
Use the Apple M1 GPU to accelerate

weather/climate/health simulations

Richard Yuan
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2023



Abstract

This thesis delves into the intricacies of a compiler process that encompasses both

translation and interpretation, focusing on the transition from high-level MLIR code

to executable operations on the GPU. The study introduces a comprehensive workflow

for the interpreter component of the compiler, detailing its preparation and execution

stages. The interpreter is designed to work seamlessly with the translator, ensuring

a smooth transition from MLIR code to GPU execution. The compilation process is

structured, starting with initialization, moving through translation and interpretation, and

concluding with a finalization stage. The finalization ensures the syntactic correctness

of the output WGSL code and the correct retrieval of GPU computation results. The

study also touches upon the performance evaluation of Apple’s M1 GPU, especially in

the context of WebGPU, a web-based graphics and compute API.

i



Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Richard Yuan)

ii



Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor Tobias Grosser,

for his unwavering guidance, support, and expertise throughout this research journey.

His insights and mentorship have been invaluable, and I am truly fortunate to have had

the opportunity to work under his supervision.

I would also like to extend my heartfelt thanks to Emilien Bauer. Collaborating with

him has been both enlightening and rewarding. His contributions and dedication have

played a pivotal role in the progress and achievements of this project.

Furthermore, I cannot express enough thanks to my family for their continuous love,

encouragement, and unwavering support throughout this year. Their belief in me and

my endeavors has been a driving force behind my determination and perseverance.

To all of you, thank you for being instrumental in my academic and research journey.

iii



Table of Contents

1 Introduction 1
1.1 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Gap and Significance of the Study . . . . . . . . . . . . . . 3

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Implementation Contributions to the xDSL Project . . . . . . 4

2 Background 5
2.1 Apple Arm Architecture . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Relationship between GPU’s and Compliers . . . . . . . . . . . . . . 6

2.3 LLVM and MLIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Capturing the computational capabilities of GPU . . . . . . . . . . . 9

2.5 Performance of Apple M1 Chips . . . . . . . . . . . . . . . . . . . . 10

3 Methodology 13
3.1 Compiler Architecture and Design . . . . . . . . . . . . . . . . . . . 14

3.2 Design and Functionality of the Translator . . . . . . . . . . . . . . . 15

3.3 Design and Functionality of the Interpreter . . . . . . . . . . . . . . . 16

3.4 Compilation Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.2 Translation Process . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Interpreter Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 Interpreter Preparation . . . . . . . . . . . . . . . . . . . . . 23

3.5.2 Interpretation Process . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Finalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Evaluation 26
4.1 Evaluation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



4.2 Evaluation Environment . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Execution Time Evaluation on M1 GPU . . . . . . . . . . . . . . . . 28

4.3.1 Findings from Execution Time Evaluation on M1 GPU . . . . 29

4.4 Execution Time Evaluation on Different GPUs . . . . . . . . . . . . 30

4.4.1 Findings from Execution Time Evaluation on Different GPUs 31

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusions 35
5.1 Recap of Research Objectives . . . . . . . . . . . . . . . . . . . . . 35

5.2 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Comparison with Existing Literature . . . . . . . . . . . . . . . . . . 37

5.4 Limitations and Challenges . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.6 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 41

v



Chapter 1

Introduction

1.1 Research Overview

Over the past few years, a great deal of interest has gone through approving the

algorithms and data analytics capabilities of the machines [1][2]. The internet age has

given rise to immense connectivity and brought about the era of big data. However,

while big data’s possibilities and effectiveness remain for developing more effective

and focused solutions, their output remains limited to the hardware and software

performance. Over the past few years, Apple has been the talk of the town not only

for its impressive hardware products but also for the design and ingenuity it has shown

with its products. One such thing was in the form of Apple’s M1 chips [3]. These chips

were a detachment from the Intel-made ones and allowed Apple to have greater control

over the research and development of the products and its supply chain.

The introduction of Apple’s M1 chips has been met with significant acclaim. Com-

parative studies have consistently showcased the M1’s superior performance and energy

management over its competitors [4]. These attributes are pivotal for hardware projects,

where efficiency and performance are paramount. The potential of Apple’s M1 chips

extends beyond just consumer applications; they hold promise for advancing hard-

ware research, especially in exploring the capabilities and roles of GPUs in various

computational tasks.

This research project is situated within this context, focusing on developing a com-

pilation flow within xDSL from MLIR (a powerful intermediate representation language

used in many compiler frameworks) to WebGPU Shading Language (WGSL). The target

platform, WebGPU, is a modern graphics and compute API that can leverage the power

of hardware like the M1 chips. The project employs the xDSL framework, a Python

1



Chapter 1. Introduction 2

native compiler framework built around SSA-based intermediate representations (IRs).

xDSL uses multi-level IRs, which allow the implementation of abstraction-specific

optimization passes, similar to the structure of common DSL compilers.

In the context of our research, the cornerstone of the compilation flow we are

developing is the translator. This translator is specifically designed to convert MLIR code

into WGSL, making it primed for execution on WebGPU. Alongside this, the interpreter

in our system provides the necessary runtime support for the translated code, ensuring

seamless integration and execution.

The compilation flow is integrated as a module within the xDSL framework. This

integration augments the framework’s capabilities, enabling it to compile MLIR to WGSL

and execute on WebGPU, making it compatible with advanced hardware like the M1

chips. While this project primarily focuses on enhancing the xDSL framework, it also

lays the foundation for future exploration of modern hardware’s potential in tasks such

as simulations. In doing so, it sets the stage for potential advancements in big data

processing and analysis.

1.2 Research Motivation

The primary motivation behind this study is to explore the capabilities of Apple’s M1

Chips in scientific simulations, especially in areas such as climate, weather, and health.

Historically, GPUs have been extensively utilized for both simulations and data analytics,

with their ability to accelerate complex computations making them indispensable in

various scientific domains [5]. While GPUs have long been at the forefront of these

simulations [6][7][8], the M1 represents a new breed of GPU. Its unique architecture

and design pose challenges in adapting existing simulation frameworks. This study

aims to bridge the gap, ensuring that the M1 can effectively support the demands of

these scientific simulations.

The speed of obtaining results is a critical consideration across computational

platforms. While questions related to processing methodologies and the number of

iterations required are primarily addressed at the numerical analysis level, the underlying

hardware can influence the overall performance and efficiency. In the context of big data

[9], these considerations are paramount, and they are equally significant in the realm of

physical simulations. Evaluating the performance of the M1 Chip in these scenarios

can offer insights into its potential to enhance scientific simulations, especially in areas

like climate change modeling, health, and weather forecasting.



Chapter 1. Introduction 3

It is needless to say that these areas of scientific research are of any great importance.

Their importance and relevance for the scientific analysis cannot be disputed. Moreover,

this area of research has also great deal of relevance for the algorithms and machine

learning. As the name implies machine learning is about making machines learn and

work on their own [9]. Algorithms have a great role and influence to play in this process

[10][11]. However, the application of the algorithms or their success rate can also be

impacted by the processing powers of the machines and their capabilities. For instance,

the ability of the machine to handle single and multiple iteration efficiently can not only

impacts on the accuracy of the algorithm’s but also how it they will be developed and

impacted. Hence one can suggest that the capabilities of the processors and machines

are very relevant to the computing capabilities of these machines.

This research aims to explore the potential of Apple’s M1 chips in scientific com-

putation and analysis. By enabling computational flows on the M1 chip, this study

contributes to the existing literature by shedding light on the practical applications of

this advanced hardware in scientific contexts. While there has been significant emphasis

on enhancing the power profile and energy efficiency of chips, it’s essential to under-

stand how these advancements translate to real-world computational tasks. Preliminary

observations suggest that Apple’s M1 chips offer competitive energy efficiency and per-

formance. However, this research primarily focuses on the feasibility and practicality of

running specific computational flows on the M1, rather than an exhaustive performance

or energy analysis.

1.3 Research Gap and Significance of the Study

The research gap addressed in this study is twofold. Firstly, there’s a need to bridge the

xDSL framework to the Apple M1 chip. While NVIDIA’s CUDA platform offers tools

like profiling and harnesses the full power of NVIDIA GPUs, it’s specific to NVIDIA

hardware and is not compatible with Apple’s M1. The mention of CUDA serves to

highlight the importance of having specialized tools and frameworks that can maximize

the potential of specific hardware architectures. In the case of Apple’s M1, frameworks

like xDSL currently lack support, and the intricacies of MLIR dialects on this architecture

remain largely uncharted. This study aims to address these gaps by implementing the

xDSL and compiling MLIR dialects to WGSL for execution on the M1 GPU. Such efforts

are crucial for gauging the computational prowess of Apple M1 chips and ensuring that

software frameworks can fully leverage their capabilities.



Chapter 1. Introduction 4

1.4 Contribution

This research project aims to fill this gap by developing a compilation flow using the

xDSL framework that translates MLIR code to WebGPU Shading Language (WGSL), ready

for execution on WebGPU, potentially leveraging the power of Apple’s M1 chips. By

doing so, it will shed light on the possibilities and performance of using M1 chips for

scientific computation and analysis.

This research will not only contribute to the ongoing development of the xDSL

framework, but also explore the potential of modern hardware in simulations, thereby

pushing the boundaries of big data processing and analysis. The project’s findings could

lead to significant improvements in data processing speed, algorithm performance, and

energy efficiency, with potential applications in fields such as climate modeling, weather

simulation.

1.4.1 Implementation Contributions to the xDSL Project

During the progression of this research, I contributed to the xDSL project, with a focus

on the interface between MLIR and the WebGPU Shading Language (WGSL) and the

WebGPU API. The specifics of my contributions are as follows:

1. WGSL Printer Module and its Tests:

• Module (GitHub Link): I was responsible for the ‘wgsl printer‘ module,

which translates MLIR code to WGSL. This module provides a mechanism

to convert MLIR representations into a format suitable for the WebGPU

API.

• Tests (GitHub Link): To validate the ‘wgsl printer‘ module, I implemented

tests that ensure the module’s translations are accurate and consistent.

