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Abstract

Recommender systems play a crucial role in various sectors, from entertainment apps

to e-commerce platforms, by offering personalized recommendations based on users’

preferences and historical interactions. However, many of these systems primarily

focus on predicting the immediate next action of users, potentially missing out on

complex patterns in users’ behaviors. This thesis presents an in-depth exploration of

sequential recommendation systems, with the primary goal of improving the prediction

of future user interactions. The research expands upon the work of Pancha et al.

(2022), offering a divergent approach by focusing on the sequential order of future

interactions, rather than their explicit temporal context. Using the SASRec model as

a foundation, we introduce several training objectives and techniques, and evaluate

their effectiveness on the widely-used MovieLens-1M dataset. Our findings reveal that

our Integrated All Action Prediction modeling approach, combined with the Sampled

Softmax Uniform loss, outperforms other methods in predicting future user interactions.

This hybrid approach integrates the strengths of both Next Item Prediction and long-

term All Action Prediction, achieving superior performance across several key metrics,

including NDCG@10, Hit@10, and Kendall’s Tau. The study also investigates the

impact of various training techniques and the size of future prediction windows. Among

these, Teacher Forcing particularly stands out for its proficiency in predicting a well-

ordered sequence of future items. Additionally, extending the future prediction window

size indicates potential long-term benefits in recommendation accuracy. Despite the

significant contributions of this research, it opens new avenues for future work. These

findings offer valuable insights and pave the way for the development of more effective

and robust sequential recommendation systems.
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Chapter 1

Introduction

In recent years, recommender systems have gained significant importance across enter-

tainment apps, e-commerce platforms, and other service domains [27, 30, 47]. These

systems play a crucial role in offering personalized recommendations to users, leverag-

ing their preferences, historical interactions, and behavioral data [24, 30]. The impact

of these systems extends to enhancing customer satisfaction, driving subscription rates,

and fueling business growth in diverse sectors like online retail (e.g., Amazon) and

streaming services (e.g., Netflix) [24, 30]. However, it is worth noting that many existing

recommendation systems predominantly focus on predicting users’ next action based

on the sequential patterns observed in their past behaviors, while largely neglecting the

consideration of their further future behaviors [24, 17, 18, 19, 27, 47, 54]. This prompts

the need for novel approaches that can account for both the historical sequential patterns

and the potential sequential future behaviors of users.

By incorporating the sequential patterns of user behavior, an improvement can be

achieved in the accuracy and timeliness of recommendations, particularly in contexts,

such as e-commerce, where users often make purchases in a sequential manner [55,

24, 56, 54]. A key objective within the field of sequential recommender systems

is to predict the ordered sequence of users’ future interactions, as it holds immense

potential in enhancing the quality of recommendations provided to users. For instance,

observing that users who purchase phones often eventually acquire related accessories

provides insights into their potential subsequent behaviors [24]. Gaining insights into

users’ future interactions and their sequential structure can significantly enhance offline

recommendations, optimizing system performance and reducing the need for frequent

model retraining and deployment [33].

In the context of sequential recommender systems, various approaches have been

1



Chapter 1. Introduction 2

explored, ranging from simple Markov Chain models to advanced Transformer-based

methods [4, 56, 24]. Notably, many of these methods mainly focus on predicting a

user’s immediate next behavior [47, 27, 54, 19, 24]. While effective in some scenarios,

this approach might fall short in capturing the evolving preferences of users over longer

time spans, and can demand significant computational resources due to frequent model

retraining and deployment [19, 33, 24]. To address these limitations, Pancha et al.

proposed a novel approach in their Pinnerformer paper for predicting long-term user

engagement [33]. However, their approach was designed and evaluated within a specific

data environment, which may limit its performance to other contexts [33]. Moreover,

while their method captures long-term user engagement, it doesn’t explicitly consider

the sequential order of future interactions, which is a crucial aspect in understanding

user behavior [33].

1.1 Research Goal

Building upon the insights from the Pinnerformer paper, our research aims to investigate

the potential benefits of employing window-based training objectives in the context

of sequential recommender systems. Our research takes a novel approach by not only

predicting the next user interactions but also considering the order of all interactions

within a specific K-interaction window. We also experiment with varying window sizes

to understand their impact on the model’s performance. To assess the ordering of the

predictions, we employ the Kendall’s Tau metric, a robust measure that evaluates the

correspondence between predicted sequence and true ordered sequence of interactions

within the K-interaction future window. In addition, we propose innovative training

objectives, such as Integrated All Action prediction, and employ training techniques

including auto-regressive to enhance the training process. While the Pinnerformer has

provided valuable insights, it is important to note that its findings were limited to a

specific data environment. To ensure a comprehensive understanding of these techniques,

we recognize the need for evaluation in common data environments. Therefore, we

conduct our experiments on the MovieLens 1M dataset, which offers a relatively dense

representation compared to commonly used benchmark datasets for recommender

system performance evaluation [19, 10]. However, it is important to acknowledge that

the MovieLens dataset still exhibits sparsity when compared to the dataset specifically

designed for evaluating Pinnerformer-based approaches [33].

In light of this, our research attempts to answer the following research questions:
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[RQ1] Can window-based training objectives improve the accuracy of predicting future

user interactions and generate well-ordered future predictions within a given window

in sequential recommender systems?

[RQ2] How do specific training techniques and temporal embeddings impact the

accuracy and ordering of future predictions in sequential recommender systems?

[RQ3] How does the choice of window size impact the performance of the model in

sequential recommender systems?

Our findings highlight that our proposed Integrated All Action Prediction model,

when combined with the Sampled Softmax Uniform loss, stands as a robust strategy

for future user interaction predictions. This hybrid model outperforms others in our

experiments, demonstrating superior performance in the NDCGavg@10 and Hitavg@10

(averaged over a future window size K), as well as the Kendall’s Tau metrics, compared

to a next-item training objective. Furthermore, among the various training techniques we

explored, the Teacher Forcing technique exhibits potential. Notably, the hybrid model

together with Teacher Forcing, outperforms all other models in the Kendall’s Tau metric,

suggesting it as a particularly promising direction for future research in predicting

well-ordered sequences of future items. Lastly, our experiments reveal that expanding

the future prediction window size can offer long-term benefits in recommendation

accuracy, despite minor trade-offs in the immediate prediction performance. These

insights collectively provide valuable guidance for future developments in the realm of

sequential recommendation systems.

1.2 Report Structure

The report is structured as follows: Chapter 2 presents the background on traditional

and deep learning-based recommendation systems. Chapter 3 details our methodology,

including our model’s architecture and learning approach, and the evaluation process.

Chapter 4 discusses the experiments conducted and their results, addressing each

research question. Finally, Chapter 5 concludes the report, summarizing the findings,

limitations, and potential future work.



Chapter 2

Background

Recommendation systems have become a cornerstone of personalized services in

the digital age, and their significance has been extensively studied in the literature

[30, 6]. These systems aim to provide personalized recommendations by analyzing and

understanding individual behaviors and preferences [30, 24].

Historically, recommendation systems primarily relied on either collaborative filter-

ing or content-based approaches [56, 6, 42, 24]. Collaborative filtering operates on the

principle of using the collective preferences or behaviors of a group of users to suggest

items or make predictions for individual users [37, 42, 24]. Yet, as user preferences

evolve over time, recommender systems need regular retraining to keep up with these

changes [37, 42, 24]. On the other hand, content-based filtering recommends items

similar to those an individual has shown interest in the past, utilizing both explicit (e.g.,

purchases) and implicit (e.g., clicks) interactions [42, 45, 24]. A common assumption

in these systems is that all interactions have equal significance in understanding user

preferences [6, 24]. However, in real-world scenarios, users’ future behaviors are

influenced not only by their long-term preferences but also by their current intentions

[6, 56, 24].

Recognizing these challenges, modern research has pivoted towards sequential

recommender systems. These systems draw on both long-term and short-term changes

in user behavior, reflecting the dynamic nature of user preferences [30, 27, 33, 47, 6, 24].

By integrating temporal and sequential data, they delve deeper into user behavior

patterns, leading to more precise and reliable recommendations [6, 24].

4



Chapter 2. Background 5

2.1 Traditional Approaches

In the realm of recommendation systems, certain methods have been foundational

in shaping the field’s early strategies. Two of the most prevalent approaches are

collaborative filtering (CF) and Markov Chains (MC) [24]. As aforementioned, CF

leverages the aggregated preferences of a group of users to generate recommendations

for individual users [43]. To address evolving user behaviors, models are often re-trained

to capture new preferences [37, 55, 43]. Bayesian Personalized Ranking (BPR), a

commonly used CF method in the literature, employs matrix factorization to understand

personalized rankings from user interactions [19, 27, 17, 34, 24]. However, CF methods

can struggle to perform adequately due to issues such as data sparsity and the cold-start

problem, which pertains to new users with limited data [24, 30, 37].

Markov Chain methods have been introduced as an alternative approach to capture

sequential behaviors [30, 55, 4, 24]. Models based on MC can effectively predict the

next item in a sequence by modeling short-term interests in sequential patterns using

context information, as exemplified by the Fossil model [13, 55, 24]. However, MC

models have their own limitations, as they only account for correlations between closely

related elements and fail to capture long-term user preferences and temporal changes

[55, 35, 24].

2.2 Deep Learning Approaches

Deep learning methods have recently been recognized as potential solutions for over-

coming the limitations of traditional methods and enhancing personalization in the field

of recommendation systems [47, 27, 30, 18, 19, 17, 33, 6, 24]. Techniques such as

Multi-layer Perceptrons (MLPs) have been extensively employed [44], but their use is

decreasing in favor of more specialized architectures that are better suited to handle

complex patterns and address issues like the vanishing gradient problem [40, 55].

