
Algorithms for Computing Clearing Payments

in Financial Networks

Minsuan Teh

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2023

Abstract

This research examines the performance of various algorithms designed to determine

optimal clearing payment vectors in financial systems. The models by Eisenberg and

Noe, along with M. O. Jackson and A. Pernoud, are implemented and evaluated. The

study highlights the effectiveness of the basic iteration algorithm and outlines the

factors influencing the bankruptcy rate in financial systems. It also explores the specific

performance patterns of Dang, Qi and Ye’s algorithm, especially in scenarios with

solvent banks. The unique behaviour of Dang, Qi and Ye’s algorithm, particularly

its dependency on the convergence rate of the monotone function, is discussed. A

substantial portion of the paper provides Python-based implementations, connecting

theory with practical application. The findings offer a nuanced understanding of

financial systems and have potential implications for both academia and the financial

industry.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Minsuan Teh)

ii

Acknowledgements

I would like to extend my heartfelt gratitude to my supervisor, Professor Kousha

Etessami, for his unwavering support and guidance throughout this project. His expertise

and timely answers were instrumental in the successful completion of my research.

I also wish to acknowledge Overleaf (https://www.overleaf.com/), a cloud-based

LaTeX editor, which was indispensable in the preparation of my paper. The entire

writing process was facilitated through this platform.

Furthermore, I would like to recognize Grammarly (https://app.grammarly.com/), a

cloud-based typing assistant. Grammarly’s web browser plugin automatically detected

and corrected typing errors, significantly enhancing the accuracy and clarity of my

dissertation as I composed it within Overleaf.

iii

Table of Contents

1 Introduction 1
1.1 Related Work . 1

1.2 Motivation . 3

1.3 Structure and Summary . 4

2 Framework and Algorithms 6
2.1 Economic Framework by Eisenberg and Noe 6

2.1.1 Basic Iteration Algorithm (BIA) 7

2.1.2 Fictitious Default Algorithm (FDA) 7

2.1.3 Linear Programming (LP) 8

2.1.4 Uniqueness of Clearing Payment Vectors 9

2.2 Economic Framework by Jackson and Pernoud 10

2.2.1 The Algorithm by Jackson and Pernoud 11

3 The Implementation 12
3.1 The Model by Eisenberg and Noe 13

3.1.1 Implementation of Basic Iteration Algorithm 14

3.1.2 Implementation of Fictitious Default Algorithm 16

3.1.3 Implementation of the Linear Programming ALgorithm 17

3.1.4 Implementation of the Algorithm by Dang, Qi and Ye 17

3.2 The Model by Jackson and Pernoud 18

3.2.1 Bankruptcy Cost . 20

3.2.2 Implementation of the Algorithm by Jackson and Pernoud . . 21

3.3 Proof of Correctness . 22

4 Experimental Evaluation of the Implementation 24
4.1 Bankruptcy Rate . 25

4.1.1 liability . 25

iv

4.1.2 asset . 26

4.1.3 edge . 27

4.2 Complexity of the Financial System 28

4.2.1 Effect of Varying Complexity on LP 28

4.2.2 When Banks are Mostly Solvent 29

4.2.3 When Banks are Mostly Defaulting 30

4.3 The Algorithm by Jackson and Pernoud 30

4.3.1 Comparing with the Other Algorithms 31

4.3.2 Multiple Assets and Equity Shares 32

4.3.3 Bankruptcy Cost . 34

4.4 The Algorithm by Dang, Qi and Ye 36

5 Conclusion 38
5.1 Future Work . 39

Bibliography 40

A Python Implementaion Code 42
A.1 financialSystem.py . 42

A.2 fictitiousDefaultAlgorithm.py . 45

A.3 LPSolver.py . 46

A.4 DQY Algorithm.py . 47

A.5 financialSystemWithShares.py . 49

v

Chapter 1

Introduction

The global financial system has become increasingly interconnected, resulting in com-

plex financial obligations between institutions. This interconnectedness has significant

implications for the stability of the financial system, as distress in one institution can

propagate through the network, potentially leading to systemic risk and financial crises.

One essential aspect of understanding and managing these risks is the computation

of clearing payments in financial networks. Clearing payments represent the amounts

that financial institutions can pay to their counterparties, considering the potential for

default and the interconnected nature of financial obligations.

The general scope of this project encompasses the development, analysis, and

comparison of various algorithms for computing clearing payments in financial networks.

We will focus on the theoretical foundations and the practical applications of these

algorithms, assessing their performance, accuracy, and efficiency in different network

scenarios.

1.1 Related Work

In 2001, Eisenberg and Noe published a paper that provides a comprehensive analysis

of systemic risk in financial systems [1], focusing on the interconnectedness of financial

entities and the impact of cyclical obligations. The paper presents a model that includes

existence-uniqueness results and characterizations of clearing vectors, which are used to

understand the distribution of value in a multi-firm environment with cyclical obligations.

The authors argue that a unique division of value, consistent with standard rules of value

division, always exists under certain regularity conditions. The authors also discuss

the economic framework of their model, considering an economy populated by distinct

1

Chapter 1. Introduction 2

financial nodes, each with nominal liabilities to other entities in the system. They

represent this structure of liabilities with a nominal liabilities matrix and an operating

cash flow vector, which together form a financial system. The paper further explores the

implications of limited liability and absolute priority, noting that these principles imply

that every node pays the minimum of what it has and what it owes. The authors establish

that every financial system has a clearing vector, which is a fixed point of a map defined

in the paper. The authors also consider potential extensions to their model, such as

allowing for violations of absolute priority, incorporating true dynamics by allowing for

more than one clearing date, and introducing uncertainty into the framework.

A paper by M. O. Jackson and A. Pernoud explores the impact of connections

between financial institutions on their investment incentives and discusses optimal

regulation in a network setting [2]. The paper also highlights the role of both debt

and equity contracts in financial networks, emphasizing their prevalence in practice

and their distinct influences on investment incentives. The paper references several

other works, including studies by Shu [3], Zawadowski [4], Galeotti and Ghiglino [5],

and Vohra, Xing, and Zhu [6], which explore various aspects of network externalities,

investment risks, and agency conflicts within financial institutions. The authors of

this paper argue that their model of financial networks, incorporating both debt and

equity contracts, generalizes existing models used to understand systemic risk. The

paper also discusses the implications of limited liability for banks, noting that it can

lead to increased risk-taking and investment correlation. The authors argue that due

to financial interdependencies, bank values depend positively on each other, inducing

complementarities in their returns to investments. The authors also delve into the

technical aspects of their model, discussing the conditions under which a bank defaults

and the associated bankruptcy costs. They highlight that the value of a bank is weakly

increasing in that of others in the network, ensuring the existence of a solution to their

model’s equations.

In the paper by S. Schuldenzucker, S. Seuken and S. Battiston, the authors present

a comprehensive study on the complexity of finding clearing payments in financial

networks that incorporate credit default swaps (CDS) [7]. The authors delve into

the intricacies of the financial system, particularly focusing on the role of CDS in

the network. Credit Default Swaps are financial derivative instruments that provide

insurance against the risk of a default by a borrower. They play a crucial role in

financial networks, acting as a form of insurance for lenders. The authors highlight

the importance of understanding the complexity of finding clearing payments in such

Chapter 1. Introduction 3

networks, as it is critical to financial stability. The paper’s main contribution is proof

that the problem of finding clearing payments in financial networks with CDS is PPAD-

complete. This means that the problem is as hard as the hardest problems in the class

PPAD, which is a class of problems known for their computational complexity. The

authors provide detailed proof to support this claim, contributing to the understanding

of the computational complexity of problems in financial networks. The authors also

discuss the implications of their findings. The PPAD-completeness result implies that

unless P=PPAD (which is considered unlikely by most computer scientists), there is

no polynomial-time algorithm that can find clearing payments in all cases. This has

significant implications for the efficiency and stability of financial systems.

S. D. Ioannidis, B. de Keijzer, and C. Ventre take an in-depth look into the intricacies

of financial networks, notably those incorporating financial derivatives. [8]. The authors

explore the concept of strong approximations and irrationality within these networks,

shedding light on the intricate dynamics that govern financial systems. The paper also

presents a series of mathematical gadgets, including division and multiplication gadgets.

These gadgets are used to represent and analyze complex financial interactions within

the network. However, the authors note that these gadgets do not satisfy non-degeneracy,

a property that ensures the financial system’s stability. This observation is significant as

it highlights the inherent complexities and potential instabilities in financial networks

involving financial derivatives. The authors also delve into the concept of fragment

cycles, which are graphs representing the cyclical nature of financial interactions within

the network. Understanding these cycles is crucial for predicting and managing financial

contagion, a scenario where financial distress spreads across the network.

1.2 Motivation

The growing complexity and interconnectedness of financial institutions have led to

an urgent need for efficient and accurate algorithms for computing clearing payments

in financial networks. Clearing payments are crucial for mitigating systemic risk and

ensuring financial stability, as they determine the amounts that institutions can pay

to their counterparties while accounting for potential defaults and the interconnected

nature of financial obligations. The gap that needs to be filled in the literature is a

comprehensive analysis and comparison of existing algorithms for computing clearing

payments and evaluating their performance, accuracy, and efficiency across various

financial network scenarios.

Chapter 1. Introduction 4

Despite the availability of several algorithms in the literature, there is a lack of

research that systematically investigates and compares their effectiveness in addressing

the clearing payment problem in diverse contexts. Thus, this study is performed to

identify the most suitable algorithms for computing clearing payments across various

types of financial networks. In doing so, we consider the strengths and weaknesses

of these algorithms and provide recommendations for practitioners, regulators, and

policymakers.

Throughout this paper, the following research question will guide our study: ”What

are the most effective algorithms for computing clearing payments in financial networks,

and how do their performance, accuracy, and efficiency vary across different financial

network scenarios?” By answering this question, our research aims to fill the existing

gap in the literature and provide valuable insights into the most appropriate algorithms

for computing clearing payments, ultimately contributing to the mitigation of systemic

risk in interconnected financial systems.

1.3 Structure and Summary

This study has investigated multiple algorithms within financial systems, focusing on

their theoretical foundations, practical implementations and performance evaluations.

This section synthesises the major findings and contributions:

1. Introduction and Framework (Chapters 1-2):

The study commenced with an introduction to the research problem and a detailed

investigation of the mathematical framework. Algorithms by authors such as

Jackson and Pernoud were analyzed, laying the groundwork for understanding

financial contracts, bank values, default conditions, and payment dynamics.

2. Implementation (Chapter 3):

The chapter provided a thorough implementation of financial systems, introducing

classes and functions for validation and optimization of clearing payment vectors.

This chapter also highlighted the importance of both accuracy and optimality in

computational solutions.

3. Experimental Evaluation (Chapter 4):

A comprehensive evaluation of various algorithms was conducted, with key

findings as follows. BIA(top) Outperforms other algorithms most of the time,

Chapter 1. Introduction 5

making it a preferred choice. BIA(bottom) offers faster performance compared

to other algorithms but falls short of BIA(top) in overall effectiveness. LP can

be faster than BIA(top) when the bankruptcy rate is high. FDA may outpace LP

but BIA(top) still prevails in these scenarios. JP is slower than FDA, BIA and LP

but has the unique ability to compute the best clearing payment matrix, detailing

the clearing payments between banks. DQY is the slowest in nearly all scenarios,

but its theoretical complexity suggests potential advantages. The inclusion of

equity shares, bankruptcy cost and multiple assets in financial systems affects the

bankruptcy rate and JP’s performance.

