
Potential benefits of explicitly preserving the

locations of the electrodes in the structure of

EEG data for EEG classification

Yige Yang

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2023



Abstract

The electroencephalogram (EEG) is a non-invasive way of assessing brain activity that

records electrical impulses produced by neurons. EEG data categorization is critical

in cognitive neuroscience, clinical diagnostics, and brain-computer interfaces (BCI),

which allow humans to control equipment with their thoughts. Before sending raw EEG

data into classification algorithms, most researchers transform it to a two-dimensional

time-domain matrix. This method, however, ignores the spatial information between

electrodes, which might be highly useful for EEG categorization. As a result, this work

presents both three-dimensional and four-dimensional formats for presenting EEG data

that explicitly maintain the spatial information of electrodes in the EEG data structure.

Several classification models will be trained and evaluated on diverse datasets utilising

EEG data in the formats of two dimensions, three dimensions, and four dimensions to

highlight the potential benefit of preserving spatial information about electrodes in the

structure of EEG data for EEG classification.
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Chapter 1

Introduction

The human brain has been a subject of scientific study for centuries; it is a marvel of

complexity and nuance. Its exceptional abilities in vision, cognition, and emotion have

attracted researchers, inspiring extensive research aimed at unlocking its mysteries[13].

A powerful tool for studying the electrical impulses produced by the brain is elec-

troencephalography (EEG), a non-invasive method that records and analyses these

signals[18]. Consider it in this manner. EEG signals are frequently used to detect and

monitor various neurological disorders in therapeutic settings[17]. Understanding the

changes in brain function that occur as people age and develop is made easier with the

help of EEG[29].

EEG classification is a technique for identifying patterns in brain waves acquired by

EEG and applying these patterns to classify the person’s cognitive or emotional state.

In neuroscience, medicine, and human-computer interaction, EEG categorization has a

wide range of uses[15, 21].

However, the nature of EEG signals present a challenge for EEG classification. EEG

signals are typically recorded from multiple electrodes placed on the scalp, resulting in

a high-dimensional data representation. The large number of channels and time points

in EEG recordings leads to a high-dimensional feature space[8]. Besides, EEG signals

are susceptible to various sources of noise and artifacts, which can distort the underlying

neural activity. These noise sources include muscle activity (electromyographic noise),

eye movements (ocular artifacts), environmental electromagnetic interference, and

electrode artifacts[31]. As a result, many feature extraction approaches have been

developed, such as time-domain and frequency-domain analysis, to minimise data

dimensionality and identify relevant attributes for classification[30].

There has been an increase in interest in utilising machine learning algorithms to
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Chapter 1. Introduction 2

identify EEG in recent years since they can automatically discover subtle patterns in

data and give high accuracy. For EEG classification, a range of machine learning models

such as support vector machines (SVMs), artificial neural networks (ANNs), decision

trees, and random forests were utilised[15, 28, 1, 23]. At the same time, constructing 2D

time-domain EEG signals has become the dominant way of representing EEG signals

for machine learning models.

After reviewing others’ works, we believe that it is beneficial to retain the spatial

information between electrodes more explicitly for machine learning models in EEG

classification. To prove this hypothesis, new structures of EEG data were created and

the same or similar machine learning models were trained and tested on the newly

structured data to compare with their performance on 2D time-domain data. In the

end, the results showed models trained with location-considered time-domain data had

a better performance than models trained with pure time-domain data. Therefore, it

successfully proved the potential of containing locations of electrodes in the structure

of time-domain EEG data.

The study’s findings may have important consequences for improving the quality of

life of persons with disabilities by making more accessible and inclusive technology

available to them. Furthermore, by exposing a new approach for representing and

classifying EEG data, this work hopes to enhance the discipline and stimulate further

research in this area. The remaining chapters of this dissertation consist of the following

sections:

1. ”Background”: This chapter provides an in-depth analysis of various structures of

EEG signals.

2. ”Methodology”: This chapter focuses on the proposed structures of data and

provides detailed information about the experimental setup.

3. ”Results & Evaluation”: This chapter presents the findings of the experiments

conducted and provides an evaluation of the obtained results.

4. ”Conclusion”: The final chapter of the dissertation summarizes the key findings,

draws conclusions based on the results, and offers insights into the future work.



Chapter 2

Background

2.1 Literature Review

The field of machine learning and data analytics has witnessed tremendous advance-

ments in recent years, revolutionizing various domains and industries. One crucial

aspect of this progress lies in the ability to develop accurate classification models that

can extract meaningful insights and make informed decisions. However, the efficacy of

these models heavily relies on the quality and representation of the input data.

In the context of classification models, one area that has received considerable

attention is the representation of raw data before feeding it into the model. Effective

representation techniques aim to capture the essential characteristics and patterns of

the data, enhancing the model’s ability to discern meaningful distinctions and make

accurate predictions.

Because of its intrinsic richness and multidimensionality, raw EEG data offers

unique obstacles for representation. Raw data collected from sensors or other measuring

equipment may contain a variety of properties and features important for categorization

tasks. However, not all qualities contribute equally to the model’s prediction capacity,

and some may provide noise or irrelevant data that might impede proper categorization.

As a result, it is critical to preprocess and describe raw EEG data in a way that

optimises the model’s performance. We intend to explore the existing approaches and

methods used for representing raw EEG data in the context of classification tasks in

this literature review, with the goal of identifying current practises and uncovering

novel strategies that could bring a new representation of the data to potentially improve

classification model performance.
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Chapter 2. Background 4

2.1.1 Approaches using subset of channels

2.1.1.1 Channel Selection

Channel selection refers to the process of identifying a subset of EEG channels that

are most useful or informative for the analysis or modelling task. This strategy aims to

reduce computer complexity while increasing interpretability by focusing on channels

that collect the most relevant information. There are various options available. Choosing

channels with the highest variance or discriminatory power, for example, can improve

the signal-to-noise ratio and feature quality[11].