2. WGPU Interpreter Module (GitHub Link):

• In collaboration with Emilien Bauer, we worked on the ‘wgpu‘ interpreter

module. This module utilizes the ‘wgsl printer‘ for MLIR to WGSL transla-

tion and subsequently executes the WGSL using the WebGPU API.

https://github.com/xdslproject/xdsl/blob/main/xdsl/interpreters/experimental/wgsl_printer.py
https://github.com/xdslproject/xdsl/blob/main/tests/interpreters/test_wgsl_printer.py
https://github.com/xdslproject/xdsl/blob/main/xdsl/interpreters/experimental/wgpu.py


Chapter 2

Background

The objective of this chapter is to provide historical and contextual background for

the research. It delves into the evolution of the ARM architecture, highlighting its

distinctions from other prevalent silicon architectures in the industry. The chapter

further explores the computational capabilities of GPUs, detailing how they can be

interfaced with and evaluated through various benchmarks. A significant portion of this

chapter is dedicated to reviewing studies on the performance of Apple Silicon, offering

insights into its potential in the realm of scientific computing.

2.1 Apple Arm Architecture

The ARM architecture, which originated from Acorn Computers in the 1980s, has

established a strong presence in mobile devices due to its efficiency and power man-

agement capabilities [3][4]. However, its adoption in personal computers has been

more restrained compared to Intel-based systems. Several inherent features of ARM

architectures make them appealing for a range of computational tasks [12][13]:

• Load/Store Architecture

• Integrated Security for enhanced data storage and management

• Orthogonal Instruction Set for optimized memory and processing

• Single-Cycle Execution for efficient instruction processing

• Superior Energy Efficiency due to an efficient transistor network

• Capability to switch between 32-bit and 64-bit modes [14]

5



Chapter 2. Background 6

• Enhanced Hardware Visualization

These features, combined, holds significant potential for data analysis and scientific

exploration. While its dominance in mobile devices is a testament to its efficiency and

power management, its application in broader computational domains, especially data

analysis and simulation, remains an area of active research.

However, ARM processors have their limitations. Historically, they’ve faced chal-

lenges in supporting certain data analysis programs due to a lack of native programming

support, leading some to argue their better suitability for simpler tasks. This preference

for performance over efficiency is a key reason ARM chips initially found more traction

in mobile devices than in personal computers. Nevertheless, recent advancements,

spearheaded by companies like Apple, have expanded ARM’s reach into the computing

domain. Modern ARM chips, as seen in Apple’s lineup, are lauded not just for their

computational prowess but also for their energy efficiency.

The ARM infrastructure, as implemented by Apple in their chip design, offers not

only a wide range of personal computing solutions but also potential applications in data

science and scientific research. Data science is an interdisciplinary field that uses various

techniques, algorithms, processes, and systems to extract knowledge and insights from

structured and unstructured data. It encompasses a range of activities, from data analysis

and visualization to machine learning and advanced statistical modeling. Given ARM’s

efficiency, particularly in reducing data transfer time and overall system load, many

experts are speculating about its potential benefits for data science tasks and broader

research and development initiatives.

While the M1 architecture offers significant advancements, it also presents certain

challenges for software compatibility. Notably, many native or platform-specific apps

and programs have yet to be optimized for the M1. The M1 isn’t directly targeted by

the MLIR GPU dialect. The xDSL framework serves as a bridge, enabling the execution

of WebGPU on the M1. Our goal is to utilize the xDSL framework to run specific

computational tasks on the M1 chip, thereby harnessing its capabilities for a broader

range of applications.

2.2 Relationship between GPU’s and Compliers

GPU acceleration plays a crucial role in enhancing the performance of compiled code,

especially for computationally intensive tasks [14][15]. It’s not merely about increasing



Chapter 2. Background 7

the speed of operations; GPU acceleration broadens the scope of addressing intricate

computational challenges. This is particularly evident in domains like data analysis and

simulation. For instance, a study by Fuqiu [16] highlighted that a hybrid optimization

approach, utilizing both GPU and CPU resources, can markedly enhance data simulation

and analysis. This optimization is particularly beneficial for stencil computations,

which are known to thrive with GPU acceleration. Such advancements primarily boost

computational efficiency and the ability to process data concurrently.

The crux of this performance enhancement lies in the compilers. They bridge

the gap between high-level programming languages and the hardware infrastructure,

translating code in a manner that optimally utilizes the capabilities of GPUs.

Compilers are instrumental in translating high-level programming into instructions

that hardware can execute. The xDSL, a burgeoning python-native framework, holds

potential for applications in simulation, graphical processing, and analysis [15]. While

domain-specific languages (DSLs) like xDSL have been recognized for their value, a

recurring challenge is the tendency to reimplement the entire stack for each new DSL.

This can lead to redundancy and inefficiencies. However, the primary advantage of DSLs

is their ability to address specific optimization and communication challenges between

software and hardware, offering tailored solutions that general-purpose languages might

not provide [2][6].

Historically, high-performance simulation codes have been notoriously challenging

to optimize on supercomputers[4][3]. Even with powerful GPUs or CPUs, the real

potential of the hardware is often contingent on the optimization capabilities of the

compilers and their ability to effectively translate and transform information. A key

advantage of DSLs is their potential to improve the dialogue between software and

hardware, requiring less bespoke expertise.

The challenge today isn’t just about having advanced hardware like Apple’s M1

chips. It’s about making optimization and integration with such hardware more accessi-

ble. Currently, there’s a dependence on a handful of experts who excel at optimizing

code for supercomputers. The vision is to reduce the reliance on this limited expert-time,

making the optimization process more straightforward and less expert-dependent. By

doing so, the broader scientific community can navigate the myriad of compilers and

the challenges they present in harmonizing with varying hardware.



Chapter 2. Background 8

2.3 LLVM and MLIR

Two compiler frameworks that stand out as potential solutions for a unified ecosystem

are LLVM and MLIR. These frameworks aim to address the incoherence between various

hardware and compilers. Multi-Level Intermediate Representation (MLIR) was devel-

oped as an evolution beyond the Low-Level Virtual Machine (LLVM). However, using

LLVM has its challenges. A notable issue is the significant number of transformations

required between the high-level representation of user code and the LLVM intermediate

representation [17][18]. This efficiency concern has somewhat limited the broader

adoption of LLVM. To tackle this efficiency problem, Google introduced MLIR. MLIR

offers greater openness and flexibility in its architectural design and its interaction

with hardware and software. A significant advantage of MLIR is its extensibility, al-

lowing developers to integrate their own codes and frameworks while maintaining a

level of flexibility comparable to LLVM. This positions MLIR as a promising compiler or

intermediate representation for a unified ecosystem.

There are many other benefits that these two compliers offer as an intermediate

representation. Firstly, they are supported by the large sets of developer and programmer

communicates, which makes their application and implementation highly plausible.

This also add into second key advantage of theirs is that they have wealth of third-party

tooling, such as the debuggers and profilers, exists. This is considered to be highly

crucial as the as in the case of high-performance computer optimisation, it can have a

substantial influence and impact [18][19].

xDSL compliers seems to offer great deal intermediating source between the MLIR

and LLVM frameworks [15]. The xDSL framework allows the translation and manipula-

tion of the MLIR dialects and fundamentals. The open-source nature of the xDSL also

expands its application capabilities. The xDSL also has scientific application, which

is noted in the form of PSyclone[20] a Fortran-based DSL developed by the STFC.

It is currently being used by the Met office for the weather and climate models. By

integrating the xDSL with the PScylone, plenty of its shortcomings and limitations can

be addressed. Some of these being that lack of uniformity and in-efficiency that requires

the developers to make system specific codes. However the work of Brown [15] how

xDSL integration can improve the overall functioning of the PScyclone. This not only

instrumental from expanding the application of the new and improved technologies

such as seen in the form of the Apple M1 chips, but at the same time, it also has great

deal of benefit for the scientific research and development.



Chapter 2. Background 9

As argued earlier that modern scientific analysis and data computation are not only

limited by the algorithmic powers and applications but also the how these systems oper-

ate with the hardware. This increasing the role and application of common ecosystem,

that increases the application and implementations of compliers such as the MLIR.

2.4 Capturing the computational capabilities of GPU

As highlighted earlier that using GPU for data analysis and computational purposes,

is less straightforward than the CPU. However the framework such as the WebGPU,

Shading languages and CUDA frameworks have been developed for these purposes.

The purpose of the WebGPU to work as a bridge (API) between the web browsers and

GPU[21](see figure 2.1).

Figure 2.1: The architecture of WebGPU[22]

WebGPU Shading Language (WGSL), commonly referred to as shaders or kernels,

serves as the primary language for WebGPU. While WGSL is the default communicator,

other languages like the OpenGL Shading Language (GLSL) can also harness the power

of GPUs [23][24]. WebGPU is pivotal for advanced 3D graphics and executing intricate

computations such as Generic Matrix Multiplication (GEMM), Sparse Matrix Vector

Multiplication (SPMV), and Fast Fourier Transform (FFT) [25]. Research, like the study

by Dyken [26], suggests that WebGPU can significantly enhance data visualization and

analysis. However, a challenge arises when interfacing with MLIR’s GPU infrastructure,

which currently lacks seamless compatibility with the Apple M1 architecture. This

means users might face hurdles in terms of compilers and benchmarks, and achieving

optimal compatibility remains a challenge.

Another pivotal framework in harnessing the computational capabilities of GPUs

is CUDA, developed by NVIDIA. Unlike general-purpose programming languages,

CUDA is specifically designed to facilitate GPU-accelerated applications. By providing



Chapter 2. Background 10

an extended C++ programming environment, CUDA allows developers to write parallel

code for NVIDIA GPUs directly, bypassing traditional graphics APIs.

CUDA’s strength is not just limited to graphics; it has found extensive application

in the realm of data analysis and scientific computing. Its architecture is optimized for

machine learning and deep learning frameworks, with popular libraries like TensorFlow,

PyTorch, and Keras being CUDA-enabled for GPU acceleration [27].

