspond to the

spatial model under-predicting PM2.5 concentration while colours to the right of the

bar correspond to over-prediction. The model is predicting most of the exposure values
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with minimal error however, a few are being considerably under-predicted. The subject

seems to be walking alongside roads throughout the journey, and the model might not

be capturing some peak PM2.5 exposures possibly due to dense traffic at specific times.

For minute resolution data, there will be some amount of randomness in exposure that

the spatial model isn’t able to capture due to factors such as traffic and wind gusts.

However, the model may be capturing more general traffic trends based on the hour of

the day as well as proximity to busier roads.

Figure 5.11: Illustration of the difference between real and PM2.5 exposure and the

spatial predictions for a journey taken by subject INH006

After hyperparameter tuning of the spatial model, the spatial model with the lowest

MAPE is used to create spatial predictions which are in turn used to train three different

temporal models. The results reported in Table 5.3. indicate that the single layer

LSTM achieves a lower MAPE and MAE than both of the other RNN variants. After

tuning the learning rate and number of hidden units in the dense layers of the LSTM

there is no decrease in MAPE. Unlike for the stationary sensor data, the MAPE of the

spatio-temporal model is higher than that of the spatial model. It is reasonable that

the spatio-temporal model’s MAPE slightly exceeds that of the spatial model since, in

addition to generating spatial predictions, these are being used to predict one hour into

the future.

The predictions for the optimal spatio-temporal model have been plotted against true

PM2.5 concentration for subject INH126 in Figure 5.12. There is an obvious cyclic

nature to the true PM2.5 concentration which is picked up on to a certain extent by
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Table 5.3: Performance comparison of spatio-temporal estimation models

Model MAE (µg/m3) MAPE (%)

Single Layer LSTM 5.402 43.04
Gated Recurrent Unit (GRU) 5.410 43.07

Stacked LSTM 5.423 43.26

the spatio-temporal predictions. The peaks in PM2.5 are consistently under-predicted

and the model misses a few of these peaks completely. This is likely due to the

spatial interpolations under-predicting or completely missing these spikes in PM2.5.

Furthermore, since the LSTM is trained with minimising MAPE as the objective, it may

be more desirable for the model to err on the side of under-prediction heightened PM2.5

concentration if the model is finding it difficult to predict the occurrence of these spikes

accurately.

Figure 5.12: Spatio-temporal predictions of the hybrid feed-forward neural network

and LSTM network are plotted against true PM2.5 exposure measured by the personal

AirSpeck sensor for INHALE subject INH112
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5.2.2 Transfer Learning

5.2.2.1 Leon

Figure 5.13: Evaluation of spatial estimation models on the held-out Leon data

In Figure 5.13, it’s evident that for the Leon data, the fine-tuned neural network show-

cases a noticeably lower MAPE than the standard neural network trained exclusively

on the target dataset. These two networks have nearly identical model architectures

since the number of hidden layers and units are consistent. However, the learning

rate is altered for the fine-tuning process since there are fewer weights to adjust. This

network also surpasses all of the baseline regression models in terms of both MAPE

and MAE. The reduction in MAPE is relatively modest - the extra trees spatial model

presents a MAPE of 24.28% and the fine-tuned neural network yields a MAPE of

20.84%, - reflecting a MAPE reduction of approximately 14%. The training curves

for the neural network’s fine-tuning can be observed in Figure 5.14. Predictably, the

initial training and validation losses are lofty, but after just one epoch, both the loss and

MAPE plummet. Subsequently, the training loss tapers off as the network adapts to the

Leon training data. The MAPE for the unseen data also diminishes incrementally as the

model becomes more attuned to the target data, bottoming out after 29 epochs. Some

fluctuation in the validation MAPE is evident throughout the fine-tuning, possibly a

result of the relatively limited sample size.
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Figure 5.14: Loss and MAPE plots illustrating the fine-tuning process for the Leon model

5.2.2.2 Guadalajara

Figure 5.15: Evaluation of spatial estimation models for the held-out Guadalajara data

For the Guadalajara dataset, the fine-tuned neural network exhibits a lower mean

absolute percentage error than all of the other models, including the neural network

trained solely on the target dataset. This indicates that the patterns and trends learned

on the INHALE data are beneficial to the feed-forward neural network as it learns to

predict the Guadalajara data. For both the Guadalajara and Leon datasets, using a mean

squared error loss function resulted in a lower MAPE than a MAPE loss function did.

