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Abstract

This study explores the optimization of two computational workloads, Fibonacci se-

quence calculation and matrix multiplication, specifically tailored for the Raspberry Pi

platform. Through techniques like memoization, dynamic programming, and compiler-

level adjustments, the research achieves significant efficiency improvements. The

approach applied here serves as a blueprint for similar optimizations across various

applications. Additionally, the study lays the groundwork for future exploration into the

distributed computing paradigm, utilizing an array of Raspberry Pi devices to create

a cost-effective system that rivals traditional servers. The research not only demon-

strates optimized implementations for two critical workloads but also suggests a broader

applicability of these methods, opening avenues for innovation in both academia and

industry.
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Chapter 1

Introduction

The Raspberry Pi has emerged as a game-changer in the world of single-board com-

puters, offering an affordable and versatile computing platform that has captured the

imagination of hobbyists, educators, and technology enthusiasts alike. While desktop

computers and servers have long been the go-to options for high-performance comput-

ing, the Raspberry Pi presents a compelling alternative with its compact form factor,

cost-effectiveness, and low power consumption. Over the years, the Raspberry Pi

ecosystem has evolved, culminating in the release of the Raspberry Pi 4 Model B, which

boasts significant improvements in terms of CPU power, memory capacity, storage

options, and networking capabilities.

In this project, we embark on a captivating exploration to determine if an array

of Raspberry Pis can match or even surpass the performance of a traditional server.

Individually, Raspberry Pis may be considered modest in their computing capabilities,

but when combined into an array, the aggregate resources at our disposal rival those of a

dedicated server. The fundamental question we seek to answer is whether the cumulative

power of multiple Raspberry Pis can outshine that of a conventional computing setup.

Rather than focusing solely on hardware specifications, our project emphasizes

the identification of workloads that are well-suited to run on an array of Raspberry

Pis. While previous research endeavors have approached this from the perspective

of selecting specific workloads and evaluating their performance on Raspberry Pis

[2, 8, 11], our methodology takes a different path. Instead, we aim to understand the

inherent characteristics of the Raspberry Pi architecture and discover workloads that

seamlessly align with its strengths and limitations.

The absence of an L3 cache and the presence of Gigabit Ethernet are just a few

examples of the distinguishing features of Raspberry Pis that shape their performance

1



Chapter 1. Introduction 2

profiles. Leveraging this knowledge, we will explore workloads that can efficiently

utilize the available resources, such as optimizing computations to fit within the L1

and L2 caches. By considering the unique traits of Raspberry Pis and their potential

bottlenecks, we can identify workloads that are most likely to benefit from this array-

based approach.

Through this project, we hope to unlock the untapped potential of Raspberry Pis

as a collective computing resource. By pushing the boundaries of what these small

yet mighty devices can achieve when united, we aim to redefine their role in various

computational domains. Additionally, our findings will shed light on the optimization

strategies and workload considerations necessary to harness the true power of Raspberry

Pi arrays.

1.1 Contributions

Our contributions to this project focused on identifying and optimizing mathematical

applications for execution on Raspberry Pi devices. Our key contributions include:

• Identification of math applications suitable for Raspberry Pi arrays.

• In-depth analysis and optimization of the math algorithms:

– Implementation of multithreading techniques for parallel execution.

– Resolution of segmentation faults encountered with larger matrix sizes.

– Optimization of cache behavior and memory access patterns to minimize

cache misses.

– Utilization of transparent page tables and page management techniques to

reduce TLB refills and enhance memory access efficiency.

• Comprehensive exploration of optimization techniques at various levels:

– Robust error handling mechanisms for stability and reliability.

– Cache optimization to improve data locality and reduce memory access

latency.

– Memory management enhancements to minimize memory swapping and

improve computational throughput.
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1.2 Outline of report

Chapter 2 provides the necessary background information and basic knowledge

of the Raspberry Pi highlighting its characteristics as a low-cost single-board

computer and its popularity in various applications

Chapter 3 describes the overall research design and approach

Chapter 4 provides a detailed implementation of the selected algorithms and

optimizations and an overview of the process followed for each stage of optimiza-

tion

Chapter 5 provides a discussion of the successes, challenges, and unexpected

outcomes

Chapter 6 provides a summary of key findings and contributions and future work



Chapter 2

Background

In this chapter, we provide the background information that is necessary for the subse-

quent chapters. In Sec. 2.1 we provide a brief overview of the Raspberry Pi, highlighting

its characteristics as a low-cost single-board computer and its popularity in various

applications. This chapter concludes in Sec. 2.2 where we mention any relevant pre-

vious research that has explored the use of Raspberry Pi arrays or focused on specific

workloads and highlight the unique contribution of our project in terms of identifying

suitable mathematical applications.