However, it’s worth noting that while CUDA is a powerful tool for NVIDIA GPUs,

its application is limited when it comes to other architectures, such as Apple’s M1

chip. This study aims to explore the potential of the xDSL framework on the M1, and

how alternative GPU programming approaches can be integrated to harness the full

capabilities of this chip.

2.5 Performance of Apple M1 Chips

In recent years, there has been a surge in research interest regarding the computational

capabilities of Apple’s M1 chips. Numerous studies have delved into the potential of

the M1 chip in areas such as deep learning, machine learning, and scientific computing

[3][6][25]. However, many of these investigations offer preliminary insights, suggesting

there’s more to uncover about the full potential of the M1 chip.

For example, Kenyon and Campano’s study [3] explored the scientific computational

capabilities of the M1 chip by comparing it to NVIDIA chips, which are renowned for

their prowess in scientific computations. The benchmarking methodologies differed:

the M1 chip was evaluated using OpenCL, a widely-accepted open standard for parallel

programming, while NVIDIA chips were assessed via CUDA, a proprietary platform

tailored for NVIDIA GPUs. Given CUDA’s optimization for NVIDIA hardware, it’s

essential to approach such comparisons with caution. While the M1 demonstrated

commendable performance in tasks like Generic Matrix Multiplication (GEMM), Sparse

Matrix Vector Multiplication (SPMV), and Fast Fourier Transform (FFT), it’s possible

that the full extent of its capabilities hasn’t been tapped into yet.

This underscores the need for further research, especially in exploring how frame-

works like xDSL can be integrated with the M1 chip to maximize its potential.

Kasperek’s study [2] offers a deeper dive into the scientific computational potential

of Apple’s M1 chip, particularly focusing on its machine learning capabilities. Unlike

many previous studies that primarily assessed the graphical processing capabilities of

the M1 chip, Kasperek’s research emphasized its prowess in handling and processing



Chapter 2. Background 11

large datasets for machine learning tasks.

Two primary aspects set Kasperek’s research apart. First, it centered on both training

and analysis of data, offering a more holistic view of the M1 chip’s capabilities in the

realm of machine learning. Second, the study employed Apple’s ’Create ML’ tool,

emphasizing the importance of hardware-software synergy. By using a tool designed

specifically by Apple, the research aimed to minimize compatibility issues, which often

act as bottlenecks in harnessing a chip’s full potential.

Kasperek’s findings indicate that the M1 chip outperforms older models based on

non-Apple silicon. This underscores the significance of ensuring harmony between

hardware and software. For instance, earlier Apple laptop models, which relied on Intel

chips, didn’t fare as well in similar tasks as their M1-based counterparts [2]. However,

it’s worth noting that while Kasperek’s study sheds light on the M1 chip’s capabilities

in scientific computing, there’s still much to explore in this domain.

More in-depth research on the application of Apple’s M series chip was done by the

work of Gebraad and Fichtner[6]. The study just like the previous studies on the topic

tends to only examine the phenomena from only one direction. For instance, the study

by Gebraad and Fichtner[6] look at the utilisation of CUDA and MSL (Metal Shading

Language), how they can be used to improve the scientific computation on the Apple’s

M series devices. Compared to this the study done by Ali[4] examined the application

of Apple’s M1 chip on the data centres, found that Apple’s M1 chips outperform the

x86 in terms of energy management and data processing. This further highlights the

potential that these chips can have when it comes to the energy management and data

analysis.

The exploration of Apple’s M1 chip in the context of scientific computing is still in

its early stages, with limited literature available. While initial findings suggest that the

M1 chip offers promising advancements, particularly in terms of energy efficiency and

integrated architecture, it’s essential to approach these claims with caution.

Several studies have touched upon the potential of the M1 chip in scientific com-

puting, machine learning, and data science. However, many of these studies have

only scratched the surface, focusing primarily on the chip’s basic capabilities without

delving deep into its full potential. A significant gap in the literature pertains to the

exploration of compilers and frameworks that can effectively harness the M1 chip’s

GPU capabilities. While there is mention of a study leveraging the Metal Shading

Language (MSL) to tap into the M1’s GPU power, a comprehensive understanding of

its performance remains elusive.



Chapter 2. Background 12

The current literature lacks a detailed examination of the interplay between com-

pilers, interfaces, and the M1 architecture. While theoretical possibilities exist, as

highlighted in some studies, practical implementation presents challenges. It’s crucial

to recognize that without rigorous empirical analysis, we cannot fully grasp the true

potential of Apple’s M series chips. In essence, while the M1 chip presents an exciting

development in the realm of computing, it’s essential to temper expectations and focus

on its specific advantages, such as energy efficiency and integrated design, rather than

broad revolutionary claims.



Chapter 3

Methodology

The methodology section for this research delineates the explicit procedures and tech-

niques employed in our approach to compiling MLIR[28] to the WGSL [29] using xDSL

[30]. This part of the thesis is structured into the following four subsections:

• Compiler Architecture and Design: In this section, we offer an initial overview

of our compiler strategy for the MLIR to WebGPU translation via xDSL. We

shed light on the two key components of our compiler: the translator and the

interpreter. We delve deeper into the compiler’s architecture, illustrating the

intricate interplay between the translator and the interpreter, both of which are

crucial to the operation of the compiler.

• Design and Functionality of the Translator: This section delves into the straight-

forward and efficient design of the translator, a core component of the compiler.

Using a single dispatch mechanism, the translator ensures simplicity and effec-

tiveness in its operations. Its primary role is to convert MLIR representations into

the WGSL, facilitating further processing and execution.

• Design and Functionality of the Interpreter: This section provides an in-depth

explanation of the interpreter, the second integral component of our compiler.

The interpreter works in concert with the translator to execute the translated xDSL

code in the WebGPU environment. We discuss the interpreter’s design elements,

its operational characteristics, and its role in the overall compilation process.

• Compilation Workflow: This section describes the systematic procedure of our

compilation approach, transitioning from source (MLIR) to target (WGSL) via xDSL.

13



Chapter 3. Methodology 14

• Interpreter Workflow: This section outlines the stages of the interpreter, from its

preparation through the execution of the translated xDSL code.

This arrangement provides a clear overview of the primary processes, methods,

and strategies employed in our research. We emphasize the roles of the translator and

interpreter within the compiler, ensuring readers gain a straightforward understanding

of our approach. Subsequent sections of the thesis will delve into the experimental

setup, testing procedures, results, validation, and a discussion on potential challenges

and considerations.

3.1 Compiler Architecture and Design

At the core of our methodology is Python’s single dispatch mechanism, a powerful tool

for organizing various functions based on the operation type present in the MLIR code. In

combination with the xDSL framework we’ve created an efficient and dynamic system

for translating MLIR code into WGSL. Our compilation flow comprises two primary

components: the translator and the interpreter, which work in tandem to translate MLIR

into WGSL and then execute the WGSL code via WGPU.

The translator begins by identifying and translating the gpu.func operation within

the MLIR code. This operation encompasses a variety of arguments and operations,

each necessitating a specific translation into WGSL. Proper translation requires a com-

prehensive grasp of the semantics and implications of each operation within the MLIR

code. To cater to the diverse operations within MLIR, our design employs Python’s

single dispatch method. Each distinct operation type in the MLIR is linked to a specific

translation method. The dispatcher function then assigns the operation to its respective

translation function. If an unsupported operation is detected, a NotImplementedError

is raised, ensuring the translation’s integrity is maintained.

Subsequent to the translation process, the interpreter comes into play. Working

in collaboration with the translator, the interpreter is responsible for executing the

translated WGSL code via WGPU. It takes the translated WGSL constructs and transforms

them into corresponding WGPU API calls, enabling the operations to be executed on

the GPU. The design of this component serves as an essential check on the translation

process’s effectiveness and acts as a crucial link to the overall success of the compiler.

Our compiler’s architecture, undergirded by the synergy between Python’s single

dispatch mechanism, the xDSL framework, and the WGPU, offers the necessary flexibility



Chapter 3. Methodology 15

and scalability to translate MLIR into WGSL and subsequently execute it via WGPU. This

dual-component structure of the compiler ensures a thorough and efficient translation

process, navigating the intricacies of MLIR and ensuring accurate execution in WGPU.

3.2 Design and Functionality of the Translator

Our translator’s design is informed by the hierarchical structure of MLIR. While at

first glance, the operations nested within Regions & Blocks might suggest a tree-like

structure, the MLIR framework is more intricate. Operations can be interconnected

through SSAValues, making the structure more akin to a graph. Recognizing this graph-

like nature is essential to our approach. In this context, we treat the gpu.launch_func

operation as a central point of reference, though not in the traditional sense of a ”root

node” in tree structures.

The translation process involves sequentially processing the list of operations in a

block, ensuring each is accurately converted to its corresponding WGSL structures.

A cornerstone of our translator is its integration with the xDSL framework. As a

domain-specific language tailored for MLIR, xDSL provides us with a suite of tools for

efficiently handling and transforming MLIR code. It serves as the foundation of our

translator, facilitating the conversion from MLIR to WGSL.

The translation process commences within the gpu.module, where the translator

dissects the encapsulated gpu.func. Within this function, the translator encounters an

array of arguments and operations, each requiring a specific translation approach into

WGSL.

Following the argument translations, the translator proceeds to handle the individual

operations housed within the gpu.func. This is facilitated by the single dispatch

method, which delegates each operation to its dedicated translation function based on

its type. This flexible design not only ensures comprehensive coverage of all operation

types but also allows for easy expansion or modification of the translator’s capabilities

by simply adding or adjusting the dedicated methods for different operations.

Our translator incrementally writes the WGSL constructs into a output stream, rather

than accumulating the translated code in memory. Once the translation process is

complete, the content of the output stream is extracted as a string, representing the fully

translated WGSL code.