In the literature, Convolutional Neural Networks (CNNs) have also been used to

enhance recommendation outcomes by extracting features from a range of data sources,

including text, images, and audio [55, 44, 14, 9, 24]. The Caser model, introduced by

Jiaxi Tang et al., is an example of a sequential recommendation system that utilizes

CNNs to generate low-dimensional embeddings of user-item interactions [41, 24].

Nevertheless, it has been observed that the effectiveness of CNNs can be limited by

insufficient data, which restricts their ability to capture significant information [55, 24].
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Recurrent Neural Networks (RNNs) have proven to be highly effective in recommen-

dation tasks, mainly due to their ability to handle dynamic series data [55, 5, 48, 58, 24].

In order to accurately capture and weight long-term preferences, variants of RNNs, such

as Long Short-Term Memory (LSTM) [58, 57] and Gated Recurrent Units (GRU) [29],

have been introduced, which utilize gating mechanisms [55, 24].

Hidasi et al. introduced GRU4Rec, a model that leverages GRU to effectively model

the sequences of user-item interactions [17, 24]. The researchers subsequently proposed

an enhanced system, GRU4Rec+ [16], which incorporated new loss functions called

TOP1-max and BPR-max, along with an improved sampling strategy to increase the

performance [56, 24]. Specifically, the authors successfully combined the Top1-max

loss, designed to maximize the probability of predicting the correct item, and the

BPR-max, aimed at maximizing the ranking of the correct item [17, 16, 24]. However,

despite the demonstrated effectiveness of RNN-based models in recommendation tasks,

they still carry significant limitations, such as their difficulty in understanding deeper

patterns in longer sequences [55, 56, 24].

2.2.1 Attention mechanisms

Attention mechanisms have exhibited their effectiveness in various fields such as ma-

chine translation [3] and image captioning [52, 24]. The fundamental concept under-

lying these mechanisms is the identification of the most relevant components of the

input that contribute to the final output [27]. Prior to the advent of the Transformer

architecture, LSTM-based systems employed attention to enhance their performance,

capturing relevant parts of a sequence without needing to rely on the Transformer’s

mechanisms [49]. However, the Transformer architecture, introduced by Vaswani et al.,

eliminated the need for sequential processing, allowing for better handling of long-term

dependencies and parallel processing of data [46]. Attention mechanisms have since

been incorporated into sequential recommender systems to discern the most relevant

items based on users’ historical behavior [27, 30, 55, 33, 24].

The Self-Attentive Sequential Recommendation (SASRec) model proposed by

Kang et al., leverages the Transformer architecture and highlights the potential of

attention mechanisms in sequential recommender systems [19]. This model, which is

often utilized as an advanced baseline in the field’s recent studies [27, 55, 33], tries

to predict the next interactions of users, given their action sequences [19]. Their

strategy with self-attention mechanism allows the model to balance users’ short-term
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intentions and long-term preferences, thereby enhancing the model’s ability to generate

recommendations [19, 6, 24].

Another sequential recommendation model that has gain attention in the field is

BERT4Rec [38]. The model also leverages the transformer architecture to elevate its

ability to make accurate recommendations [24]. It utilizes a bidirectional model trained

to handle sequential data using the Cloze task [38, 24]. The Cloze task is a technique

where certain items in a sequence are masked, and the model is trained to predict these

masked items, thereby improving the model’s overall performance [38, 24].

Li et al. in TiSASRec study, improved upon SASRec by integrating time intervals

between sequential items [27, 6, 28, 24]. Without this integration, all items would be

treated as equidistant, an approach not suitable for recommendation systems where the

timing of interactions can provide significant information [27, 6, 28, 24]. TiSASRec

creates a relational matrix for items, predicated on the time intervals between each

pair of items in a user’s historical records [27, 6, 24]. Nevertheless, TiSASRec has

limitations in comprehending variations between timestamps in different contexts

and disregards the consistent patterns in similar timestamps [27, 56, 24]. To address

this, Zhang et al. proposed TAT4SRec [56]. TAT4SRec adopts an encoder-decoder

model that separates timestamps and interacted items to enhance temporal information

processing [56]. Additionally, TAT4SRec utilizes two embedding modules, including

a window-based function to maintain continuous dependencies in similar timestamps

[56, 24]. To overcome the computational restrictions of RNN-based systems, Sun

et al. [39] utilized a transformer model in their research to accelerate training time

and identify the relationship between items irrespective of their distance [6, 24, 39].

Thereafter, Zhang et al. developed a Time-Aware Long- and Short-term Attention

Network (TLSAN) model that outperformed several leading baselines [55]. The model

incorporates personalized time-aggregation to encapsulate users’ individual long-term

habits and employs attention mechanisms to capture short-term behaviors of users

[55, 24].

2.2.2 Window-based Predictor

Pinnerformer was proposed by Pancha et al., aiming to tackle the issue of handling

changeable sequence interactions, and deploying large models in production [33, 24].

Building on their prior work in the Pinnersage study[32], the authors presented a

novel window-based prediction approach. This research aligns closely with our goals,
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especially the aim to train models for predicting future user interactions over a K-sized

window. Pancha et al. adopted a 28-day training window in their methodology, which

proved optimal even when evaluation was conducted over a 14-day window [33]. They

enhanced pin representations by incorporating time features using a combination of

sine and cosine transformations with a fixed P periods, drawing inspiration from the

Time2Vec approach [20]. Additionally, a logarithmic transformation of time was applied

[33]. This results in 2P+ 1 features, which are concatenated into a singular vector

to create an input vector of dimension Din, representing the comprehensive action’s

representation [33].

To optimize their representation, Pancha et al. utilized pairs of user embeddings and

target Pin embeddings [33]. Their strategy revolved around [33]:

1. Selecting these pairs.

2. Determining negative examples for a given user-Pin pair.

3. Calculating the loss for each pair and its associated negative examples.

For the negative selection, two primary sources emerge:

In-batch negatives: Here, all positive examples within a batch are treated as potential

negatives [33]. However, this method has the risk of potentially demoting popular Pins

and may not reflect the true underlying distribution of Pins used during retrieval [33].

Random negatives: These are drawn uniformly from the entire corpus of Pins [33]. This

method, if used alone, can lead to model collapse due to the simplicity of the negatives

[33]. To harness the strengths of both methods, the authors merge both in-batch and

random negatives, resulting in a balanced pool of negatives [33].

When it comes to the loss function, the authors employed a Sampled Softmax loss

function (equation 3.9), which computes a weighted average loss for each user-positive

embedding pair [24, 33]. For situations where negatives are not uniformly distributed,

the LogQ correction term is utilized to account for the probability of a negative example

surfacing in the batch, as shown in equation 3.10 in Chapter 3 [33].

The model relies on a transformer architecture to generate a sequence of user

representations [33, 24]. Building upon the next item prediction strategy of SASRec,

Pancha et al. introduced two new training objectives [33]. The first one called All Action
Prediction, leverages the final user embedding to predict all positive engagements

within the K-day window, as represented in Figure 2.1[33]. The objective of this

approach is to force the model to learn long-term interests [33]. For this method, they

randomly select 32 actions per user within their K day time window [33].

To further enhance this, they develop another training objective called Dense All
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Figure 2.1: All Action Prediction training objective used in Pinnerformer [33]. The red

circles indicate embeddings tied to actions considered non-positive, while the blue circles

denote embeddings corresponding to actions deemed positive. From Pinnerformer paper,

Pancha et al. [33].

Action Prediction [33]. Instead of using only the final embedding as in their all

action prediction, they use both the final and intermediate user embeddings to predict

future interactions within the K time window, as depicted in Figure 2.2 [33]. More

specifically, in this approach, for each user embedding corresponding to a random

chosen set of items, they try to predict a random positive action from all the future

positive actions [33]. They only predict single positive actions with each embedding

to mange the memory usage and model efficiency [33]. This objective enhancement

proved to significantly improve the model’s performance as the authors state [33].

Figure 2.2: Dense All Action Prediction training objective used in Pinnerformer [33].

The figure illustrates just one example of manifestation as the connection pairings are

randomly sampled. From Pinnerformer paper, Pancha et al. [33].



Chapter 3

Methodology

3.1 Problem Statement

In the domain of sequential recommendation, we can define U = (u1,u2, ...,u|U |) as the

collection of all users and I = (i1, i2, ..., i|I|) as a compilation of items. We can express

Su = (Su
1,S

u
2, ...,S

u
|Su|) to represent the chronologically ordered sequence of actions by

user u ∈U , where Su
i signifies the item that user u has interacted with at the i-th time

step. The fixed length of the interaction sequence for user u is indicated by n. For each

user, we consider the last n actions they performed. If a user has fewer than n actions,

we pad the sequence, and if they have more than n, we truncate it. Given the interaction

sequence Su up to the current time step, the goal in sequential recommendation is to

predict the user’s next K interactions. As illustrated in figure 3.1, the task involves

feeding the user sequence Su = (Su
1,S

u
2, ...,S

u
|Su|−1) into the model, which then aims

to produce a shifted sequence Su = (Su
2,S

u
3, ...,S

u
|Su|). This shifted sequence provides

predictions for the next interactions at each time step [19].

3.2 Model Architecture

The SASRec model’s significant relevance and efficacy in sequential recommendation

tasks have not only positioned it as a cornerstone model in our research but also

influenced our choice of model architecture.