In the study of Yong et al., the authors focused on automatic feature selection for

motor imagery EEG pattern recognition[33]. They proposed a method based on the

difference in variance between different classes of motor imagery tasks. By selecting

channels with significant variance differences, they were able to identify the most

discriminative channels for classification[33]. Their results demonstrated that this

variance-based channel selection method improved the accuracy of motor imagery

classification compared to using all channels[33].

Another is selecting based on scalp topography, which focuses on identifying chan-

nels that exhibit prominent spatial distribution patterns related to specific cognitive

or neural processes[14, 25]. These patterns can provide insights into the functional

organization of the brain. However, there are potential drawbacks to consider. Exclud-

ing certain channels may result in the loss of important information, neglecting less

prominent but still relevant neural activity. The subjective selection of channels can

introduce bias based on prior knowledge or assumptions, and the optimal channels for

selection may vary depending on the specific research question, experimental design,

or population under investigation. For example, in the scenario of scalp topography-

based selection, scalp topography can vary across individuals, making it challenging to

generalize the selected channels to different populations or experimental contexts.

On the other hand, scalp topography-based selection is not suitable for classifying

tasks when the associated potential differences on the scalp are very small or the spread

of the differences have no obvious pattern. Therefore, electrodes cannot be selected

effectively. For example, this approach may not perform well on classification tasks

related to subjects with certain neurological conditions, such as Alzheimer’s disease,

Parkinson’s disease, or multiple sclerosis, which can cause significant change in EEG

activity[24, 2, 6]. Furthermore, these changes could increase the difficulty to identify

the related scalp area.
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2.1.2 Approaches using all channels

2.1.2.1 EEG Signals to 2D Matrix in Time Domain

A sample of EEG signals will be converted into a 2D matrix using this method. Each

row contains the values from one electrode in the time sequence, and each column

contains the values from all electrodes at the same time point. For example, Zheng et al

(2015) suggested a deep learning model for EEG categorization based on a deep belief

network (DBN). The model was trained on raw EEG signals organised in a 2D matrix

and obtained 89.21% accuracy in a two-class classification task[35].

Chen et al. suggested a CNN-based model for emotion identification from EEG data

the same year. They also subjected these 2D raw EEG signals to a series of extraction

techniques such as combined wavelet transform, principal component analysis (PCA),

and autoregressive modelling, before feeding the retrieved features into a CNN. For a

four-class classification task, the model attained an accuracy of 87.4%[10].

Schirrmeister et al. developed a CNN-based deep learning model for EEG decoding

and visualisation in 2017. They employed 2D EGG signals as inputs and obtained

87.8% accuracy on a four-class classification task[23]. Song et al.’s hybrid model,

which consists of a convolutional component and a transformer component, attained an

average accuracy of more than 80% for motor imaging tasks in 2022[26].

Overall, the efficacy of organizing raw EEG signals into two-dimensional structures

has been substantiated through the utilization of diverse machine learning models,

ranging from CNN to transformers. These models have provided compelling evidence

regarding the broad applicability of this approach. Furthermore, the classification out-

comes attained through the adoption of this methodology have consistently demonstrated

remarkable levels of accuracy and this has become the popular way of representing

EEG signals among researches in recent years.

Nevertheless, it is noticeable that the performance of models trained on certain

subjects is not sufficiently satisfactory. For instance, in the experiment conducted

by Song et al. [26], the subject 2 exhibited an accuracy that was 14% lower than

the average accuracy across all nine subjects. In the study conducted by Zheng et al.

[35], it was observed that the standard deviation of classification accuracies across

six subjects was approximately 8.5. This finding indicates that the performance of

the poorest-performing model trained on the subject 1 significantly deviated from the

average accuracy.

Given that EEG classification is directly employed in the diagnosis of diseases or
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the facilitation of disability, it is imperative to strive for models that exhibit high average

accuracy and low standard deviation across different subjects. For instance, consider a

scenario where an EEG-based classification model reports high average accuracy in di-

agnosing a neurological condition. A practitioner, relying on this information, proceeds

to diagnose a patient based on the model’s results. However, due to the limitations

of the model and the potential variations in individual subjects, a false diagnosis is

made, leading to inappropriate treatment or unnecessary interventions. Despite the

high average accuracy reported by a model, the model performance on individual cases

can still vary a lot. Consequently, there exists ample room for improvement in either

enhancing the existing models or exploring alternative approaches for representing EEG

signals.

2.1.2.2 EEG Signals in Frequency Domain

Bashivan et al. (2015) suggested a method for producing a feature vector by combining

spectral readings from all electrodes over the same time period[8]. They employed

the Azimuthal Equidistant Projection (AEP) method to project the position of EEG

electrodes onto a 2-D surface while keeping the relative distance between electrodes[8].

The spectral strength within three important frequency bands is computed for each

site, and this information is used to produce topographical pictures for each time

frame[8]. Finally, the pictures were fed into a deep recurrent-convolutional neural

network (RCNN) for classification[8].

Although the study found that this method of organising EEG data produced superior

outcomes than non-deep learning models, the efficacy of this strategy is only partially

demonstrated due to a lack of comparison with machine learning approaches using

different structures of EEG signals.