Training and validation loss are plotted alongside validation MAPE in Figure 5.16. Both

losses start very high and plummet rapidly as the model begins to fit to the Guadalajara
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data. After 12 epochs of fine-tuning, the validation MAPE reaches its minimum of

19.69%. This is a relative improvement of more than 10% compared to the next best

model, which is the gradient boosting decision trees model with a MAPE of 22.85%.

Figure 5.16: Loss and MAPE plots illustrating the fine-tuning process for the Guadalajara

model

5.3 Summary of Results

The mean absolute errors are much higher for the DAPHNE models because the PM2.5

concentration is on average much higher in Delhi than it is in London. Therefore,

comparing the MAPEs of these models would be a more judicious approach. The

spatial and spatio-temporal models for the INHALE dataset achieve lower MAPEs than

the equivalent models for the DAPHNE dataset. Many factors could account for this,

including data quality and differences in atmospheric conditions between London and

Delhi. Additionally, there are two reference sensors in a similar area of London where

most of the stationary AirSpeck sensors in the INHALE study are located, while only

CPCB monitoring stations scattered across the vast Delhi metropolitan area are used as

reference data for the DAPHNE stationary sensors. The mean value of the Grid Average

Distance feature, defined as the average distance to the three closest reference sensors,

is 3.66km for INHALE and 6.88km for DAPHNE. This might account for the superior

performance of the INHALE spatial model. Surprisingly, the INHALE spatio-temporal

model achieves a slightly higher MAPE than the equivalent INHALE static sensor

model in [34], which records a MAPE of 38.09%, even though the model in this study

was trained on a larger dataset with added input features. Such variance could be

attributed to minor differences in methodology like outlier removal or hyperparameter
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optimisation strategy.

Model
DAPHNE INHALE

MAE (µg/m3) MAPE(%) MAE (µg/m3) MAPE(%)

Spatial 58.02 56.14 6.789 49.49

Spatio-temporal 66.48 54.27 5.902 42.08

DAPHNE-small INHALE-small
MAE (µg/m3) MAPE(%) MAE (µg/m3) MAPE(%)

Spatial 33.40 54.86 9.435 48.49

Table 5.4: Comparison of the optimal spatial and spatio-temporal models for INHALE

and DAPHNE stationary sensor datasets

The fine-tuned spatial model for the smaller INHALE dataset delivers performance

closely aligned with the best spatial model for the entire INHALE dataset. Thus, the

transfer learning approach is compensating effectively for the limited training data in

this scenario. The fine-tuned spatial model for the DAPHNE dataset registers a notably

lower MAE and MAPE than the top model for the entire dataset. This discrepancy

might be attributed to the small size of the validation data, as it’s counter-intuitive to

think this model would outperform the model trained on the full DAPHNE dataset in

terms of generalisation ability.

Model
INHALE Leon Guadalajara

MAE MAPE(%) MAE MAPE(%) MAE MAPE(%)

Spatial 4.169 42.27 7.149 20.84 5.232 19.69

Spatio-temporal 5.402 43.04 N/A N/A N/A N/A

Table 5.5: Comparison of the optimal spatial and spatio-temporal models for INHALE,

Leon and Guadalajara personal sensor datasets

The spatial model trained on the INHALE personal sensor data achieves a markedly

lower MAPE than its stationary sensor counterpart. The AirSpeck personal sensors,

worn by individuals during daily activities, record data with a significantly broader spa-

tial variance than the AirSpeck stationary sensors, possibly enhancing the generalisation

capability of the personal sensor model over the stationary one. The spatio-temporal

personal sensor model yields a comparable MAPE to the equivalent stationary sensor
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model and significantly surpasses the spatio-temporal model trained on INHALE per-

sonal sensor data in [34], which registered a MAPE of 73.48%. The optimal spatial

models for the Leon and Guadalajara datasets adopt the INHALE spatial model as a

foundational blueprint. While the MAPE for spatial predictions is reasonably similar

between Leon and Guadalajara, the MAE is appreciably elevated for Leon due to a

higher average PM2.5 concentration than in Guadalajara. Both of these fine-tuned

spatial models outperform the spatial models trained specifically on these datasets in

[14]. Furthermore, they both significantly undercut the MAPE of the INHALE spatial

model. This divergence might stem from the different data gathering approaches across

studies. The INHALE personal sensors are worn (for the most part) at all hours by

participants, whereas in Leon and Guadalajara, the personal sensors were worn for an

hour at a time while subjects adhered to a uniform outdoor route. The consistency of

this collection method likely induces reduced data variability, yielding more accurate

predictions as a result. Another vital factor is the reference PM2.5 data. In both Leon

and Guadalajara, six fixed AirSpeck sensors serve as the PM2.5 reference sensors. These

stationary sensors are situated in proximity to the data collection zones of the mobile

AirSpeck sensors, as depicted in Figure 2.2. The INHALE models incorporate data

from seven AURN sensors, six LAQN sensors, and two stationary AirSpeck sensors.