The SASRec model processes the training sequence Su = (Su
1,S

u
2, ...,S

u
n−1) into

sequence s = (s1,s2, ...,sn) of fixed-length n [19]. The maximum sequence length that

the model can handle is indicated by the sequence length n [19]. In alignment with

the approach taken by Kang et al., we too consider the most recent n sequences if the

10
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Figure 3.1: Training process of SASRec, the model takes into account all prior inter-

actions at each time step and employs attention to understand items important to the

subsequent action. From SASRec paper, Kang et al. [19].

sequences are longer, or pad the sequences with additional items on the left if they are

shorter [19]. Like SASRec, our model utilizes an item embedding matrix M ∈ R|I|xd ,

where d denotes the latent dimensionality [19]. Our model also generates an input

embedding matrix E ∈ Rnxd [19]. Here, si is an index used to fetch the corresponding

embedding from matrix M, such that each Ei is equivalent to Msi [19]. Mirroring the

original SASRec model, we incorporate a position embedding P ∈ Rnxd into the input

embedding to address the self-attention model’s inherent lack of position awareness,

resulting in an enhanced input embedding Eb, as follows:

Eb =

(
n

∑
i=1

Msi +Pi

)
(3.1)

In our model, we’ve also sought to incorporate temporal information to enhance the

learning process, much like the approach taken by Pinnerformer [33]. Specifically,

we apply the Time2Vec (T2V) approach, which is designed to allow the model to au-

tonomously learn time intervals that are of relevance to the task at hand [20, 33]. Unlike

the Pinnerformer model, which uses fixed periods P, our approach allows the model to

learn these periods itself [33]. This results in a more flexible representation, potentially

capturing a wider variety of temporal patterns. Specifically, given a timestamp t, we



Chapter 3. Methodology 12

obtain features using the sine and cosine transformation, as follows:

r(t)2i−1 = cos
(

2πt
pi

+φ2i−1

)
r(t)2i = sin

(
2πt
pi

+φ2i

)
, i = 1, . . . ,P

r(t)2P+1 = log(t)

where pi are the periods and φ is a learned vector [33]. This transformation yields

2P+1 features similarly to Pinnerformer [33]. After encoding the temporal features,

we concatenate them with the original input vector, resulting in a longer input vector

[33]. To match the dimensionality, we apply a multi-layer perceptron (MLP) to the

concatenated vector. However, in our study, we find that adding temporal information

(Time2Vec) to train the model doesn’t enhance performance. This could be attributed to

the structure of the tested dataset or the potential for overfitting due to the introduction

of more parameters.

Our architecture, following the authors of the SASRec model, features a self-
attention block that employs the scaled dot-product attention mechanism, defined as

[19, 46, 3]:

Attention(Q,K,V ) = softmax
(

QKT
√

d

)
V (3.2)

In the formula, Q represents queries, K keys, and V values, where each row signifies

an item [19, 46]. The authors state that the attention layer, intuitively, computes a

weighted total of all values, where the weight between query i and value j corresponds

to the interaction between query i and key j [19]. Similar to Kang et al., we employ self-

attention operations that use linear projections to convert the enhanced input embedding

into three matrices [19]:

S = SA(Eb) = Attention(EbW Q
b ,EbW K

b ,EbWV
b ) (3.3)

Moreover, to maintain causality, which is a key feature of the SASRec model, we

ensure that when predicting the (t +1)-th item, only the first t items are considered [19].

We implement this by blocking all links between Qi and K j, where j > i [19]. Following

the SASRec model’s design, we also employ a point-wise two-layer feed-forward
network to all Si identically, ensuring there’s no interaction between Si and S j where

i ̸= j [19]:

Fi = FFN(Si) = ReLU(SiW (1)+b(1))W (2)+b(2) (3.4)

Furthermore, our architecture, inspired by SASRec, uses stacked self-attention
blocks to capture complex item transitions [19]. Each block outputs a hierarchically
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processed version of the input, which feeds into the next block [19, 53]. To counter-

balance the potential drawbacks of deep networks, we implement strategies such as

residual connections, layer normalization, and dropout. Residual connections allow

the output of one layer to be added to the output of a layer several steps further into the

network [11]. This helps propagate features from lower layers to to higher, effectively

capturing important sequential dynamics [11, 19]. Layer normalization and dropout
are used to stabilize training and prevent overfitting [2, 19, 36].

The output layer uses the final self-attention block’s outputs, combined with an

item embedding matrix N, to estimate the relevance of the item i given the t items [19]:

ri,t = F(b)
t NT

i , (3.5)

Finally, to make the model smaller and more resistant to overfitting, we employ as Kang

et al., a shared item embedding M [19]:

ri,t = F(b)
t MT

i , (3.6)

3.3 Model Learning

In this section, we delve into the core elements of our learning process. We start by

discussing the methods employed for data partitioning, which essentially set the stage for

our model training. Subsequently, we shed light on the different loss functions used to

measure the accuracy of our model and to direct the learning process. Moving forward,

we present our various training objectives, each representing a distinct approach towards

predicting item interactions. Lastly, we outline the different techniques adopted to

enhance further the learning process.

3.3.1 Data Partitioning

Various data partitioning techniques, such as temporal split, random split, and user-

based split, are prevalent in the domain of sequential recommendation research [31].

The choice of a particular partitioning strategy often depends on the dataset’s nature,

the model’s requirements, and the specific objectives of the study [31]. Our data

partitioning techniques, outlined below, stem from existing methodologies used in

sequential recommendation research, particularly those detailed in [19, 27, 13, 12, 35].

We opted for these approaches based on their proven efficacy in prior works, their

alignment with our research goals, and the nature of our dataset. While our dataset does
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contain timestamps, the temporal windows for users are relatively narrow, typically

occurring within brief periods. This sparsity in temporal information precluded an

effective temporal split. As a result, we chose to focus on predicting future interactions,

rather than attempting a multi-day prediction as in Pinnerformer [33]. As part of

our preprocessing steps, we do not use users and items associated with less than five

interactions, ensuring sufficient interaction data for meaningful pattern extraction [19].

We consider each user-item interaction as an event in a sequence, ordered according

to their timestamps. From this cleaned and ordered data, we implement two distinct

partitioning strategies, each tailored to a unique set of training objectives. These

strategies guide our model learning process and establish the trajectory of our research.

3.3.1.1 Next Item Prediction Partitioning

The first partitioning approach, geared towards the next item prediction objective, adopts

a traditional train-validation-test split on a per-user basis. In essence, for each user, we

chronologically divide their interactions in an 80-10-10 ratio as shown in Figure 3.2.

Specifically, 80% of their interactions are designated for training, 10% for validation,

and the remaining 10% (which constitutes the most recent interactions) for testing. This

follows the methodology outlined in the original SASRec paper [19], with the exception

that our validation and test sets are window-based, enabling further future interaction

predictions.

Figure 3.2: Data Partitioning for Next Item Prediction.

3.3.1.2 Window-based Training Partitioning

Building upon the traditional user-based partitioning, this alteration caters specifically

to our window-based training objectives. As depicted in Figure 3.3, we initially divide

the data into three sets: Train, Valid, and Test. However, the Train set is further split

into Input Train and Target Train subsets. The Input Train subset is used to train the

model, while the Target Train subset is used as the target output for the model during

the window-based training. This partitioning scheme allows our model to learn from
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a specific window of sequences (Input Train) and predict the subsequent window of

sequences (Target Train).

Figure 3.3: Data Partitioning for Window-based Prediction.

3.3.1.3 Incorporation of Time2Vec

In scenarios where we incorporate Time2Vec into our model, we ensure our partitioning

strategy continues to uphold the chronological integrity of interactions [20]. The

timestamps associated with each interaction are also included in our input sequence

now, forming user-item-timestamp triplets, which allows the model to preserve the

temporal dynamics.

3.3.2 Loss Functions

For our study, we employ four types of loss functions for training the model.

1. Binary Cross Entropy (BCE): This loss function is utilized for the next item

prediction objective, as illustrated in the original SASRec paper [19]. Positive examples

stem from actual user interactions. For negative sampling, in each epoch, one negative

item (denoted as j) is randomly generated for each timestep in each sequence [19]. We

also employ this function later in our masking training technique (Section 3.3.4.1) to

calculate the loss of the masking sequence. The formula is given as:

LBCE =− ∑
Su∈S

∑
t=1,2,...,n

[
log(σ(ro,t+k))+ ∑

j/∈Su

log(1−σ(r j,t)

]
(3.7)

2. Window-Based Binary Cross Entropy (BCEWB): This is a slightly modified

version of BCE with the only difference being that it calculates the loss at every future

position up to K and then averages over the window. The formula for this loss function

is:

LBCEWB =− 1
K

K

∑
k=1

∑
Su∈S

∑
t=1,2,...,n

[
log(σ(ro,t+k))+ ∑

j/∈Su

log(1−σ(r j,t))

]
(3.8)
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3. Sampled Softmax Uniform (SS-U): This loss function, used by Pinnerformer

[33], computes a weighted average loss for each user-interaction embedding pair. The

function is defined as:

L(ui, pi) =− log
es(ui,pi)

es(ui,pi)+∑
N
j=1 es(ui,n j)

(3.9)

where ui is the user, pi is the item the user will interact with, n j are the negative sampled

items (items that the user will not interact with) uniformly distributed, s(ui, pi) is the

predicted score of user interacting with the item, and N is the number of negative

samples [33].

