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Abstract

The negative effects of air pollution are extensive, spanning from respiratory problems to
harm to the environment and ecosystems. Consequently, the monitoring and forecasting
of air pollution have become critically important. The Centre for Speckled Computing
at the University of Edinburgh has developed AirSpeck, an air quality monitoring sensor
that can either be worn by an individual or set up in a fixed location. This sensor
is capable of recording the concentration of various pollutants in the air, including
PM, 5. In recent times, numerous models have been developed to estimate PM, 5 levels
spatially, temporally and spatio-temporally. In this study, a framework will be created
to train spatial and spatio-temporal models for estimating PM, 5 concentrations across
three datasets, comparing various machine learning techniques. The best-performing
spatial model was the feed-forward neural network trained on personal AirSpeck data
from the INHALE study, which yielded a MAPE of 42.27%. The best performing
spatio-temporal model was trained to predict INHALE stationary sensor AirSpeck data
one hour into the future and combined spatial predictions of a feed-forward neural
network with a long short term memory (LSTM) network. This model yielded a MAPE
of 42.08%. Furthermore, a transfer learning approach to spatial PM; 5 estimation was
devised to improve predictive performance in scenarios with limited training data. This
involved pre-training a feed-forward neural network architecture with data from another
geographic location and then fine-tuning this model on the target dataset. For subsets
of the INHALE and DAPHNE stationary datasets, this method results in reductions
in MAPE from 53.72% to 48.49% and from 61.82% to 54.86%, respectively, relative
to the second-best model. Additionally, the transfer learning method outperforms all
other spatial estimation models on the Leon and Guadalajara personal sensor datasets,
yielding MAPESs of 20.84% for Leon and 19.69% for Guadalajara.
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Chapter 1

Introduction

1.1 Motivation

Monitoring air pollution levels is of critical importance due to its negative health
[1, 2, 3], environmental [4, 5], and socio-economic impacts [6, 7]. In 2019, 99% of
people worldwide were living in places where World Health Organisation guidelines on
air pollution were not met [8]. Moreover, in that same year, 4.2 million premature deaths
were linked to ambient air pollution. Given the significance of studying air pollution
levels, considerable efforts have been dedicated to developing efficient air quality
monitoring sensors [9, 10, 11]. “The Centre for Speckled Computing” at the University
of Edinburgh has developed a compact air quality monitoring sensor named AirSpeck
that can either be worn on the body (AirSpeck personal) or deployed in a fixed location
(AirSpeck stationary) [12]. The AirSpeck personal sensor captures spatio-temporal data
at 30-second intervals, while the AirSpeck stationary sensor records time series data
with time intervals ranging from five to 30 minutes depending on seasonal variations
in the number of daylight hours for charging the solar cells. These sensors record the
concentration of airborne particulate matter classified by diameter: PM;, PM; 5, and
PMj, as well as temperature and humidity. They also measure the concentration of
nitrogen dioxide (NO;) and ozone (O3). These sensors have been utilised to collect
data in various global locations, including London (United Kingdom), Delhi (India),
Leon and Guadalajara (both Mexico). Previous studies utilising AirSpeck pollution
data have sought to estimate the concentration of PM, 5 spatially (i.e., predicting the
concentration in one location based on the concentration in another location and other
relevant factors) and temporally (i.e., predicting the concentration at a specific location

based on time series data). Some studies have even estimated the PM; 5 concentration
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spatio-temporally based on the data collected by both the stationary and personal
AirSpeck sensors. A model capable of predicting air quality for a specific location at a
future time has numerous downstream benefits such as helping people plan walking and
cycling routes that minimise pollution and informing environmental policy-making. In
another MSc Dissertation from the School of Informatics, Estrada (2023) utilised the
spatial INHALE personal sensor model from this study for route planning to minimize
PM; 5 exposure [13]. All previous contributions have produced models which are
trained on data from a certain city (e.g. London) and predict exposure in the same city.
This has led to strong predictive performance, but these models struggle to extend to
new cities due to disparate PM, s distributions [14]. It would be useful to produce a
general method of spatial PM; 5 estimation which can be applied to cities with little
air quality data. In this work, a transfer learning approach will be devised to leverage
information from larger datasets to aid predictive performance when there is a smaller
quantity of air pollution data. This transfer learning framework will be used to train and

evaluate spatial models on four different datasets.

1.2 Obijectives

Robust estimation of particulate matter concentration is crucial. An accurate estimation
model to predict personal PM, 5 exposure in urban environments will generate many
downstream benefits, including planning mitigation strategies that may have profound
effects on public health and urban planning. One objective of this study is to create a ro-
bust framework for training spatio-temporal PM; 5 estimation models. This framework
will be used to train spatio-temporal models on various datasets. A further objective of
this work is to develop a transfer learning approach to spatial PM, 5 estimation whereby
knowledge is leveraged from one model to another to improve spatial prediction when

training estimation models with limited data.

1.3 Summary of Models and Results

Spatial estimation models have been trained on the INHALE stationary sensor, DAPHNE
stationary sensor, and INHALE personal sensor datasets in order to predict the PM, s
concentration recorded by these sensors. For each of these datasets, the feed-forward
neural network achieved the lowest MAPE, yielding values of 49.49%, 56.14%, and
42.27%, respectively. The spatio-temporal models for the INHALE and DAPHNE
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stationary datasets integrate their spatial interpolations with a single-layer LSTM. How-
ever, the INHALE personal sensor model combines a two-layer stacked LSTM with
its spatial interpolations. These optimised configurations result in MAPEs of 42.08%,
54.27%, and 43.04% for each dataset, respectively. For subsets of the INHALE and
DAPHNE stationary sensor datasets, models trained using transfer learning techniques
outperform all other algorithms, with MAPEs of 48.49% and 54.86%. Furthermore, for
the Leon and Guadalajara personal sensor datasets, the transfer learning method yields
MAPE:S of 20.84% and 19.69%, respectively, surpassing the performance of the other

machine learning techniques.