Informed by the intricacies of MLIR, our translator is designed to effectively convert it

into WGSL. By utilizing the capabilities of xDSL and Python’s single dispatch mechanism,



Chapter 3. Methodology 16

we aim for our translator to offer flexibility, scalability, and efficiency. While the design

decisions were made with these goals in mind, comprehensive evaluations would be

needed to fully demonstrate these attributes.

3.3 Design and Functionality of the Interpreter

The interpreter, the second critical component of our compiler, works in tandem with

the translator to execute the translated xDSL code in the WebGPU environment. Its

design is focused on interpreting GPU operations using the WebGPU API, allowing for

the execution of operations on the GPU.

Our interpreter extends the functionality of a class from the xDSL framework. This

class, known as InterpreterFunctions, serves as a foundational structure for our in-

terpreter. The InterpreterFunctions class in the xDSL framework is a fundamental

building block that provides a set of functionalities for interpreting operations. Our

interpreter builds upon this by incorporating operations that are specific to the WebGPU

environment.

Within our work, the principal class, WGPUFunctions, encompasses several methods

tailored to facilitate and execute WebGPU operations. For instance, the buffer_from_operand

method is designed to prepare a GPUBuffer from an SSA operand. Similarly, the

prepare_bindings method is dedicated to preparing argument bindings, a crucial

component of the WebGPU API. The compile_func method ensures a GPU function

is compiled if it hasn’t been previously, leveraging the WGSLPrinter to produce the

WGSL source code for the function and then compiling it into a GPU shader module.

The interpreter also implements various GPU operations. The run_alloc func-

tion manages the GPU allocation operation (gpu.alloc), allocating a GPUBuffer and

returning it as the memref value. The run_memcpy function handles the GPU mem-

ory copy operation (gpu.memcpy), supporting both device-to-host and host-to-device

copies. The run_launch_func function implements the GPU kernel launch operation

(gpu.launch_func), setting up and launching the GPU kernel using the WebGPU API.

Each of these methods has a crucial role in the interpretation process, converting

the xDSL code into WGSL that can be executed by WGPU on the GPU. By harnessing the

power of the WGPU API, our interpreter can directly execute GPU operations, providing

an essential link in the overall compilation process.

In summary, the design of the interpreter ensures a seamless transition from the

translated xDSL code to executable WGPU operations, forming an efficient and effective



Chapter 3. Methodology 17

bridge between the translation and execution stages of the compilation process.

3.4 Compilation Workflow

The compilation process, which encompasses both translation and interpretation, is a

multi-stage task that begins with reading the input MLIR code. The translator, leveraging

Python’s single dispatch method, navigates through the MLIR code structure, interpreting

it as a tree with the gpu.launch_func serving as the root.

Once the translator completes its task, generating the intermediate representation

(xDSL), the interpreter takes over. The interpreter, designed to work with the WebGPU

API, reads the translated xDSL code and executes it on the GPU.

Thus, our compilation process constitutes an intricate dance between the translator

and the interpreter, seamlessly moving from the high-level MLIR code to executable

operations on the GPU. The process ensures not just the accurate translation of MLIR

into WGSL, but also its successful execution in the WebGPU environment, providing a

comprehensive solution for compiling MLIR to the WGSL using xDSL.

3.4.1 Initialization

The compilation process starts with the initialization of key components for the translator

and the interpreter. However, this wasn’t straightforward due to a few issues we

encountered.

One of the first issues was ensuring the uniqueness of variable names during the

translation process. To tackle this, we initialized the WGSLPrinter class for the trans-

lator, which forms the backbone of the translation process. During its initialization,

the WGSLPrinter class creates an empty dictionary (name_dict) and a counter vari-

able (count) set to zero. The name_dict dictionary was our solution to quickly look

up unique names corresponding to each SSAValue, thus streamlining the translation

process.

However, not all SSAValue instances have a name_hint, which created another

problem. We addressed this by using the count variable to generate unique names

for such SSAValue instances. Each time we encountered a new SSAValue without a

name_hint, we incremented count to provide a unique name for that SSAValue.

The wgsl_name method was implemented to manage this unique name generation.

It takes an SSAValue as input and checks its presence in name_dict. If it’s already



Chapter 3. Methodology 18

present, it returns the associated name. If not, it uses the SSAValue’s name_hint (if

available) or generates a new unique name using count, updates name_dict with this

new pairing, and then returns the unique name.

Next, we faced the challenge of executing the translated WGSL code using the

WebGPU API. For this, the interpreter component needed to prepare the necessary

environment and data structures. Our solution was to have the interpreter initialize the

setup of GPU buffers, prepare argument bindings, and initialize GPU functions for

compilation.

In summary, the initialization phase lays the groundwork for the rest of the compila-

tion process by addressing these key issues. It ensures that each operation is processed

accurately and efficiently, setting the stage for a seamless transition from MLIR to WGSL

and, finally, to executable GPU operations.

3.4.2 Translation Process

Once the WGSLPrinter is initialized, the translation process moves on to the core of the

operation: processing individual operations based on their type. This is achieved using

the print function of the WGSLPrinter, which is designed as a single dispatch method.

This method dispatches calls to different functions based on the type of the operation

being processed. Here’s a breakdown of how different operation types are handled:

3.4.2.1 Example MLIR to WGSL

Figures 3.1(a) and 3.1(b) show an example of MLIR dialects selected and translated into

WGSL, where I have labelled the transformations of each operation from 1 - 9 in

both figures.

"gpu.func"() ({ 

^0(%arg : memref<4x4xindex>①): 

  %0 = "arith.constant"()② {"value" = 2 : index} : () -> index 

  %1 = "gpu.global_id"()③ {"dimension" = #gpu<dim x>} : () -> index 

  %2 = "gpu.global_id"() {"dimension" = #gpu<dim y>} : () -> index 

  %3 = "arith.constant"() {"value" = 4 : index} : () -> index 

  %4 = "memref.load"(%arg, %1, %2)④ {"nontemporal" = false} : \\ 

(memref<4x4xindex>, index, index) -> (index) 

  %5 = "arith.muli"(%1, %4)⑤ : (index, index) -> index 

  %6 = "arith.addi"(%5, %2)⑥ : (index, index) -> index 

  "memref.store"(%6, %arg, %1, %2)⑦ {"nontemporal" = false} : \\ 

(index, memref<4x4xindex>, index, index) -> () 

  "gpu.return"() : () -> () 

}) {"function_type" = (memref<4x4xindex>) -> (), 

    "gpu.kernel", 

    "gpu.known_block_size"⑧ = array<i32: 128, 1, 1>, 

    "sym_name"⑨ = "fill" 

} : () -> () 

(a) MLIR dialects

@group(0) @binding(0) 

var<storage,read_write> varg: array<u32>①; 

 

@compute 

@workgroup_size(128,1,1)⑧ 

fn fill⑨(@builtin(global_invocation_id) global_invocation_id : vec3<u32>, 

@builtin(workgroup_id) workgroup_id : vec3<u32>, 

@builtin(local_invocation_id) local_invocation_id : vec3<u32>, 

@builtin(num_workgroups) num_workgroups : vec3<u32>) { 

 

  let v0 : u32 = 2u;② 

  let v1: u32 = global_invocation_id.x;③ 

  let v2: u32 = global_invocation_id.y; 

  let v3 : u32 = 4u; 

  let v4 = varg[4u * v1 + 1u * v2];④ 

  let v5 = v1 * v4;⑤ 

  let v6 = v5 + v2;⑥ 

  varg[4u * v1 + 1u * v2] = v6;⑦ 

  } 

(b) Translated WGSL code

Figure 3.1: Example MLIR operations translate to WGSL code



Chapter 3. Methodology 19

3.4.2.2 ModuleOp

While processing operations of the ModuleOp type, the translator was originally de-

signed to iterate over the body of the operation and handle instances of FuncOp. The

objective was to ensure that all function operations within a module were correctly

managed by their respective handlers.

However, during implementation, we encountered a challenge. The current transla-

tion process failed to work correctly for multiple functions within one module. As a

workaround for this issue, we adopted a strategy of compiling the functions separately

for now.

While this approach ensures successful compilation, it’s important to note that it

represents a divergence from the initial design. Therefore, a potential area of future work

could involve refining the translator to effectively handle multiple functions within a

single module, as initially intended. This improvement would streamline the translation

process and bring the implementation closer to the original design.

3.4.2.3 FuncOp

The processing of FuncOp operations begins by setting the workgroup size. If the

operation has a known block size, that size is used as the workgroup size. If not, the

workgroup size is set to one as a default.

The function then iterates over the arguments of the operation one by one. For

each argument, it analyzes its type, which could be f32, IndexType, or MemRefType.

Depending on the type, the corresponding WGSL type is determined. For f32, the WGSL

type is f32. For IndexType, the WGSL type is u32. For MemRefType, the WGSL type is

set as an array of the element type.

This process also considers that WGSL’s design prioritizes efficient GPU workload

execution and hardware compatibility. As a result, storage class variables in WGSL

expect structures or arrays, not scalars. Therefore, when scalar data is encountered,

it is directed towards uniform buffers instead, which are designed to handle smaller,

infrequently changing data.

After determining the type for each argument individually, the translator immediately

writes the corresponding WGSL code to the output stream. This code defines a variable

for the argument with the appropriate type. This step-by-step process of analyzing and

printing ensures that each argument is handled accurately and efficiently.

Finally, once all arguments have been processed and their WGSL code written, the



Chapter 3. Methodology 20

translator writes the WGSL function definition to the output stream. This includes the

set workgroup size and the processed arguments. This approach, where each argument

is handled individually, makes the handling of FuncOp operations more elegant and

streamlined.

3.4.2.4 ReturnOp, ModuleEndOp

These operation types represent the end of a function or a module, respectively. They

do not require any specific processing or translation, so no WGSL code is written to the

output stream for these operations.

3.4.2.5 Processing of Dimension-Related Operations

Certain operations in the MLIR code are related to the dimensions of the GPU exe-

cution model. These operations include BlockIdOp, ThreadIdOp, GridDimOp, and

GlobalIdOp. For each of these operations, the translator extracts the dimension infor-

mation, generates a unique name for the result, and writes the corresponding WGSL code

to the output stream. This process involves defining a u32 variable with the extracted

dimension value.