4. Sampled Softmax with LogQ (SS-LogQ): This variant of Sampled Softmax,

also used by Pinnerformer [33], includes a correction term log(Qi) to account for the

probability of a negative example appearing in the batch . It is defined as:

L(ui, pi) =− log
es(ui,ui)− log(Qi(pi))

es(ui,ui)− log(Qi(pi))+∑
N
j=1 es(ui,n j)− log(Qi(n j))

(3.10)

where (Qi(pi) and (Qi(n j) are the sampling probabilities for actual interaction with

item and negative items respectively [33].

In addition to our loss functions, our model is optimized by Adam optimizer [22].

3.3.3 Training Objectives

Our primary task centers around predicting the future interactions a user will undertake.

The ”training objectives” define precisely what the model aims to achieve or optimize

during its learning phase. In the following sub-sections, we present the specific training

objectives we’ve designed to steer our model’s learning. Each objective represents a dif-

ferent perspective on how the model should ideally predict future user-item interactions,

providing a variety of approaches for model training and evaluation.

3.3.3.1 Next Item Prediction

Our initial training objective mirrors the conventional next item prediction method, akin

to the SASRec model [19]. The aim is to predict the next interaction at each step across

the entire training sequence. We employ our first data partitioning scheme (Figure 3.2)

to support this, structuring user-item interactions chronologically for effective training.

Notably, during this process, our attention is not limited to a specific K interactions

future window but extends to the complete training sequence, as represented in Figure

3.4.
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Figure 3.4: Next Item Prediction training. Notably, this objective trains on the whole train

sequence without considering the K interaction window.

3.3.3.2 Skip Item Prediction

This training objective is an innovative adaptation of the conventional next item pre-

diction training. This approach, specifically designed to augment our future predictor,

employs the future window data partition method, as illustrated in Figure 3.3. The Skip

Item Prediction strategy generates multiple unique training sequences for each user

by appending individual items, one by one, from the target sequence (K interaction

window) to the input sequence. To exemplify, consider a train input sequence for a user

as {1,2,3,4,5,6} ∈ Su
train and the corresponding train target as {7,8,9} ∈ Su

train. This

approach then constructs new sequences for user as follows:
{1,2,3,4,5,6,7}

{1,2,3,4,5,6,8}

{1,2,3,4,5,6,9}

 ∈ Su
train

Here, the highlighted (red) items are those appended from the target sequence. This

strategy allows for the creation of new item embeddings during training in a next item

prediction fashion. The resultant model is equipped with the capability to capture

patterns better, thereby improving the prediction of future items.

3.3.3.3 Incremental Item Prediction

Our third training objective, is yet another innovative enhancement of the baseline

next item prediction. The key distinction between this approach and the conventional

next-item prediction lies in the construction of training sequences. While traditional

next-item prediction uses a single input sequence for each user, the Incremental Item

Prediction approach generates multiple sequences for each user, each with a distinct

target appended at the end. This strategy employs the future window data partition

method (Figure 3.3). The construction of sequences involves incremental appending of

target items to the input sequence, echoing the ’teacher forcing’ concept in machine

learning [26]. For illustration, consider an input sequence for a user as {1,2,3,4,5,6} ∈
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Su
train and the corresponding target as {7,8,9} ∈ Su

train. This approach results in the

creation of new sequences for user as follows:
{1,2,3,4,5,6,7}

{1,2,3,4,5,6,7,8}

{1,2,3,4,5,6,7,8,9}

 ∈ Su
train

In this illustration, the red-highlighted items are those newly appended from the target

sequence, while the green-highlighted items are those previously appended. This

method enables the generation of unique item embeddings during next item prediction

training, potentially leading to more accurate future item predictions.

3.3.3.4 All Action Prediction

For our next training objective, and as the first window-based training approach, we

use All Action Prediction, adopted from the Pinnerformer paper [33]. However, we

adapt the approach to our specific needs, focusing on predicting all future interactions

within a given window, rather than predicting actions within a certain time frame [33].

Given a user input train sequence {Su
1,S

u
2, ...,S

u
Su

n
}, the final user embedding esu

n is used

to predict all actions within a given window, {Su
n+1,S

u
n+2, ...,S

u
n+K}, where n is the

fixed length of the sequence and K is the length of the prediction window [33]. In this

context, the ’all actions’ refer to the interactions in the target train sequence window

(Figure 3.3). With this objective, we train the model to discern and learn longer-term

interaction patterns. Due to the dataset’s nature, target train sequences often fall short

of the predefined K-prediction window. Adapting the Pinnerformer’s method, we fill

sequences to a consistent length of K, by randomly sampling from the target sequence,

aiding the model in grasping longer-term patters [33]. To ensure balance, a 1:1 ratio for

positive to negative samples is maintained.

Figure 3.5: All Action Prediction training adopted from Pinnerformer [33].

3.3.3.5 Dense All Action Prediction

The fifth training objective, referred to as Dense All Action Prediction, is an evolution

of the All Action Prediction objective. This method is adapted from the one presented
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in the Pinnerformer paper, with modifications to better suit our interaction-based pre-

diction context [33]. This objective aims to increase the robustness of the prediction

signal by utilizing not just the final user embedding, but using all the input train se-

quence user embeddings esu
i

[33]. For each of these selected embeddings, we strive to

predict a single randomly chosen interaction from the target train sequence window set

{Su
n+1,S

u
n+2, ...,S

u
n+K}. Figure 3.6 represents this training objective.

Figure 3.6: Dense All Action Prediction Training adopted from Pinnerformer [33].

3.3.3.6 Super Dense All Action Prediction

Building upon the Dense All Action Prediction method, we introduce a training objective

called Super Dense All Action Prediction. This approach aims to further boost the

learning signal by harnessing more information from the user’s interaction sequence.

Under the Super Dense All Prediction objective, for each embedding esu
i

in the input

sequence, we aim to predict not just one, but all positive interactions from the set of

future interactions within the target train sequence window {Su
n+1,S

u
n+2, ...,S

u
n+K}. This

training objective pushes the model to learn more granular and complex patters from

the user’s interaction history, enhancing its ability to predict a broader range of future

interactions.

Figure 3.7: Super Dense All Action Prediction training. While only two user embeddings

are depicted here for visual clarity, in reality, all embeddings participate in predicting

future interactions.

3.3.3.7 Rolling Future Window Prediction

Expanding upon the All Action Prediction method, we introduce a novel training

objective, Rolling Future Window Prediction. This approach seeks to enhance the
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predictive capability of the model by creating multiple target windows for each position

in the training sequence. For a given input training sequence {Su
1,S

u
2, ...,S

u
n}, and a

target sequence {Su
n+1,S

u
n+2, ...,S

u
n+K}, the Rolling Future Window method works as

follows:

For each embedding esu
i

in the training sequence, the model predicts a window of K

items starting from Su
i+1 to Su

i+K . The last embedding esu
n in the sequence extents into

the target sequence as All Action Prediction does (Figure 3.5). This approach not only

Figure 3.8: Rolling Future Window Prediction training. While only three user input

embeddings are depicted here for visual clarity, in actuality, all item embeddings predict

future interactions from their position.

allows the model to capture the continuity in the user’s sequence of interactions but also

recognizes the potential impact of individual interactions on shaping the user’s future

interactions.

3.3.3.8 Integrated All Action Prediction

Our final training objective, named Integrated All Action Prediction, seeks to harmonize

the strengths of both ”Next Item Prediction” and ”All Action Prediction”. This approach

operates on the premises that combining these two distinct yet complementary training

objectives can potentially provide a more comprehensive training signal for the model.

In the ”Next Item Prediction”, the model is trained to predict the immediate next

item in the sequence at every step, which allows the model to capture short-term

dependencies and recent user behaviors. However, this strategy might overlook longer-

term user preferences and the overall temporal dynamics of user interactions.

On the other hand, the ”All Action Prediction” objective, which predicts all future

actions within a certain window, focuses more on the user’s longer-term interests. Yet,

it may not be as sensitive to the most recent user interactions.

By integrating these two objectives in a hybrid way, we aim to capture both recent

and longer-term user behaviors, thereby providing a richer and more balanced learning

signal. This combined strategy aids the model in learning the dynamics of user interac-

tions over time, leading to potentially more accurate and diverse recommendations. The
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Figure 3.9 below, illustrates graphically the integrated objective.

Figure 3.9: Integrated All Action Prediction training.

3.3.4 Training Techniques

While setting the right objectives is fundamental, the methodology adopted to attain

those objectives is equally pivotal. The ”training techniques” specify how the model is

trained to meet the objectives, determining the training regimen the model undergoes. In

our research, we’ve incorporated three techniques: Masking, Auto-regressive learning,

and Teacher Forcing. Each of these techniques shapes our model’s learning trajectory

in unique ways, enabling it to discern intricate patterns and dependencies in user-item

sequences. The following subsections delve deeper into each technique, shedding

light on their significance and their roles in augmenting the efficacy of our sequential

recommendation model.

3.3.4.1 Masking

The first technique implemented is Masking, drawing inspiration from the masking

technique utilized in BERT4Rec by Sun et al. [38]. This technique involves creating

masked version of the input training sequence where a certain percentage ρ of items are

randomly replaced with a mask token of zero, such as {Su
1,S

u
2,0,S

u
4,S

u
5}.

We apply two types of loss during the training process: a target loss and a masked

loss. The target loss is computed normally, predicting the items in the target sequence.

In contrast, the masked loss is computed based on the model’s prediction of the masked

items. We pass both the original and masked sequences into the model and attempt to

predict the masked items. The final loss used to optimize the model is a combination of

these two losses, which encourages the model to understand the patterns in the user-item

interactions while also predicting the masked items.