1.4 Novelty

This project introduces a deep learning methodology for enhanced spatio-temporal esti-
mation of PMj 5 as well as a transfer learning framework for training spatial estimation
models in scenarios with limited data. The explicit novel contributions of this work are

outlined below.

* Application of deep learning to both spatial and temporal modeling of PM, 5 and
amalgamating this into a unified spatio-temporal predictive model, trained on

AirSpeck pollution data.

* Application of transfer learning to spatial PM; 5 estimation in locations with

limited data.

* Introduction of novel features based on proximity to various types of roads.

1.5 Report Structure

The data sources for this study along with the different machine learning algorithms and
deep learning models are outlined in the ‘Background’ section. Previous approaches
to PM, 5 estimation are reviewed in the ‘Related Work’ section. In the ‘Methodology’
section, the data pre-processing steps as well as the implementation of the stationary
and personal sensor models will be explained. Following this, the results of all the
trained models will be presented, discussed and summarised in the ‘Experiments and
Results’ section. In the ‘Conclusions and Future Work’ section, the findings of the

research will be examined and the scope of future work discussed.
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Background

2.1 Particulate Matter

Particulate Matter (PM) is a complex mixture of extremely small solid and liquid
particles suspended in the air. Some of these particles are emitted directly from sources
such as vehicle exhausts and industrial processes while others are formed via chemical
reactions in the air. PMj 5 refers to particles that have an aerodynamic diameter of
less than 2.5um (which is approximately 3% of the diameter of a human hair). The
composition of PM; 5 can vary, a study into its constituents found that these often
include sulfates, nitrates, ammonium and carbon [15]. Due to their minute size, these
particles can remain suspended in the air for long periods and as a result they can pose

significant health risks, including respiratory and cardiovascular diseases [16, 17].

2.2 Data Sources

The air quality data used in this study was obtained by the AirSpeck personal and
AirSpeck stationary sensors from various studies conducted in different cities worldwide
[12]. These sensors use an optical particle counter to separate particles into 16 bins.
From these bins, the concentrations of PM;, PM, 5 and PM( can be calculated. The
sensors also record temperature and humidity. Moreover, every measurement comes
with a corresponding timestamp and geographic coordinates. The AirSpeck personal
sensor records data at intervals of 30 seconds and the AirSpeck stationary sensor
records data at anywhere from five-minute to 30-minute intervals. In this study, PM; 5
data obtained in various deployments of the AirSpeck sensors will be used as either

the ground truth for training prediction models or as reference data to aid predictive
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performance.

2.2.1 DAPHNE

The goal of this study was to examine the health impact of exposure to PM, 5 in Delhi,
India. There were two big cohorts of subjects, asthmatic adolescents and pregnant
women. The asthmatic adolescents wore the AirSpeck personal sensor for 48 hours in
three cycles, while the pregnant mothers wore the AirSpeck personal sensor for a period
of 48 hours in each trimester of the pregnancy [18]. Stationary AirSpeck sensors were
deployed in the home, community and schools of the subjects involved in the study.
Data collection for this study began in July 2018 and concluded in March 2020. In this
study, only the air pollution data obtained by the AirSpeck stationary sensors will be

used.

2.2.2 INHALE

The goal of this study was to analyse the health effects of air pollution on subjects
in London. Subjects wore the mobile AirSpeck personal sensor for a period of two
weeks and there were also a number of stationary sensors deployed in various locations
around London. This study is ongoing, the data used in this work was collected between
February 2021 and June 2023 [19]. In this work, the data from both the stationary and
personal sensors will be used to train spatial and spatio-temporal models. In Figure 2.1.,
the geographic locations of personal sensor readings for one of the subjects over a 24
hour period are plotted alongside the locations of all of the stationary AirSpeck sensor

locations.
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(a) AirSpeck personal sensor readings for SoerR

subject INHOO2 over a 24-hour period (b) INHALE stationary sensor locations

Figure 2.1: INHALE personal sensor data and stationary sensor locations
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2.2.3 Leon

In this study, the AirSpeck personal sensor collected data for one hour a day, from
9am to 10am. The data collection period spanned 31 weekdays between the 21% of
October 2019 and the 2™ of December 2019. Each day, the subjects followed the
same route. The GPS locations of the sensors throughout the data collection are plotted
in Figure 2.2a. Furthermore, six stationary AirSpeck sensors collected data in fixed
locations in Leon between the 19" of December 2019 and the 17" of February 2020.
The locations of these sensors are plotted in Figure 2.2a. The quantity of data collected
in this deployment is far smaller than for the INHALE and DAPHNE deployments in

London and Delhi, respectively.

@ Arspock Satonary Sensors p2.5 @ Arspock Sutonary Sensors 1125
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o ’ o

(a) Leon personal sensor data is plotted (b) Guadalajara personal sensor data is plot-
along with the locations of the stationary ted along with the locations of the stationary
AirSpeck sensors AirSpeck sensors

Figure 2.2: GPS locations of minute averaged readings as well as the locations of the

stationary AirSpeck sensors are plotted for the Leon and Guadalajara datasets

2.2.4 Guadalajara

In Guadalajara, the AirSpeck personal sensors collected one hour of data per day, also
between 9am and 10am. This was done between the 13" of January 2020 and the 14/ of
February 2020. The subjects followed a predetermined route while wearing the mobile
AirSpeck sensor, and as a result all of the readings are taken outdoors. Furthermore,
five AirSpeck stationary sensors were deployed throughout Guadalajara for a period of
time between the 19" of December 2019 and the 17/ of February 2020. The locations

of these stationary sensors can be observed in Figure 2.2b.
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2.2.5 Air Quality Reference Data