On the other hand, this approach increased the complexity of data by involving the

locations of electrodes and generating spectral power according to different frequency

bands. The selections of frequency bands here can be a problem when encountering

different classification tasks. Nonetheless, this unique technique illuminated the concept

that retaining the data’s underlying spatial organisation might be advantageous to EEG

categorization.
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2.1.2.3 EEG Signals in Time-Frequency Distribution

In this approach, EEG signals are converted to time-frequency images namely spectro-

grams, which are a visual representation of the spectrum of frequencies of a signal over

time[32]. To create a spectrogram in general, we typically start with a time-domain

signal, such as an audio waveform. This signal is divided into short overlapping seg-

ments, and for each segment, a Fourier Transform is applied to obtain its frequency

spectrum[34]. The result is a series of spectra for each time segment, forming a

three-dimensional representation with time on the x-axis, frequency on the y-axis, and

magnitude or intensity represented by the color or brightness[19].

In 2013, Bajaj et al. focused on classifying sleep stages from EEG signals using the

smoothed pseudo Wigner-Ville distribution (SPWVD) for obtaining the time-frequency

representation of the signals[7]. Their proposed method achieved 88.47% of accuracy[7].

However, a sample data is in the length of 30 seconds, which is quite long compared

to the deep learning methods mentioned in the last section. For example, Song et al.

only used 4-sec samples to train their model and achieved similar results in terms of

accuracy.

In 2014, Fu et al. proposed a seizure detection method using a combination of the

Hilbert-Huang Transform (HHT) and Support Vector Machine (SVM) for analyzing

EEG signals[12]. They decomposed the EEG signals before using Hilbert-Huang

Transform to obtain related spectrogram[12]. Their method showed promising results

in accurately classifying seizure and nonseizure EEG signals[12]. Their method of

using spectrograms may not be transferable to other more complicated classification

tasks. For example, since a seizure is a transient event characterized by an abnormal and

excessive electrical discharge among brain cells[20], their method may not work well

when classifying events when we need to identify the pattern of all abnormal electrical

discharge.

In 2020, Aslan et al. proposed a method to automatically diagnose individuals with

schizophrenia (SZ) using EEG recordings[5]. By transforming raw EEG signals into

spectrogram images and feeding them to a CNN model, they achieved 95% and 97% of

accuracy in Dataset A and B irrespectively[5]. This proposed method with other deep

learning methods using time-frequency EGG data stands out for its simplicity and effec-

tiveness, as it does not require manual feature extraction or extensive preprocessing[5].

However, it has been noticed that, although Time-Frequency Distribution (TFD) meth-

ods allow the analysis of relatively long continuous segments of EEG data with rapidly
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changing dynamics, they require a balance between time and frequency resolution

and may not always provide detailed information compared to pure frequency domain

methods or pure time domain methods[3].

2.2 Summary & Inspiration

The methods covered in the preceding section centre on using various EEG signal

representations for analysis and classification tasks. To simplify and make interpretation

easier, the first set of methods chooses a subset of EEG channels. Although these meth-

ods can increase interpretability and computational effectiveness, they have drawbacks

include the possible loss of useful data and subjectivity in channel selection.

The second set of approaches involves using all channels of EEG signals. The

most promising one is to transform EEG signals into a 2D matrix in the time domain,

where columns represent signals from all electrodes at the same time point, and rows

represent signals from one electrode across all time points. This representation has been

successfully utilized in various deep learning models, such as CNNs and transformers,

achieving high accuracy in EEG classification tasks. However, the performance of

models trained on individual subjects can vary, indicating a need for improvement to

ensure robustness across different subjects.

Representing EEG signals in the frequency domain while keeping the spatial infor-

mation of electrode placements is another method that is interesting. This method entails

placing electrodes in their exact locations on a 2D surface, and then producing feature

vectors for each electrode by combining spectral readings from all electrodes taken over

a predetermined period of time. The time-domain 2D technique, which structures the

data while taking electrode placements into account, might be improved with the use of

this method. Comparing this approach to the frequency-domain approach, this allows a

reduction in the complexity of the data structure. It also avoids the information loss that

could happen when choosing a certain time frame to compute spectral power.

Comparing to the 2D time-domain approach, incorporating the spatial information

of electrodes allows models to process the data with additional contextual informa-

tion. This additional information has the potential to improve the average accuracy

of the models and reduce the associated standard deviation across different subjects.

Consequently, the resulting models may offer enhanced reliability and performance.

Therefore, this literature review inspires us to examine the potential of integrating the

spatial information of electrodes into time-domain EEG data.
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Methodology

The experiments involved two EEG datasets, which underwent several preprocessing

steps. First, the qualified trails were selected and labelled. Then, they were subjected

to band-pass filtering and normalized. Subsequently, the data was transformed into

2D, 3D, and 4D structures. For the baseline models, state-of-the-art models, namely

a CNN model and a conformer model, were selected from previous research papers

(Schirrmeister et al., 2017; Song et al., 2022). To investigate the advantages of using 3D

and 4D data, modifications were made to the CNN model and the conformer model and

then train them on the respective 3D and 4D data for each subject. The results obtained

from these modified models were then compared with the baseline results.

To ensure a fair and valid comparison, the hyperparameters, including learning

rates, were kept the same as those used in training the baseline models. Moreover, the

modifications made to the models were limited to the addition of new structures on top

of the existing baseline models.

3.1 Datasets

Two datasets were utilised in this study. One is the Graz dataset 2a, which was collected

by Graz University of Technology and features EEG recordings from nine subjects

undergoing a cue-based Brain-Computer Interface paradigm with four motor imagery

tasks[9]. The EEG signals were from 22 electrodes. These tasks include left-hand

movement (class1), right-hand movement (class2), both feet movement (class3), and

tongue movement (class4)[9].