4. Conclusion (Chapter 5):

The conclusion details the study of algorithms within financial models by Eisen-

berg and Noe, and Jackson and Pernoud. Experiments reveal how various factors,

such as bankruptcy rate and system complexity, influence algorithm performance.

While the basic iteration algorithm often excels, the Jackson and Pernoud al-

gorithm uniquely computes clearing payments between banks. The study also

examines the effects of equity shares and bankruptcy costs and suggests future re-

search directions, including algorithm refinement and exploration of new financial

contexts.

Chapter 2

Framework and Algorithms

2.1 Economic Framework by Eisenberg and Noe

Consider a financial system which comprises N = {1, ...,n} banks. Each node within

this system may possess a certain quantity of primitive assets and nominal liabilities.

Let e be a vector with N entries, where the ith entry, ei, signifies the total primitive

assets of node i. The nominal liability of a node can be represented by a matrix, denoted

as L, where the (i, j)-th entry of the matrix indicates the value of i’s liability towards j.

Consequently, node i’s total nominal liabilities, p̄i, equals ∑
n
j=1 Li j. It’s important to

note that no node has a nominal liability to itself, hence Lii = 0 for all i ∈ N. We also

assume that all the nominal liabilities and the primitive assets are nonnegative, Li j ≥ 0

and ei ≥ 0 for all i, j ∈ N. Therefore, a financial system can be defined as a pair of

(L,e), consisting of the nominal liability matrix and the primitive assets of the banks.

Let Π represent a relative liabilities matrix of the financial system, where the (i, j)-th

entry of the matrix, Πi j, equals Li j
p̄i

if p̄i > 0 and 0 otherwise. The financial system can

now be represented as (Π, p̄,e). utilising the relative liabilities matrix, we can calculate

that the total payments required to be made by all other banks to bank ii are equal to

∑
n
j=1 ΠT

i j p j, where p j is the payment that is required to be made by bank j. A bank is

defined as bankrupt if the value of its equity is negative, that is, ∑
n
j=1 ΠT

i j p j+ei− pi < 0.

The problem of finding the best clearing payment can now be defined as identifying a

vector p∗ ∈ [0, p̄] in a financial system (Π, p̄,e) such that the following conditions are

satisfied.

• Limited Liability: p∗i ≤ ∑
n
j=1 ΠT

i j p
∗
j + ei

• Absolute Priority: p∗i = ∑
n
j=1 ΠT

i j p
∗
j + ei or p∗i = p̄i

6

Chapter 2. Framework and Algorithms 7

2.1.1 Basic Iteration Algorithm (BIA)

In the economic framework described in Section 2.1, it is evident that p∗ is a clearing

payment vector of a financial system (Π, p̄,e) if and only if

∀i ∈ N, p∗i = min(
n

∑
j=1

Π
T
i j p

∗
j + ei, p̄i) (2.1)

According to the Knaster–Tarski theorem, given that f is a monotone function, there

must exist at least a fixed point of f . Consequently, the best clearing payment vector can

be identified by locating the greatest fixed point of equation 2.1. Let f be the monotone

function in equation 2.1, and then we can define a sequence of payment vectors as

follows.

p j = f (p j−1); p0 = p̄. (2.2)

As p̄ is the biggest possible payment vector that need to be made by each bank, the first

fixed point that is found using this method will invariably be the biggest fixed point and

hence the best clearing payment.

In certain instances where the fixed point is proven to be unique (further details in

Section 2.1.4), we can also use p0 = 0̄ where 0̄ is a vector of 0. The performance of the

algorithm will be influenced by this choice, as demonstrated in Chapter 4. Regardless

of the chosen p0, the algorithm will identify the best clearing payment vector in at most

(max(p̄)− 1)n iterations where max(p̄) is the biggest payment that is required to be

paid by any bank.

2.1.2 Fictitious Default Algorithm (FDA)

Eisenberg and Noe proposed an alternative algorithm for determining the best clearing

payment vector within a financial system. This algorithm begins with the assumption

that each bank will initially pay its debt in full. If all banks can meet their debt

obligations without entering bankruptcy, then the best clearing payment vector has been

found. However, if not all banks can fully meet their debt obligations, the algorithm

proceeds to calculate the maximum debt payment that the bankrupt banks can afford

while keeping the clearing payments of the non-bankrupt banks constant. If all banks

can meet their debt obligations in the second iteration, the algorithm concludes. If not,

the algorithm repeats the previous process in the subsequent iteration until all banks

can meet their debt obligations under the new clearing payment vector.

The Fictitious Default Algorithm bears a strong resemblance to the basic iteration

algorithm. Both algorithms hinge on the iterative querying of a monotone function until

Chapter 2. Framework and Algorithms 8

a fixed point is identified. For the Fictitious Default Algorithm, we first need to define a

n x n diagonal matrix, Λ(p), such that

∀i, j ∈ N,Λ(p)i j =

1 i = j and bank i defaults under p

0 otherwise

Next, let FFp′(p) be the monotone function employed in this algorithm.

FFp′(p) = Λ(p′)(ΠT (Λ(p′)p+(I −Λ(p′)p̄))+ e)+(I −Λ(p′))(p̄) (2.3)

It is important to note that p′ differs from p in that p′ is used to determine the banks that

default under p′ for the calculation of Λ(p′). The banks which are not defaulting under

p′ would have to make the full payment, as shown in the second term of the addition

in equation 2.3. Conversely, the banks which default under p′ are required to disburse

their full value, assuming that the defaulting banks pay p and non-defaulting banks pay

in full.

The fixed point can be identified by defining a sequence of payment vectors as per

equation 2.2. This sequence of vectors is referred to as the fictitious default sequence

by the authors [1]. The best clearing vector can be assuredly found following this

sequence because Λ(p)Π has a row sum of less than 1. This implies that equation 2.3

is a monotone function and, as per the Knaster-Tarski theorem, is guaranteed to have

at least one fixed point. Unlike the basic iteration algorithm, which requires at most

(max(p̄)−1)n iteration to find the best clearing payment vector, this algorithm requires

at most n−1 iterations. This is because each iteration of the algorithm identifies the

best clearing payment for at least one bank.

2.1.3 Linear Programming (LP)

In the paper by Eisenberg and Noe, they showed that a financial system can be modelled

as a linear programming problem [1]. Finding the best clearing payment vector is

equivalent to maximizing a weighted vector subject to the limited liability condition.

Formally, the best clearing payment vector p∗ of a financial system (Π, p̄,e) and a

function f : [0̄, p̄]→ R can be found by:

P(Π, p̄,e, f) : Maximize f (p)

sub ject to : p ≤ Π
T p+ e

In order to show that any solution to P(Π, p̄,e, f) is a clearing payment vector

for the financial system, we have to make sure that the solution given by P(Π, p̄,e, f)

Chapter 2. Framework and Algorithms 9

satisfies limited liability and absolute priority mentioned in Section 2.1. Assuming that

p∗ is a solution to P(Π, p̄,e, f), then limited liability is satisfied by the feasibility of

p∗ in the programming problem. If the absolute priority condition were not satisfied,

for instance at node i, then it must be the case that p∗i < p̄i and (ΠT p∗+ e− p∗)i > 0.

Consider a vector pε which is equal to p∗ in all dimensions except i, and for i, is given

by p∗i + ε, where ε is chosen to be sufficiently small to ensure that limited liability

remains satisfied. pε is a feasible solution to the programming problem because:

(ΠT pε + e− pε) j − (ΠT p∗+ e− p∗) j = εΠi j ≥ 0 (2.4)

Given that f is a strictly increasing function and pε is greater than p∗ in one of its

dimensions and pε is at least equal to p∗ in other dimensions, we can conclude that

f (p∗)< f (pε), contradicting the assumption that p∗ is a solution to P(Π, p̄,e, f).

2.1.4 Uniqueness of Clearing Payment Vectors

Eisenberg and Noe have established that under certain conditions, a financial system

can have a unique clearing payment vector. To understand these conditions, we first

need to define a few key terms.

Surplus Set. A set S of N is referred to as a surplus set if no node within the set has

any obligations to any node outside the set and the set has positive operating cash flows.

Formally, ∀(i, j) ∈ S×Sc,Πi j = 0 and ∑i∈S ei > 0.

Financial Structure Graph. This is a directed graph representing a financial system

(Π, p̄,e). The vertices of the graph are the banks in the financial system N, and the

edges are defined by i → j ⇔ Πi j > 0.

Risk Orbit. The risk orbit of a bank i, denoted as o(i), is the set of all banks j ∈ N

such that there exists a directed path from i to j.

A financial system is deemed regular if every risk orbit, denoted as o(i), constitutes a

surplus set. In such a regular financial system, the maximum and minimum clearing

payment vectors are the same. A simple way to ensure regularity is that all banks

possess positive operational cash flows. Another straightforward criterion to ensure

regularity is the close interrelation of all nodes in the financial structure graph, with at

least one bank boasting a positive equity value. Given that the uniqueness of clearing

payment vectors in a financial system can be ensured, it becomes feasible to employ

other algorithms designed to find any fixed point of a monotone function. While it may

Chapter 2. Framework and Algorithms 10

not be entirely feasible for a realistic financial system to satisfy any of the aforemen-

tioned conditions, it is worthwhile to examine how an algorithm with a theoretically

faster runtime performs in reality.

In 2020, Dang, Qi, and Ye introduced an algorithm capable of identifying Tarski’s

fixed point within O(logdN) iterations [9]. The algorithm operates by iteratively refining

an initial approximation of the fixed point. In each iteration, the algorithm updates the

approximation based on the current estimate and the system’s properties. The algorithm

continues this process until it reaches a point where the estimate no longer changes

significantly, which is the fixed point. Concurrently, Fearnley, Palvolgyi, and Savani

demonstrated another algorithm that can locate Tarski’s fixed point in O(log2⌈k/3⌉N)

iterations [10]. The algorithm operates in a similar iterative manner, but the update rule

is different, leading to a different complexity. This study implements and compares the

algorithm proposed by Dang, Qi, and Ye against other algorithms, as detailed in Section

4. The specifics of the algorithms are not discussed here as they fall outside the scope

of this study, but they can be found in the original paper by Dang, Qi, and Ye [9].

2.2 Economic Framework by Jackson and Pernoud

In Section 2.1, the Eisenberg and Noe model was introduced, which posits simple debt

contracts between banks and assigns initial endowments (or operating cash flows) to

each bank. This section will build on that model by introducing the model proposed by

Jackson and Pernoud [2]. This model expands on the previous one by allowing each

bank to own multiple assets and a certain number of shares in other banks.

A financial system made up of N = {1, ...,n} banks can be represented by a pair

(L,e), as discussed in Section 2.1. In reality, a bank can invest in a variety of primitive

assets. As a result, a single endowment for each bank may not accurately reflect reality.