Reliable PM; 5 data from air quality monitoring stations is crucial for a spatial estimation
model. For the Leon and Guadalajara datasets, the AirSpeck stationary sensors which
were deployed at the same time as the mobile sensors are used as reference data. The
DAPHNE dataset utilises reference data collected from multiple monitoring stations,
all of which are managed by the Central Pollution Control Board (CPCB) [20]. The
locations of these CPCB monitoring sensors are plotted in Figure 2.3a. For the INHALE
study, PM, 5 reference data is obtained from three different sources: Automatic Urban
and Rural Network [21], London Air Quality Network [22] and two AirSpeck stationary

sensors which were deployed in and around the Kensington area of London.
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(a) Locations of the CPCB monitoring sta- (b) Locations of the London air quality refer-
tions in Delhi, India ence sensors

Figure 2.3: Locations of air quality reference sensors in Delhi and London

2.2.6 Meteorological Data

Meteorological data for the relevant locations and times was obtained from the website
rpS.ru [23]. This website contains data archives for several cities worldwide and this
data includes various weather related fields which may be useful for estimation pollution

levels such as air pressure, humidity, wind direction and wind speed.

2.2.7 Road and Land Data

Road and land usage data was extracted from the OpenStreetMap (OSM) platform for
London, Delhi, Leon and Guadalajara [24]. This data is extracted in geojson format and
contains details on roads, footways and land usage patterns within a specified region
and will be used to incorporate several road type and land usage features into the spatial

models.
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2.3 Machine Learning Algorithms

2.3.1 Random Forests

Random Forests is a machine learning algorithm that involves the creation of multiple
decision trees. Each decision tree is trained on a different sample of the data and for
each tree, only a random subset of features is considered when deciding how to split the
nodes. This randomness helps the model to be more robust and reduce the likelihood
of overfitting. When making a prediction, the outputs of all the individual trees are

averaged [25].

2.3.2 Extra Trees

Extremely Randomized Trees (also known as Extra Trees) is an ensemble learning
method similar to Random Forests. When splitting attributes, a Random Forest algo-
rithm will choose the optimal split point, while Extra Trees selects these split points
completely at random. This additional randomness often leads to better model generali-

sation, making it a robust tool for complex machine learning tasks [26].

2.3.3 Gradient Boosting Regression

Gradient Boosting Decision Trees (GBDT) is an ensemble learning method that creates
decision trees in a sequential fashion. Starting with a simple model it calculates the
errors of this model and then builds a new decision tree specifically to predict these
errors. This means that each subsequent tree in the sequence is learning from the
mistakes of its predecessors. The final prediction is the sum of the predictions from all

individual trees [27].

2.3.4 Artificial Neural Networks

Artificial Neural Networks (ANNSs) often outperform tree-based models in capturing
intricate, non-linear relationships within data sets due to the inherent ability of the
architecture to model such complexity. ANNSs are inspired by biological neural networks,
incorporating layers of interconnected nodes that allow for the modeling of non-linear
relationships in data that tree-based models may not be able to efficiently capture [28].
Feed-forward neural networks (FFNNs) are a type of ANN where the information flows

in one direction from an input layer through one or more hidden layers to an output
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layer. The nodes in each layer take as input the output from the previous layer and pass

the information forward [29].

2.3.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of artificial neural network architecture
designed to model patterns in sequential data [30]. Unlike feed-forward neural net-
works, RNNs take as input information from previous states in the sequence with this
information being stored in a cell called the hidden state. However, conventional RNNs
can struggle to learn long-term dependencies due to issues known as vanishing and
exploding gradients. This limitation led to the development of more advanced types of
RNN:Ss, such as Long Short-Term Memory networks (LSTMs) [31] and Gated Recurrent
Units (GRUs) [32] which are designed to better capture long-term dependencies by
using gating mechanisms. These gates learn to make decisions on which information
to retain and which information to forget thus ensuring that only the most relevant

information is propagated through the network.
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Related Work

Khan (2021) utilises data obtained by the AirSpeck sensor in Leon, Guadalajara and
Delhi in order to train spatio-temporal models for prediction in each location [14]. The
best spatial model in all cases was an Extra Trees model, giving rise to mean absolute
percentage errors of 31.69%,39.33% and 11.02% for Leon, Guadalajara and Delhi,
respectively. These spatial predictions are based on, amongst other factors, air pollution
information from previous time steps. These spatial interpolations are used as input
to an LSTM which is trained to predict the PM; 5 level for the next time-step. This
architecture leads to a MAPE of 27.01%,32.12% and 5.17% for each dataset. Despite
the effectiveness of these models, this approach fails to generalise well to new cities
with a lack of input features cited as the main reason for this. This study includes
meteorological features such as wind speed, wind direction and atmospheric pressure
as well as some land use features.

Porchelvan (2021) also aims to estimate PM; 5 spatio-temporally with AirSpeck sensor
data [33]. Stationary and personal sensor data from the INHALE and DAPHNE studies
is used to train separate predictive models for each dataset. In the stationary sensor
spatial model, recorded pollution levels of the other AirSpeck sensor(s) are used as input
features. This study includes air quality monitoring data for the city of London from the
Automatic Urban and Rural Network (AURN) [21] as reference data to aid prediction.
Our study will expand this approach by incorporating air quality monitoring data from
three sources: AURN (Automatic Urban and Rural Network) [21] and London Air
Quality Network (LAQN) [22] for London, and data from the Central Pollution Control
Board (CPCB) [20] for Delhi.

Xhang (2023) [34] adopts a method similar to those described in both [14, 33] for spatio-

temporal particulate matter estimation. This study includes weather, road type and

10
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land use features as well as data from the three closest air quality monitoring stations.
Spatial interpolation models are trained on both the mobile and stationary AirSpeck data
from the INHALE study conducted in London. Among the techniques used, gradient
boosting regression yielded the lowest mean absolute percentage error. The spatial
predictions are fed through a temporal model to predict PMj 5 spatio-temporally with a
stacked LSTM model corresponding to the lowest MAPE in both cases. The stationary
and personal sensor spatio-temporal models give rise to MAPEs of 38.09% and 73.48%,
respectively. The road and land based features had minimal impact on the personal
sensor model in this study, perhaps as the GPS latitude and longitude readings are
averaged by hour thus capturing an average location of each subject every hour. In
theory, a subject could walk along busy roads for the best part of an hour, yet the
averaged GPS reading might pinpoint a spacious green area like a park. In light of this,
spatial models will be trained on mobile AirSpeck data at the minute level granularity
in this study.