2.1 Raspberry pi

2.1.1 Evolution of Raspberry Pi

The evolution of Raspberry Pi devices over time has witnessed remarkable advance-

ments, empowering users with enhanced capabilities and improved performance. In its

early stages, Raspberry Pi was characterized by limited CPU power, modest memory

capacity, and basic storage options. However, as technology progressed, subsequent

models introduced significant upgrades [7].

The latest iteration, Raspberry Pi 4 Model B, stands as a testament to these ad-

vancements. It offers notable improvements, such as increased CPU power, expanded

memory options, and enhanced storage capabilities [6]. The Raspberry Pi 4 Model B is

powered by a quad-core ARM Cortex-A72 processor, providing a substantial boost in

computational capacity compared to its predecessors. This increase in processing power

enables users to tackle more demanding tasks and run resource-intensive applications.

Furthermore, the Raspberry Pi 4 Model B offers a wider range of memory options,

4



Chapter 2. Background 5

allowing users to choose from variants with 2GB, 4GB, or even 8GB of RAM. This

expanded memory capacity facilitates smoother multitasking and enables the execution

of memory-intensive applications with ease. Storage options have also seen improve-

ments in the latest Raspberry Pi models. The Raspberry Pi 4 Model B incorporates

USB 3.0 ports and supports booting from high-speed external storage devices, such as

USB flash drives or solid-state drives (SSDs). This opens up new possibilities for faster

data transfer and efficient storage management.

2.1.2 Raspberry Pi Components

The Raspberry Pi is a versatile single-board computer that integrates various components

to enable its functionality. Each component plays a critical role in the overall operation

and capabilities of the Raspberry Pi. The key components include [9]:

• System-on-a-Chip (SoC): At the heart of the Raspberry Pi is the System-on-

a-Chip, which combines several essential components into a single integrated

circuit. The SoC typically includes the CPU (Central Processing Unit), GPU

(Graphics Processing Unit), memory controllers, and other necessary peripherals.

• CPU (Central Processing Unit): The CPU is responsible for executing instructions

and performing calculations. Raspberry Pi models employ different CPU archi-

tectures, such as ARM-based processors. Over the years, Raspberry Pi devices

have seen significant improvements in CPU power, with newer models featuring

faster clock speeds and increased processing capabilities.

• Memory (RAM): The Raspberry Pi incorporates RAM (Random Access Memory)

to provide temporary storage for data and instructions that the CPU actively uses.

RAM capacity varies across Raspberry Pi models, ranging from 2GB to 8GB,

allowing for efficient multitasking and handling memory-intensive applications.

• Storage Options: Raspberry Pi devices support various storage options, includ-

ing microSD cards, USB flash drives, and external hard drives. The primary

storage medium is usually the microSD card, which stores the operating system,

applications, and user data.

• Graphics Processing Unit (GPU): The GPU in Raspberry Pi models enables

accelerated graphics rendering, making it suitable for multimedia applications



Chapter 2. Background 6

and graphical interfaces. The GPU provides hardware acceleration for graphics-

related tasks, offloading the workload from the CPU and enhancing overall

performance.

2.1.3 Cost-effectiveness and Power Efficiency

Raspberry Pi devices offer significant advantages in terms of cost-effectiveness and

power efficiency when compared to traditional desktops and servers. These advantages

make them an attractive choice for various applications [7].

Raspberry Pi boards are highly cost-effective compared to traditional desktops and

servers. The affordable price point of Raspberry Pi models, ranging from $35 to $70

[12], makes them accessible to a wide range of users, including hobbyists, students,

and small-scale projects. This low cost opens up possibilities for cost-sensitive projects,

where deploying multiple Raspberry Pi units can be more affordable than investing in

expensive server hardware.

Furthermore, Raspberry Pi devices eliminate the need for additional components

commonly found in desktops and servers, such as graphics cards, high-capacity storage

drives, and complex cooling systems. The all-in-one nature of the Raspberry Pi reduces

overall hardware costs and simplifies the setup process.