In the MLIR code, operations like GlobalIdOp, ThreadIdOp, GridDimOp, and

BlockIdOp play significant roles. GlobalIdOp returns the unique global id, ThreadIdOp

returns the thread id or the index of the current thread within the block, GridDimOp

returns the number of thread blocks in the grid, and BlockIdOp returns the block id or

the index of the current block within the grid.

In WGSL, the corresponding operations are global_invocation_id,

local_invocation_id, num_workgroups and workgroup_id.

global_invocation_id represents the current invocation’s global invocation ID,

local_invocation_id represents the current invocation’s local invocation ID,

num_workgroups represents the dispatch size of the compute shader dispatched by the

API, and workgroup_id represents the ID of the workgroup where all invocations have

the same ID.

A challenge arises from the fact that these are built-in function arguments in WGSL,

whereas in MLIR, they are more like functions. This difference required a strategy to

accurately map MLIR operations to their WGSL counterparts.

Our solution was to match each MLIR operation with its corresponding WGSL func-

tion argument. We mapped GlobalIdOp with global_invocation_id, GridDimOp



Chapter 3. Methodology 21

with num_workgroups, ThreadIdOp with local_invocation_id, and BlockIdOp

with workgroup_id. This approach ensured the accurate representation of the grid

dimensions, block dimensions, thread and local invocation dimensions, and global

invocation dimensions in the translated WGSL code.

In this way, despite the differences be-

tween MLIR and WGSL, we ensured that crucial

grid and block dimension information was ac-

curately translated, maintaining the correct se-

mantics in the resulting GPU code.The graph

on RHS provides a clear understanding of how

each MLIR dimension-related operation corre-

sponds to its equivalent in WGSL. This transla-

tion map is a crucial part of the translator’s strategy to accurately and efficiently convert

the dimension-related operations from MLIR to WGSL.

3.4.2.6 Load, Store

The translator’s processing of GPU memory operations involves generating unique

names for the memory references and indices, calculating the linearized index for

storage and load operations, and writing the corresponding WGSL code to the output

stream. 15/08/2023, 20:19show

Page 1 of 1file:///Users/yuanxiaoyu/Documents/xdsl/show.html

@print.register
def _(self, op: memref.Load, out_stream: IO[str]):
    load_ref = self.wgsl_name(op.memref)
    name_hint = self.wgsl_name(op.res)
    indices = [self.wgsl_name(i) for i in op.indices]
    index_value = self.calculate_index(op, indices)
    out_stream.write(
        f"""
    let {name_hint} = {load_ref}[{index_value}];"""
    )

@print.register
def _(self, op: memref.Store, out_stream: IO[str]):
    value = self.wgsl_name(op.value)
    store_ref = self.wgsl_name(op.memref)
    indices = [self.wgsl_name(i) for i in op.indices]
    index_value = self.calculate_index(op, indices)
    out_stream.write(
        f"""
    {store_ref}[{index_value}] = {value};"""
    )

In [ ]:

In [ ]:

Figure 3.2: Load,Store Translator

One specific challenge arises from the

fact that the WebGPU Shading Language

(WGSL) does not natively support multi-

dimensional arrays. In fact, WGSL only

allows 1D arrays, which are stored in a

contiguous block of memory, making it

easier for the GPU to access the data.

Given this limitation of WGSL, any

multi-dimensional array that needs to be

processed by the translator must first

be converted into a 1D array. This is

achieved through the calculate_index

function, which generates a linearized in-

dex for accessing the elements of the multi-dimensional array in its flattened 1D form.

Therefore, the handling of multi-dimensional arrays in this manner is not an opti-



Chapter 3. Methodology 22

mization but a necessary step to meet the requirements of WGSL. This solution is critical

for ensuring that the translator can handle any array, regardless of its dimensions, and

translate it into a form that can be processed efficiently by the GPU. This solution to the

multi-dimensional array challenge is a key aspect of the translator’s functionality and

its ability to generate valid and efficient GPU code.

3.4.2.7 Arithmetic Operations

Arithmetic operations involving integers and floating-point numbers, including addition

(Addi, Addf), multiplication (Muli, Mulf), and subtraction (Subi, Subf), are processed

by the WGSLPrinter. The process involves generating unique names for the operands

and the result of the operation. Following these steps, the corresponding WGSL code is

then written to the output stream.

3.4.2.8 Arithmetic Operations: Constant

The processing of Constant operation requires special handling when the constant type

is an unsigned integer (u32). In WGSL, unsigned integers are not allowed to have a

sign associated with them, meaning they cannot be negative. When a negative value

is assigned to an unsigned integer, it is converted according to the rules for signed-to-

unsigned conversion in WGSL. This conversion reduces the value modulo UINTMAX +1

(which is 232 +1 for u32), resulting in a non-negative value.

Therefore, when processing a Constant operation where the constant type is u32,

if the value is negative, it is converted to a non-negative value by adding 232 +1 to it.

This ensures that the constant value is valid in the context of WGSL and adheres to the

language’s rules for unsigned integers.

Through this selective processing of operations, the translator ensures that each

operation is translated accurately and efficiently into WGSL code.

3.5 Interpreter Workflow

This section details the comprehensive workflow of the interpreter component of our

compiler, from the initial preparation stage through the execution of the translated xDSL

code in the WebGPU environment. The workflow is divided into two main subsections:

Interpreter Preparation and Interpretation Process.



Chapter 3. Methodology 23

3.5.1 Interpreter Preparation

The interpreter preparation stage sets the stage for the execution of the translated xDSL

code in the WebGPU environment. The interpreter’s main class, WGPUFunctions, is

initialized and readied for the upcoming interpretation process.

At this stage, the interpreter prepares the necessary environment and structures for

the WebGPU API. This includes setting up GPU Buffer objects using the

buffer_from_operand method for the SSA operands that will be involved in the GPU

operations. This method reads the SSA operand, which is expected to be a GPU Buffer

at this stage, and prepares it for the GPU operations.

Next, the prepare_bindings method sets up the argument bindings for the We-

bGPU API. These argument bindings are essential for correctly setting up the GPU

operations in the WebGPU environment.

Finally, the compile_func method is prepared to compile the GPU functions that

have been translated into WGSL by the translator. It uses the WGSLPrinter to generate

the WGSL source code for the function, which is then compiled into a GPU shader

module ready for execution.

These preparation steps ensure that the interpreter is ready to handle the translated

xDSL code and execute it in the WebGPU environment. The interpreter is designed to

work seamlessly with the translator, taking the output from the translator and executing

it on the GPU, ensuring a smooth and efficient compilation process from the MLIR code

to the GPU execution.

3.5.2 Interpretation Process

The Interpretation Process represents the core stage where the interpreter executes the

translated xDSL code on the GPU. This process can be further divided into the following

sub-stages:

• Buffer Preparation: In this sub-stage, the interpreter prepares a GPUBuffer from

the SSA operands using the buffer_from_operand method. This method sets

up the necessary data structures in the GPU memory for the upcoming operations.

• Argument Bindings Preparation: The interpreter prepares argument bindings

for the WebGPU API using the prepare_bindings method. These argument

bindings are crucial for correctly setting up and executing the GPU operations in

the WebGPU environment.



Chapter 3. Methodology 24

• Function Compilation: The compile_func method compiles GPU functions into

GPU shader modules. It uses the WGSLPrinter to generate the WGSL source code

for the function, which is then compiled into a GPU shader module ready for

execution.

• GPU Allocation Operation: The run_alloc function manages the GPU allocation

operation (gpu.alloc). It allocates a GPUBuffer and returns it as the memref

value, setting up the necessary space in the GPU memory for the execution of

operations.

• GPU Memory Copy Operation: The run_memcpy function implements the GPU

memory copy operation (gpu.memcpy). It currently supports device-to-host

copies, copying the results of GPU computations back to the host memory.

• GPU Kernel Launch Operation: The run_launch_func function manages the

GPU kernel launch operation (gpu.launch_func). It sets up the GPU kernel

using the argument bindings and the compiled GPU shader module, and launches

it for execution on the GPU.

This structured interpretation process ensures a systematic and efficient execution of

the translated xDSL code on the GPU, successfully completing the compilation workflow

from MLIR to executable GPU operations.

3.6 Finalization

As the compilation process approaches its conclusion, it enters the finalization stage.

This stage is concerned with wrapping up the translation process and finalizing the

interpretation results.

For the translator, finalization primarily involves completing the syntax of the output

WGSL code to ensure it is well-formed and executable. It closes off any open syntax

structures that were initiated during the translation of operations. For example, each

function definition (FuncOp) opened during the operation processing stage is closed

off with a closing bracket, ensuring that all function definitions in the WGSL output are

syntactically complete. This final touch guarantees that the entire WGSL code structure

is well-formed and ready for the interpreter.

For the interpreter, the finalization stage involves retrieving the results of the compu-

tations performed on the GPU and finalizing any ongoing GPU operations. If any data



Chapter 3. Methodology 25

was copied from the GPU to the host memory during the interpretation process (using

the run_memcpy function), this data is collected and processed as needed. Any ongoing

GPU operations are also completed, and all allocated GPU resources are properly

released to avoid memory leaks.

This finalization stage is integral to the overall compilation process as it ensures

the syntactic correctness of the output WGSL code and the correct retrieval of the GPU

computation results. It represents the successful completion of the compilation process,

marking the journey from MLIR to WGSL and finally to executable GPU operations.



Chapter 4

Evaluation

The introduction of Apple’s M1 chip, boasting its integrated GPU, has ignited discus-

sions and curiosity about its performance capabilities. This is especially true when

juxtaposed against other renowned GPU technologies. Our evaluation aims to shed light

on this topic by focusing on the performance of the M1 GPU when running specific

benchmarks.