Machine learning based approaches are common when it comes to spatial air pollution
estimation. Baawain et al. (2014) train an artificial neural network to predict daily
concentrations of several pollutants including PM ¢, ozone and nitrogen dioxide [35].
They observed that factors such as temperature, wind direction and wind speed all play a
significant role in determining PM ¢ concentration. Aditya et al. (2018) find that logistic
regression and auto-regression can be used to detect air quality and predict future PM; 5
concentration [36]. Alimissis et al. (2018) train a multiple linear regression model as
well as a feed-forward ANN to estimate spatially the concentration of five different air
pollutants including nitrogen dioxide and ozone [37]. This study finds that the neural
network model significantly outperforms the linear interpolation model with regards
to the mean absolute error and root mean squared error metrics. This improvement is
attributed to the neural model’s ability to comprehend the complex spatial variability of
pollution levels. Mahalingam et al. (2019) use data from the CPCB to train a support
vector machine and a neural network to predict the air quality index (AQI) [38]. It
is found that the support vector machine predicts the AQI with a considerably higher
accuracy than the neural network. Nevertheless, feed-forward neural networks stand
out as a prominent and efficacious approach to spatial air quality estimation.

Huang et al. (2015) train a feed-forward neural network to forecast PM; 5 concentration
with input features including the forecast for weather on a given day, weather conditions
the day before, the air quality index two days beforehand and the pollution levels in

nearby cities the previous day [39]. Due to their innate ability to capture dependencies
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in sequential data, residual neural network architectures (which include LSTMs and
GRUs) have been widely employed for temporal forecasting of air pollution. Tsai et
al. (2018) train an LSTM network to forecast PMj; 5 concentration using air quality
monitoring data from Taiwan [40]. Window sizes based on the last 3, 8, 24 and 72
hours PM, 5 concentration are used to predict future values with a history size of 72
hours leading to the lowest mean absolute error. Intuitively, the mean absolute error is
lower when predicting a shorter time into the future. Furthermore, the LSTM network
is compared to a feed-forward ANN and the LSTM forecasts PM; 5 concentration with
a considerably lower mean absolute error. Tao et al. (2019) combine a one dimensional
convolutional neural network with a bi-directional GRU to perform temporal forecasting
[41]. This method exhibits improved temporal forecasting when compared to machine
learning algorithms such as support vector regression and gradient boosting regression.
Chang et al. (2020) presents an aggregated LSTM approach to temporal forecasting
of air pollution up to eight hours into the future [42]. This LSTM model aggregates
three separate LSTM models, each trained on different monitoring station data, into a
single model. It evaluates with a considerably lower mean absolute error and root mean
squared error than a support vector regression model as well as a gradient boosting
decision trees model. It is evident that residual neural networks are a popular and
powerful tool for temporal forecasting of air quality.

Transfer learning is a powerful technique in machine learning that leverages knowledge
from one task and applies it to a different but related task. Models can benefit from
pre-trained representations, which can significantly reduce the need for large labeled
datasets. Transfer learning can help models to generalise better to unseen data as a
result of the knowledge transfer. Numerous studies have shown the effectiveness of
transfer learning in computer vision tasks [43, 44] and natural language processing
tasks [45, 46]. The volume of training data is pivotal for regression tasks, and if there is
insufficient data, the model can struggle to capture trends and relationships in the data
[47]. Where there doesn’t exist a sufficiently large dataset to train a neural network,
fine-tuning, a form of transfer learning, is a potential solution [48]. This is when the
weights of a neural model are pre-trained on some dataset for a similar task and then
the pre-trained model is further trained, or fine-tuned, on the task specific dataset.
The advantage of this approach is that it leverages the knowledge gained from the
larger dataset to improve pattern recognition in the smaller dataset, thereby potentially

improving the performance even with limited data.
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Methodology

4.1 Data Preprocessing and Feature Selection

Distribution of PM; 5 Concentration Distribution of Log PM; s Concentration
aaaaa
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(a) Histogram of PM, 5 concentration for the (b) Histogram of log PM, s concentration for

INHALE personal sensor data the INHALE personal sensor data

Figure 4.1: Contrasting the distribution of PM; 5 concentration and its logarithmic trans-

formation for the INHALE personal sensor dataset

As is common in data processing, outliers are removed from the stationary and personal
AirSpeck data. Observe in Figure 4.1 that the distribution of PM; 5 readings for the
INHALE personal sensor dataset is positively skewed and has a rather long tail while
taking the natural logarithm of the PM; 5 concentrations leads to a far more symmetrical
distribution. Similar distributions are observed for all of the datasets considered in this
study. Hence, removing outliers on the logarithmic scale is reasonable as it ensures a
more balanced removal of extreme values from both ends of the scale instead of mostly

omitting high PM; 5 values which are very important to be able to predict. Outlier