Let K = {1, ...,k} denote the collection of primitive assets, each with a market price of

ak. Let q be a matrix with the (i,k)-th entry representing the amount of asset k invested

by bank i. Then, the total value of bank assets i can then be represented by ∑
j=k
j=1 qi ja j.

A new matrix, S, is introduced to represent the number of shares that each bank

owns in other banks. For example, Si j ∈ [0,1] represents the number of equity shares

owned by bank i in bank j. An extra node is introduced into the financial system to

prevent nonsensical cycles in which each bank is entirely owned by others in the cycle.

This node, node 0, ensures that ∀i, j ∈ N,S0i = 1−∑
j=n
j=1 S ji > 0. Note that no bank can

own an equity share in node 0 because it represents outside investors, ∀i ∈ N,Si0 = 0.

Chapter 2. Framework and Algorithms 11

Because of the addition of node 0, L is now a (n+1)× (n+1) matrix.

2.2.1 The Algorithm by Jackson and Pernoud

Jackson and Pernoud’s work investigates the links formed by financial contracts between

banks and introduces the concept of bank values, denoted as V = {V1, ...,Vn}. They

describe a bank as in default when the value of its assets is insufficient to meet its

liabilities, resulting in bankruptcy costs that might vary depending on the health of other

banks and the value of its investments, βi(V,a)≥ 0. The authors also explore the notion

of a debtor i making a payment to a creditor j that is equivalent to the face value of

the debt if the debtor is solvent, di j(V) = Li j. However, if the debtor fails, its creditors

become the debtor’s residual claimants on its assets, and their claims on the creditor are

rationed correspondingly.

di j(V) = Πi j max(∑
k

qikak +dA
i (V)+∑

h
SihV+

h −βi(V,a),0) (2.5)

where V+
h ≡ max(Vh,0) and dA

i (V) = ∑ j d ji(V).

It’s important to highlight that when bank j goes bankrupt, equity holders in bank j

receive no payment, hence Si jV+
j = 0. Due to the principle of limited liability, the value

of bank i’s equity stake in j cannot fall into the negative. Additionally, when a bank is

solvent, it avoids incurring bankruptcy costs: βi(V,a) = 0. This section will not delve

into the specifics of the function to be used for bankruptcy costs; this will be discussed

in Section 3.2.1. However, the chosen function for bankruptcy costs will satisfy the

condition that ∑h dhi(V)−βi(V,a) is nondecreasing in V . This ensures that a bank’s

balance sheet does not deteriorate when the value of its counterparties increases. The

bank values can be solved by the following equation:

V = (I −S(V))−1([qa+dA(V)− p̄]−β(V,a)) (2.6)

where Si j(V) = 0 if j defaults according to V and Si j(V) = Si j otherwise.

The algorithm begins by assuming that all banks are solvent and sets d(V) = L. It

then goes through an iterative process, updating the payment vector using equation 2.5

and recalculating bank values using equation 2.6. When the bank values reach a state of

equilibrium, that is, when a fixed point in V is found, the best clearing payment vector

is established. The best payment vector may therefore be calculated as p∗i = ∑ j di j(V).

Chapter 3

The Implementation

Python was chosen as the implementation language due to several reasons.

Ease of Use. Python is known for its simplicity and readability, which makes it a

great language for implementing complex algorithms and mathematical models.

Scientific Computing Libraries. Python has a rich ecosystem of scientific comput-

ing libraries such as NumPy and SciPy. The code uses NumPy for matrix operations and

random number generation, and the linprog function from SciPy is imported. These li-

braries provide efficient and convenient functions for performing complex mathematical

operations.

Performance. Despite being an interpreted language, Python can be quite fast when

used with libraries like NumPy and SciPy, which are implemented in C and Fortran and

can perform complex operations very efficiently [11].

Popularity in the Data Science Community. Python is a popular language in the

data science and machine learning community [12]. This means that it’s likely that any

potential collaborators are familiar with the language, which makes development and

maintenance easier.

The choice of Python packages is also justified by the needs of the project.

NumPy. Used for efficient numerical computations. It provides a high-performance

multidimensional array object, and tools for working with these arrays. NumPy is used

here for creating and manipulating arrays, which are used to represent vectors and

matrices in the financial system.

Scipy. A library used for scientific and technical computing. It provides many effi-

cient and user-friendly interfaces for tasks such as numerical integration, interpolation,

optimization, linear algebra, and more. In this project, the linprog function from SciPy

12

Chapter 3. The Implementation 13

is imported, which is a tool for linear programming.

timeit. A module for timing small bits of Python code. It has both command-

line interface and a callable one. It avoids a number of common traps for measuring

execution times.

matplotlib. A comprehensive library for creating static, animated, and interactive

visualizations in Python. It provides a highly customizable and powerful interface for

generating a wide variety of plots and charts. In the context of this project, matplotlib

would be used for visualizing the results of the experiments and providing insights

into the behavior of the implemented algorithms. For instance, it is used to plot the

number of bankrupt entities as a function of the initial assets and liabilities, and plot

the convergence of the clearing payment vector over iterations. These visualizations

can help to understand the dynamics of the financial system and the effects of different

parameters.

3.1 The Model by Eisenberg and Noe

The economic framework by Eisenberg and Noe which consists of a number of banks

is implemented in financialSystem.py. Each bank has an operating cash flow and

liabilities represented by vectors and matrices respectively.

1 class financialSystem():

2 def __init__(self, n, liability, asset, maxDistance=1, edge=0):

The implementation utilises a Python class named FinancialSystem() to emulate

the financial system. This class requires various input parameters including the number

of banks, the expected nominal liabilities and primitive assets for each bank, along

with other parameters necessary for generating the financial system and calculating the

clearing payment vector.

The maxDistance parameter serves as a convergence criterion within the iterative

algorithms tasked with finding the best clearing payment vector. This parameter sets

the maximum Euclidean distance allowed between successive iterations of the clearing

payment vector, serving as a tolerance level for the algorithms to consider the vector

as having converged to a solution. The edge parameter is used to specify the expected

number of edges or connections each bank has to other banks in the financial system.

All variables in FinancialSystem() class are shown in Table 3.1.

Chapter 3. The Implementation 14

1 class financialSystem():

2 def generate(self):

The generate() method in the FinancialSystem() class is used to construct a

financial system based on the parameters set during initialization. Initially, it checks

whether n is not smaller than 2, as a minimum of two banks is required to calculate

the best clearing payment vector in the financial system. Following that, the method

ensures that the edge variable falls within the range of 1 to n - 1. The assetVector

variable is then generated using NumPy’s random.normal() function with the mean

to asset and the standard deviation as
√

n.

After that, the liabilityMatrix variable is generated as follows. A n×1 seed

array is generated using random.normal() with edge as the mean and
√

n as the

standard deviation. Each entry of the array has a maximum value of n - 1 and a

minimum value of 0. Now, for each row of liabilityMatrix, randomly choose

some banks between 0 and n - 1 using to random.choice() with a size of seed[i]

where i represents the current number of row of liabilityMatrix. Bank i will owe

the chosen banks according to the numbers generated from random.normal() with

mean as liability and standard deviation as
√

n. Lastly, totalPaymentVector and

relativeLiabilityMatrix will be calculated using liabilityMatrix.

Note that
√

n is used as the standard deviation of normal distribution because it

provides a balance between the variability of the debts and the size of the network.

This variability creates diverse scenarios in the network, allowing for more realistic

modelling of financial systems. However, it’s important to note that the use of
√

n is a

simplifying assumption. In real-world financial networks, the distribution of debt can

be influenced by many factors and may not follow this standard deviation. It’s also

worth noting that the use of
√

n can be adapted based on the specific characteristics or

requirements of the model being used.

3.1.1 Implementation of Basic Iteration Algorithm

1 class financialSystem():

2 def solve(self, topToBottom=True):

The algorithm is implemented within the financialSystem() class as a single

function, solve(). The function accepts one argument, topToBottom, which initializes

Chapter 3. The Implementation 15

Variables Description

n An integer that records the number of banks

clearingPaymentVector A NumPy array that records the clearing payment vector

assetVector A NumPy array that records the assets of each bank

liabilityMatrix A 2-by2 NumPy array that records the nominal liability of

banks

maxDistance A floating point that sets the maximum Euclidean distance

allowed between successive iterations of the clearing pay-

ment vector

edge An integer that records the expected number of edges for

each bank

asset A floating point that records the expected amount of assets

for each bank

liability A floating point that records the expected amount of liabil-

ities for each bank

relativeLiabilityMatrix A 2-by-2 NumPy array that records the relative liability of

each bank

totalPaymentVector A NumPy array that records the total amount of debt that

each bank needs to pay

Table 3.1: List of Variables in financialSystem class

the clearingPaymentVector to either an array of zeros or to the totalPaymentVector

. Subsequently, the algorithm iterates until the best clearing payment vector is identified.

In each iteration, a new payment vector is computed in accordance with equation 2.1.

The clearingPaymentVector is then updated to be the element-wise minimum of the

newly calculated payment vector and totalPaymentVector.

The algorithm compares the Euclidean distance between the new and old clearing

PaymentVector. If this distance is less than maxDistance, the algorithm concludes

and returns the new clearingPaymentVector as the best clearing payment vector. This

comparison is performed using the close() function within the financialSystem

() class, which checks if the Euclidean distance between two arrays is smaller than

maxDistance.

To expedite calculations, the implementation leverage NumPy’s dot function to

compute the dot product between the transposed relativeLiabilityMatrix and the

Chapter 3. The Implementation 16

old clearingPaymentVector. This approach is more efficient than computing the dot

product element-wise with a for loop. The same principle of eschewing for loops

when possible is applied throughout the implementation to maximize efficiency and is

also extend to other NumPy functions like transpose, sum, minimum and more.

3.1.2 Implementation of Fictitious Default Algorithm

1 class fictitiousDefaultAlgorithm():

2 def __init__(self, financialSystem):

The algorithm is encapsulated within a separate class named fictitiousDefault

Algorithm(). The class requires an instance of the financialSystem() class to

determine the best clearing payment vector using the Fictitious Default Algorithm. It

also incorporates two additional variables, as outlined in Table 3.2.

Variables Description

defaultMatrix A 2-by-2 NumPy array in which its diagonal element records the

state of banks

financialSystem An instance of the financialSystem class

Table 3.2: Two Additional Variables in the fictitiousDefaultAlgorithm class

1 class fictitiousDefaultAlgorithm():

2 def solve(self):

3 def updateDefaultMatrix(self):

4 def updatePaymentVector(self):

Much like the Basic Iteration Algorithm, the algorithm is implemented within a

function called solve(). Initially, the function assigns the totalPaymentVector vari-

able to the clearingPaymentVector variable. It then embarks on an iterative process

to identify the best clearing payment vector. During each iteration, the defaultMatrix

variable is updated using the updateDefaultMatrix() function. This update involves

calculating the total assets or cash of each bank, then assigning either 1 or 0 to solvent

or bankrupt banks, respectively, using the NumPy where function.

Following this, the updatePaymentVector() function is called to compute a new

payment vector in accordance with equation 2.3. As previously noted, all calculations

Chapter 3. The Implementation 17

involving the dot product utilise the NumPy dot function, avoiding the use of a for

loop for improved performance. The algorithm ceases its operation if the close()

function returns True. This occurs when the new payment vector and the old payment

vector are sufficiently close to each other as determined by the pre-set tolerance.