The other is EEG Motor Movement/Imagery Dataset[22], which were collected on

64 electrodes from a hundred subjects with four tasks (considering the amount time for

9
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training models, we randomly selected 50 subjects). These are task 1 (open and close

left or right fist), task 2 (imagine opening and closing left or right fist), task 3 (open and

close both fists or both feet) and task 4 (imagine opening and closing both fists or both

feet)[22].

Within the framework of our study, the open accessibility of both datasets presents

a significant advantage, enabling us to conduct comprehensive comparisons of our

model’s outcomes against those of other researchers. Specifically, the Graz BCI Com-

petition Dataset 2a has been leveraged in the studies where our baseline models were

introduced[9]. Notably, this dataset provides meticulous descriptions of each stage of

the recording process down to the second, enhancing our potential to achieve refined

model results[9]. The EEG Motor Movement/Imagery Dataset, in contrast, boasts

a more extensive subject pool compared to the Graz BCI Competition Dataset 2a,

augmenting our ability to substantiate the robustness and broad applicability of our

approach[22]. Divergences in electrode count, sample length, and classification labels

between the two datasets collectively serve as a rigorous testbed to assess the resilience

of our theoretical framework[9, 22].

3.2 Data preprocessing

The EEG recordings underwent several preprocessing stages. Initially, individual trials

corresponding to specific task periods of interest were extracted and isolated from the

continuous EEG data for each run. This extraction refines the models’ focus on relevant

task-related intervals. Subsequently, these extracted trials were standardized to a fixed

duration. This adjustment is essential due to variations in the length of certain recording

segments. A fixed duration aligns with the input requirements of machine learning

models, which need uniform input sizes. Moreover, a band-pass filter spanning from 4

Hz to 40 Hz, as detailed in [27], was applied to the isolated trials. The selection of this

frequency range aligns with established motor imagery task-related frequency bands, as

described in [4], and aims to eliminate extraneous signals outside this designated range.

This standardized approach is a prevalent technique in EEG classification studies and

also mentioned in the studies where our baseline models were originated. By adhering

to this process, we ensure our baseline results can be a valid representation of the

performance of the 2D EGG structure. After the completion of the preprocessing steps,

both datasets were partitioned into training and testing sets, allocating 70% of each

class for training purposes and reserving the remaining 30% for testing evaluation.
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3.3 Data Construction

Constructing 2D data is straightforward. EGG data will be stored as a 2D matrix, with

columns representing all voltages at a given time point and rows representing voltages

from a single electrode over time. Taking the electrodes of the Graz dataset in the upper

graph of Figure 3.1 as an example, the values from electrodes 1-22 at the same time

point will be in the same column.

In contrast, with 3D data, the voltages from all electrodes at each time point create

a 2D matrix, with the position of each electrode respected. Using the middle graph of

Figure 3.1 as an illustration, the values from electrodes 1-22 at the same time point

will be in a matrix with shape (6, 7). The electrode 10 will be at the coordinate (2, 3)

with the electrode 11 at (2, 4). Stacking the 2D matrix by time order results in a 3D

matrix. To show the absence of EEG signals, the empty values in the 3D matrix will

be assigned a value of 0, since the voltage range for EEG data can not be zero since

the brain is functioning constantly [16]. Others might inquire about the possibility of

encoding missing data as null values within the matrix. Nevertheless, incorporating

null values into the input for machine learning models poses programming challenges.

This approach directly leads to running error in the training of the models, when using

Python ML libraries. The two-dimensional matrices can then be stacked along the time

axis to generate a three-dimensional matrix. The reason to do this is to represent the

relative locations between electrodes on a 2D surface.

In the 4D construction, instead of the 2D matrix discussed in the 3D approach, all

voltage values at one time point are placed in a 3D matrix. If the source of signals are

like the ones in the upper graph of Figure 3.1, the 3D matrix will be in the shape of

(6,7,4) with the electrode 1 at (2,3,0), the electrode 11 at (2,4,1) and the electrode 12

at (2,5,2). In other words, as indicated in the lower graph of Figure3.1., electrode 10

will be the centre of a two-dimensional matrix at the top level of the three-dimensional

matrix, and the four neighbouring values to the central electrode will appear in an a

two-dimensional matrix at the second top level of the three-dimensional matrix. As the

distance from the centre electrode grows, the level of 2D matrices for voltage values

drops, and 0 is utilised to represent empty values. As a result, a 3D matrix for a single

time point is produced. When the time domain is included, the 3D data is transformed

to 4D data by stacking the 3D matrices along the time axis, each 3D matrix representing

a different time point. This is done to depict the relative positions of the electrodes in

3D space. As a result, EEG data provides more spatial information.
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Figure 2: Timing scheme of the paradigm.

left hand, right hand, foot or tongue) appeared and stayed on the screen for
1.25 s. This prompted the subjects to perform the desired motor imagery
task. No feedback was provided. The subjects were ask to carry out the
motor imagery task until the fixation cross disappeared from the screen at
t = 6 s. A short break followed where the screen was black again. The
paradigm is illustrated in Figure 2.

Data recording

Twenty-two Ag/AgCl electrodes (with inter-electrode distances of 3.5 cm)
were used to record the EEG; the montage is shown in Figure 3 left. All
signals were recorded monopolarly with the left mastoid serving as reference
and the right mastoid as ground. The signals were sampled with 250 Hz and
bandpass-filtered between 0.5 Hz and 100 Hz. The sensitivity of the amplifier
was set to 100 µV. An additional 50 Hz notch filter was enabled to suppress
line noise.