Input: {Su
1,S

u
2,S

u
3,S

u
4,S

u
5}

randomly mask−−−−−−−−→ {Su
1,01,Su

3,S
u
4,02}

Labels: 01 = Su
2,02 = Su

5



Chapter 3. Methodology 22

In this example, the model takes in the input sequence with masked items and aims to

predict the original values Su
2 and Su

5 at the masked positions, which will potentially

encourage the model to learn deeper patters and help predict future interactions.

3.3.4.2 Auto-Regressive

The Auto-Regressive technique (AR) is another training technique implemented to

enhance our future predictor-based training objectives in making future correctly predic-

tions. This method is employed to teach the model to predict the next future item based

on the current input sequence and then update the input sequence with the predicted

target item.

Let’s consider an input sequence Su = {Su
1,S

u
2,S

u
3,S

u
4,S

u
5} and a corresponding target

sequence SuTarg = {Su
n+1,S

u
n+2,S

u
n+3}. In auto-regressive training setup, the model

first predicts the next target item Su
n+1 based on the input sequence Su [8]. Then, the

predicted target item Ŝu
n+1 is appended to the input sequence, forming a new sequence

Su′
= {Su

1,S
u
2,S

u
3,S

u
4,S

u
5, Ŝ

u
n+1} which will be the new item embedding fed to the model.

The model then generates a new item embedding and predicts the next target item Su
n+2

based on this updated sequence Su′
. This process is repeated for each target item in the

sequence. However, since the length of the input sequence embedding is fixed to n, for

each appended item, the oldest interaction is removed from the sequence. This ensures

that the length of the sequence remains constant while the model is trained to predict

subsequent target items based on an increasingly updated sequence of interactions.

Especially early in the training process, AR techniques can sometimes lead to an

accumulation of errors; if one prediction is incorrect, subsequent predictions can be

adversely affected. The auto-regressive update of the input sequence can be expressed

as follows:

Su′ = [Su
n−i+1,S

u
n−i+2, . . . ,S

u
n, Ŝ

u
n+1, . . . , Ŝ

u
n+i] if Ŝu

n+i is predicted for i = 1,2, . . . ,K

and the system of equations is defined as:

Su′ =



[Su
2,S

u
3, . . . ,S

u
n, Ŝ

u
n+1] if Su

n+1 is predicted

[Su
3,S

u
4, . . . ,S

u
n, Ŝ

u
n+1, Ŝ

u
n+2] if Su

n+2 is predicted
...

...

[Su
n−K+1,S

u
n−K+2, . . . ,S

u
n, Ŝ

u
n+1, . . . , Ŝ

u
n+K] if Su

n+K is predicted

Where n is the length of the original sequence, K is the length of the target window

sequence, and Ŝu
n+i is the predicted target item at the i-th step.
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3.3.4.3 Teacher Forcing

The Teacher Forcing technique (TF) is a variant of the Auto-Regressive approach, with

the key difference being that instead of appending the predicted target item to the

input sequence, we append the actual target item [7, 26, 50]. Similar to auto-regressive

technique, it can be applied to the future-based training objectives. It can be particularly

effective when the model’s predictions are consistently incorrect, leading to a cascading

effect of errors in an Auto-Regressive setup.

Using the same example as before, with an input sequence Su = {Su
1,S

u
2,S

u
3,S

u
4,S

u
5}

and a corresponding target sequence SuTarg = {Su
n+1,S

u
n+2,S

u
n+3}, in Teacher Forcing,

the model still predicts the next target item Su
n+1 based on the input sequence Su.

However, regardless of the model’s prediction, the actual target item Su
n+1 is appended

to the input sequence for the new item embedding. This process is repeated for each

target item in the sequence, while maintaining a fixed sequence length n by removing

again the oldest interaction for each appended item. The teacher forcing update of the

input sequence is expressed as:

Su′ = [Su
n−i+1,S

u
n−i+2, . . . ,S

u
n,S

u
n+1, . . . ,S

u
n+i] if Su

n+i is predicted for i = 1,2, . . . ,K

This technique allows for more robust training, as the model is guided by the actual

target items during the training process, thereby reducing the accumulation of prediction

errors [50].

3.4 Evaluation Process

In this section, we outline the evaluation process that provides insights into the effec-

tiveness of our proposed sequential recommendation system. The performance of our

model is assessed using a suite of well-established metrics, each offering unique per-

spectives on model’s predictive capabilities. Specifically, while multiple metrics gauge

the model’s accuracy in predicting future items, Kendall’s Tau is employed to assess its

proficiency in structured output prediction, capturing the model’s ability to predict not

only the forthcoming interactions but also their order. In our evaluation process, it’s

worth noting that users having fewer than K (window size) items in their validation/test

sets are not evaluated. Finally, when evaluating on the test set, a concatenation of train

and valid set is used as the user input sequence.
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3.4.1 Normalized Discounted Cumulative Gain

The first evaluation metric we adopt is Normalized Discounted Cumulative Gain

(NDCG@N), which is a widely-used metric in the field, capturing both accuracy

and rank of the recommended items [19, 15]. This metric is particularly relevant to

our study as it allows us to evaluate the quality of our model’s prediction over the K

future window. The NDCG at the i-th future position is calculated based on the top-N

recommendation list and then averaged across all users:

NDCG@Ni =
1
|U | ∑

u∈U
NDCG(u) (3.11)

where NDCG(u) is the normalized discounted cumulative gain for user u at the i-th

future position, and |U | is the total number of users. Subsequently, we compute the

average NDCG over the future window size K:

NDCGavg =
1
K

K

∑
i=1

NDCG@Ni (3.12)

Furthermore, we adopt an approach that is followed in studies [19, 15, 23] in order to

reduce the computing demands associated with evaluating over all user-items. Specifi-

cally, we randomly choose 99 negative items and rank them next to the actual item for

each user u at each position i into the future [19]. NDCG then, is evaluated based on

100 items, providing an efficient and robust evaluation of the performance [19].

3.4.2 Hit Rate

Our second evaluation metric is Hit Rate (Hit@N), a simple measure of predictive

accuracy [19]. For this metric, we check whether the actual item is within the top-N

recommendations [19, 12, 15]. The Hit Rate at the i-th future position is calculated

by determining if the actual item is in the top-N recommendations and then averaging

these results across all users. Subsequently, the average Hit Rate over the future window

size K is computed:

Hit@Ni =
1
|U | ∑

u∈U
hit(u) Hitavg =

1
K

K

∑
i=1

Hit@Ni (3.13)

where hit(u) is 1 if the actual item is in the top-N list at the i-th future position, and 0

otherwise. Much like with NDCG, we use the same efficient approach of sampling a set

of negative items for the calculation [19].
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3.4.3 Kendall’s Tau

Finally, our third evaluation metric is Kendall’s Tau (τ). This metric is a statistical

measure employed to assess how effectively our model orders the future interactions.

Specifically, it compares the order of items predicted by our model with the actual

order in which users interacted with items in the K future window [21]. The metric

ranges from -1 to 1: a value of 1 signifies perfect agreement, -1 indicates complete

disagreement, and 0 suggests no correlation [1, 21, 25]. In our study, a higher value

indicates a closer match between the predicted and actual order. The essence of this

metric lies in its ability to capture the model’s proficiency in structured output prediction.

In structured output prediction, the model’s task isn’t just to predict individual items

but to predict sequences or structures of items where the order matters.

In our evaluation setup, for each user u ∈ U , the model produces a sequence of

predictions for the next K items. We directly compare this predicted sequence with

the true sequence of the next K items the user interacted with. Suppose the true future

interactions for a user are the items {A,B,C}, and our model predicts the sequence

{A,D,C}. Kendall’s Tau will assess these sequences, providing a score that quantifies

the similarity in their order.

Formally, given the true sequence of interactions true sequence and the sequence

predicted by our model predicted sequence for a user u, the Kendall’s Tau is given by:

τu = τ(true sequence,predicted sequence) (3.14)

Where τ (true sequence, predicted sequence) is the standard Kendall’s Tau function

that computes the metric by comparing all possible pairs of items in the sequences

[21]. It evaluates the number of concordant pairs (pairs with the same order in both

sequences) and discordant pairs (pairs with different orders) [1, 21, 25]. The final value

for τ is then averaged across all users:

Kendall’s τ =
1
|U | ∑

u∈U
τu (3.15)

In our implementation, Kendall’s Tau is calculated based on the top-1 predictions

of the model, making it challenging, yet informative, metric to understand the model’s

ability to not only predict relevant items but also to predict them in an order that aligns

with the actual future interactions of users.
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Experimental Analysis

4.1 Experiments

4.1.1 Dataset

We conduct our experimental analysis on the MovieLens-1M dataset [10]. Compared

to alternatives such as the Steam and Amazon datasets, the MovieLens-1M dataset is

denser [19]. Given its density and frequent use, it offers a robust benchmark in the field

of recommender systems. Despite its dense nature, the MovieLens dataset does exhibit

a high degree of sparsity when contrasted with the Pinnerformer dataset specifically

designed on evaluating their training objectives [33]. A summary of the dataset statistics

is presented in Table 4.1. It’s worth mentioning that the user activity in this dataset is

mainly concentrated within brief periods, adding a layer of complexity to our model’s

task of leveraging temporal information for accurate recommendations. Further insights

on the dataset are provided through an exploratory data analysis in Appendix A.

#users #items #actions avg. actions/
user

avg. actions/
item

#users w/ single
7-day wind.

avg. 7-day
wind./user

6040 3416 1.0M 163.5 289.1 4243 14.4

Table 4.1: Preprocessed MovieLens-1M statistics.