3.1.3 Implementation of the Linear Programming ALgorithm

1 class LPSolver():

2 def __init__(self, financialSystem):

3 def solve():

As discussed in Section 2.1.3, the process of identifying the best clearing pay-

ment can be modeled as a maximization problem within linear programming. This

approach is implemented in the LPSolver() class. The class requires an instance of

financialSystem class as an argument during initialization.

The LPSolver() class features a single function named solve(). When this

function is invoked, it determines and returns the best clearing payment vector. To solve

the system of linear equations, the optimize.linprog function from the SciPy library

is utilised as the linear programming solver. The solutions to this system are bounded by

0 and p̄, ensuring that the resulting clearing payment vector adheres to the constraints

of the financial system.

3.1.4 Implementation of the Algorithm by Dang, Qi and Ye

The algorithm put forth by Dang, Qi and Ye, which was previously implemented in a

related study [13], serves as a significant influence for the current study’s implemen-

tation. The algorithm is encompassed within a class named DQY_algorithm(). Like

the other classes implemented in this project, DQY_algorithm() takes an instance of

financialSystem() as an argument during initialization.

The class consists of five functions: solve(), helper(), A_Below_B(), A_Above_B

(), and updatePaymentVector(). The solve() function, when invoked, identifies

and returns the best clearing payment vector. The helper() function aids the solve()

function in its operations. The A_Below_B() and A_Above_B() functions compare

the positions of two arrays and return a boolean value based on the comparison. The

updatePaymentVector() function updates the payment vector in line with equation

2.1.

Chapter 3. The Implementation 18

1 class DQY_Algorithm():

2 def __init__(self, financialSystem):

3 def solve(self):

4 def helper(self, depth):

5 def A_Below_B(self, arrayA, arrayB):

6 def A_Above_B(self, arrayA, arrayB):

7 def updatePaymentVector(self):

In Dang, Qi and Ye’s original paper, the algorithm operates on a complete lattice,

thereby simplifying the comparison between two points. However, in the context of

this study, the payment vector is represented by an array of type float64. While it

is technically possible for two arrays of floating point numbers to be identical, this

isn’t a practical approach from a performance perspective. Therefore, two arrays are

considered equivalent if the Euclidean distance between them across all dimensions is

less than maxDistance.

Furthermore, a part of the algorithm involves the comparison of a single entry from

each of the two arrays. In such cases, the entries are deemed equivalent if the absolute

distance between them is less than maxDistance/sqrt(n). This approach ensures that

the Euclidean distance between the two full arrays remains less than maxDistance,

even if all the individual entries have a Euclidean distance of maxDistance/sqrt(n).

3.2 The Model by Jackson and Pernoud

The economic framework proposed by Jackson and Pernooud, which takes into account

the ownership structure of banks, is implemented in the financialSystemWithShares

() class. This framework extends the model by Eisenberg and Noe by incorporating the

equity shares that banks have in one another, represented by a matrix.

1 class financialSystemWithShares(financialSystem):

2 def __init__(self, n, k, liability, asset, costFunction, maxDistance=1,

debtEdge=0, sharesEdge=0, quantityEdge=0, financialSystem=None):↪→

Similar to the financialSystem() class, financialSystemWithShares() class

also requires various parameters during initialization including the number of banks

and assets, among others. Notably, there are additional parameters to account for the

ownership structure, as outlined in Table 3.3, such as the number of different types of

Chapter 3. The Implementation 19

assets k, and sharesEdge which indicates the expected number of shares each bank

holds in other banks.

Variables Description

k An integer that represents the number of different types of assets in

the financial system

quantity A n-by-k NumPy array that records the number of assets that each

bank holds

quantityEdge An integer that records the expected number of assets that each bank

holds

shares A n-by-n NumPy array that records the number of shares that each

bank holds on other banks

sharesEdge An integer that records the expected number of shares that each

bank holds on other banks

valueVector A n-by-1 NumPy array that records the value of each bank

solventMatrix A n-by-n NumPy array which is equivalent to identity matrix -

defaultMatrix

Table 3.3: Additional Variables in the financialSystemWithShares class

1 class financialSystemWithShares(financialSystem):

2 def generate(self):

3 def generateQuantity(self):

4 def generateShares(self):

The method generate() is extended to include the generation of the quantity

matrix, representing the amount of each type of asset that each bank holds, and the

shares matrix, indicating the proportion of each bank’s equity held by every other

bank. Both generateQuantity() and generateShares() methods are called within

the generate() method, which ensures that the financial system is set up with the

appropriate ownership structure.

The generateQuantity() method is used to create the quantity matrix. The

function generates this matrix by selecting the number of assets each bank owns from

a normal distribution with the means as quantityEdge and standard deviation as
√

n.

This process is repeated for each bank and each type of asset, resulting in an n× k

matrix.

Chapter 3. The Implementation 20

Similarly, the generateShares() function is used to generate the shares matrix.

This function randomly selects some banks to be the owners of each bank’s equity. The

number of owners is drawn from a normal distribution with the mean as sharesEdge

and standard deviation as
√

n. The shares are then distributed among the selected banks

according to a uniform distribution that ranges from 0 and 1 and then normalized so

that the total equity of each bank sums to 1.

3.2.1 Bankruptcy Cost

In the model proposed by Jackson and Pernoud, bankruptcy cost are also taken into

account when a bank is unable to meet all its debts. In their paper, they mentioned that

for the algorithm to successfully identify the best clearing payment vector, the function

dA
i (V)−βi(V,a) (3.1)

must be non-decreasing in V . They provide an example of bankruptcy costs that fulfills

the assumption:

βi(V,a) = b+ cAi (3.2)

where b ≥ 0, c ∈ [0,1], Ai = ∑k qikak +∑ j Si jV+
j + dA

i (V). This particular function

is implemented within the financialSystemWithShares() class and is used as the

bankruptcy cost in the financial system if costFunction="linear" is specified dur-

ing initialization. The constants c and d are randomly generated following uniform

distributions; c ranges from 0 to 0.01 p̄i and d ranges from 0 to 1.

While a linear function is sufficient to evaluate the performance of the algorithms

within different types of financial system, it is worth noting that this may not accurately

reflect the real-world complexity, as bankruptcy cost often exhibit non-linear charac-

teristics. Several studies have discovered that bankruptcy cost are a concave function

of the firm’s market value at the time of bankruptcy [14] [15] [16] [17]. For instance,

Ang, Chua and McConnell estimated the costs and asset values using logarithmic and

quadratic equations [18].

log βi(V,a) = b1 + c1 log Ai (3.3)

βi(V,a) = k+b2Ai + c2A2
i (3.4)

In their paper, Ang, Chua and McConnell estimated the coefficients as b1 ≈ 1.004, c1 ≈
0.5359, k ≈ 298, b2 ≈ 0.0286, c2 ≈−0.0202×10−6. These estimates are hypothesized

from a random sample of 86 corporations spanning the period from 1963 to 1978 with

Chapter 3. The Implementation 21

an estimated average liability and asset of 200,000 and 600,000. While the estimates

may not be completely accurate today, given that the data are over 40 years old, they

nonetheless provide valuable reference points.

If the costFunction parameter is set to ”log”, then equation 3.3 is employed.

Conversely, when costFunction is set to ”quadratic”, then equation 3.4 is used. When

using the logarithmic function to calculate bankruptcy costs, equation 3.1 is a decreasing

function within the range of 0 < V < x, where the specific value of x depends on

the selected coefficients for the logarithmic function. To ensure that equation 3.1

remains non-decreasing in V, a modification is applied to the bankruptcy cost when the

logarithmic function is used. Specifically, a minimum amount of bankruptcy cost is

incurred when 0 <V < x.

On the other hand, the quadratic function is a decreasing function when V > b2
−2c2

.

Hence, in the implementation, the value vector used to calculate the bankruptcy cost

will be upper bounded by b2
−2c2

. The value vector used in other parts of the algorithms

will remain unchanged.

3.2.2 Implementation of the Algorithm by Jackson and Pernoud

1 class financialSystemWithShares(financialSystem):

2 def solve(self):

The algorithm is implemented within the solve() function of the financial

SystemWithShares() class. This algorithm diverges from the other algorithms as it

calculates the best clearing payment matrix, rather than a vector at its conclusion. Each

(i, j) entry of the matrix corresponds to the best clearing payment value from bank i to

bank j.

Initially, the matrix is configured to match the liabilityMatrix while the value

of each bank, represented by valueVector, is set to 0. Additionally, all banks are

assumed solvent at the onset, thus solventMatrix is equivalent to an n-by-n identity

matrix.

The algorithm starts an iteration process, persisting until valueVector converges to

a fixed point. During each iteration, the algorithm computes the total cash of each bank,

encompassing both primitive and debt assets. This information is utilised to determine

the solvency of a bank, considering its total cash and total debt payments. Subsequently,

the bankruptcy costs for defaulting banks are computed and recorded in an array called

Chapter 3. The Implementation 22

bankruptcyCost.

The payment value of defaulting banks is then updated in accordance with equation

2.5, while the value of all banks is updated per equation 2.6. As mentioned in Section

3.1.1, the implementation leverages of NumPy’s built-in functions such as where,

maximum, dot, sum and more to enhance computational efficiency.

1 class financialSystemWithShares(financialSystem):

2 def calculateTotalCash(self):

3 def updateSolventMatrix(self, totalCash):

4 def updateBankruptcyCost(self, totalCash):

Within the solve() function, several helper functions are utilised to improve code

readability and description. The calculateTotalCash() function is first employed

at the start of each solve() iteration, determining the total cash for all banks. Next,

updateSolventMatrix() is invoked during each iteration to update the solvent

Matrix. Lastly, the bankruptcy costs for defaulting banks are calculated using the

updateBankruptcyCost() function. The specific function used to compute the cost

depends the costFunction parameter, as described in Section 3.2.1.

3.3 Proof of Correctness

As mentioned in Section 3.1.1, the close() function is utilised to confirm the con-

vergence of the clearing payment vector to a fixed point. This function calculates the

Euclidean distance between the last and successive payment vectors and returns True if

the Euclidean distance is less than maxDistance.

However, if maxDistance is not adequately small, the computed clearing payment

vector may significantly deviate from the best clearing payment vector. To ensure

the accuracy of the computed clearing payment vector from an algorithm, it can be

cross-verified with the solution derived from the linear programming solver. The linear

programming solver provides a high degree of accuracy as it does not rely on the close

() function. It is worth noting that the other algorithms can achieve greate accuracy

than the linear programming solver if maxDistance is set to an extremely small value,

such as zero. However, this could potentially slow down the execution of the algorithms.

1 class financialSystem():

2 def validPyament(self, payment, output=False):

Chapter 3. The Implementation 23

3

4 class financialSystemWithShares(financialSystem):

5 def validPayment(self, payment, output=False):

We can use the same method to verify the accuracy of the algorithm by Jackson and

Pernoud when sharesi j = 0 for all i > 0, j > 0. In other cases, the correctness of the

clearing payment vector can be assessed by calculating the total cash (or assets) of the

banks. This assumes that all banks fulfill their debts in accordance with the computed

clearing payment vector. Subsequently, we need to ensure that their total cash is greater

than or approximately equal to (as determined by the close() function) their clearing

payments. This validation technique is implemented in the validPayment() function,

which confirms that the computed clearing payment vector is indeed accurate. However,

it should be noted that this method does not ascertain that the computed vector is the

best clearing payment vector.