Figure 3: Left: Electrode montage corresponding to the international 10-20
system. Right: Electrode montage of the three monopolar EOG channels.

In addition to the 22 EEG channels, 3 monopolar EOG channels were

2

Table 1

0 0 0 F22 0 F23 0 F24 0 0 0

0 AF25 0 AF26 0 AF27 0 AF28 0 AF29 0

0 F30 F31 F32 F33 F34 F35 F36 F37 F38 0

0 FT39 FC1 FC2 FC3 FC4 FC5 FC6 FC7 FT40 0

T43 T41 C8 C9 C10 C11 C12 C13 C14 T42 T44

0 TP45 CP15 CP16 CP17 CP18 CP19 CP20 CP21 TP46 0

0 P47 P48 P49 P50 P51 P52 P53 P54 P55 0

0 PO56 0 PO57 0 PO58 0 PO59 0 PO60 0

0 0 0 O61 0 O62 0 O63 0 0 0

0 0 0 0 0 I64 0 0 0 0 0

0 0 0 1 0 0 0

0 2 3 4 5 6 0

7 8 9 10 11 12 13

0 14 15 16 17 18 0

0 0 19 20 21 0 0

0 0 0 22 0 0 0

0

0 1 0

2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18

19 20 21

22

1

Figure 3.1: The upper graph is an illustration for the locations of electrodes for the Graz

dataset; the middle graph is an illustration of how the electrodes locate in a 2D matrix of

the 3D structure; the lower graph is an illustration of how the electrodes locate in a 3D

matrix of the 4D structure

3.4 Model Structures

3.4.1 Baseline 2D Models

• CNN: Schirrmeister et al. introduced a convolutional neural network (CNN)

design tailored for EEG decoding. Their CNN design is made up of several

layers, including convolutional, pooling, and fully linked layers[23]. The study
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demonstrates that this CNN architecture attains exceptional performance on

multiple EEG datasets, establishing the efficacy of deep learning in EEG decoding

and positioning it as a leading approach in the field.

• Conformer: A new framework has been introduced for end-to-end EEG classi-

fication, which integrates Convolutional Neural Networks (CNNs) and Vision

Transformers (ViTs) [27]. This framework comprises three main elements: a

convolutional component, a self-attention component, and a fully-connected clas-

sifier. The final stage involves a concise classifier with multiple fully-connected

layers to generate the classification outcomes. The primary objective of this

proposed framework is to harness the advantages of both CNNs and Transformers

while addressing their respective limitations [27].

3.4.2 3D Models

Initially, our approach involved building models by leveraging existing video classifica-

tion models. This choice was motivated by the fact that these models are specifically

designed to handle 3D inputs, and the field of video classification is well-established,

providing ample resources for learning. However, we soon realized that video classifi-

cation models tend to be considerably larger compared to our baseline models or other

models used in EEG classification. The feasibility of training such large models with

limited EEG data became a matter of concern.

Furthermore, the video classification model can identify certain regions for classi-

fication and neglect the area beyond the regions. However, because the signals from

all electrodes are all interconnected, it is best for our model to focus on the full data.

Furthermore, rather than researching innovative model designs, our major goal is to

illustrate the possibilities of the new data structures. To accord with this purpose, it

would be more helpful to adjust the baseline models and minimise model differences,

resulting in better support for our desired goals.

3.4.2.1 autoencoder + baseline models

The autoencoder is a neural network architecture designed to compress and reconstruct

input data, effectively learning a compact representation of the original data. In our

specific implementation, the autoencoder takes a 2D matrix at each time point in the

structured 3D data and aims to compress it.
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Table 3.1: Encoder and Decoder Layers for Graz Dataset

Part Layer Kernel Size

Encoder nn.Conv2d+nn.ReLU (3, 2)

Decoder nn.ConvTranspose2d+CustomActivation (3, 2)

The structure of our autoencoder as shown in Table 3.1 involves a single 2D convo-

lutional layer for both the encoder and decoder. We experimented with different models

and found that adding more layers increased the loss, indicating poorer performance. It

is possible that the small size of the 2D input and the presence of many zero values led

to this result. Therefore, we opted for a simpler architecture with a single layer for each

component.

Regarding the choice of the custom activation function for the decoder layer, we

found that our EEG data typically ranges from approximately -20 to 20, after normaliza-

tion. Standard activation functions would not cover this range adequately, resulting in

unmanageable model loss. To address this, we introduced a custom activation function

m * torch.tanh(x). This approach allows a range between -m and m. The parameter

m is the larger absolute value between the maximum and minimum values from a

certain subject. By employing this custom activation function in the decoder layer,

our autoencoder can better handle the EEG data’s value range, leading to improved

reconstruction performance and mitigating issues with model loss.

The autoencoder is trained to compress a 2D matrix from a 3D sample into a 2,x

matrix. This compressed matrix is then flattened into a 1D array with 2x elements.

These flattened arrays from the same 3D sample are then stacked together in the order of

time, forming a 2D matrix. This transformed data can be processed by baseline models.

The decision to flatten the compressed matrix into a 2D array instead of a 1D array is

to minimize the loss in the autoencoder, as compressing directly to a 1D array would

result in a larger loss. At the same time, we aware of the increased training time from

the autoencoder and the possible loss of information in the flattening step.