Raspberry Pi devices are designed with power efficiency in mind. Compared to

traditional desktops and servers that consume considerable amounts of power, Raspberry

Pi boards have significantly lower power requirements [14]. The low power consump-

tion makes them ideal for applications where energy efficiency is critical, such as IoT

deployments, remote monitoring systems, or solar-powered setups. The power-efficient

nature of Raspberry Pi devices also translates to reduced operating costs. By utilizing

low-power components and optimized power management techniques, Raspberry Pi

boards can deliver efficient performance while keeping electricity bills at a minimum.

Moreover, Raspberry Pi’s cost-effectiveness and low power requirements enable

the possibility of scaling up deployments with multiple units. Instead of relying on a

single high-end server, distributing computational tasks across a cluster of Raspberry Pi

devices can provide comparable performance at a fraction of the cost. This scalability

allows for tailored solutions that can adapt to specific requirements, whether it’s a

small-scale project or a large-scale deployment.

Additionally, the flexibility of Raspberry Pi devices enables diverse applications.

Their small size and low power consumption make them suitable for embedding into
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various devices and environments, providing computing capabilities where traditional

desktops and servers may not be feasible or practical.

2.2 Related Work

Previous research has explored the potential of Raspberry Pi as an alternative to tra-

ditional cloud computing for big data applications. Hajji and Tso [8] constructed a

Raspberry Pi cluster and evaluated its feasibility for various workloads, analyzing fac-

tors such as energy consumption, memory usage, CPU usage, and network throughput.

However, their experiment revealed that the Raspberry Pi’s response time was 2809

requests per second for a 1 KB workload, with a noticeable decline as the workload

increased.

Another study by Mados et al.[11] focused on using Raspberry Pi 3 as a downsized

web server design, comparing its performance to a 1U Intel Rack server. The authors

assessed energy consumption and response time for a range of HTTP requests. They

found that the Raspberry Pi outperformed the traditional server platform, with a signif-

icantly lower average processor load of 23% when serving 10,000 concurrent HTTP

requests, compared to the rack server’s average load of 87%.

In a different paper, Dubey and Kagdi [4] investigated the performance of a Rasp-

berry Pi cluster supercomputer specifically for matrix multiplication tasks. While not

comparing it to a traditional server, their study aimed to optimize the performance

of Raspberry Pi cluster supercomputers. The authors demonstrated that a cluster of

Raspberry Pis is a cost-effective and energy-efficient solution for matrix multiplication,

outperforming individual Raspberry Pi setups. They observed that as the number of

Raspberry Pis in the cluster increased, the time required to complete matrix multipli-

cation tasks decreased, resulting in improved performance. The paper emphasized the

importance of workload distribution and minimizing communication latency to enhance

the performance of Raspberry Pi cluster supercomputers for matrix multiplication tasks.

While past research has focused on utilizing Raspberry Pis for high-performance

computing, their methodology has been restricted to choosing specific workloads and

comparing their performance against traditional servers. In contrast, our study takes a

different approach by aiming to identify workloads that can optimally operate on an array

of Raspberry Pis, considering their unique architecture, limitations, and capabilities.



Chapter 3

Methodology

3.1 Workload Selection Decisions

The successful utilization of Raspberry Pi arrays relies on the careful selection of

workloads that align with the architecture and capabilities of these devices. By iden-

tifying and choosing appropriate workloads, we can maximize the performance and

efficiency of Raspberry Pi arrays, taking into account factors such as cache sizes,

memory constraints, and networking capabilities.

One key consideration in workload selection is the cache sizes of Raspberry Pi

devices. These devices typically have limited cache sizes, such as L1 and L2 caches. It

is crucial to choose workloads that can effectively utilize these caches to minimize cache

misses and improve overall performance. By understanding the characteristics of the

workload and its memory access patterns, we can select workloads that are well-suited

for the cache hierarchy of Raspberry Pi arrays.

Memory constraints are another important aspect to consider when selecting work-

loads. Raspberry Pi devices often have limited memory compared to traditional servers.

Therefore, it is essential to choose workloads that can efficiently manage memory usage

and avoid excessive swapping or page faults. Workloads that require excessive memory

or have high memory bandwidth demands may not be suitable for Raspberry Pi arrays.

Instead, selecting workloads that can optimize memory utilization and minimize data

movement can greatly improve performance.