1 class financialSystem():

2 def bestPayment(self):

3

4 class financialSystemWithShares(financialSystem):

5 def bestPayment(self):

To ascertain the correctness of the computed clearing payment vector, a small

value can be added to each entry of the clearing payment vector. This process is

executed within a function named bestPayment(). If the vector is truly the best

clearing payment vector, then validPayment() should return False after this addition.

In this implementation, the added value is determined to be 2 * maxDistance/
√

n. This

strategy serves as a check to ensure that the computed vector is not only correct but also

optimal.

Chapter 4

Experimental Evaluation of the

Implementation

In this chapter, a series of experiments will be conducted to evaluate the performance of

the algorithms under various conditions. Throughout these experiments, the computed

clearing payment vector will be verified for correctness and optimality using the methods

mentioned in Section 3.3. Unless otherwise specified, the maxDistance will be set as

0.0001 and the costFunction will be configured as "logarithmic". Additionally, all

results presented are derived from the average of ten separate trial runs to minimise

variability.

While the algorithm by Dang, Qi and Ye has been implemented, it will not be

included in the experiments, with the exception of Section 4.4. This decision is based on

preliminary results showing that this algorithm consistently underperforms compared to

the other algorithms in various scenarios, as demonstrated in Section 4.4. This might

be due to the fact that the algorithm operates by identifying the midpoint of the search

lattice, which is a different approach compared to the other iterative algorithm that may

fortuitously converge towards the best clearing payment vector.

Another potential factor could be that the implementation of the Dang, Qi and Ye

algorithm might not be sufficiently efficient. It should be noted, however, that we have

taken every possible step to ensure that the implementation is as efficient as possible,

mirroring the optimisation efforts applied to the other algorithm implementations.

In this chapter, abbreviations will be used in place of full algorithm names for the

sake of brevity. The following abbreviations correspond to the algorithms as described:

• BIA(top) and BIA(bottom) represent the Basic Iteration Algorithm, with (top)

and (bottom) indicating whether the initial clearing payment vector is set as p̄ or

24

Chapter 4. Experimental Evaluation of the Implementation 25

0̄, respectively.

• FDA stands for the Fictitious Default Algorithm.

• LP denotes the algorithm that utilises Linear Programming.

• JP is the abbreviation for the algorithm proposed by Jackson and Pernoud.

4.1 Bankruptcy Rate

In this section, we conduct experiments by manipulating the bankruptcy rate within the

financial system, defined as the ratio of defaulting banks to non-defaulting banks when

all banks settle their debts according to the best clearing payment vector. Primarily,

three parameters can influence this bankruptcy rate: liability, asset, and edge. Our

investigation will proceed sequentially, examining the effects of altering each parameter,

beginning with liability, followed by asset, and finally, the edge parameter.

4.1.1 liability

(a) Time against liability (b) Number of Banks against liability

Figure 4.1

Figure 4.1 presents the results of experiments conducted with parameters set as

n = 100, asset=1e6, edge=10 and liability ranging from 1e5 to 5e6. As shown in

Figure 4.1a, the performance ranking of the algorithms, from the fastest to slowest, is

as follows: BIA(top), BIA(bottom), FDA and LP. However, as the expected liability of

a debt contract increases, this order shifts to BIA(top), BIA(bottom), LP and FDA.

Chapter 4. Experimental Evaluation of the Implementation 26

This change in performance ranking can be explained by Figure 4.1b. As the

expected liability of a debt contract increases, so too does the number of defaulting

banks. In other words, the bankruptcy rate within the financial system escalates with

an increase in the expected liability of a debt contract. As mentioned in Chapter 3,

the iterative algorithms will set the clearing payment of a bank as the total amount of

its debt in a single iteration if the bank has sufficient funds to cover it. Therefore, the

iterative algorithms outperform the linear programming solver when the bankruptcy

rate is low. The performance of the iterative algorithms decreases as the bankruptcy rate

increases, which is especially true for the FDA algorithm. This is due to the fact that

more iterations are needed to calculate the best clearing payment vector as the vector

itself is getting larger.

It is noteworthy that the BIA(bottom) algorithm initially performs comparably to

the BIA(top) algorithm, but its performance deteriorates more as liability increases.

This can be attributed to the fact that the best clearing payment vector is generally closer

to p̄ than 0̄. While it may seem premature to assert that BIA(bottom) underperforms

BIA(top), further sections of this chapter will provide evidence supporting this claim.

4.1.2 asset

(a) Time against asset (b) Number of Banks against asset

Figure 4.2

Figure 4.2 depicts the performance of financial systems characterised by the pa-

rameters: n = 100, liability=1e5, edge=10 and asset varying from 1e5 to 1e6.

Given that modifying the asset parameter essentially inversely correlates with altering

liability, the trends observed in Figure 4.2a are quite anticipated.

Chapter 4. Experimental Evaluation of the Implementation 27

One notable point, however, is the smaller impact that asset adjustments have on

the bankruptcy rate compared to liability changes, as evident in Figure 4.2b and

Figure 4.1b. This can be attributed to the edge parameter set at 10, which means that

changes in liability can have a more pronounced effect on a bank’s total cash flow.

Interestingly, the BIA(bottom) algorithm’s performance parallels that of the BIA(top)

algorithm in these scenarios. As previously discussed, the iterative algorithms typically

require only a single iteration to compute the best clearing payment value for solvent

banks. Therefore, as the number of non-defaulting banks increases with an increase in

asset, the performances of BIA(bottom) and BIA(top) algorithms converge. Mean-

while, FDA initially is slower than the LP algorithm but this changes as the bankruptcy

rate of the financial system decreases.

4.1.3 edge

(a) Time against edge (b) Number of Banks against edge

Figure 4.3

Figure 4.3 illustrates the performance of financial systems characterised by the

parameters: n = 100, liability=2e5, asset=1e6 and edge varying from 1 to 100.

As shown in Figure 4.3a and Figure 4.3b, the performance of the iterative algorithms

fluctuates in accordance with changes in the bankruptcy rate.

Contrarily, the LP algorithm’s performance decreases as the edge parameter in-

creases, even when the bankruptcy rate is low when edge is near 100. This suggests

that the LP algorithm’s performance is more reliant on the complexity of the financial

system than on the bankruptcy rate. We define the complexity of a financial system as

the total number of directed edges between banks.

Chapter 4. Experimental Evaluation of the Implementation 28

An intriguing observation is that all the iterative algorithms, with the exception of

BIA(bottom), seem to be less influenced by the complexity of the financial system and

more influenced by the bankruptcy rate. However, the performance of BIA(bottom)

does fluctuate with the bankruptcy rate, similar to other iterative algorithms, but it also

displays a higher sensitivity to the complexity of the financial system compared to

BIA(top).

4.2 Complexity of the Financial System

In this section, experiments will be conducted by changing the complexity of the

financial system, which is influenced by two parameters: n and edge. These experiments

will demonstrate that the performance of the LP algorithm is significantly affected by

the complexity of the financial system. However, this observation does not necessarily

imply that the LP algorithm performs the worst among all algorithms when dealing

with complex financial systems.

4.2.1 Effect of Varying Complexity on LP

(a) edge = 0.5n (b) edge = n

Figure 4.4: Effect of Complexity 1

In Section 4.1.3, we observed that the performance of the LP algorithm is highly

dependent on the complexity of the financial system, especially when compared to other

algorithms. Figure 4.4 provides further evidence to support this claim. Note that when

the expected debt edge of a bank is higher, the performance of the LP algorithm is worse

than that of the other algorithms, as seen when comparing Figure 4.4a with Figure 4.4b.

Chapter 4. Experimental Evaluation of the Implementation 29

(a) edge = 0.5n (b) edge = n

Figure 4.5: Effect of Complexity 2

This change in trend is not attributable to the bankruptcy rate of the financial system.

As Figure 4.5 illustrates, the bankruptcy rates of the financial systems in both scenarios

are approximately the same. This is due to the nature of linear programming, a more

complex linear programming problem requires more time to be solved by a linear

programming solver. The experiments were conducted with the following parameters:

asset=1e5, liability=1e5, n ranges from 30 to 100 and edge is either 0.5n or n in

Figure 4.4a or Figure 4.4b, respectively.

4.2.2 When Banks are Mostly Solvent

(a) (b)

Figure 4.6: Mostly Solvent

In Section 4.1, we noted that the iterative algorithms can swiftly determine the

best payment values when a bank is solvent. Figure 4.6 further evidence to give

Chapter 4. Experimental Evaluation of the Implementation 30

support to this observation. A significant gap can be seen between the performance

of the LP algorithm and that of the other algorithms when all the banks are solvent.

The experiments depicted in Figure 4.6 were conducted with the following parameter

settings: asset=1e6, liability=1e5, edge=n and n ranges from 30 to 100.

4.2.3 When Banks are Mostly Defaulting

(a) (b)

Figure 4.7: Mostly Defaulting

Section 4.2.2 does not suggest that the iterative algorithms will always outperform

the LP algorithm. As demonstrated in Figure 4.8, the LP algorithm emerges as the

fastest when the bankruptcy rate is high. As mentioned before, the iterative algorithms

require more iterations to identify the best clearing payment vector as the best clearing

payment vector gets larger. The parameters used in this scenario include asset=1e5,

liability=1e6, edge=n and n ranges from 30 to 100.

4.3 The Algorithm by Jackson and Pernoud

In this section, we explore experiments tailored to the algorithm by Jackson and

Pernoud. Specifically, we investigate how the algorithm’s performance is influenced

by sharesEdge and quantityEdge. Also, the algorithm tends to underperform other

algorithms in the model by Eisenberg and Noe, where factors like equity shares and

bankruptcy costs are not incorporated. We conduct the same experiments as detailed in

Section 4.1 and Section 4.2 to include the JP algorithm, with the results displayed in

Figure 4.8 and Figure 4.9.

Chapter 4. Experimental Evaluation of the Implementation 31

4.3.1 Comparing with the Other Algorithms

The reason why the JP algorithm generally underperforms compared to other algorithms

in the same setting is due to its method of operation. Unlike other iterative algorithms

that only update the clearing payment vector in each iteration, the JP algorithm updates

both the clearing payment matrix and the value vector of banks during every cycle.

This additional computation in every iteration causes the JP algorithm to perform

less efficiently than the other algorithms. However, it is worth noting that the JP

algorithm has the advantage of calculating the clearing payment matrix instead of just

the vector. This allows for the determination of clearing payments between individual

banks.

(a) Time against liability (b) Time against asset

(c) Time against edge (d) Time against n

Figure 4.8: The Performance of the Algorithm by Jackson and Pernoud against Other

Algorithms 1

Chapter 4. Experimental Evaluation of the Implementation 32

(a) High Bankruptcy Rate (b) Low Bankruptcy Rate

Figure 4.9: The Performance of the Algorithm by Jackson and Pernoud against Other

Algorithms 2

4.3.2 Multiple Assets and Equity Shares

Owning k different assets, where each asset i has a value of ai, is the same as having

a single asset with a combined value of ∑k ai. Thus, increasing the quantityEdge

parameter does not substantially alter the number of iterations needed to find the best

clearing payment matrix if the expected total asset of a bank is consistent.