13
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removal is done on a subject-by-subject basis using Tukey’s fences method of outlier
detection [49]. Data points where the following identity is not satisfied are dropped

from the dataset,

01 —k.IQR < x < Q3+ k.IQR. 4.1

In this equation, Q1 and Q3 are the lower and upper quartiles, IQR is the inter-quartile
range and k is some positive constant. In this study, k = 1.5 is chosen as this is a popular
option for statistical analysis tasks [50]. Furthermore, any readings with GPS locations
outside the specific city under investigation are excluded, as these readings are likely to
be the result of reading errors. The logarithmic distributions of PMj 5 concentration
before and after outlier removal are plotted for 12 subjects of the INHALE personal
sensor study in Figure 4.2. As desired, several outliers below the lower fence and above
the upper fence are removed for each of the subjects in the plots. Removing outliers on
the log scale leads to a more even balance of small and large outliers being removed.
Data points with obviously erroneous latitude or longitude readings are also removed

from the datasets.
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(a) Box plots of log PM; 5 concentration (b) Box plots of log PM; 5 concentration af-

prior to outlier removal ter outlier removal

Figure 4.2: Logarithmic Distribution of PM; 5 concentration before and after removing

outliers for mobile sensor data of 12 INHALE subjects

The PM, 5 readings are averaged by the minute for the mobile sensor data and by the
hour for the stationary sensor data. For the INHALE personal sensor data, measurements

are recorded at all times and it is important to attempt to isolate the readings taken
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outdoors. There is no perfectly accurate method of classifying data points as indoors or
outdoors however, readings taken between 12 am and 6 am are excluded as these will
likely correspond to instances where the subjects are indoors. Furthermore, consecutive
readings where the GPS location is near identical and measured PM, 5 concentration
is below 2ug/m? are eliminated from the dataset. In this case, it is a reasonable
assumption that a subject is stationary indoors. This classification method is somewhat
crude and certainly doesn’t exclude all of the indoor readings from the dataset but will
reduce their influence. For each dataset, reference sensor, meteorological, road type
and land use features are created. The GPS latitude and longitude of a given sensor
reading are used to calculate the closest three reference sensors (either from air quality
monitoring stations e.g. AURN, LAQN, CPCB or stationary AirSpeck sensors) as well
as the distances to these sensors. Due to the spherical nature of the earth, the distance

calculations are carried out using the Haversine formula [51] which is defined as

d = 2rarcsin \/sin2 (¢2 ;¢1> +cos(1)cos(92) sin’ (#) 4.2)

In this formula, d is the distance between the two points (along the surface of the
earth), r is the radius of the earth (= 6371km), ¢, ¢, are the latitudes of the two points,
and A, A, are the longitudes of the two points. The distances to the three closest
reference sensors, as well as the PM; 5 readings at these stations, are averaged to create
two features: Average Reference PM; 5 and Average Reference Distance. In Figure
4.3, the locations of the three closest reference sensors are plotted for two randomly
selected static AirSpeck sensors in Delhi, with the connecting lines corresponding to the
shortest distance between the AirSpeck sensor and the monitoring station in question, as
calculated by the Haversine formula. For the left-most AirSpeck sensor, the third closest
reference sensor is located quite far away, in fact, this distance is over 10 kilometres.
Even though data from 20 separate reference stations is utilised in this study, it is often
the case that even the closest monitoring stations can be located quite far away from the

AirSpeck sensor due to the vast size of the metropolitan area of Delhi.
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Figure 4.4: Box plots illustrating the distribution of PM, 5 concentration by hour of the

day in London and Delhi

In both London and Delhi, the distribution of PM; 5 can vary significantly depending

on the hour of the day, see Figure 4.4. There seems to be a cyclic component between

the hour of the day and PM; 5. As is common practice for cyclical features, the cosine
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and sine transformations of the hour will be integrated into the baseline feature set
[34, 52]. Moreover, the cosine and sine of the day of the week will be incorporated,
considering the potential influence of weekly pollution patterns. For each city in
the study, meteorological data is sourced from the website www.rp5.ru at 30-minute
intervals [23]. For clarity, this data is averaged hourly. Using this data, the following
features were added: air temperature, humidity, atmospheric pressure (raw and sea-
level adjusted), wind speed, dew point temperature, horizontal visibility, and sine and
cosine of wind direction (as it’s cyclical). OpenStreetMap data is used to determine
the nearest road type and represents it using one-hot encoding — a method where
categorical variables are converted into a set of binary columns — and also calculates
the distance to it. Land use is categorised into three separate designations: green space,
commercial, and industrial. Distances to the nearest of each of these designations
are included as features. OSM designates a primary road as a key highway linking
towns, and a secondary road as a secondary highway [24]. Distances to the nearest
motorway, primary road, and secondary road are calculated for each data point, as
proximity may suggest increased pollution. The features are divided into three groups.
The baseline feature set comprises grid average PM; 5 concentration, average distance,
and the sine and cosine of hour of the day and day of the week. The OSM and the
weather features comprise the other two sets. To understand feature importance, five
machine learning algorithms are applied to the INHALE mobile sensor data. The top
performer was the Random Forest model. Observe in Figure 4.5 that weather features
tend to elevate the MAPE, while OSM features produce varied outcomes. Even though
the weather can greatly influence pollution [53], these features seem to confuse the
models, possibly due to intricate inter-feature relationships. The optimal model is the
Random Forest with only baseline features, though its MAPE is marginally better than
the Gradient Boosting Decision Tree with the full complement of features. Later, deep
neural network architectures will model the relationship between features and PM, s.
Therefore, it might be useful to include all features, as these networks can capture
intricate, non-linear relationships in data. So, despite the somewhat unsatisfactory
impact of extra feature sets, both the OSM and the weather features will be included

from now on in this study.
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Figure 4.5: Evaluation of the mean absolute percentage error (MAPE) across different

models and feature sets

4.2 Stationary Sensor Model

The AirSpeck stationary sensor data is augmented with the various features outlined in
Section 4.1 and is split into training and validation datasets using an 80/20 split — a
typical division in machine learning tasks [54]. The hour-averaged PM; 5 concentration
recorded by the static AirSpeck sensors is used as the ground truth to train and evaluate
the models. Essentially, the models aim to predict this based on the provided input
features. Land Use Regression (LUR) is a commonly used method for the spatial
prediction of pollutant concentration [14, 33, 34, 55]. LUR spatially models pollutant
concentration using land use and other geographical indicators as explanatory variables.
The features discussed in Section 4.1 serve as the explanatory variables in these models,
with the stationary PMj; 5 concentration being the target to predict. For both the
DAPHNE and INHALE stationary sensor datasets, a simple five-layer fully connected
neural network is trained and evaluated in comparison with several machine learning
algorithms, namely: linear regression, ridge regression, extra trees, random forests,
and gradient boosting regression. For each dataset, the hyperparameters of the best-
performing spatial model will be tuned. This model will then be used to create a time