These AURN and LAQN monitoring stations are dispersed throughout London, as illus-

trated in Figure 2.3b. Consequently, the average Grid Average Distance value across

the dataset is considerably greater in London (4.68km) than in either Leon (0.94km)

or Guadalajara (0.69km). This discrepancy likely factors into the superior predictive

accuracy observed in Leon and Guadalajara relative to London.
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Conclusions and Future Work

Spatial estimation models were trained on static AirSpeck data in both London and

Delhi in order to predict the PM2.5 concentrations as measured by these sensors. The

INHALE model (London) achieved a MAPE of 49.49% and the DAPHNE model

(Delhi) achieved a MAPE of 56.14%. The spatio-temporal models for these datasets

predict PM2.5 concentration one hour into the future using the previous three spatial

predictions and yield lower MAPEs than their spatial counterparts in both cases. The

INHALE model achieves a MAPE of 42.08% and the DAPHNE model has a MAPE

of 54.27%. A fully connected feed-forward neural network was pre-trained on the

DAPHNE data and then fine-tuned on a subset of 25% of the INHALE dataset. This

model achieved a MAPE of 48.49% which was lower than for any of the other models

trained on the same subset of the INHALE data. Similarly, a feed-forward neural

network pre-trained on the INHALE data and fine-tuned on a subset of 10% of the

DAPHNE data gave rise to a MAPE of 54.86% which made it the best performing

model with regards to this metric on this subset of the DAPHNE data. This transfer

learning method was found to be ineffective for larger subsets of each dataset.

For the INHALE data, the neural network spatial model outperformed other architec-

tures with a MAPE of 42.27%. For the INHALE mobile AirSpeck data the feed-forward

neural network combined with a stacked LSTM was the optimal spatio-temporal model

with a MAPE of 43.04%. The spatial neural network model was fine-tuned on mobile

AirSpeck data from both Leon and Guadalajara. The Leon spatial model yielded a

MAPE of 20.84% which was considerably lower than any of the other models trained

on this dataset. Similarly, the Guadalajara model exhibits strong performance on the

held-out validation set with a MAPE of 19.69%. For both of these datasets, pre-training

the fully connected neural network on the INHALE mobile AirSpeck data, freezing

39
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the first two layers of the network and then fine-tuning on the target dataset leads to a

lower MAPE than training the same neural network architecture solely on the target

dataset. In other words, the transfer learning approach has resulted in improved spatial

predictions for both the Leon and Guadalajara datasets.

The primary limitation of the spatio-temporal models is their spatial predictions, as the

addition of temporal forecasting doesn’t significantly affect MAPE. There is always

going to be some unpredictability when estimating air pollution levels, however it is

highly probable that the mean absolute percentage errors of the both INHALE spatial

models as well as the DAPHNE spatial model can be reduced significantly. The feature

set in this study did not include any explicit traffic features as it was hoped that the

features representing the hour of the day as well as proximity to different types of busy

roads would implicitly model this to some degree. It is well established that vehicle

exhaust fumes contribute significantly to PM2.5. Therefore, introducing features into the

analysis that explicitly represent traffic levels could help to extract more performance

out of the predictive models. Furthermore, it was found that a dataset having a lower

average distance to the closest three reference sensors tended to correspond to a smaller

MAPE. Intuitively, the closer a reference sensor is located to a given location, the more

likely it will be a good predictor of PM2.5 concentration at that location. It is likely that

the MAPE of all spatial models in this study could be improved if there was data from a

wider variety reference sensors to draw upon.