(a) (b)

Figure 4.10: quantityEdge (Same Bankruptcy Rate)

However, increasing quantityEdge extends the time required to calculate the total

cash of each bank in every iteration of the algorithm. Consequently, the performance of

the algorithm marginally decreases as quantityEdge increases if the bankruptcy rate

is kept constant, as shown in Figure 4.10, under the following parameters: asset=1e6,

liability=1e5, debtEdge=50, costFunction="none", quantityEdge=[0, 0.3n

Chapter 4. Experimental Evaluation of the Implementation 33

(a) (b)

Figure 4.11: quantityEdge (Different Bankruptcy Rate)

, 0.8n], sharesEdge=30, k = 100 and n ranges from 30 to 100.

Additionally, an increase in quantityEdge can change the bankruptcy rate of

the financial system if the other parameters are kept constant, thereby affecting the

algorithm’s performance. This effect is illustrated in Figure 4.11, where the parameters

are the same as in Figure 4.11, except that liability is now set at 1e7.

(a) (b)

Figure 4.12: sharesEdge (Same Bankruptcy Rate)

The concept can also be applied to sharesEdge. Increasing sharesEdge will

decrease the time needed to calculate the best clearing payment matrix due to the

same reason used to explain the effect of quantityEdge. In this case, equity shares

of other banks can be considered as an additional asset owned by the shares holder.

Figure 4.12 shows that the performance of the algorithm decreases by a little bit when

sharesEdge increases even when the bankruptcy rate does not change. The param-

Chapter 4. Experimental Evaluation of the Implementation 34

eters for the scenario include: asset=1e6, liability=1e5 costFuntion="none",

quantityEdge=1, sharesEdge=[0, 0.3n, 0.8n], k = 100 and n ranges from 30 to

100. Figure 4.13 shows that the performance of the algorithm increases due to the

significant drop in bankruptcy rate when sharesEdge increases.

(a) (b)

Figure 4.13: sharesEdge (Different Bankruptcy Rate)

4.3.3 Bankruptcy Cost

As detailed in Section 3.2.1, three types of functions are implemented to represent

bankruptcy costs: linear, logarithmic and quadratic. Each type of bankruptcy cost is

examined individually to investigate its effect when the coefficients of the functions are

increased.

(a) (b) (c)

Figure 4.14: Logarithmic Cost Function

Figure 4.14 presents the results of experiments with the following parameters: n

= 11, k = 100, quantityEdge=1, sharesEdge=30, debtEdge=50, liability ranges

from 1e4 to 2e5. Equation 3.3 is utilised as the bankruptcy cost in these experiments.

Chapter 4. Experimental Evaluation of the Implementation 35

From Figure 4.14a, it is evident that increasing the bankruptcy cost by augmenting

the coefficients leads to a decrease in the performance of the algorithm, except when

b = 1.5,c = 0.8. This drop in performance can be explained by Figure 4.14b, while the

exception can be explained by Figure 4.14c. A rise in bankruptcy cost increases the

bankruptcy rate, hindering the algorithm’s performance. However, if the bankruptcy

rate is excessively large, the total cash flow in the financial system diminishes. This

allows the algorithm to find the best clearing payment matrix with fewer iterations as

the average of the best clearing payment matrix is now smaller, as shown in Figure

4.14c.

(a) (b) (c)

Figure 4.15: Linear Cost Function

(a) (b) (c)

Figure 4.16: Quadratic Cost Function

Figure 4.15 and Figure 4.16 are the results of experiments when the bankruptcy

cost functions are set as linear and quadratic respectively. From Figure 4.15, it can be

observed that the time required for the financial systems with c = 0.2 and c = 0.3 is

upper-bounded by 0.07 and 0.04 seconds respectively. This pattern, as explained when

using the logarithmic cost function, is clarified in Figure 4.15c. Figure 4.15b further

demonstrates that the bankruptcy rate of the financial systems is heavily influenced by

the bankruptcy cost.

A similar trend is visible with the quadratic cost functions, as shown in Figure 4.16.

The distinction between linear and quadratic cost functions lies in the increased upper

Chapter 4. Experimental Evaluation of the Implementation 36

bound on the time required, a consequence of the quadratic factors in the cost function.

The parameters of the financial systems in both figures align with those of the financial

systems employing logarithmic cost functions.

4.4 The Algorithm by Dang, Qi and Ye

In this section, we present the results of experiments from Section 4.1 and Section

4.2 that includes the DQY algorithm. As shown in Figure 4.17, DQY underperforms

all other algorithms in nearly every scenario, with the exception of cases where the

financial systems comprise mostly solvent banks. This exception occurs because the

iteration algorithms only require a single iteration to identify the best clearing payment

for solvent banks, giving them an advantage.

The subpar performance of DQY may be attributed to the nature of the underlying

monotone function (Equation 2.1) used to compute the best clearing payment vector.

This function may converge to a fixed point rapidly, but the performance of DQY does

not depend on this quick convergence. Instead, DQY operates by locating the midpoint

of the lattice which represents all potential values of the best clearing payment vector.

Then, the algorithm employs a divide-and-conquer strategy to recursively find the best

clearing payment vector within a multi-dimensional lattice.

Interestingly, DQY outperforms all other algorithms and aligns closely with BIA(top)

in scenarios where banks are mostly solvent. However, as shown in Figure 4.17f, DQY’s

performance diminishes sharply only after n increases past 75. This observation implies

that the algorithm could potentially compete with others if the convergence rate of the

monotone function were artificially controlled. Nevertheless, we did not conduct such

an experiment, as it would be unrealistic to artificially slow down the performance of

the other algorithms to match DQY’s performance.

Chapter 4. Experimental Evaluation of the Implementation 37

(a) Time against liability (b) Time against asset

(c) Time against edge (d) Time against n

(e) High Bankruptcy Rate (f) Low Bankruptcy Rate

Figure 4.17: The Performance of the ALgorithm by Dang, Qi and Ye against Other

Algorithms

Chapter 5

Conclusion

The paper by Eisenberg and Noe introduces a model that involves direct debt contracts

between banks, with each bank also possessing an operating cash flow or asset. In this

model, the authors present three distinct algorithms designed to identify the optimal

clearing payment vector. Conversely, the model proposed by M. O. Jackson and A.

Pernoud builds upon the previous framework by permitting banks to hold shares in other

banks. Furthermore, each bank is not limited to a single operating cash flow; instead, a

variety of assets exist, with different banks investing in these assets in varying quantities.

In this expanded model, the authors outline an algorithm that can be employed to

discover the best clearing payment vector.

In this study, the model defined by Eisenberg and Noe is implemented and evaluated.

The algorithms detailed in the same paper are executed, and experiments are conducted

to assess these algorithms in diverse financial contexts. The bankruptcy rate of a

financial system is defined as the ratio of defaulting banks to solvent banks when all

banks pay their debt according to the optimal clearing payment vector. This study

demonstrates that the algorithm utilising linear programming is the fastest when the

bankruptcy rate is high. However, it is also observed that this linear programming

algorithm’s performance is significantly affected by the financial system’s complexity,

rendering it slower than other algorithms in certain scenarios. Conversely, the basic

iteration algorithm significantly outperforms other algorithms in most cases.

Eisenberg and Noe prove that, under specific conditions, their model’s clearing

payment vector is unique. Thus, as long as these conditions are fulfilled, any other

algorithm designed to find a fixed point of a monotone function can be applied to this

problem. An algorithm by Dang, Qi, and Ye, aimed at finding any fixed point of a

monotone function, is also incorporated into this study for comparison. Although it

38

Chapter 5. Conclusion 39

boasts a faster theoretical complexity than the basic iteration algorithm, the research

shows that it underperforms other algorithms most of the time.

The extended model by M. O. Jackson and A. Pernoud is also implemented and

tested in this study. While faster than the algorithm by Dang, Qi, and Ye, it is slower

than other algorithms most of the time. However, the algorithm by Jackson and Pernoud

possesses the unique advantage of being able to compute the best clearing payment

matrix, detailing the clearing payments between banks, rather than merely a vector.

When factors such as equity shares and bankruptcy costs are introduced into the

financial system, this study reveals that the bankruptcy rate can be influenced by these

parameters. Specifically, possessing more equity shares in other banks decreases the

bankruptcy rate, while higher bankruptcy costs increase it. In scenarios where the

bankruptcy rate remains constant, having more equity shares and multiple assets can

actually reduce the performance of the algorithm.

5.1 Future Work

One area ripe for exploration is the application of these algorithms to credit default swaps

(CDS). This complex financial instrument plays a crucial role in modern finance, and

the algorithms studied here could provide innovative methods for modelling, analyzing,

and managing CDS risk. Investigating the algorithms’ applicability to credit default

swaps could open new avenues for research and practical implementation in financial

risk management.

Beyond credit default swaps, future work could also delve into other sophisticated

financial products and markets, such as options pricing, portfolio optimization, and

systemic risk assessment. These areas could benefit from the refinement of existing

algorithms or the development of entirely new computational methods tailored to their

unique challenges.

Additionally, the research could lead to the exploration of new financial contexts

and the development of more robust evaluation techniques. Efforts to bridge theoretical

constructs with practical applications would enhance the real-world relevance of the

algorithms. Collaborations with financial institutions and regulatory bodies might

offer opportunities to test the algorithms in real market conditions, providing further

validation of their efficacy and adaptability.

Bibliography

[1] Larry Eisenberg and Thomas H. Noe. Systemic risk in financial systems. Manage-

ment Science, 47(2):236–249, 2001.

[2] Matthew O. Jackson and Agathe Pernoud. What makes financial markets special?

systemic risk and its measurement in financial networks. SSRN Electronic Journal,

2019.

[3] Chong Shu. Endogenous risk-exposure and systemic instability. SSRN Electronic

Journal, 2018.

[4] Adam Zawadowski. Entangled Financial Systems. The Review of Financial

Studies, 26(5):1291–1323, 03 2013.

[5] Andrea Galeotti and Christian Ghiglino. Cross-ownership and portfolio choice.

Journal of Economic Theory, 192:105194, 2021.

[6] Rakesh Vohra, Yiqing Xing, and Wu Zhu. The network effects of agency conflicts.

SSRN Electronic Journal, 2020.

[7] Steffen Schuldenzucker, Sven Seuken, and Stefano Battiston. Finding Clearing

Payments in Financial Networks with Credit Default Swaps is PPAD-complete.

In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer

Science Conference (ITCS 2017), volume 67 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 32:1–32:20, Dagstuhl, Germany, 2017. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik.

[8] Stavros D. Ioannidis, Bart de Keijzer, and Carmine Ventre. Strong approximations

and irrationality in financial networks with financial derivatives, 2021.

[9] Chuangyin Dang, Qi Qi, and Yinyu Ye. Computations and complexities of tarski’s

fixed points and supermodular games, 2020.

40

Bibliography 41

[10] John Fearnley, Dömötör Pálvölgyi, and Rahul Savani. A faster algorithm for

finding tarski fixed points, 2020.