series of spatial interpolations to train the spatio-temporal model. This method proved
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more effective than first predicting temporally and then interpolating spatially as found
in [14]. The temporal model adopts the leave-one-subject-out method, where it is
trained on data from all subjects except one and then evaluated using the data of the
excluded subject. Three temporal models will be trained and evaluated: a single-layer
Long Short Term Memory network, a Gated Recurrent Unit network, and a stacked
LSTM, which consists of two LSTM layers. These models are trained for 100 epochs
with a mean absolute percentage error loss function. The learning rate and the number
of units in the feed-forward layer will be tuned for the model that achieves the lowest
MAPE.

4.2.1 Transfer Learning

A significant amount of data has been collected by the AirSpeck stationary sensors for
both the INHALE and DAPHNE studies, comprising 11483 and 19339 hour-averaged
data points respectively. To mimic a scenario where there exists far less data for one
of the locations, a small subset of the DAPHNE data will be extracted on a subject-by-
subject basis. Data from 10% of the subjects was included in this as this ensured that
the pre-training dataset INHALE stationary sensor data) had over five times as many
data points as the target dataset. Several machine learning methods will be trained on
this small dataset as well as a simple fully connected neural network. These methods
will be compared to a neural network that is pre-trained on the INHALE data and then
fine-tuned on the subset of the DAPHNE dataset. It is hoped that the model can learn
patterns from the larger INHALE dataset which can improve the validation performance

on the target dataset.

Frozen after pre-training Weights trainable during fine-tuning
Km
Input
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 4.6: A simple visualisation of the neural network architecture for the transfer

learning model

To force the network to retain information from the pre-training dataset, the first two
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layers of the network are frozen after pre-training. These layers are shaded blue in
Figure 4.6, with the orange layers representing those with trainable weights during the
fine-tuning process. If no layers are frozen and the network is trained for an extended
period on the target dataset, there is a risk of the model experiencing catastrophic
forgetting. This term refers to the phenomenon wherein the model loses the knowledge
encapsulated in its initial weights (learned during pre-training) as it overfits to the new
data. Despite the importance of weight initialization in deep learning models, the useful
generalisations acquired during pre-training can be unintentionally overridden during
fine-tuning if none of the layers are frozen [56]. The network will be fine-tuned for
the number of epochs that minimises the validation MAPE. The same process will be
followed in the reverse direction: a 25% the INHALE subjects will be taken (which
ensured that the pre-training dataset was at least five times as large as the target dataset),
and several machine learning prediction models will be trained on this dataset. These
will be evaluated alongside a neural network which is pre-trained on the entire DAPHNE
stationary dataset and fine-tuned on the small INHALE set. As discussed above, the

first two layers of this model will also be frozen during fine-tuning.

4.3 Personal Sensor Model

The personal sensor models use minute-averaged personal exposure data from the
mobile AirSpeck sensors as the ground truth for PM, 5 concentration. The mobile
sensor data is augmented with the various features outlined in Section 4.1 and split
into a training and a validation dataset using an 80/20 split. Several spatial models,
including a feed-forward neural network, are trained to predict the minute level PM; 5
concentration recorded by the INHALE personal sensors. The model that achieves the
lowest MAPE is then fine-tuned used to create spatial interpolations. Both the true
and interpolated PM; 5 concentrations are resampled, taking the mean on an hourly
basis, to prepare for temporal modeling. Due to the somewhat volatile nature of the
minute-by-minute readings and the evident cyclical nature of PM; 5 at the hourly level,
the spatio-temporal model is trained on hourly data points. Spatial interpolations from
the last three hours are employed to train a temporal model that predicts one hour into
the future. As discussed in Section 4.2, three different temporal models are trained
and evaluated: a single-layer LSTM, a Gated Recurrent Unit, and a two-layer stacked
LSTM. The model producing the lowest MAPE will be fine-tuned to establish the final

spatio-temporal model.
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4.3.1 Transfer Learning

Table 4.1: Comparison of AirSpeck mobile sensor datasets

Dataset | No. of Data Points | Mean PM, s Concentration (ug/m?)
INHALE 352,638 12.74
Leon 4,947 27.39
Guadalajara 2,993 23.51

The Leon and Guadalajara personal sensor datasets are dwarfed in size by the INHALE
personal sensor data, see Table 4.1. In a manner analogous to the stationary sensor
model, a neural network will be pre-trained on the entire INHALE personal sensor
dataset and then fine-tuned on each of the smaller datasets in order to predict personal
PM, 5 exposure. This approach aims to capture some of the insights gained by the model
from the much larger dataset. Even though the model is pre-trained on data from a
different city, which will inherently have a different distribution of PM; 5 concentration,
the hope is that by initialising the model with extensive training data from a similar task,
the model can discern patterns otherwise obscured due to the restricted data from the
target dataset. All personal sensor models are trained on minute-averaged data points,
with predictions made at this granularity. Given that some of the true values can be
notably volatile, the estimated exposure values are averaged on an hourly basis and
juxtaposed with the hourly averages of the true exposure values for evaluation. This
approach assesses the ability of the models to approximate PM, 5 concentration over
an hour, even while being trained on minute resolution data. By training on minute-
resolution data, the spatial model can swiftly and accurately adjust to abrupt transitions.
For instance, one data point might represent a subject walking alongside a busy road,
and the subsequent data point might reflect them settling in a park for a brief interval.

These environmental shifts are more accurately captured at a finer time resolution.