The benchmarks in question are centered around the use of WebGPU, a web-

based graphics and compute API. The efficiency and throughput of applications using

WebGPU on the M1 GPU become pivotal, especially when considering the growing

demand for web-based graphics applications.

In this chapter, our exploration is twofold. Firstly, we will assess the performance

metrics of the M1 GPU by running selected benchmarks using the wgpu framework.

Secondly, we will evaluate the performance of the WebGPU API, comparing its through-

put on the RTX 4080 with results obtained using other technologies. Specifically, we

will contrast WebGPU (via xDSL’s interpreter) against CUDA (via xDSL+MLIR) and

OpenACC (via DeVito). It’s essential to clarify that our objective is not to critique other

GPUs but to establish a performance baseline for wgpu on the M1.

Through this evaluation, we aspire to offer a comprehensive understanding of the

M1 GPU’s capabilities and the potential of the WebGPU API, enriching the ongoing

dialogue surrounding these innovative technologies.

4.1 Evaluation Objectives

Our evaluation is centered around gaining a deep understanding of the MLIR to WGSL

translation process and the prowess of the M1 GPU. With this in mind, we’ve outlined

26



Chapter 4. Evaluation 27

two primary objectives:

• Assessing Execution Time on the M1 GPU: Our first goal is to delve into the

performance metrics of selected benchmarks when executed on the M1 GPU. This

entails running these benchmarks using the wgpu framework and subsequently

gauging the throughput of the stencil kernels.

• Analyzing WebGPU’s Performance: The second objective shifts focus to the

performance of the WebGPU API. Here, we’ll run our chosen benchmarks on

the RTX 4080 using WebGPU. However, the twist lies in the comparison: we’ll

juxtapose this throughput against results from xDSL and devito. It’s essential to

note that our intention isn’t to critique the CUDA GPU’s performance but rather

to establish a performance baseline for wgpu.

.

Through these objectives, we aim to provide a comprehensive evaluation of the

performance of the M1 GPU and the throughput of WebGpu.

4.2 Evaluation Environment

The systems used for the experiments were:

• 2021 MacBook Pro equipped with Apple’s M1 chip, which features an 10-core

CPU and 16-core GPU. The device was configured with 16GB of unified RAM.

• Razer Blade 16 powered by an Intel Core i9-13950HX processor. This laptop is

equipped with the GeForce RTX 4080 graphics card. The device was configured

with 32GB of RAM.

We use modified versions of xDSL and devito and xDSL with webgpu api module.

For the performance evaluation of the stencil kernels we use Gpts/s(a.k.a GCells/s)

for throughput.

In our experiments, we focus on two primary benchmarks derived from Computa-

tional Fluid Dynamics (CFD) [31][32] and seismic imaging [33]. The first benchmark

is the heat diffusion problem, which utilizes a Jacobi-like stencil. This stencil is a

mathematical representation used in the discretization of the heat diffusion equation.

The second benchmark is based on the isotropic acoustic wave equation, a fundamental

equation in seismic imaging that describes how acoustic waves propagate in a medium.



Chapter 4. Evaluation 28

For both of these benchmarks, we conduct simulations in both two-dimensional (2d)

and three-dimensional (3d) spaces. To achieve this, we vary the space discretization

orders (SDO) [34], specifically using orders of 2, 4, and 8. In the context of 2d

simulations, these orders correspond to stencils with 5, 9, and 12 points, respectively.

On the other hand, for the 3d simulations, the stencils have 7, 13, and 19 points

corresponding to the aforementioned orders.

The size of the problem or the computational domain for these benchmarks is defined

by the number of grid points. For the 2d simulations, we use a grid size of 2048 by 2048

points. For the 3d simulations, the grid size is 512 by 512 by 512 points. It’s important

to note that these sizes are chosen for simulations run on a single computational node.

Lastly, in terms of numerical precision, all our simulations are performed using

32-bit single precision floating point numbers. This choice ensures a balance between

computational efficiency and the accuracy of the results.

4.3 Execution Time Evaluation on M1 GPU

In this section, we will focus on the performance of the M1 GPU, specifically when

running our selected benchmarks derived from Computational Fluid Dynamics (CFD)

and seismic imaging.

1. Benchmark Selection: As previously mentioned, our primary benchmarks are

the heat diffusion problem and the isotropic acoustic wave equation. These

benchmarks will be simulated in both two-dimensional (2d) and three-dimensional

(3d) spaces.

2. Problem Size and Configuration:

• For the 2d simulations, we will use varying grid sizes of 256, 512, and 1024

points.

• For the 3d simulations, the grid sizes will be 128, 256, and 512 points.

All simulations will be run on a single computational node.

3. Execution on M1 GPU: The benchmarks will be executed on the 2021 MacBook

Pro equipped with Apple’s M1 chip. We will measure the time taken for each

execution process, repeating the process multiple times to calculate an average

time, ensuring consistency in the results.



Chapter 4. Evaluation 29

4. Data Collection and Analysis: The average execution time for each benchmark

will be recorded, along with details about the configuration. This data will be

analyzed to determine patterns and trends in the execution time on the M1 GPU.

4.3.1 Findings from Execution Time Evaluation on M1 GPU

In our exploration of the computational performance of Apple’s M1 GPU, we focused

on two primary benchmarks: 2D and 3D heat diffusion kernels. The performance

metric, measured in GPts/s, represents the ability of the GPU to process grid points per

second.

Observations for 2D Benchmarks: Upon analysis of the 2D benchmarks, a distinct

performance trend emerges, as illustrated in Figure 4.1. As the grid size escalates,

the performance in GPts/s correspondingly increases. This amplification indicates

a heightened utilization of the M1 GPU for larger problem sizes, which is likely

attributable to enhanced parallelism. Delving deeper into the benchmarks, it is observed

that among the three variations (5pt, 9pt, and 13pt), the performance discrepancies are

relatively marginal, especially pronounced for larger grid sizes. This conveys that the

variation in stencil points (spanning 5 to 13) imparts a minimal impact on the GPU’s

throughput capabilities.

Figure 4.1: 2D Heat diffusion kernels

Observations for 3D Benchmarks: Transitioning to the 3D benchmarks, the

narrative remains consistent with the trends observed in 2D, as depicted in Figure 4.2.

The performance in GPts/s amplifies with the progression in grid size, underscoring the

M1 GPU’s adeptness in managing larger problem sizes. However, a divergence in the

performance of the three 3D benchmarks (7pt, 13pt, and 19pt) is noticeable. The 7pt



Chapter 4. Evaluation 30

stencil exhibits superior performance compared to its 13pt and 19pt counterparts, with

the distinction being especially marked for a grid size of 256. This suggests that the

computational intricacy inherent to the stencil calculations significantly influences the

observed performance.

Figure 4.2: 3D Heat diffusion kernels

Overall Evaluation: In synthesizing the findings, several key takeaways emerge.

Firstly, the M1 GPU consistently exhibits an escalation in throughput, measured in

GPts/s, as the problem size burgeons, spanning both 2D and 3D benchmarks. This

trend, evident in Figures 4.1 and 4.2, signals the GPU’s prowess in handling intricate

computations. Secondly, the choice of stencil, determined by the number of points,

distinctly influences performance, with simpler stencils generally resulting in enhanced

throughput. Conclusively, for practitioners seeking to harness the M1 GPU’s capabili-

ties in real-world applications, judicious selection of grid sizes, coupled with a deep

understanding of the computational demands of the specific stencil, is pivotal to achieve

optimal performance.

4.4 Execution Time Evaluation on Different GPUs

In this section, we will evaluate the performance of the WebGPU API on the RTX 4080,

using the same benchmarks and configurations as described in the previous section.

1. Benchmark Selection: We will continue with the heat diffusion problem and the

isotropic acoustic wave equation benchmarks, simulating them in both 2d and 3d

spaces.

2. Problem Size and Configuration:



Chapter 4. Evaluation 31

• For the 2d simulations: Heat diffusion problem will use a grid size of 1024

by 1024 points. Isotropic acoustic wave equation will use a grid size of

2048 by 2048 points.

• For the 3d simulations, the grid size will be 512 by 512 by 512 points for

both benchmarks.

The timestamp (-n) is fixed at 512 for all cases. All simulations will be run on a

single computational node.

3. Execution on RTX 4080: The benchmarks will be executed on the Razer Blade

16 equipped with the GeForce RTX 4080 graphics card. We will measure the

time taken for each execution process, repeating the process multiple times to

calculate an average time.

4. Data Collection and Analysis: The average execution time for each benchmark

will be recorded. This data will be juxtaposed against results from xDSL and

devito to provide a comparative performance analysis of the WebGPU API on

the RTX 4080.

Through this methodology, we aim to provide a comprehensive evaluation of the

execution time of the MLIR examples running on different GPUs.

4.4.1 Findings from Execution Time Evaluation on Different GPUs

In this section, we provide a comprehensive examination of the performance character-

istics of the WebGPU API on the RTX 4080, benchmarking against the heat diffusion

and isotropic acoustic wave equations. This evaluation juxtaposes the performance of

the WebGPU API against that of xDSL and devito methodologies on the RTX 4080.

Heat Diffusion Benchmark: The combined bar and line charts for the heat diffu-

sion benchmark offer a nuanced perspective on the performance dynamics across the

methodologies:

• Both xDSL and devito manifest closely matched performance dynamics, with

devito marginally surpassing xDSL in some configurations.

• wgpu, on the other hand, showcases a pronounced performance dip in the 2D

space. However, a transition to the 3D realm sees wgpu registering a significant

uplift in performance, drawing closer to the devito metrics, albeit not reaching

the pinnacles set by xDSL.



Chapter 4. Evaluation 32

Figure 4.3: Combined performance metrics for heat diffusion benchmarks on RTX 4080

Isotropic Acoustic Wave Benchmark: Transitioning to the isotropic acoustic wave

benchmark, the following trends emerge from the visual data:

• As with the previous benchmark, the tussle between xDSL and devito remains

closely contested in the 2D spectrum.