[11] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The numpy array: A

structure for efficient numerical computation. Computing in Science Engineering,

13(2):22–30, 2011.

[12] I. Stančin and A. Jović. An overview and comparison of free python libraries

for data mining and big data analysis. In 2019 42nd International Convention on

Information and Communication Technology, Electronics and Microelectronics

(MIPRO), pages 977–982, 2019.

[13] Minsuan Teh. Algorithms for computing a tarski fixed point on a finite lattice,

equilibria in submodular games and games with strategic complementarities, 2022.

[14] T. Randolph Beard. Bankruptcy and care choice. The RAND Journal of Economics,

21(4):626, 1990.

[15] Donald R. Deis, Daryl M. Guffey, and William T. Moore. Further evidence on

the relationship between bankruptcy costs and firm size. Quarterly Journal of

Business and Economics, 34(1):69–79, 1995.

[16] Michael E Bradbury and Suzanne Lloyd. An estimate of the direct costs of

bankruptcy in new zealand. Asia Pacific Journal of Management, 11(1):103–111,

April 1994.

[17] Jerold B. Warner. Bankruptcy costs: Some evidence. The Journal of Finance,

32(2):337, May 1977.

[18] JAMES S. ANG, JESS H. CHUA, and JOHN J. MCCONNELL. The administra-

tive costs of corporate bankruptcy: A note. The Journal of Finance, 37(1):219–226,

March 1982.

Appendix A

Python Implementaion Code

A.1 financialSystem.py

1 import numpy as np

2 from scipy.optimize import linprog

3 import timeit

4

5 class financialSystem():

6 def __init__(self, n, liability, asset, maxDistance=1, edge=0):

7 self.n = n

8 self.clearingPaymentVector = np.zeros(n)

9 self.assetVector = np.zeros(n)

10 self.liabilityMatrix = np.zeros((self.n, self.n))

11 self.maxDistance = maxDistance

12 self.edge = edge

13 self.asset = asset

14 self.liability = liability

15 self.relativeLiabilityMatrix = np.zeros((self.n, self.n))

16 self.totalPaymentVector = np.zeros(self.n)

17

18

19 def generate(self):

20 if self.n < 2:

21 print("n must be greater than 1")

22 return

23

24 self.assetVector = np.random.normal(loc=self.asset,

scale=np.sqrt(self.n), size=self.n).astype(np.float64)↪→

25 self.edge = max(1, min(self.edge, self.n - 1))

26

27 self.liabilityMatrix = np.zeros((self.n, self.n))

28 mu = self.edge

42

Appendix A. Python Implementaion Code 43

29 sigma = np.sqrt(self.n)

30

31 seed = np.random.normal(mu, sigma,

size=self.n)↪→

32 seed = np.maximum(np.zeros(self.n),

np.minimum(np.round(seed), np.ones(self.n) * self.n - 1))↪→

33

34 for i in range(self.n):

35 position = np.random.choice(self.n - 1,

replace=False, size=int(seed[i]))↪→

36 position[np.where(position >= i)] += 1

37 self.liabilityMatrix[i, position] =

np.random.normal(loc=self.liability, scale=np.sqrt(self.n),

size=int(seed[i])).astype(np.float64)

↪→

↪→

38

39 self.totalPaymentVector = np.sum(self.liabilityMatrix, axis=1)

40 for i in range(np.size(self.totalPaymentVector)):

41 if self.totalPaymentVector[i] == 0:

42 self.totalPaymentVector[i] = -1

43 self.relativeLiabilityMatrix = self.liabilityMatrix /

self.totalPaymentVector[:, None]↪→

44 for i in range(np.size(self.totalPaymentVector)):

45 if self.totalPaymentVector[i] == -1:

46 self.totalPaymentVector[i] = 0

47

48 def solve(self, topToBottom=True):

49 self.clearingPaymentVector = np.zeros(self.n)

50 if topToBottom:

51 self.clearingPaymentVector = np.array(self.totalPaymentVector)

52 same = False

53 while not same:

54

55 oldPaymentVector = np.array(self.clearingPaymentVector)

56 newPaymentVector = np.array(self.assetVector)

57 newPaymentVector +=

np.dot(np.transpose(self.relativeLiabilityMatrix),

self.clearingPaymentVector)

↪→

↪→

58 self.clearingPaymentVector = np.minimum(newPaymentVector,

self.totalPaymentVector)↪→

59 same = self.close(oldPaymentVector,

self.clearingPaymentVector)↪→

60 return self.clearingPaymentVector

61

62 def solveShowGraph(self):

63 self.clearingPaymentVector = np.zeros(self.n)

64 same = False

Appendix A. Python Implementaion Code 44

65 listOfDistance = []

66 while not same:

67

68 oldPaymentVector = self.clearingPaymentVector

69 newPaymentVector = np.zeros(self.n) + self.assetVector

70 newPaymentVector +=

np.dot(np.transpose(self.relativeLiabilityMatrix),

self.clearingPaymentVector)

↪→

↪→

71 self.clearingPaymentVector = np.minimum(newPaymentVector,

self.totalPaymentVector)↪→

72 same = self.close(oldPaymentVector,

self.clearingPaymentVector)↪→

73

74 distance = np.sqrt(np.sum((oldPaymentVector -

self.clearingPaymentVector)**2))↪→

75 listOfDistance.append(distance)

76 return self.clearingPaymentVector, listOfDistance

77

78 def close(self, arrayA, arrayB, start=None, end=None):

79 if np.size(arrayA) == 1:

80 return self.close(np.array([arrayA, 0]), np.array([arrayB, 0]))

81 distance = np.sqrt(np.sum((arrayA[start:end] - arrayB[start:end])**2))

82 if distance > self.maxDistance:

83 return False

84 return True

85

86 def validPayment(self, payment):

87 for i in range(self.n):

88 totalCash = self.assetVector[i]

89 for j in range(self.n):

90 totalCash += payment[j] * self.relativeLiabilityMatrix[j, i]

91

92 if (totalCash < payment[i] and not self.close(totalCash,

payment[i])) or payment[i] > self.totalPaymentVector[i]:↪→

93 print("Invalid payment from node " + str(i))

94 print("Total cash: " + str(totalCash))

95 print("Clearing payment: " + str(payment[i]))

96 print("Total payment: " + str(self.totalPaymentVector[i]))

97 return False

98

99 return True

100

101 def countBankruptcy(self, payment):

102 bankrupt = 0

103 for i in range(self.n):

104 totalCash = self.assetVector[i]

Appendix A. Python Implementaion Code 45

105 for j in range(self.n):

106 totalCash += payment[j] * self.relativeLiabilityMatrix[j, i]

107

108 if totalCash < self.totalPaymentVector[i] and not

self.close(totalCash, self.totalPaymentVector[i]):↪→

109 bankrupt += 1

110 return bankrupt

111

112 def bestPayment(self):

113 paymentVector = np.array(self.clearingPaymentVector) +

(2*self.maxDistance / np.sqrt(self.n))↪→

114 return not self.validPayment(paymentVector)

115

A.2 fictitiousDefaultAlgorithm.py

1 import numpy as np

2 from financialSystem import financialSystem

3

4 class fictitiousDefaultAlgorithm():

5 def __init__(self, financialSystem):

6 self.relativeLiabilityMatrix =

np.array(financialSystem.relativeLiabilityMatrix)↪→

7 self.n = financialSystem.n

8 self.totalPaymentVector =

np.array(financialSystem.totalPaymentVector)↪→

9 self.assetVector = np.array(financialSystem.assetVector)

10 self.defaultMatrix = np.zeros((self.n, self.n))

11 self.clearingPaymentVector = np.zeros(self.n)

12 self.financialSystem = financialSystem

13

14 def solve(self):

15 self.clearingPaymentVector = self.totalPaymentVector

16 same = False

17 while not same:

18 self.updateDefaultMatrix()

19 newPaymentVector = self.updatePaymentVector()

20 same =

self.financialSystem.close(newPaymentVector,

self.clearingPaymentVector)

↪→

↪→

21 if same:

22 break

23 self.clearingPaymentVector = newPaymentVector

24

Appendix A. Python Implementaion Code 46

25 return self.clearingPaymentVector

26

27 def updatePaymentVector(self):

28 newPaymentVector = np.dot(self.defaultMatrix,

np.dot(np.transpose(self.relativeLiabilityMatrix), \↪→

29 (np.dot(np.identity(self.n) - self.defaultMatrix,

self.totalPaymentVector) + \↪→

30 np.dot(self.defaultMatrix,

self.clearingPaymentVector))) +

self.assetVector) + \

↪→

↪→

31 np.dot(np.identity(self.n) - self.defaultMatrix,

self.totalPaymentVector)↪→

32

33 return newPaymentVector

34

35 def updateDefaultMatrix(self):

36 totalCash = self.assetVector + np.dot(self.clearingPaymentVector,

self.relativeLiabilityMatrix)↪→

37 bankrupt = np.where(totalCash < self.totalPaymentVector)

38 solvent = np.where(totalCash >= self.totalPaymentVector)

39

40 self.defaultMatrix[bankrupt, bankrupt] = 1

41 self.defaultMatrix[solvent, solvent] = 0

42

A.3 LPSolver.py

1 import numpy as np

2 from scipy.optimize import linprog

3 from financialSystem import financialSystem

4

5 class LPSolver():

6 def __init__(self, financialSystem):

7 self.financialSystem = financialSystem

8 self.clearingPaymentVector = np.zeros(self.financialSystem.n)

9

10 def solve(self):

11 c = np.ones(self.financialSystem.n) * -1

12 A_ub = np.eye(self.financialSystem.n) -

np.transpose(self.financialSystem.relativeLiabilityMatrix)↪→

13 b_ub = self.financialSystem.assetVector

14 bounds = [(0,

self.financialSystem.totalPaymentVector[i]) for i in

range(self.financialSystem.n)]

↪→

↪→

Appendix A. Python Implementaion Code 47

15 self.clearingPaymentVector = linprog(c=c, A_ub=A_ub, b_ub=b_ub,

bounds=bounds).x↪→

16

17 return self.clearingPaymentVector

18

A.4 DQY Algorithm.py

1 import numpy as np

2 from financialSystem import financialSystem

3 import math

4

5 class DQY_Algorithm():

6 def __init__(self, financialSystem):

7 self.relativeLiabilityMatrix =

financialSystem.relativeLiabilityMatrix↪→

8 self.n = financialSystem.n

9 self.totalPaymentVector = financialSystem.totalPaymentVector

10 self.assetVector = financialSystem.assetVector

11 self.clearingPaymentVector =

np.array(financialSystem.totalPaymentVector)↪→

12 self.financialSystem = financialSystem

13 self.minPaymentVector = np.zeros(self.n)

14 self.maxPaymentVector =

np.array(financialSystem.totalPaymentVector)↪→

15

16 def solve(self):

17 newPaymentVector = self.updatePaymentVector()

18 while not self.financialSystem.close(newPaymentVector,

self.clearingPaymentVector):↪→

19 self.helper(0)

20 newPaymentVector = self.updatePaymentVector()

21 if self.financialSystem.close(newPaymentVector,

self.clearingPaymentVector):↪→

22 return self.clearingPaymentVector

23 elif self.A_Above_B(newPaymentVector, self.clearingPaymentVector):