4.1.2 Experimental Methodology

The methodology we follow for out study, is structured around three main experiments,

each designed to address one of the three research questions posed in this study.

26
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For RQ1, our focus is on evaluating different training objectives, as outlined in

Section 3.3.3. Essentially, this experiment investigates how different objectives influence

the model’s learning when given certain pairs of user-item interactions. The baseline for

these comparisons is the Next Item Training, which is mirroring the basic SASRec, but

with the capability of making future predictions [19]. In this experiment, we test four

different loss functions, namely Sampled Softmax Uniform (SS-U), Sampled Softmax

with LogQ correction (SS-LogQ), Binary Cross Entropy (BCE), and Window-based

BCE, as detailed in Section 3.3.2. We use a window size K for predictions of 7.

Our second experiment addresses RQ2. Here, we take the best-performing window-

based prediction objective from the first experiment and set it against the baseline. This

experiment delves into evaluating various techniques for creating pairs of user-item

interactions. Specifically, we assess the impact of different training techniques detailed

in Section 3.3.4 and also explore the influence of encoding temporal information using

Time2Vec (T2V) [20]. For this experiment, we use only the BCE/BCEWB and Sampled

Softmax Uniform loss functions, since preliminary findings from the first experiment

suggest that these functions outperform Sampled Softmax with LogQ. Like in the first

experiment our window size K is set to 7. In the cases involving masking, we apply a

15% masking rate to the action sequence.

Finally, to address RQ3, we conduct experiments with different future window

sizes K. Specifically, we use the model that demonstrated the best performance in

the previous experiments, as well as the baseline model, and we apply the SS-U and

BCE/BCEWB loss functions. The objective here is to observe how performance varies

with window sizes. Specifically, we experiment with window sizes K of {3,7,10,14}
to evaluate the model’s ability to generalize across different prediction horizons.

Each experiment is designed to incrementally build upon the findings of the previous

one, allowing us to holistically evaluate the effectiveness of our proposed training

objectives and techniques. We use Hit Rate@10, NDCG@10, and Kendall’s Tau metrics

to capture the performance at inference (see Section 3.4 for metrics information).

4.1.3 Experimental Setup

The experimental setup for this study remains consistent across all experiments to

ensure a fair comparison of performance. The implementation details are as follows:

We set the maximum length of a user sequence to 200 and use a dropout rate of 0.2

to prevent overfitting. Each model is trained for a total of 200 epochs, with a batch
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size of 128, as in SASRec and Pinnerformer papers [33, 19]. The learning rate is set to

0.001, which is a commonly used value for a steady optimization process. Following the

practice of Kang et al. [19], we employ 2 self-attention blocks in our model architecture.

Lastly, we use the Adam optimizer for our training optimization process [22].

4.2 Results

In this section, we present the empirical results of our experiments, systematically ad-

dressing each of our research questions. The results are organized according to the three

major areas of investigation - performance comparison of different training objectives,

the impact of various training techiniques and temporal information encoding, and the

influence of different future window sizes on the model’s performance.

4.2.1 Performance of Training Objectives

Models
NDCGavg@10 Hitavg@10 Kendall’s Tau

BCE SS-U SS-LogQ BCE SS-U SS-LogQ BCE SS-U SS-LogQ

Baseline - Next Item 0.5556 0.5557 0.5548 0.8164 0.8055 0.8030 0.2433 0.2610 0.2472

Skip Item 0.5226 0.5609 0.5535 0.7929 0.8115 0.8064 0.2009 0.2487 0.2455

Incremental Item 0.5582 0.5660 0.5513 0.8171 0.8161 0.8159 0.2525 0.2634 0.2590

All Action 0.4233 0.4329 0.4285 0.6843 0.6908 0.6876 0.1449 0.1564 0.1433

Dense All Action 0.2853 0.3077 0.296 0.5184 0.5478 0.5299 0.0693 0.0763 0.0725

Super Dense All Action 0.2961 0.3055 0.2980 0.5397 0.5468 0.5454 0.0682 0.0641 0.0626

Rolling Future Window 0.2711 0.2827 0.2801 0.5077 0.5274 0.5084 0.0657 0.0695 0.0579

Integrated All Action 0.4958 0.5669 0.5625 0.7591 0.8184 0.8105 0.1914 0.2641 0.2558

Table 4.2: Performance scores for different training objectives using BCE (used as

BCEWB for window-based objectives), SS-U, and SS-LogQ losses. Bold indicates the

best performance model for each metric and loss and underline the second best. Double

underline indicates best performance for each metric regardless of the loss.

The first research question investigates the performance of the different training objec-

tives described in Section 3.3.3. The results of this comparison are shown in the table

4.2 above.

The baseline model, which corresponds to the Next Item Training objective, achieves

a robust performance across all three loss functions, setting a very strong baseline for
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other objectives to exceed. Specifically, it achieves its highest NDCG@10 score of

0.5557 when using SS-U loss, and a high Hit@10 of 0.8164 with BCE. Interestingly, it

also reached a competitive Kendall’s Tau score of 0.2610, suggesting a relatively good

level of correlation between true and predicted sequences.

The Skip Item Prediction training objective, though performing lower than the

baseline on BCE and SS-LogQ, it’s worth noting that it’s performance is competitive

with SS-U loss, outperforming the baseline on NDCG@10 with 0.5609. Yet, its

Kendall’s Tau was noticeably lower, suggesting that is not strong in making correctly

ordered predictions. It’s essential to note that this training objective takes over twice

the training time compared to other methods (except Incremental Item Prediction), as

expected from creating a much larger number of training sequences for each user.

Meanwhile, the All Action Prediction model, our first window-based predictor,

showed a significant drop in performance across all metrics. This could be attributed

to the model’s broad focus on predicting all future actions, which might dilute the

signal for the immediate next items and lead to lower NDCG, Hit rate, and Kendall’s

Tau. Furthermore, the Dense All Action and Super Dense All Action models fared

even lower than the All Action model across all metrics. The complexity of predicting

multiple future items for each embedding might have led to this performance drop.

Interestingly, these results contrast the findings in the Pinnerformer paper [33],

where the All Action and Dense All Action models performed well. The discrepancy

could be attributed to different factors. In the Pinnerformer study, they used already

learned embeddings called PinSage, while in our case we learn them during training the

model from scratch [32, 51]. Furthermore, their dense specific dataset with many pins,

differs significantly from the MovieLens dataset used in this study [33].

Our evolved and more complex all action modeling named Rolling Future Window

Prediction, recorded the lowest scores across all metrics in our experiments, showing

that it’s a poor learning objective and likely too complex for our data environment.

Among the tested training objectives, the Incremental Item Prediction model demon-

strated the best overall performance across all metrics when used with BCE loss function,

outperforming, but slightly the baseline model. We can also observe that for the Uni-

form Sampled Softmax, the model outperforms even more the baseline on the metrics

NDCG@10 and Kendall’s with 0.5660 and 0.2634 respectively. This suggests that the

Incremental Item Prediction approach, which trains the model by incorporating more

sequences that emphasize future window interactions, indeed contributes to enhancing

the model’s ability to generate more accurate and better-ordered interactions. However,
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this method is more resource-intensive than others, including Skip Item Prediction,

due to the longer training times from both the increased number and length of training

sequences.

Finally, the Integrated All Action model showcased a very promising performance,

especially with the SS-U loss, where it achieved the highest NDCG@10 of 0.5669,

the highest Hit@10 of 0.8184, and the highest Kendall’s Tau score of 0.2641 among

all models and losses tested. This demonstrates the effectiveness of an integrated

approach that can harness the strengths of both Next Item and All Action modellings.

By employing this hybrid model, we are not only able to learn better item representations

but also gain insights into the user’s future intentions, offering a more comprehensive

understanding of user behaviour. This suggests that a combination of short-term and

long-term prediction strategies can indeed enhance the accuracy and ordering of our

recommendations. While the Integrated All Action model outperforms the baseline in

SS-U and achieves the best overall performance, it’s worth noting that its performance

is close to that of the Incremental Item Prediction, but less resource-intensive.

4.2.2 Effects of Training Techniques and Temporal Information

Models
NDCGavg@10 Hitavg@10 Kendall’s Tau

BCE SS-U BCE SS-U BCE SS-U

Baseline - Next Item 0.5556 0.5557 0.8164 0.8055 0.2433 0.2610

Integrated All Action 0.4958 0.5669 0.7591 0.8184 0.1914 0.2641

Integrated All Action + T2V 0.0876 0.1210 0.1859 0.2510 0.0239 0.0006

Integrated All Action + MASK 0.4913 0.5429 0.7577 0.7947 0.1916 0.2578

Integrated All Action + AR 0.4928 0.5556 0.7609 0.8072 0.1806 0.2551

Integrated All Action + TF 0.5183 0.5626 0.7800 0.8096 0.2108 0.2669

Integrated All Action + MASK + TF 0.5024 0.5469 0.7727 0.7990 0.2102 0.2621

Table 4.3: Performance scores for different training techniques and temporal encoding,

using BCE (used as BCEWB for window-based objectives) and SS-U losses.

Having analyzed the performance of various training objectives in addressing RQ1,

we now turn our focus to RQ2 where we aim to evaluate the impact of different

training techniques and temporal encoding on our model’s performance to see if it
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actually improves in giving more accurate results. For this experiment, we select the

best performing window-based prediction objective which is the Integrated All Action

Prediction model from RQ1, and explore it under different setups. The results of this

experiment are illustrated on Table 4.3.