It was demonstrated that transfer learning can be a powerful tool when training spatial

PM2.5 estimation models for locations with limited data. In this transfer learning

framework, the feed-forward neural network architecture is pre-trained on one relatively

large dataset in comparison to the target dataset. Combining several large datasets

from a wide variety of geographical locations may improve the generalisability of the

pre-trained model as it would be learning a more general representation of the input

features which can then be fine-tuned on the target dataset. Furthermore, the transfer

learning approach devised in this study focused on leveraging knowledge from one

spatial model to another. Future studies may wish to investigate if this is a profitable

approach to temporal modeling of PM2.5. A fine-tuning approach to forecasting PM2.5

concentration with limited data availability could be devised with one of the RNN

variants defined in this work. This may be a valuable contribution due to the importance

of forecasting pollution levels.
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Appendix A

Stationary Model Results - INHALE

Table A.1: Evaluation of spatial estimation models on the validation data

Model MAE (µg/m3) MAPE (%)

Linear Regression 7.333 94.26

Ridge Regression 7.330 94.13

Extra Trees 5.375 60.70

Gradient Boosting Decision Trees 6.021 75.18

Random Forests 5.335 58.20

Feed-forward Neural Network 6.833 52.77
Fine-tuned Neural Network 7.279 53.14
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Table A.2: Spatial ANN model hyperparameter tuning. The MAE and MAPE columns

correspond to the evaluation results on the held-out validation set

Hidden Units Learning Rate Dropout Prob. MAE (µg/m3) MAPE (%)

32 0.0001 0 6.915 50.50

32 0.0005 0 7.106 50.58

32 0.001 0 6.761 50.93

64 0.0001 0 6.833 52.77

64 0.0005 0 6.978 52.69

64 0.001 0 6.592 52.82

32 0.0001 0.5 7.140 49.62

32 0.0005 0.5 6.758 49.56

32 0.001 0.5 6.789 49.49
64 0.0001 0.5 7.364 50.75

64 0.0005 0.5 6.585 50.81

64 0.001 0.5 6.719 50.62

Table A.3: Hyperparameter tuning results for the LSTM spatio-temporal model. The MAE

and MAPE columns correspond to the evaluation results on the held-out validation set

Dense Units Learning Rate MAE (µg/m3) MAPE (%)

32 0.005 6.347 43.04

32 0.01 6.157 42.74

32 0.05 6.021 42.72

64 0.005 6.018 42.43

64 0.01 5.902 42.08
64 0.05 5.849 42.47

128 0.005 5.917 42.46

128 0.01 5.873 42.17

128 0.05 5.826 42.45
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A.0.1 Transfer Learning

Table A.4: Evaluation of spatial estimation models on the validation data for a 25%

subset of INHALE dataset

Model MAE (µg/m3) MAPE (%)

Linear Regression 14.12 104.70

Ridge Regression 14.16 104.97

Extra Trees 8.093 67.44

Gradient Boosting Decision Trees 8.625 72.08

Random Forests 8.719 70.95

Feed-forward Neural Network 9.763 53.720

Fine-tuned Neural Network 9.435 48.49

Table A.5: Evaluation of spatial estimation models on the validation data for a 50%

subset of the INHALE dataset

Model MAE (µg/m3) MAPE (%)

Linear Regression 1834040611631 37082938990993

Ridge Regression 6.817 71.96

Extra Trees 6.222 50.61

Gradient Boosting Decision Trees 5.931 46.91

Random Forests 5.956 49.22

Feed-forward Neural Network 6.629 43.03
Fine-tuned Neural Network 6.871 44.56



Appendix B

Stationary Model Results - DAPHNE

Table B.1: Evaluation of spatial estimation models on the validation data

Model MAE (µg/m3) MAPE (%)

Linear Regression 66.34 215.11

Ridge Regression 66.33 215.11

Extra Trees 44.14 115.85

Gradient Boosting Decision Trees 53.70 142.37

Random Forests 49.61 134.78

Feed-forward Neural Network 57.27 58.06
Fine-tuned Neural Network 70.01 59.90

50



Appendix B. Stationary Model Results - DAPHNE 51

Table B.2: Spatial ANN model hyperparameter tuning. The MAE and MAPE columns

correspond to the evaluation results on the held-out validation set

Hidden Units Learning Rate Dropout Prob. MAE (µg/m3) MAPE (%)

32 0.0001 0 58.40 58.12

32 0.0005 0 56.82 57.74

32 0.001 0 59.19 58.14

64 0.0001 0 57.27 58.06

64 0.0005 0 56.18 57.49

64 0.001 0 56.43 57.30

32 0.0001 0.5 59.77 57.48

32 0.0005 0.5 58.28 56.69

32 0.001 0.5 58.30 56.86

64 0.0001 0.5 59.74 57.40

64 0.0005 0.5 57.85 56.48

64 0.001 0.5 58.02 56.14

Table B.3: Hyperparameter tuning results for the stacked LSTM temporal model. The