• The wgpu continues to lag in 2D computations, but an intriguing shift unfolds

in the 3D benchmarks. Here, xDSL retains its performance supremacy, but wgpu

makes a remarkable leap, even eclipsing devito in certain configurations.

Figure 4.4: Combined performance metrics for isotropic acoustic wave benchmarks on

RTX 4080



Chapter 4. Evaluation 33

4.4.1.1 Compare with CPU baseline

Figure 4.5: Perfermance metrics for wgpu and cpu baseline

The bar chart (Fig 4.5) represents the performance of two benchmarks—the heat

diffusion problem and the isotropic acoustic wave equation—simulated in both 2D

and 3D spaces on the RTX 4080 using the WebGPU API. Upon comparison with the

CPU baseline, it’s evident that the WebGPU API performance on the RTX 4080 is

consistently lower across all scenarios, with the difference being more pronounced in

2D simulations. While the WebGPU API achieves close to 1 GPts/s in all cases, the

CPU baseline demonstrates several times better performance, particularly in the 2D

simulations. This suggests that for these specific benchmarks, the WebGPU API on the

RTX 4080 may not be as optimized as the CPU baseline.

Overall Evaluation: The evaluation of the benchmarks reveals intriguing perfor-

mance dynamics between the xDSL and devito methodologies. Across the varied

benchmarks and dimensions, both methods consistently showcase formidable perfor-

mance metrics. However, nuanced differences occasionally emerge, setting them apart,

albeit slightly. On the other hand, the WebGPU API, represented by wgpu, presents a

different performance trajectory. While it grapples with certain bottlenecks in the 2D

computational space, its potential becomes increasingly evident in the 3D domain. This

is particularly pronounced in the isotropic acoustic wave benchmark, emphasizing the

potential applicability of wgpu in specific multi-dimensional computational scenarios.

Such evaluations underscore the intricate dance of methodological selection, especially

when tailored to distinct benchmarks and problem dimensions. While xDSL and devito

consistently remain versatile contenders, wgpu hints at emerging as a compelling choice

in certain 3D computational arenas, especially with further optimizations. Collectively,

this meticulous evaluation paints a comprehensive picture of the RTX 4080’s perfor-



Chapter 4. Evaluation 34

mance dynamics across a gamut of computational paradigms. These insights not only

inform but also pave the way for more judicious decisions in the realm of GPU-centric

computations.

4.5 Discussion

In the evaluation chapter, Figures 4.1 and 4.2 offer an insightful comparison between 2D

and 3D benchmarks. As depicted in Figure 4.1, WGPU faces performance challenges in

2D operations. This could be attributed to the fact that WGPU, being primarily designed

for 3D graphics and compute workloads, might introduce overhead when setting up

resources for simpler 2D tasks. This overhead, especially when compared to specialized

2D rendering contexts, might outweigh its benefits for 2D operations. The superior

performance of WGPU in 3D benchmarks, as showcased in Figure 4.2, reinforces this

understanding.

Figures 4.3 and 4.4, delve into specific computational tasks. WGPU demonstrates

competitive performance in these benchmarks, particularly in wave calculations (Figure

4.4). This suggests that WGPU’s strengths are more pronounced in contexts that tap into

the parallel processing capabilities of modern GPUs, such as 3D rendering and specific

compute tasks.

The discrepancy in performance across different benchmarks further indicates that

while WGPU is optimized for 3D and complex compute scenarios, there’s potential room

for improvement in optimizing its performance for traditional 2D operations.



Chapter 5

Conclusions

The realm of GPU technology, particularly in the context of Apple’s M1 chip, has

witnessed significant advancements and innovations in recent years. This research

embarked on a comprehensive exploration of the M1 GPU’s capabilities, its relationship

with compilers, and the intricacies of translating MLIR to WGSL. As we conclude this

thesis, it’s imperative to reflect upon the journey, revisit the objectives set forth, and

ponder upon the implications of our findings. This chapter aims to encapsulate the

essence of the research, drawing conclusions from the methodologies employed, the

challenges encountered, and the insights gained.

5.1 Recap of Research Objectives

In the journey of this research, we embarked on a mission to delve deep into the capabil-

ities of Apple’s M1 GPU, particularly its potential to accelerate weather/climate/health

simulations. The primary objectives set at the outset were:

• Exploration of Apple’s M1 Architecture: To understand the foundational archi-

tecture of Apple’s M1 chip, its design intricacies, and the innovations that set it

apart from other GPU technologies.

• Relationship between GPUs and Compilers: A thorough investigation into how

GPUs, particularly the M1, interact with compilers, emphasizing the significance

of this relationship in optimizing performance.

• Translation from MLIR to WGSL: One of the core objectives was to develop a

compilation flow within xDSL from MLIR, a powerful intermediate representation

language, to WGSL (WebGPU Shading Language). This translation aimed to

35



Chapter 5. Conclusions 36

harness the computational capabilities of the M1 GPU, bridging the gap between

high-level programming constructs and efficient GPU execution.

• Evaluation of M1 GPU’s Performance: Through various methodologies and tests,

the research aimed to evaluate the performance of the M1 GPU in the context

of the translation from MLIR to WGSL, providing insights into its efficiency and

potential areas of improvement.

5.2 Significance of the Study

The endeavor to construct a compilation flow using xDSL for translating MLIR to WGSL

and subsequently evaluating the performance of the M1 GPU on executing WGSL holds

multifaceted implications:

• Advancing Compilation Techniques with xDSL: The use of xDSL as the foundation

for the compilation flow underscores the versatility and potential of this tool. This

research not only showcases xDSL’s capabilities but also contributes to its broader

recognition and adoption in the compiler community.

• Seamless Integration of MLIR to WGSL: The translation from MLIR to WGSL repre-

sents a significant step in bridging diverse programming paradigms. By achieving

this translation, the research facilitates more streamlined GPU programming,

potentially simplifying the development process for GPU-centric applications.

• Performance Evaluation of Apple’s M1 GPU: At a time when the tech world is

keenly observing the capabilities of Apple’s M1 chips, this research provides

empirical data on its performance, particularly in the context of executing WGSL.

Such evaluations are crucial for developers, researchers, and industry stakeholders

to gauge the real-world potential of the M1 GPU.

• Implications for GPU Programming and Development: The insights from this

research can influence the strategies of developers aiming to optimize applications

for the M1 architecture. Moreover, understanding the nuances of the M1 GPU’s

performance can guide future hardware and software innovations, ensuring more

efficient and powerful GPU-centric solutions.

In summary, this research stands at the intersection of cutting-edge compiler tech-

nology and GPU performance evaluation, offering valuable insights that can shape the

trajectory of future developments in both domains.



Chapter 5. Conclusions 37

5.3 Comparison with Existing Literature

The domain of GPU programming, compiler optimizations, and performance evaluations

has been a subject of extensive research over the years. However, the introduction of

Apple’s M1 chip and the evolution of intermediate representation languages like MLIR

have ushered in new avenues of exploration. This research, centered around the use

of xDSL to translate MLIR to WGSL and evaluate the M1 GPU’s performance, stands in

contrast and complement to existing literature in several ways:

• Novelty of the Compilation Flow: While there are numerous compiler frameworks

and tools available, the use of xDSL for translating MLIR to WGSL is a pioneering

effort. Existing literature primarily focuses on more established compiler tools,

making this research a unique contribution to the field.

• Focus on Apple’s M1 GPU: Much of the existing literature on GPU performance

evaluation revolves around older or more mainstream GPU architectures. The

emphasis on the M1 GPU, a relatively new entrant, provides fresh insights and

fills a knowledge gap in the current body of research.

• Integration of MLIR and WGSL: The translation from MLIR to WGSL is a nuanced

process, and there’s limited literature that delves into this specific transforma-

tion. This research not only explores this translation but also sheds light on the

challenges and intricacies involved.

• Empirical Performance Evaluation: While theoretical discussions and simulations

are common in existing literature, this research offers empirical data on the M1

GPU’s performance when executing WGSL. Such hands-on evaluations provide a

more grounded understanding of the GPU’s capabilities.

• Bridging Compiler Technology and GPU Execution: Many studies either focus

on compiler optimizations or GPU performance in isolation. This research

intertwines the two, offering a holistic view of the end-to-end process from code

translation to GPU execution.

• Simplified Installation Process with xDSL: One of the standout features of this

research is the ease of setup. While the existing xDSL project for executing code

on CUDA demands a more intricate installation process, this project simplifies it

dramatically. Users can get started by simply executing pip install xDSL and pip



Chapter 5. Conclusions 38

install wgpu, making the adoption and utilization of the tool more accessible to a

broader audience.

5.4 Limitations and Challenges

Every research journey is marked by its unique set of challenges, and understanding

these hurdles is crucial for both the researcher and the audience. In the course of

developing the compilation flow using xDSL to translate MLIR to WGSL and evaluating

the M1 GPU’s performance, several specific challenges emerged:

• Understanding xDSL’s Intricacies: Navigating the complexities of xDSL proved to

be a significant challenge. Grasping its inner workings, especially for someone

new to the tool, required a steep learning curve.

• Extraction of SSAValue and Operands from MLIR: Delving into the details of MLIR,

particularly extracting SSAValue and understanding the role and functioning of

operands, posed considerable challenges. These intricacies demanded a deep

understanding and careful handling to ensure accurate translation.

• Integration into xDSL Framework: Initially conceived as a standalone project, inte-

grating the research into the xDSL framework presented its own set of challenges.

The transition required adherence to stricter coding standards, such as pyright

checks, demanding a more meticulous approach to code writing and structure.

• Navigating WGSL’s Buffer and Binding: The buffer and binding mechanisms

in WGSL introduced another layer of complexity. Gaining a comprehensive un-

derstanding of how these elements work in WGSL was crucial for the successful

translation and execution of the code.

• Setting Up the Testing Environment: Establishing a conducive testing environ-

ment was not straightforward. The complexities associated with setting up CUDA

added to the challenges, requiring careful configuration and troubleshooting to

ensure a seamless testing process.