24 self.minPaymentVector = np.array(newPaymentVector)

25 elif self.A_Below_B(newPaymentVector, self.clearingPaymentVector):

26 self.maxPaymentVector = np.array(newPaymentVector)

27 for i in range(self.n):

28 if self.maxPaymentVector[i] < self.minPaymentVector[i]:

29 temp = self.maxPaymentVector[i]

30 self.maxPaymentVector[i] = self.minPaymentVector[i]

31 self.minPaymentVector[i] = temp

Appendix A. Python Implementaion Code 48

32 self.clearingPaymentVector = newPaymentVector

33 return self.clearingPaymentVector

34

35 def helper(self, depth):

36 while True:

37 self.clearingPaymentVector[depth] = (self.minPaymentVector[depth] +

self.maxPaymentVector[depth]) / 2↪→

38 newPaymentVector = self.updatePaymentVector()

39 if (newPaymentVector[depth] - self.clearingPaymentVector[depth])**2

<= (self.financialSystem.maxDistance**2)/self.financialSystem.n:↪→

40 if depth == self.n - 1:

41 return

42 else:

43 self.helper(depth + 1)

44 return

45 elif self.clearingPaymentVector[depth] < newPaymentVector[depth]:

46 self.minPaymentVector[depth] = newPaymentVector[depth]

47 elif self.clearingPaymentVector[depth] > newPaymentVector[depth]:

48 self.maxPaymentVector[depth] = newPaymentVector[depth]

49 if self.maxPaymentVector[depth] < self.minPaymentVector[depth]:

50 temp = self.maxPaymentVector[depth]

51 self.maxPaymentVector[depth] = self.minPaymentVector[depth]

52 self.minPaymentVector[depth] = temp

53

54 def A_Below_B(self, arrayA, arrayB):

55 count = 0

56 for i in range(self.n):

57 if arrayA[i] < arrayB[i]:

58 count += 1

59 return count == self.n

60

61 def A_Above_B(self, arrayA, arrayB):

62 count = 0

63 for i in range(self.n):

64 if arrayA[i] > arrayB[i]:

65 count += 1

66 return count == self.n

67

68 def updatePaymentVector(self):

69 newPaymentVector = np.array(self.assetVector)

70 newPaymentVector += np.dot(np.transpose(self.relativeLiabilityMatrix),

self.clearingPaymentVector)↪→

71 newPaymentVector = np.minimum(newPaymentVector, self.totalPaymentVector)

72 return newPaymentVector

Appendix A. Python Implementaion Code 49

A.5 financialSystemWithShares.py

1 import numpy as np

2 from scipy.optimize import linprog

3 from financialSystem import financialSystem

4

5 class financialSystemWithShares(financialSystem):

6 def __init__(self, n, k, liability, asset, costFunction, maxDistance=1,

debtEdge=0, sharesEdge=0, quantityEdge=0, bCost=[],

financialSystem=None):

↪→

↪→

7

8 if financialSystem == None:

9 super().__init__(n, liability, asset, maxDistance, debtEdge)

10 self.k = k

11 self.quantity = np.zeros((self.n, self.k))

12 self.quantityEdge = quantityEdge

13 self.asset = asset

14 self.clearingPaymentMatrix = np.zeros((self.n, self.n))

15 self.maxDistance = maxDistance

16 else:

17 self.n = financialSystem.n

18 self.assetVector = financialSystem.assetVector

19 self.edge = financialSystem.edge

20 self.liability = financialSystem.liability

21 self.liabilityMatrix = financialSystem.liabilityMatrix

22 self.relativeLiabilityMatrix =

financialSystem.relativeLiabilityMatrix↪→

23 self.totalPaymentVector = financialSystem.totalPaymentVector

24 self.k = financialSystem.n

25 self.quantity = np.eye(self.n)

26 self.quantityEdge = 1

27 self.asset = financialSystem.asset

28 self.clearingPaymentMatrix = np.zeros((self.n, self.n))

29 self.maxDistance = financialSystem.maxDistance

30

31 self.shares = np.zeros((self.n, self.n))

32 self.sharesEdge = sharesEdge

33 self.solventMatrix = np.eye(self.n)

34 self.bankruptcyCost = np.zeros(self.n)

35 self.costFunction = costFunction

36 self.valueVector = np.zeros(self.n)

37 if np.size(bCost) == 3:

38 self.bankruptcyCostB = bCost[0]

39 self.bankruptcyCostC = bCost[1]

40 self.bankruptcyCostD = bCost[2]

41

Appendix A. Python Implementaion Code 50

42

43 def generate(self):

44 if self.k < 1:

45 print("k must be greater than 0")

46 return

47 super().generate()

48 self.generateQuantity()

49 self.generateShares()

50

51

52 def generateQuantity(self):

53 self.quantityEdge = max(0, min(self.quantityEdge, self.k))

54 self.assetVector = np.random.normal(loc=self.asset,

scale=np.sqrt(self.k), size=self.k).astype(np.float64)↪→

55

56 self.quantity = np.zeros((self.n, self.k))

57 mu = self.quantityEdge

58 sigma = np.sqrt(self.k)

59 seed = np.random.normal(mu, sigma, size=self.n)

60 seed = np.maximum(np.zeros(self.n),

np.minimum(np.round(seed), np.ones(self.n) * self.k))↪→

61

62 for i in range(self.n):

63 position = np.random.choice(self.k,

replace=False, size=int(seed[i]))↪→

64 self.quantity[i, position] = np.random.rand(int(seed[i]))

65

66

67 def generateShares(self):

68 self.sharesEdge = max(0, min(self.sharesEdge, self.n - 1))

69

70 self.shares = np.zeros((self.n, self.n))

71 mu = self.sharesEdge

72 sigma = np.sqrt(self.n)

73 seed = np.random.normal(mu, sigma, size=self.n)

74 seed = np.maximum(np.zeros(self.n),

np.minimum(np.round(seed), np.ones(self.n) * self.n - 1))↪→

75

76 for i in range(self.n):

77 numberOfShares = int(seed[i]) + 1

78 position = np.random.choice(self.n - 1,

replace=False, size=numberOfShares - 1)↪→

79 position[np.where(position >= i)] += 1

80 sharesVector = np.random.rand(numberOfShares)

81 sharesVector /= np.sum(sharesVector)

82 self.shares[i, position] = sharesVector[1:]

Appendix A. Python Implementaion Code 51

83

84

85 def solve(self):

86 self.clearingPaymentMatrix = np.array(self.liabilityMatrix)

87 self.valueVector = np.zeros(self.n)

88 same = False

89 count =0

90 while not same:

91 count += 1

92 totalCash = self.calculateTotalCash()

93 self.updateSolventMatrix(totalCash)

94 self.updateBankruptcyCost(totalCash)

95

96 defaultMatrix =

np.where(self.solventMatrix.diagonal() == 0)↪→

97 self.clearingPaymentMatrix[defaultMatrix, :] = np.maximum(0, \

98

self.relativeLiabilityMatrix[defaultMatrix,

:] * \

↪→

↪→

99

(totalCash[defaultMatrix,

np.newaxis] -

\

↪→

↪→

↪→

100

self.bankruptcyCost[defaultMatrix,

np.newaxis]))

↪→

↪→

101 oldValue =

np.array(self.valueVector)↪→

102 self.valueVector =

np.dot(np.linalg.inv(np.eye(self.n) - np.dot(self.shares,

self.solventMatrix)), \

↪→

↪→

103

np.dot(self.quantity,

self.assetVector)

+ \

↪→

↪→

↪→

104

np.sum(self.clearingPaymentMatrix,

axis=0) - \

↪→

↪→

105

self.totalPaymentVector

-

self.bankruptcyCost)

↪→

↪→

↪→

106 same =

super().close(oldValue, self.valueVector)↪→

107 self.clearingPaymentVector = np.sum(self.clearingPaymentMatrix, axis=1)

108 return self.clearingPaymentVector, self.clearingPaymentMatrix,

self.valueVector, count↪→

Appendix A. Python Implementaion Code 52

109

110

111 def updateSolventMatrix(self, totalCash):

112 bankrupt = np.where(totalCash <

self.totalPaymentVector)↪→

113 solvent = np.where(totalCash >=

self.totalPaymentVector)↪→

114 self.solventMatrix[bankrupt, bankrupt] = 0

115 self.solventMatrix[solvent, solvent] = 1

116

117

118 def updateBankruptcyCost(self, totalCash):

119 if self.costFunction == 'linear':

120 self.bankruptcyCost = self.bankruptcyCostC + self.bankruptcyCostD *

totalCash↪→

121 elif self.costFunction == 'logarithmic':

122 self.bankruptcyCost = np.exp(self.bankruptcyCostC) * (totalCash **

self.bankruptcyCostD)↪→

123 self.bankruptcyCost = np.maximum(np.ones(self.n) * 100,

self.bankruptcyCost)↪→

124 elif self.costFunction == 'quadratic':

125 if self.bankruptcyCostD != 0:

126 totalCash = np.minimum(self.bankruptcyCostC / (-2 *

self.bankruptcyCostD), totalCash)↪→

127 self.bankruptcyCost = self.bankruptcyCostB + self.bankruptcyCostC *

totalCash + self.bankruptcyCostD * totalCash**2↪→

128 elif self.costFunction == 'constant':

129 self.bankruptcyCost = np.ones(self.n) * self.valueVector

130 else:

131 return

132 self.bankruptcyCost = np.dot(np.eye(self.n) - self.solventMatrix,

self.bankruptcyCost)↪→

133

134

135 def calculateTotalCash(self):

136 return np.dot(self.quantity, self.assetVector) + \

137 np.sum(self.clearingPaymentMatrix, axis=0) + \

138 np.dot(np.dot(self.shares, self.solventMatrix),

np.maximum(np.zeros(self.n), self.valueVector))↪→

139

140

141 def validPayment(self, payment, output=False):

142 for i in range(self.n):

143 totalCash = np.dot(self.quantity, self.assetVector)[i]

144 for j in range(self.n):

145 totalCash += payment[j] * \

Appendix A. Python Implementaion Code 53

146 self.relativeLiabilityMatrix[j, i] + \

147 (self.solventMatrix[j, j] * self.shares[i, j] *

np.maximum(0, self.valueVector[j]))↪→

148

149 if (totalCash < payment[i] and not super().close(totalCash,

payment[i])) or payment[i] > self.totalPaymentVector[i]:↪→

150 if output:

151 print("Invalid payment from node " + str(i))

152 print("Total cash: " + str(totalCash))

153 print("Clearing payment: " + str(payment[i]))

154 print("Total payment: " + str(self.totalPaymentVector[i]))

155 return False

156

157 return True

158

159 def bestPayment(self):

160 paymentVector = np.array(self.clearingPaymentVector) +

(2*self.maxDistance / np.sqrt(self.n))↪→

161 return not self.validPayment(paymentVector)

162

163 def countBankruptcy(self, payment):

164 bankrupt = 0

165 totalCash = self.calculateTotalCash()

166 for i in range(self.n):

167 if totalCash[i] < self.totalPaymentVector[i] and not

self.close(totalCash[i], self.totalPaymentVector[i]):↪→

168 bankrupt += 1

169 return bankrupt

170