MAE and MAPE columns correspond to the evaluation results on the held-out validation

set

Dense Units Learning Rate MAE (µg/m3) MAPE (%)

32 0.005 70.09 55.16

32 0.01 68.74 54.68

32 0.05 67.76 55.21

64 0.005 68.10 54.58

64 0.01 67.15 54.58

64 0.05 66.48 54.27
128 0.005 66.50 54.41

128 0.01 65.83 54.70

128 0.01 66.44 54.47
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B.0.1 Transfer Learning

Table B.4: Evaluation of spatial estimation models on the validation data for a 10%

subset of the DAPHNE dataset

Model MAE (µg/m3) MAPE (%)

Linear Regression 76.65 295.01

Ridge Regression 75.64 292.27

Extra Trees 57.51 162.49

Gradient Boosting Decision Trees 47.58 139.65

Random Forests 72.00 192.94

Feed-forward Neural Network 29.29 61.82

Fine-tuned Neural Network 33.40 54.86

Table B.5: Evaluation of spatial estimation models on the validation data for a 50%

subset of the DAPHNE dataset

Model MAE (µg/m3) MAPE (%)

Linear Regression 77.37 196.73

Ridge Regression 77.37 196.70

Extra Trees 63.10 117.58

Gradient Boosting Decision Trees 67.55 143.47

Random Forests 64.50 130.76

Feed-forward Neural Network 79.29 60.93
Fine-tuned Neural Network 82.79 63.59



Appendix C

Personal Model Results - INHALE

Table C.1: Evaluation of spatial estimation models on the validation data

Model MAE (µg/m3) MAPE (%)

Linear Regression 6.462 120.27

Ridge Regression 6.462 120.27

Extra Trees 6.000 110.33

Gradient Boosting Decision Trees 5.685 105.35

Random Forests 6.312 115.92

Feed-forward Neural Network 4.145 45.54
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Table C.2: Spatial ANN model hyperparameter tuning. The MAE and MAPE columns

correspond to the evaluation results on the held-out validation set

Hidden Units Learning Rate Dropout Prob. MAE (µg/m3) MAPE (%)

32 0.0001 0 4.122 44.97

32 0.0005 0 4.126 45.48

32 0.001 0 4.134 44.72

64 0.0001 0 4.139 45.47

64 0.0005 0 4.145 45.54

64 0.001 0 4.126 46.35

32 0.0001 0.5 4.255 42.83

32 0.0005 0.5 4.141 42.84

32 0.001 0.5 4.169 42.27
64 0.0001 0.5 4.233 42.52

64 0.0005 0.5 4.247 42.36

64 0.001 0.5 4.262 42.44

Table C.3: Hyperparameter tuning results for the stacked LSTM temporal model. The

MAE and MAPE columns correspond to the evaluation results on the held-out validation

set

Dense Units Learning Rate MAE (µg/m3) MAPE (%)

32 0.005 5.481 43.75

32 0.01 5.411 43.13

32 0.05 5.452 43.38

64 0.005 5.439 43.63

64 0.01 5.402 43.04
64 0.05 5.402 43.20

128 0.005 5.424 43.14

128 0.01 5.401 43.07



Appendix D

Personal Model Results - Guadalajara

Table D.1: Evaluation of spatial estimation models on the validation data

Model MAE (µg/m3) MAPE (%)

Linear Regression 5.514 25.84

Ridge Regression 5.520 25.90

Extra Trees 6.637 27.47

Gradient Boosting Decision Trees 5.327 22.85

Random Forests 6.039 26.39

Feed-forward Neural Network 5.067 24.35

Fine-tuned Neural Network 5.232 19.69
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Appendix E

Personal Model Results - Leon

Table E.1: Evaluation of the spatial estimation models on the validation data

Model MAE (µg/m3) MAPE (%)

Linear Regression 9.985 31.56

Ridge Regression 9.973 31.54

Extra Trees 8.079 24.28

Gradient Boosting Decision Trees 8.795 33.29

Random Forests 10.24 39.78

Feed-forward Neural Network 8.593 29.00

Fine-tuned Neural Network 7.321 20.84
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