First, we start with incorporating Time2Vec into the Integrated All Action model.

As we can see, this led to a considerable drop in performance across all metrics and

losses. This decrease in performance may be attributed to a combination of overfitting,

due to the introduction of more parameters from Time2Vec, and the inherent nature of

the MovieLens-1M dataset. In the latter case, user interactions predominantly occur

within short timeframes, limiting the potential to extract meaningful temporal patterns.

This was expected after carrying out a dataset analysis as can be seen on table 4.1 and

Appendix A.

Furthermore, applying Masking to the Integrated All Action model showed a slight

drop in performance for both losses, but the model still able to maintain a relatively

high level of performance. This suggests that introducing an auxiliary task to predict

masked items has probably added more complexity to the learning, and therefore has

not significantly enhanced the model’s capabilities in this context.

Introducing Auto-Regressive (AR) training to our best modelling approach, resulted

again, in a slight decreased in the metrics for SS-U. However, for the BCE loss, the

performance stayed relatively consistent with a slight increase in Hit@10 compared to

the normal Integrated All Action. That being said, it’s still clear that the baseline model

with BCE outperforms. This indicates, that the AR approach, which iteratively updates

the input sequence with predicted items is not leading in capturing better dependencies

between behaviors as desired.

Another tested experiment, was applying Teacher Forcing (TF) to our model. With

a first view, the technique had mixed effects on the results. While it led to an increase

over normal Integrated All Action in all the metrics for BCE loss, it causes a slight

decrease for NDCG@10 and Hit@10 metrics in SS-U. Notably, the TF technique

demonstrated the highest overall Kendall’s Tau score of 0.2669 across all metrics and

losses, signifying its potential as a promising approach to enhance the model’s ability to

accurately predict the order of future items. Moreover, the results show that the teacher

forcing technique has the most stable performance when changing between the two

losses as it gets second and first place performance across all tasks.

Lastly, we wanted to test the model’s recommendation performance using the TF

technique, since it showed the most promising results, along with our masking technique.
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Combining those two approaches with the integrated modeling, led to a slight drop in

performance across all metrics and losses compared to baseline and simple integrated

model approach, showing that it does not help significantly with the learning task.

The results captured, highlight the complexity of sequential recommendation tasks.

Despite the various techniques evaluated, the base Integrated All Action objective with

Sampled Softmax Uniform loss remained competitive, achieving the highest scores in

NDCG@10 and Hit@10 metrics, while the Integrated All Action objective with the

Teacher Forcing technique excelled slightly in Kendall’s Tau.

4.2.3 Impact of Different Window Sizes

Figure 4.1: NDCG@10 and HR@10 score with window 7 for Baseline Next Item Training

and Integrated All Action Prediction Models using Sampled Softmax Uniform, Sampled

Softmax with LogQ Correction, and Binary Cross Entropy losses.

In this section, we delve into the results obtained for our third research question (RQ3),

which investigates how varying the future window size impacts the performance of our

model. Figures 4.1 and 4.2, present a graphical representation of the trends as these

sizes change. The table recording the average results, along with the tables containing

the data used to generate the graphs, are stated in Appendix B.

Firstly, we examine the results for a window size of 7, which was also tested in

the prior experiments. Thus, this includes SS-LogQ loss results as well. Here, the

Integrated model with BCE underperforms across the metrics. The Integrated All Action

model shines in terms of NDCG@10, showing superior performance across most future

positions, closely followed by the Integrated model with SS-LogQ. Other configurations

yield marginally lower results. In terms of Hit@10, The Integrated model with SS-U is

leading, closely trailed by the Baseline with BCE. Then, the integrated with SS-LogQ

takes third place, and the remaining models achieving lower results. These results, as

seen in the previous experiments, set the Integrated All Action model with SS-U to be
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effective for larger window sizes.

Figure 4.2: NDCG@10 and HR@10 scores for different windows for Baseline Next Item

Training and Integrated All Action Prediction Models using SS-U and BCE losses.

Following, we focus on the experiment with a window size of 3. Upon close

observation, it is evident that the Integrated model with BCE exhibits again the lowest

performance among the tested configurations. For NDCG@10, it can be discerned from

the graph that the performances of the Integrated and Baseline models with SS-U are

almost indistinguishable, with the former showing slightly better accuracy at the 3rd

position into the future. The Baseline BCE model, on the other hand, begins with a

slightly lower performance, but catches up with the Baseline SS-U model by the 3rd

position. When it comes to Hit@10, the Baseline BCE model manages to outperform

the others, surpassing the Integrated SS-U and Baseline SS-U models at the 3rd position.

However, for the first and second positions, the performances are almost identical
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across the configurations. This suggests that the choice of loss function and training

objective has a small impact on the model’s performance, when the future window size

for predictions is small.

Looking at the results for a window size of 10, it can be seen that the Integrated

model with BCE continues to underperform. For NDCG@10, the Integrated objective

with SS-U loss leads across almost all future positions, with the Baseline SS-U model

coming in second. The baseline BCE model holds the third position, but from 5th

position onward, it almost matches the performance of the baseline with SS-U, and

they both reach the same NDCG score at the 10th future position. The results for

Hit@10, showed that the three models (Integrated SS-U and both Baselines) share

almost identical scores for the initial positions. However, starting from the 8th position,

the Integrated model begins to stand out and maintains a higher performance up to the

final future position, indicating a better robustness when looking further into the future.

For our last experiment, we set the future interactions window size K to 14. We can

observe that both Hit@10 and NDCG@10 metrics show that the Integrated model with

Sampled Softmax Uniform, and both Baseline models yield quite similar performance

in the first ten future positions. There doesn’t appear to be any significant difference

between these models within this range. Nevertheless, from the 10th position onward,

the Integrated model with SS-U begins to differentiate itself by delivering consistently

higher performance up to the last 14th future interaction. The Baseline models perform

slightly worse that the leader. As in the previous experiments, the Integrated model

with BCE trails behind. Testing on this window size still suggests that the Integrated

All Action model maintains its better performance even for larger future windows.

Upon examining the NDCG@10 performance of the Integrated All Action modeling

approach with SS-U loss over different future window sizes, we see some interesting

trends. We show these comparisons in Figure 4.3.

In the first comparison between window sizes 3 and 7, we find that although the

model with a window size of 3 starts with a significantly higher performance for

the first future position, this advantage drops quickly. By the third future position,

the performance gap between the two models is much more closed, indicating that a

window size of 7 might be a more effective choice for longer-term prediction. The

mean NDCG@10 scores for windows 3 and 7 for the model are 0.6362 and 0.5669

respectively.
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Figure 4.3: Comparison of different window sizes based on NDCG@10 for the Integrated

All Action Prediction Model using Sampled Softmax Uniform loss.

When comparing larger window sizes of 7, 10, and 14, we notice that the perfor-

mance for the first future positions is much closer across these models. Notably, the

model with a window size of 14 displays the shallowest decline in performance across

all future positions. It does, however, experience the most significant drop between the

5th and 6th future positions, after which its performance stabilizes.

Interestingly, the model with a window size of 10 starts to see a decrease in its

performance drop by the end of its prediction window at position 7, matching the

performance of the model with a window size of 7. This suggests that although

the model with a window size of 10 may initially sacrifice some performance in its

immediate predictions, it begins to reap benefits by the 7th future position.

In the final comparison between window sizes 10 and 14, we observe that the model

with a window size of 14 catches up to the model with a window size of 10 by the 9th

future position and continues to hold relatively steady. The average NDCG@10 scores

across the window for these models are 0.5227 and 0.4801, respectively, indicating

a consistent linear performance drop across future positions when training to predict

further into the future.

These results suggest that the benefit of predicting further into the future does not

lead to a dramatic drop in performance, and instead, the performance decline is stable

and linear across the NDCG, Hit, and Kendall’s Tau metrics. This insight can help guide

the choice of future window size for optimal performance in long-term predictions.
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Conclusions

In this thesis, we have presented an in-depth study of sequential recommendation

systems, aiming to enhance the understanding and development of models capable of

predicting future user interactions. Our research was built upon the widely-recognized

SASRec model, which served as the main architecture in our experiments [19]. Drawing

inspiration from the work of Pancha et al. [33], we expanded their work by introducing

several training objectives and techniques, each carrying its distinct characteristics. We

have conducted a series of experiments to evaluate the effectiveness of these method-

ologies. While Pancha et al.’s research utilized a temporal window for predictions, our

approach diverges by predicting future interactions without explicit temporal context

[33]. Instead, we place a stronger emphasis on the sequential order of these interactions,

recognizing that the chronology of user behavior carries significant value for recommen-

dation systems. Our work has been guided by three main research questions, each of

which has contributed to our understanding of the complexities and potential solutions

in the realm of sequential recommendation systems.

In response to RQ1, our experimental results reveal that Integrated All Action

Prediction modeling, when coupled with Sampled Softmax Uniform loss, demonstrates

superior performance in predicting future user interactions. This integrated approach

combines the strengths of Next Item Prediction and All Action Prediction, effectively

leveraging the advantages of both short-term and long-term predictions, while mitigating

their individual limitations. This hybrid model, when tested on a window size of 7,

attained an average NDCGavg@10 score of 0.5669, a Hitavg@10 score of 0.8184, and a

Kendall’s Tau score of 0.2641, reflecting the accurate ordering of the recommendations.