4.4 Evaluation Metrics

In this study, two main metrics will be used to compare and analyse the performance
of the prediction models: mean absolute error (MAE) and mean absolute percentage
error (MAPE). Given a set of predictions yy,ys, ..., yy with corresponding true values

dy,ds,...,dy, then the formula for mean absolute error is given in Equation 4.3.
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1 N
MAE:]T]Z‘yj—dﬂ (43)
Jj=1

Mean absolute error is expressed in the same units as the data being measured (in
this case ug/m?) and indicates how close the predictions are to the true values. Mean
absolute percentage error normalises the absolute error of each prediction by the true

value. The formula for mean absolute percentage error is defined in Equation 4.4.

100 &, yv,—d;
2 (44)
=1 d]

MAPE = — ]Z
The dichotomy between MAE and MAPE is evident in their sensitivity to the magnitude
of true values. While MAE provides a direct measure in the same units as the data,
MAPE offers a normalised assessment that prevents larger true values from dispropor-
tionately influencing the error. Hence, while both metrics will be used to analyse and

evaluate predictive models in this study, greater emphasis will be placed on MAPE.



Chapter 5

Experiments and Results

5.1 Stationary Sensor Models

The stationary sensor models use all of the features outlined in Section 4.1 to predict
the PM; 5 concentration recorded by the stationary AirSpeck sensors for both the
INHALE and DAPHNE studies. For each dataset, different spatial prediction models are
compared by their MAEs and MAPEs with the best-performing model being combined
with the best performing of three temporal models to construct a spatio-temporal model
to predict PM; 5 concentration for the stationary AirSpeck sensors one hour into the

future.

5.1.1 INHALE
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Figure 5.1: Evaluation of the spatial estimation models on the held-out data
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As observed in Figure 5.1, the artificial neural network model registers the smallest
MAPE with 52.77%. However, the MAE for the neural network is higher than that of
several other models. One possible explanation is that the neural network is specifically
trained to minimise MAPE, which isn’t the case for the other models. Alternatively, the
inherent nature of the neural network might enable it to discern intricate relationships
between the various input features that other machine learning models cannot grasp.
The learning rate, number of hidden units, and dropout probability of the neural network
model were adjusted, with the optimal hyperparameters yielding a reduction in MAPE
from 52.77% to 49.49%. The most significant contributor to this reduction was the
integration of dropout layers after each hidden layer with a dropout probability of
p = 0.5. Dropout often enhances the ability of neural networks to generalise by
diminishing overfitting [57]. Comprehensive results from the hyperparameter tuning

can be found in Appendix A.

Table 5.1: Evaluation of the spatio-temporal models for varying window sizes on the
held-out data

Model History Size (Hours) | MAE (ug/m3) | MAPE (%)
3 5.902 42.08
LSTM 5 6.057 42.99
8 6.160 43.29
3 5.935 42.37
GRU 5 5.964 42.58
8 5.952 42.70
3 6.061 42.75
Stacked LSTM 5 6.474 45.43
8 6.592 46.16

Of the models trained, the single-layer LSTM model trained on a window size of three
hours resulted in the lowest MAE and MAPE, as shown in Table 5.1. Perhaps counter-
intuitively, increasing the window size of previous spatial interpolations that the model
is trained on does not enhance performance. The shortest window size corresponds
to the lowest MAPE for all three temporal model architectures. This suggests that
forecasting one hour into the future doesn’t necessitate an extensive history of spatial
interpolations. For the rest of this study, all spatio-temporal models will be trained on a

three-hour history of spatial interpolations. After hyperparameter tuning, the optimal



Chapter 5. Experiments and Results 25

spatio-temporal model has a significantly lower MAPE (42.08%) than the spatial model
used for the interpolations (49.49%). The spatio-temporal prediction of the LSTM
combined with the feed-forward spatial model is illustrated for one of the subjects in
Figure 5.2. For this subject, the spatio-temporal model captures the cyclical nature of

the PM; 5 concentration very well.
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Figure 5.2: Spatio-temporal predictions for the optimal model are plotted against the true
PM, s concentration for one of the stationary sensors associated with subject INH114 of
the INHALE study

5.1.1.1 Transfer Learning

A feed-forward neural network which was pre-trained on the DAPHNE dataset and then
fine-tuned on the target dataset was trialled for the entire INHALE dataset as well as
a 50% subset of it, however in both cases, it yielded a higher MAPE than the neural
network trained solely on the target dataset, see Appendix A. However, for the 25%
subset of the INHALE stationary dataset, the fine-tuned feed-forward neural network
attains a lower MAPE (48.61%) than all of the other machine learning techniques, as
shown in Figure 5.3.

The training curves depicted in Figure 5.4 illustrate the progression of MAE and MAPE
as the neural network adapts to the target data. Both the training and validation MAE
and MAPE are very high before the model is fine-tuned, since the model originally
trained on the DAPHNE data is being used to predict the PM, 5 concentration for the
INHALE dataset. It takes only six epochs of fine-tuning for the validation MAPE to
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Figure 5.3: Evaluation of spatial estimation models on the held-out data for a 25% subset

of the INHALE stationary sensor data

reach its minimum value. Both training and validation MAPE reduce rapidly, indicating

the model’s adeptness at fitting to the target data. The use of transfer learning evidently

induces a noticeable improvement in generalisation performance as it pertains to the
validation MAPE. However, the MAE achieved by the fine-tuned ANN exceeds that of

a few of the machine learning algorithms.
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Figure 5.4: Training curves of the feed-forward neural network as it is fine-tuned to a
25% subset of the INHALE stationary data
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5.1.2 DAPHNE
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Figure 5.5: Evaluation of spatial estimation models on the held-out data

Refer to Figure 5.5 to observe that the neural network estimation model yields the
smallest MAPE (58.06%). While this model has a higher MAE compared to a few
other models, its MAPE is substantially lower than all of the other models (the next
lowest is the Extra Trees model with a MAPE of 115.85%). After hyperparameter
tuning of the neural network, MAPE falls to 56.14% and the spatial interpolations from
the optimal model were applied to the DAPHNE dataset. This data was used to train
three different temporal models. The architecture that resulted in the lowest MAE and
MAPE was the single-layer LSTM network, as highlighted in Table 5.2. The MAPE of
this spatio-temporal model is marginally lower than that of the purely spatial model.
This indicates that introducing the task of predicting one data point (one hour) into the
future, based on the three most recent spatial interpolations, doesn’t lead to increased
error. After hyperparameter tuning, the MAPE is reduced to 54.27%, as detailed in
Appendix B.