3.4.2.2 3D convolution + baseline models

These modified models consist of additional layers in Table 3.2, which will be placed on

the top of two baseline models. The input 3D data from the Graz dataset for these models

have a shape of (batchsize, 1, 6, 7, 1000). After passing through the convolutional

layers described in Table 3.2, the output shape will be (batchsize, 40, 1, 976). This
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output is obtained by applying the convolutional operations on the input data, resulting

in feature maps with 40 channels and dimensions of 1x976. Next, the data is squeezed

along dimension 2, resulting in a shape of (batchsize, 40, 976). Squeezing eliminates

the singleton dimension and retains the feature maps with 40 channels and a length of

976.

Table 3.2: Description of 3D Convolutional Layers

Layer Input Channels Output Channels Kernel Size Padding

1 1 40 (1, 1, 25) (0, 0, 0)

2 40 40 (6, 7, 1) (0, 0, 0)

The rest of the models then process the compressed data. These baseline models

use the processed input shape of (batchsize, 40, 976) for further training. In comparison

to the semi-supervised technique, we can prevent information loss when training the

encoder and the flattening phase. As a result, we have a greater chance of outperforming

the baselines. However, there is fear that the 3D convolutional layers will not be

adequately trained since the model structure grows intricate and the quantity of samples

remains constant.

3.4.3 4D Model

The 4D model is likewise semi-supervised, with its encoder immediately converting 4D

input data to 2D data. The autoencoder’s encoder, as illustrated in Table 3.3, consists of

two 3D convolutional layers. The input data has the following format: (batchsize, 1000,

6, 7, 4), with 1000 indicating the time axis.

Table 3.3: Encoder Layers

Layer Input Channels Output Channels Kernel Size

3Dconv Layer 1 1000 1500 (1, 1, 4)

3Dconv Layer 2 1500 1000 (6, 1, 1)

The encoder uses two 3D convolutional layers to compress the input data into a form

(batchsize, 1000, 7). To guarantee effective training, this autoencoder uses a custom

activation mechanism. The baseline models then process the compressed data with the

shape (batchsize, 1000, 7) to execute subsequent tasks.
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3.5 Training & Evaluation Metrics

In our experimentation, we ensured a fair comparison between the 2D structure and our

proposed structures by maintaining consistency in the training process. For conformer-

related models, the number of training epochs was fixed at 150, while for cnn-related

models, it was set to 100. Additionally, we kept the hyperparameters such as learning

rate and training techniques like data augmentation the same as those used in the baseline

models. By doing this, we aimed to isolate the impact of the structural modifications

on model performance. The focus was on evaluating the potential of our proposed

structures objectively and comprehensively.

To assess the models, we employed several evaluation metrics. The average highest

accuracy across all subjects allowed us to evaluate overall performance. Moreover, ana-

lyzing the standard deviations among all subjects helped us understand the consistency

and reliability of the models’ predictions. Furthermore, we conducted a detailed exami-

nation of how specific models performed on certain subjects. This analysis provided

valuable insights into potential variations.



Chapter 4

Results & Evaluation

4.1 Comparison between Baselines and Performance of

Proposed Structures

The results presented in the upper plot of Figure 4.1 showcase the average highest

accuracy achieved by different models on the Graz dataset. The vertical error bars,

representing the standard deviation, provide insights into the consistency of each model’s

performance.

The baseline models, ‘conformer 2D’ and ‘cnn 2D,’ were used as reference points.

Interestingly, the models trained on the proposed data structures demonstrated a perfor-

mance that closely matched the baselines. This suggests that the new data structures,

particularly the ‘semi conformer 3D’ and ‘3DConv cnn’ models, have the potential to

be effective alternatives to the traditional 2D representations.

However, a notable exception was the ‘semi conformer 4D’ model, which displayed

significantly lower accuracy compared to all other models. The reason behind this lower

performance is discussed later in this chapter.

Surprisingly, the ‘3DConv conformer’ model emerged as the best performer in

this evaluation. With an average accuracy of 0.802 and a standard deviation of 0.129,

it outperformed both baseline models. This finding indicates that the proposed 3D

data structure has an effect, leading to improved predictive capabilities and enhanced

generalization.

The lower plot in Figure 4.1 presents the average highest accuracy achieved by

different models on the Motor dataset, with the error bars representing the standard de-

viation. The results displayed in this figure are highly promising and indicate significant

17
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Figure 4.1: Performance of Models

improvements over the previous evaluation.

Among the models, the ‘3Dconv conformer’, ‘semi cnn 3D’, and ‘3Dconv cnn’

models surpassed their associated baselines. Notably, the ‘3Dconv conformer’ model

emerged as the top performer, achieving an accuracy of 0.622 across 50 subjects. This

result is particularly positive as it surpassed its corresponding conformer baseline by 0.01

on the average. Moreover, the ‘semi cnn 3D’ model also surpassed its corresponding

CNN baseline by 0.16 on the average. Thus, they all showcased the potential of

incorporating spatial information in EEG classification.
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Figure 4.2: The left one is the illustration from the Motor dataset, and the right one is the

illustration for our transformed data structure.

Moreover, by comparing the general performance between the two datasets, it is

obvious that the benefit of 3D data in the Motor dataset was better presented than in the

Graz dataset. Notably, the Graz dataset’s samples have 1000 time points, whereas the

Motor dataset’s samples only have 646 time points in the experiments. This information

and the different performances suggest that the spatial information in the new data

structure was helping the EGG classification; and it is possible that the impact is more

obvious when the length of time points in a sample is relatively short. This feature is

aligned with the practical application in BCI, where it needs the classification models

to respond instantly. Additionally, the Motor dataset included data from 50 subjects,

compared to only 9 subjects in the Graz dataset. This performance further emphasizes

the general benefits and robustness of the proposed 3D data structure across diverse

datasets and subject populations.