Our findings for RQ2 highlight the challenges associated with the implementation of

different training techniques in enhancing the model’s ability to generalize. While none

36
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of the proposed training techniques demonstrated significant improvements in this study,

the Teacher Forcing technique exhibited some potential. Despite not showing immediate

improvements in NDCG and Hit Rate compared to the base Integrated All Action, this

approach hinted at a promising avenue for future research regarding the ordering of

future items. Notably, it surpassed all other models by achieving a Kendall’s Tau score

of 0.2669. With more data or under different conditions, this technique might enable

the model to more accurately predict target items based on an increasingly updated

sequence of interactions. The incorporation of temporal information, however, did not

yield the expected benefits like it did for Pancha et al., underscoring the complexity of

the task when using a smaller and perhaps sparser dataset.

Finally, the answer to RQ3 provides insightful observations on the impact of the

size of the future prediction window. Our results suggest that while an increase in

the window size might result in some sacrifice in the model’s immediate prediction

performance, it appears to offer long-term benefits by the end of the prediction window.

Moreover, the performance decline is not dramatic and tends to stabilize, suggesting a

linear relationship with the increase in future window size.

Although our research provides a significant contribution to the field, it also raises

new questions and opens avenues for future work. One limitation of our study is the

use of a single dataset, MovieLens-1M. While this dataset is widely used and dense,

compared to other public datasets [19], it may not fully represent the diversity of user

behavior in other domains or larger scales. In fact, testing our proposed methodologies

on larger datasets, such as MovieLens-20M, could provide more insights, given its

closer resemblance to the datasets used in Pancha et al.’s Pinnerformer paper [33].

Hence, future studies could validate and extend our findings by applying the proposed

methodologies to such datasets and under different contextual conditions.

Another potential area for further exploration lies in the field of transfer learning.

Given that the Integrated All Action Prediction modeling we employed combines

Next Item Prediction with All Action Prediction, a possible direction could be to first

train the item embeddings with Next Item Prediction, thereby learning the immediate

item representations, and then proceed to All Action Prediction training. This idea is

somewhat inspired by the approach taken in the Pinnerformer paper, where the authors

used already learned item embeddings called PinSage [51, 33]. We had to learn these

embeddings from scratch in our study, indicating the potential benefits of a two-step

process, with each step focused on different aspects of the prediction task. Such a

strategy could potentially lead to enhanced performance, and exploring it could be a
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promising direction for research to improve future recommendations.

In conclusion, our research contributes to the understanding of sequential recom-

mendation systems and highlights promising directions for future exploration. We

believe that our findings provide valuable insights for researchers and practitioners in

the field, paving the way for the development of more effective and robust sequential

recommendation systems.
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Appendix A

Dataset Analysis

We present a series of graphical analyses performed on the MovieLens-1M dataset.

These visualizations provide a deeper understanding of the underlying patterns and

characteristics of the data, such as the distribution of user-item interactions, the activity

levels of users, and the ratings data.

Figure A.1: Ratings-Date distribution.

Figure A.2: User-Ratings distribution.

45
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Figure A.3: User activity over time.

Figure A.4: User activity over time.

Figure A.5: Activities for specific users.

Despite the dataset density, the user activity predominantly occurs within short

timeframes. This condensation of interactions poses a challenge for our model’s ability

to leverage temporal information, limiting the potential to extract meaningful patterns

for recommendations.



Appendix B

Window Sizes Impact

The table below illustrates the average results across all metrics when model trained

and evaluated on different window sizes.

Window Sizes NDCGavg@10 Hitavg@10 Kendall’s Tau

Window 3 0.6362 0.8661 0.3125

Window 7 0.5669 0.8184 0.2641

Window 10 0.5227 0.7782 0.2289

Window 14 0.4801 0.7405 0.1882

Table B.1: Performance comparison on different window sizes for the Integrated All

Action Prediction Model using Sampled Softmax Uniform loss.

The tables below presents the results of the graph with a Window size of 7 for both

the baseline and integrated all action prediction objectives. We consider three different

loss functions: Sampled Softmax with LogQ, Sampled Softmax Uniform, and Binary

Cross Entropy:

47
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Position Baseline BCE Baseline SS-U Baseline SS-LogQ

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

1 0.6404 0.8827 0.6424 0.8734 0.6400 0.8692

2 0.6053 0.8562 0.6162 0.8536 0.6141 0.8496

3 0.5850 0.8410 0.5845 0.8254 0.5819 0.8210

4 0.5518 0.8132 0.5495 0.8052 0.5473 0.8033

5 0.5257 0.7898 0.5214 0.7768 0.5190 0.7722

6 0.4993 0.7750 0.4953 0.7620 0.4934 0.7576

7 0.4816 0.7566 0.4807 0.7422 0.4782 0.7374

Table B.2: NDCG@10 and HR@10 scores for Baseline with Window 7.

Position Integrated BCE Integrated SS-U Integrated SS-LogQ

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

1 0.5594 0.8124 0.6474 0.8788 0.6505 0.8751

2 0.5406 0.7967 0.6193 0.8569 0.6154 0.8512

3 0.5164 0.7802 0.5952 0.8400 0.5878 0.8293

4 0.4944 0.7598 0.5589 0.8167 0.5574 0.8098

5 0.4729 0.7331 0.5372 0.7896 0.5317 0.7811

6 0.4489 0.7203 0.5138 0.7733 0.5070 0.7735

7 0.4383 0.7110 0.4932 0.7570 0.4875 0.7531

Table B.3: NDCG@10 and HR@10 scores for Integrated All Action with Window 7.

The following tables show the results used for plotting the Window 3 graphs.
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Position Baseline BCE Baseline SS-U

NDCG@10 HR@10 NDCG@10 HR@10

1 0.6608 0.8879 0.6706 0.8874

2 0.6242 0.8680 0.6336 0.8685

3 0.5993 0.8507 0.6006 0.8409

Table B.4: NDCG@10 and HR@10 scores for Baseline with Window 3.

Position Integrated BCE Integrated SS-U

NDCG@10 HR@10 NDCG@10 HR@10

1 0.5916 0.8382 0.6695 0.8854

2 0.5612 0.8293 0.6328 0.8682

3 0.5366 0.8040 0.6064 0.8447

Table B.5: NDCG@10 and HR@10 scores for Integrated with Window 3.

Next, we illustrate the tables of the Window 10 graphs:
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Position Baseline BCE Baseline SS-U

NDCG@10 HR@10 NDCG@10 HR@10

1 0.6215 0.8685 0.6299 0.8651

2 0.5927 0.8456 0.6057 0.8501

3 0.5636 0.8215 0.5741 0.8150

4 0.5409 0.8080 0.5440 0.8001

5 0.5173 0.7783 0.5172 0.7721

6 0.4927 0.7667 0.4982 0.7619

7 0.4771 0.7494 0.4849 0.7483

8 0.4607 0.7299 0.4690 0.7294

9 0.4300 0.7019 0.4380 0.7090

10 0.4121 0.6801 0.4118 0.6739

Table B.6: NDCG@10 and HR@10 scores for Baseline with Window 10.
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Position Integrated BCE Loss Integrated SS-U

NDCG@10 HR@10 NDCG@10 HR@10

1 0.5446 0.8054 0.6304 0.8586

2 0.5136 0.7771 0.5993 0.8396

3 0.4892 0.7590 0.5765 0.8193

4 0.4827 0.7500 0.5478 0.7992

5 0.4608 0.7294 0.5244 0.7794

6 0.4459 0.7212 0.5089 0.7746

7 0.4303 0.7011 0.4923 0.7520

8 0.4162 0.6850 0.4797 0.7500

9 0.3937 0.6589 0.4488 0.7200

10 0.3748 0.6431 0.4191 0.6900

Table B.7: NDCG@10 and HR@10 scores for Integrated with Window 10.

Lastly, we display below the tables of the Window 14 graphs:
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Position Baseline BCE Baseline SS-U

NDCG@10 HR@10 NDCG@10 HR@10

1 0.6095 0.8574 0.6242 0.8604

2 0.5802 0.8386 0.5907 0.8323

3 0.5519 0.8105 0.5560 0.8045

4 0.5201 0.7857 0.5228 0.7782

5 0.5048 0.7700 0.5099 0.7625

6 0.4820 0.7572 0.4875 0.7490

7 0.4756 0.7512 0.4751 0.7336

8 0.4582 0.7253 0.4622 0.7163

9 0.4285 0.6946 0.4376 0.7009

10 0.4109 0.6822 0.4089 0.6600

11 0.3995 0.6709 0.4065 0.6675

12 0.3924 0.6529 0.3868 0.6435

13 0.3659 0.6308 0.3745 0.6345

14 0.3585 0.6236 0.3613 0.6176

Table B.8: NDCG@10 and HR@10 scores for Baseline with Window 14.
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Position Integrated All Action BCE Loss Integrated with SS-U

NDCG@10 HR@10 NDCG@10 HR@10

1 0.5168 0.7824 0.6096 0.8537

2 0.4956 0.7640 0.5849 0.8386

3 0.4751 0.7430 0.5597 0.8150

4 0.4576 0.7137 0.5351 0.7839

5 0.4390 0.7043 0.5203 0.7719

6 0.4371 0.6991 0.4878 0.7568

7 0.4127 0.6833 0.4849 0.7448

8 0.4190 0.6863 0.4682 0.7396

9 0.3904 0.6503 0.4512 0.7186

10 0.3682 0.6330 0.4191 0.6848

11 0.3744 0.6371 0.4264 0.6957

12 0.3505 0.6113 0.4037 0.6657

13 0.3527 0.6139 0.3945 0.6623

14 0.3309 0.5929 0.3762 0.6360

Table B.9: NDCG@10 and HR@10 scores for Integrated with Window 14.
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