Table 5.2: Performance comparison of spatio-temporal estimation models

Model MAE (ug/m?) | MAPE (%)
Long Short Term Memory (LSTM) 67.08 54.65
Gated Recurrent Unit (GRU) 67.37 54.66
Stacked LSTM 69.00 55.05

Spatio-temporal predictions for one of the subjects are plotted in Figure 5.6. Over the
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course of 24 hours, the predictions effectively capture the peaks and dips in PM, 5
concentration. However, the highest peak is under-predicted, and the lowest trough
is over-predicted. Furthermore, it’s the very high true values for some of the other
subjects that this model struggles to estimate accurately, contributing to the relatively
high MAPE for this model.
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Figure 5.6: Spatio-temporal predictions are plotted against true PM, 5 concentration for

one of the stationary sensors associated with one of the subjects of the DAPHNE study

5.1.2.1 Transfer Learning

Observe in Figure 5.7 that for the 10% subset of the DAPHNE stationary sensor dataset,
the fine-tuned neural network exhibits a lower MAPE than all the other predictive
models, with a slight improvement (54.86% vs 61.82%) on the neural network trained
on solely this dataset. Furthermore, there is a slight increase in MAE as well (from
29.29ug /m> to 33.40ug/m>). These two deep learning models vastly outperform the
other machine learning algorithms. It would appear that for this dataset, building upon
existing knowledge by incorporating knowledge from a larger related dataset improves

the ability of the estimation model on the task-specific dataset.
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Figure 5.7: Evaluation of spatial estimation models on the held-out data for the 10%
subset of the DAPHNE dataset

Furthermore, it can be seen in Figure 5.8. that before any fine-tuning has been carried

out on the DAPHNE data, the MAPE is quite high and comes down significantly after

only one epoch of fine-tuning, with the validation MAPE reaching a minimum after two

epochs of fine-tuning. This backs up the intuition that the pre-trained network would

exhibit poor initial predictive performance since it was trained on data from a different

location. For both a 50% subset and the entire DAPHNE dataset, the transfer learning

approach doesn’t reduce the MAPE. This could be because the datasets are adequately

sized, rendering the pre-training unnecessary.
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Figure 5.8: Training curves of the neural network as it is fine-tuned on the 10% subset of
the DAPHNE dataset
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5.2 Personal Sensor Models

The personal sensor models are trained to predict the PM, 5 exposure, as measured by

the mobile AirSpeck sensors, for the INHALE, Leon and Guadalajara datasets.
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Figure 5.9: Evaluation of spatial estimation models on the held-out data

Firstly, several models are trained on the INHALE personal data. The MAE and MAPE
achieved by each model are depicted in Figure 5.9. It is evident that the artificial neural
network (ANN) outperforms all other models; it attains a significantly lower MAE and
MAPE on the unseen validation data than all of the machine learning models. The
learning rate, number of hidden units, and dropout probability were tuned. The lowest
MAPE was achieved with a learning rate of 0.001, 32 hidden units, and a dropout
probability of 0.5. With these optimal parameters, the MAPE decreases from 45.54%
to 42.27%. The comprehensive results of the hyperparameter tuning are detailed in
Appendix C. Furthermore, the neural network aligns well with the objective of this
study: transferring knowledge from one model to another. The ANN trained on the
INHALE mobile sensor data serves as a foundation for the fine-tuned neural networks

that will estimate the spatial data for Leon and Guadalajara.
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Figure 5.10: Contour plot of estimated PM, s concentration (ug/m?*) on the 20th of July
2023 at 7am [13]

Estrada (2023) uses this spatial predictive model to generate walking and cycling routes
which minimise airborne particulate matter pollution [13]. For a specific date and time,
the spatial estimates generated by the model exhibit minimal variance. Figure 5.10
offers a visualisation of this in the form of a contour plot, taken from [13]. Across an
area of around 50 square kilometers, the estimates consistently fall within the range of
4 — 8ug/m>. The estimates for the plot were calculated for a grid, with each grid point
representing the centroid of a 100m x 100m square. Only the OSM features, and in
certain cases the Grid Average PM; 5 and the Grid Average Distance features, differ for
each GPS locations that PM, 5 concentration was estimated for. As a result, it’s plausible
for the model to produce relatively consistent estimates across this area. Moreover,
there’s a trend of higher estimated PM, 5 concentrations in more built-up areas. For
instance, estimates in Hyde Park are generally lower than those in the surrounding
built-up regions. This appears to be influenced by the road type and land usage features
incorporated in the spatial model. In Figure 5.11, a journey for a subject from the held
out set in plotted. Colours toward to left hand side of the colour bar correspond to the
spatial model under-predicting PM; 5 concentration while colours to the right of the

bar correspond to over-prediction. The model is predicting most of the exposure values
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with minimal error however, a few are being considerably under-predicted. The subject
seems to be walking alongside roads throughout the journey, and the model might not
be capturing some peak PM, 5 exposures possibly due to dense traffic at specific times.
For minute resolution data, there will be some amount of randomness in exposure that
the spatial model isn’t able to capture due to factors such as traffic and wind gusts.
However, the model may be capturing more general traffic trends based on the hour of

the day as well as proximity to busier roads.
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Figure 5.11: lllustration of the difference between real and PM; 5 exposure and the
spatial predictions for a journey taken by subject INHO06
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