Furthermore, the 3D structure of the data has demonstrated a certain level of toler-

ance to inaccuracies in the relative electrode locations. Despite not strictly adhering to

the 2D illustration for the Motor dataset as shown in Figure 4.2, the models trained with

the 3D structure data have shown superior performance compared to the baseline mod-

els. This finding suggests that the 3D structure is highly applicable and generalizable
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Figure 4.3: The upper plot and the

lower plot are the training process of

the baseline conformer model and the

‘3Dcon conformer’ model on subject 1

from the Graz dataset.

Figure 4.4: The upper plot and the

lower plot are the training process of the

‘semi cnn 3D’ and the baseline CNN

model on the same subject from the Mo-

tor dataset.

across various situations. However, it also raises the question of whether increasing the

accuracy of electrode locations in 3D data may lead to even a better model performance.

Despite all the advantages mentioned above, the performance of our 3D structure is

not optimal, particularly during the training process of the ‘3Dconv conformer’ model,

which appeared to be less stable compared to the ‘conformer 2D’ baseline model, as

illustrated in Figure 4.3. We suspect three potential reasons for this behavior.

Firstly, inaccuracies in the 3D structure might have affected the model’s performance.

The electrode placements on the subject’s scalp, conducted by practitioners, might not

have strictly followed the pattern shown in Figure 3.1. Consequently, when constructing

the 3D data, we adhered to the relative electrode locations in the figure, which could

have introduced inaccuracies into the model.

Another possible reason lies in the data augmentation process used in the conformer

model. The author of the model employed a data augmentation method known as ‘the

segmentation and reconstruction approach’ [26]. This technique involves segmenting

samples into N parts with the same time domain length and randomly concatenating

them with parts from other samples while preserving the original order in time. However,
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Figure 4.5: The 2D matrix at the same time

point in the proposed 3D structure.
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Figure 4.6: The new 2D matrix at the same

point to reduce the number of added zeros.

when adapting the conformer models for our purposes, we ensured that the segmentation

occurred within the time domain. Moreover, the training process of non-augmentation

CNN models with 3D data still exhibited relative instability, as seen in Figure 4.4, where

both models lacked data augmentation. Thus, this reason is less likely.

The third reason relates to the addition of zeros during the construction of 3D data

from the 2D data. In our proposed method to construct the 3D data, as shown in Figure

4.5 (where the gray square represents the 2D matrix at the same time point), values from

the same time point were used to create a (6, 7) matrix, resulting in 20 added zeros. This

means that the number of added zeros is nearly equal to the number of non-zero values

in the 3D data, potentially contributing to the training process instability. Alternatively,

we could have adopted the matrix construction approach depicted in Figure 4.6, where

the resulting matrix would have been much more compact, with only 3 added zeros.

These suspected reasons warrant further investigation and potential adjustments to

improve the stability and performance of our 3D structure.

4.2 P-values of the Performance Results

To examine the robustness of the improvement shown by the 3D data structure, p-values

were calculated between the performance of the baseline models and their corresponding

models using 3D EEG data. The null hypothesis for this evaluation is that the 3D data

improved the model performance by chance, and the alternative hypothesis is that
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Table 4.1: P-values

Dataset 2D Baseline 3D Model p-value

Graz conformer 2D 3Dconv conformer 0.09

Graz cnn 2D 3Dconv cnn 0.58

Motor conformer 2D 3Dconv conformer 0.07

Motor cnn 2D semi cnn 3D 9e-05

the improvement is not occurred by chance. Since we wanted to evaluate the groups

of accuracy from the 3D data and 2D data, this satisfied the conditions of a t-test,

which are comparing means, involving two independent groups and a small sample size.

Therefore, a two-tailed test was conducted to further calculate the p-values. The table

4.1 presents the calculated p-values for each dataset and model comparison.

The outcomes presented in Table 4.1 offer intriguing insights into the significance

of the advancements realized by the 3D models. When examining the Graz dataset,

both the conformer 2D and 3Dconv conformer models yield a p-value of 0.09, while

the cnn 2D and 3Dconv cnn models exhibit a p-value of 0.58. This means that we have

9% chance to reject the null hypothesis in the setting of the first comparison and 58%

chance in the other comparison setting. Notably, both of these p-values are relatively

high in comparison to the conventional significance threshold of 0.05. Therefore, these

values are not enough to reject the null hypothesis.

Shifting our attention to the Motor dataset, the baseline models, conformer 2D and

cnn 2D, result in p-values (0.79 and 9e-05, respectively) when contrasted with their

corresponding 3D counterparts, 3Dconv conformer and semi cnn 3D. Remarkably, the

p-value associated with the cnn 2D vs. semi cnn 3D comparison falls below 0.01. This

lower p-value indicates that the observed improvement is not an outcome of chance, but

rather a consequence of the novel data structure.

Considering the fact that we conducted the four p-values, there was the probability of

obtaining at least one false positive result. To control this effect, Bonferroni Correction

was applied, which reduced the conventional significance threshold to 0.125. It is

obvious that only one value is lower than this significance threshold and successfully

reject the null hypothesis.

Therefore, we can draw the preliminary conclusion that the integration of a 3D

structure is a promising avenue for EEG classification but lack of a solid proof. It

needs more experiments and data to verify its general benefit to EEG classification. In
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general, the results does establish the potential value of explicitly preserving the spatial

information of electrodes within the EEG data structure.