These challenges, while formidable, also provided valuable learning experiences.

They highlighted areas of potential improvement and offered insights into the intricacies

of compiler development, GPU programming, and performance evaluation.



Chapter 5. Conclusions 39

5.5 Future Work

While this research has made significant strides in understanding the translation of MLIR

to WGSL using xDSL and evaluating the performance of Apple’s M1 GPU, there are

several avenues that future research can explore to build upon this foundation:

• Enhanced xDSL Understanding: Given the complexities faced in understanding

xDSL’s intricacies, future work could focus on creating comprehensive documen-

tation or tutorials. This would aid new researchers and developers in navigating

xDSL more efficiently.

• Optimization Techniques: While the current research laid the groundwork for the

translation process, there’s potential to delve deeper into optimization techniques.

Exploring ways to further optimize the translation from MLIR to WGSL could lead

to even better performance on the M1 GPU.

• Advanced WGSL Features: Given the challenges faced in understanding WGSL’s

buffer and binding mechanisms, future research could delve deeper into other

advanced features of WGSL. This would not only enhance the translation process

but also provide insights into leveraging WGSL’s full potential.

5.6 Final Thoughts

As we draw the curtains on this research journey, it’s essential to reflect upon the

broader implications and the path it has paved for future explorations. The endeavor to

understand the translation of MLIR to WGSL using xDSL and evaluate the performance of

Apple’s M1 GPU was not just a technical exercise but a testament to the ever-evolving

landscape of GPU programming and compiler technologies.

The challenges faced, from navigating the intricacies of xDSL to understanding the

nuances of WGSL, underscore the complexities inherent in such research. Yet, they also

highlight the immense potential that lies ahead. With every challenge overcome, new

doors of opportunity opened, offering insights, learnings, and avenues for innovation.

The significance of this research extends beyond its immediate findings. It serves as

a beacon for future researchers, developers, and enthusiasts in the field, illuminating

the possibilities and guiding them towards new horizons. The confluence of compiler

technologies like xDSL with cutting-edge GPU architectures like Apple’s M1 offers a

glimpse into the future – a future where programming becomes more streamlined, GPU



Chapter 5. Conclusions 40

performance reaches new pinnacles, and technological innovations continue to reshape

the world.

In closing, this research is but a chapter in the vast tome of GPU programming

and compiler development. The journey ahead is long, filled with challenges and

opportunities, and it beckons to all those curious minds eager to push the boundaries

and chart new territories.



Bibliography

[1] Zixuan Zhang. Analysis of the advantages of the m1 cpu and its impact on the

future development of apple, 09 2021.

[2] David Kasperek, Pawel Antonowicz, Marek Baranowski, Marta Sokolowska, and

Michal Podpora. Comparison of the usability of apple m2 and m1 processors for

various machine learning tasks. Sensors, 23:5424, 01 2023.

[3] Connor Kenyon and Collin Capano. Apple silicon performance in scientific

computing.

[4] Zohaib Ali, Talha Tanveer, Samia Aziz, Muhammad Usman, and Awais Azam.

Reassessing the performance of arm vs x86 with recent technological shift of

apple, 10 2022.

[5] Giovanni Isotton, Carlo Janna, and Massimo Bernaschi. A gpu-accelerated adap-

tive fsai preconditioner for massively parallel simulations. The International

Journal of High Performance Computing Applications, 36:153–166, 05 2021.

[6] Lars Gebraad and Andreas Fichtner. Seamless gpu acceleration for c++ based

physics with the metal shading language on apple’s m series unified chips, 06

2022.

[7] Giovani Bernardes Vitor, André Körbes, Roberto de Alencar Lotufo, and Jan-

ito Vaqueiro Ferreira. Analysis of a step-based watershed algorithm using cuda.

International Journal of Natural Computing Research, 1:16–28, 10 2010.

[8] J. Delgado. A case study on porting scientific applications to gpu/cuda. Journal

of Computational Interdisciplinary Sciences, 2, 2011.

[9] Dilpreet Singh and Chandan K Reddy. A survey on platforms for big data analytics.

Journal of Big Data, 2, 10 2015.

41



Bibliography 42

[10] S. Angra and S. Ahuja. Machine learning and its applications: A review, 03 2017.

[11] Massimo Bertolini, Davide Mezzogori, Mattia Neroni, and Francesco Zammori.

Machine learning for industrial applications: a comprehensive literature review.

Expert Systems with Applications, page 114820, 03 2021.

[12] John Goodacre. The evolution of the arm architecture towards big data and the

data-centre (abstract only). 11 2013.

[13] Khushi Gupta and Tushar Sharma. Changing trends in computer architecture :

A comprehensive analysis of arm and x86 processors. International Journal of

Scientific Research in Computer Science, Engineering and Information Technology,

pages 619–631, 06 2021.

[14] Patrick Cronin, Xing Gao, Haining Wang, and Chase Cotton. An exploration

of arm system-level cache and gpu side channels. Annual Computer Security

Applications Conference, 12 2021.

[15] Nick Brown, Tobias Grosser, Mathieu Fehr, Michel Steuwer, and Paul Kelly. xdsl:

A common compiler ecosystem for domain specific languages.

[16] Wang Fuqiu, Weiqiang Zhang, and Jia Liu. Gpu accelerated gmm supervectors

for speaker and language recognition. 10 2012.

[17] Chris Lattner. Llvm and clang: Next generation compiler technology llvm: Low

level virtual machine, 2008.

[18] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba. Proceedings of

the Second Workshop on the LLVM Compiler Infrastructure in HPC - LLVM ’15,

2015.

[19] Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. An empirical study of

optimization bugs in gcc and llvm. Journal of Systems and Software, 174:110884,

04 2021.

[20] S.V. Adams, R.W. Ford, M. Hambley, J.M. Hobson, I. Kavčič, C.M. Maynard,

T. Melvin, E.H. Müller, S. Mullerworth, A.R. Porter, M. Rezny, B.J. Shipway, and

R. Wong. Lfric: Meeting the challenges of scalability and performance portability

in weather and climate models. Journal of Parallel and Distributed Computing,

132:383–396, 10 2019.



Bibliography 43

[21] Reese Levine, Tianhao Guo, Mingun Cho, Alan Baker, Raph Levien, David Neto,

Andrew Quinn, and Tyler Sorensen. Mc mutants: Evaluating and improving

testing for memory consistency specifications. 01 2023.

[22] http://www.diva-portal.org/smash/record.jsf?pid=diva2

[23] Ben Kenwright. Introduction to the webgpu api. 08 2022.

[24] Abdul Dakkak, Carl M Pearson, and Wen-mei W Hwu. Webgpu: A scalable

online development platform for gpu programming courses. 05 2016.

[25] Vaibhav Dalakoti and Diptamon Chakraborty. Apple m1 chip vs intel (x86). EPRA

International Journal of Research and Development (IJRD), 7:207–211, 05 2022.

[26] Landon Dyken and Pravin Poudel. Graphwagu: Gpu powered large scale graph

layout computation and rendering for the web. Eurographics Symposium on

Parallel Graphics and Visualization, 06 2022.

[27] Mikhail Khalilov and Alexey Timoveev. Performance analysis of cuda, ope-

nacc and openmp programming models on tesla v100 gpu. Journal of Physics:

Conference Series, 1740:012056, 01 2021.

[28] Mlir. https://mlir.llvm.org/.

[29] Webgpu shading language. https://www.w3.org/TR/WGSL/.

[30] xDSL project. xdsl. http://www.xdsl.dev.

[31] Angela d’Esposito, Paul D Sweeney, Morium Ali, Magdy Saleh, Rajiv Rama-

sawmy, Thomas M Roberts, Giulia Agliardi, Adrien E Desjardins, Mark F Lythgoe,

RB Pedley, Rebecca J Shipley, and Simon Walker-Samuel. Computational fluid

dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug

uptake and treatment responses in tumours. Nature Biomedical Engineering,

2:773–787, 10 2018.

[32] Edward Ferdian, Avan Suinesiaputra, David J Dubowitz, Debbie Zhao, Alan Wang,

Brett R Cowan, and Alistair A Young. 4dflownet: Super-resolution 4d flow mri

using deep learning and computational fluid dynamics. Frontiers in Physics, 8, 05

2020.

https://mlir.llvm.org/
https://www.w3.org/TR/WGSL/
http://www.xdsl.dev


Bibliography 44

[33] Johannes Töger, Matthew J Zahr, Nicolas Aristokleous, Karin Markenroth Bloch,

Marcus Carlsson, and Per Olof Persson. Blood flow imaging by optimal matching

of computational fluid dynamics to 4d-flow data. Magnetic Resonance in Medicine,

84:2231–2245, 04 2020.

[34] Carlile Lavor, Jon Lee, Audrey Lee-St. John, Leo Liberti, Antonio Mucherino,

and Maxim Sviridenko. Discretization orders for distance geometry problems.

Optimization Letters, 6:783–796, 03 2011.


	Introduction
	Research Overview
	Research Motivation
	Research Gap and Significance of the Study
	Contribution
	Implementation Contributions to the xDSL Project


	Background
	Apple Arm Architecture
	Relationship between GPU’s and Compliers
	LLVM and MLIR
	Capturing the computational capabilities of GPU 
	Performance of Apple M1 Chips

	Methodology
	Compiler Architecture and Design
	Design and Functionality of the Translator
	Design and Functionality of the Interpreter
	Compilation Workflow
	Initialization
	Translation Process

	Interpreter Workflow
	Interpreter Preparation
	Interpretation Process

	Finalization

	Evaluation
	Evaluation Objectives
	Evaluation Environment
	Execution Time Evaluation on M1 GPU
	Findings from Execution Time Evaluation on M1 GPU

	Execution Time Evaluation on Different GPUs
	Findings from Execution Time Evaluation on Different GPUs

	Discussion

	Conclusions
	Recap of Research Objectives
	Significance of the Study
	Comparison with Existing Literature
	Limitations and Challenges
	Future Work
	Final Thoughts

	Bibliography