4.3 Comparison between 3DSemi and 3Dconv models

As depicted in Figure 4.1, the models equipped with 3D convolutional layers was

more likely to exhibit superior performance compared to the models with autoencoders,

particularly when their associated baseline models achieved satisfactory results. The

lower performance of the semi models could be the result of the information loss during

the encoder training and the flattening step.

Additionally, our initial concerns, as outlined in Section 3.4.2.2, regarding the 3D

convolutional layer’s impact did not happen. We attribute this to the fact that the added

values in the 3D structure were zeros, thereby mitigating any adverse effects stemming

from increased complexity in the data structure. This finding suggests an encouraging

trend that integrating 3D convolutional layers maybe align better with our proposed 3D

structure. However, further experiments is needed to confirm it.

4.4 Explanation about the Performance of 4D data

The ’semi conformer 4D’ model exhibits an average highest accuracy of 0.308. It

is quite low since this slightly surpasses the accuracy achieved by random guessing

(0.25). A closer examination of the training accuracy reveals that the increase of training

accuracy is limited from 0.2 to 0.4. This observation suggests a concerning trend: the

model appears to struggle in effectively learning from the training data.

Two possibilities could account for this. Firstly, the structure of the model might

hinder its capacity to obtain meaningful information from the data. However, it is

important to note that other models employing the same conformer architecture have

demonstrated an aptitude for learning. Thus, this explanation becomes less likely.

The second plausible explanation revolves around the integrity of the data during its

transformation into a 4D format. Therefore, we examined our transformation process

and found where the potential destruction happened. In our proposed 4D structure,

the top electrode was placed at the center of a 2D matrix, and its four surrounding

electrodes on the scalp were located in a lower matrix surrounding the projection of the

top electrode onto this lower matrix. This arrangement treated the horizontal and vertical
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distances between adjacent electrodes as equal. However, in reality, the horizontal and

vertical distances between two adjacent electrodes on a 3D scalp are different.

This discrepancy might explain why the performance of the 4D data structure

contradicts the results seen with the 3D data structures, which showed promising

improvements over the baselines. To evaluate this reason, a potential solution could be

to introduce zero paddings on the horizontal levels. By doing so, the difference between

horizontal and vertical distances can be respected.

Applying zero paddings alone, however, is insufficient to fully use the capabilities

of the 4D data structure because the datasets only show the electrode positions in a

2D representation. In order to generalise to a 3D visualisation of the positions of the

electrodes, a new EEG dataset must be created that precisely documents the locations

of electrodes for each participant in 3D.

Researchers would have a more complete and accurate representation of 4D EEG

data if they created a new EEG dataset that incorporates 3D information about electrode

positions. With the use of this new dataset, future research might examine the possible

advantages of the 4D data structure and learn more about how spatial information affects

EEG categorization tasks.
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Conclusion

This study aimed to explore the potential benefits of explicitly adding spatial information

of electrodes in EEG data through the introduction of two novel data structures: a 3D

structure and a 4D structure. The 3D structure preserved the locations of the projected

electrodes on an imaginary 2D plane parallel to the floor, while the 4D structure

maintained the spatial information of the electrodes on the 3D scalp. The hypothesis

was that both the 3D and 4D structures could outperform the baseline models, with the

4D structure expected to perform even better due to its inclusion of more comprehensive

spatial information.

To test this hypothesis, compatible models were created and trained using the

proposed 3D and 4D data structures, and their performances were compared with two

baseline models on EEG classification tasks using the Graz and Motor datasets. The

results were highly encouraging, as the proposed 3D data structures surpassed the

baseline 2D models, demonstrating the potential of incorporating spatial information to

enhance predictive capabilities and generalization in EEG classification.

5.1 Limitation & Future Work

There are areas of improvement for the 3D structure. Firstly, constructing 3D data could

have been more precise by closely adhering to the 2D dataset illustrations. Secondly,

optimizing the 3D data’s efficiency by reducing unnecessary zero values would have

enhanced its compactness. Lastly, while baseline model performance aligned with

original papers [23, 26], substituting the CNN model with a contemporary one could

have bolstered the persuasiveness of our conclusions, highlighting the relevance of our

findings in light of recent advancements.

25
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Regarding to the 4D structure, while the 4D structure was expected to outperform

the 3D structure because it included more spatial information, the ’semi conformer 4D’

model displayed lower accuracy compared to all other models. This unexpected outcome

could be attributed to inaccuracies in the representation of the interrelationship between

electrode locations in the 4D structure. To address this issue and potentially improve the

4D structure’s performance, the study suggested exploring solutions such as introducing

zero paddings to preserve accurate spatial information and creating a new dataset is

essential, which has a 3D illustration of the locations of the electrodes.

The comparison between the ‘semi’ models with autoencoders and the ‘3Dconv’

models with 3D convolutional layers favored the latter, suggesting that it is possible that

integrating 3D convolutional layers aligns better with the proposed 3D data structure,

leading to an area of further study.

5.2 Conclusion

Based on the experimental findings, the 3D structure demonstrated improvements across

diverse datasets and subject populations. This is evident from the promising results on

the Graz and Motor datasets, despite variations in electrode count and data length.

The outcomes were further evaluated using p-values. The resulting p-values indicate

that only one setting can successfully prove the improvement is not happened by

chance. Consequently, our experiment only partially proves the advantage of explicitly

preserving electrode spatial information in EEG data structure over the 2D structure.

However, these results still showed the potential of explicitly preserving the locations

of the electrodes in the structure of EEG data. Further experiments are warranted to

thoroughly explore its benefits.
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