Additionally, networking capabilities should be taken into account when selecting

workloads for Raspberry Pi arrays. While Raspberry Pi devices offer networking options

such as Ethernet, the bandwidth and latency may be different compared to traditional

server environments. Workloads that heavily rely on network communication or data

8
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transfer may need to be adapted or optimized to take advantage of the networking

capabilities of Raspberry Pi arrays. By considering the network characteristics and

selecting workloads accordingly, we can ensure the efficient utilization of these devices.

The selection of workloads plays a crucial role in effectively utilizing Raspberry Pi

arrays. By considering the mentioned points above, we can identify workloads that align

with the architecture of Raspberry Pi devices. This strategic approach enables us to

optimize performance, minimize resource bottlenecks, and achieve efficient utilization

of Raspberry Pi arrays in various computing scenarios .

3.1.1 Matrix Multiplication

Matrix multiplication is a good baseline for analyzing the performance of Raspberry Pi

devices due to its computational intensity and relevance in various domains, such as

scientific computing, machine learning, and image processing [4]. By selecting matrix

multiplication as our workload, we can gain valuable insights into the performance

characteristics and limitations of Raspberry Pi devices in executing computationally

intensive tasks.

There are several reasons why matrix multiplication is a good starting point for

performance analysis on Raspberry Pi:

Matrix multiplication involves a significant number of mathematical operations

and data dependencies, making it a computationally intensive task. By analyzing the

performance of matrix multiplication, we can assess the ability of Raspberry Pi to handle

such intensive computations and identify any bottlenecks or areas for improvement.

In addition, it involves accessing and manipulating large amounts of data stored in

matrices. This places significant demands on the memory subsystem, including the

RAM and cache hierarchy. By analyzing the memory usage and cache behavior during

matrix multiplication, we can evaluate the efficiency of memory access patterns and

identify opportunities for optimization.

Matrix multiplication also exhibits inherent parallelism, allowing for the utilization

of multiple CPU cores or threads. Raspberry Pi devices typically feature multiple CPU

cores, making them suitable for parallel execution of matrix multiplication. By analyz-

ing the performance of matrix multiplication with varying degrees of parallelization,

we can assess the scalability and efficiency of parallel execution on Raspberry Pi.
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3.1.2 Fibonacci

The Fibonacci series is another captivating subject that finds itself woven into the

tapestry of advanced mathematics, nature, statistics, and even agile development. It’s

not just an elementary sequence of numbers that appeals to mathematicians but has a

deep-rooted presence in various fields, shaping the way we understand patterns and

growth.

One of the primary reasons for its inclusion in our performance evaluation on

Raspberry Pi is its computational complexity. The recursive algorithm used to calculate

Fibonacci numbers, especially for larger terms, is known to be computationally intensive.

By examining the efficiency and speed of Raspberry Pi devices in computing the

Fibonacci sequences, we hope to gain a clearer understanding of their prowess in

managing intricate recursive function calls.

Additionally, the Fibonacci series, when enhanced with optimization techniques like

memoization or dynamic programming, offers an in-depth study into memory access

patterns. Given the series’ nature, where previously calculated terms are stored and

subsequently retrieved, it presents a chance to challenge the memory subsystem of the

Raspberry Pi. Insights into how these devices manage such memory-intensive tasks

can potentially unveil avenues for further enhancement, making them more adept at

handling similar operations.

Beyond its computational and memory challenges, the Fibonacci series also boasts

of extensive real-world applications. It is not confined to textbooks but finds practical

applications in predicting natural phenomena, aiding in statistical analyses, and even

being a part of agile software development techniques. Thus, when we scrutinize the

performance characteristics of Raspberry Pi devices in the context of the Fibonacci

series, we indirectly gauge their competency to tackle other applications that draw from

similar mathematical paradigms.

3.2 Experimental Setup

The table presents an overview of the specifications of the Raspberry Pi 4 Model

B (8 GB) single-board computer that was used during this project. It provides key

details about its CPU, CPU cores, CPU caches, RAM, storage, and the supported

operating system [15]. These specifications highlight the capabilities and resources

of the Raspberry Pi 4 Model B, making it a versatile and powerful option for various
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projects and applications.

Table 3.1: Specifications of Raspberry Pi 4 Model B (8 GB)

Component Specification

CPU Broadcom BCM2711, Quad-core Cortex-A72

CPU Clock Speed 1.5 GHz

CPU Cores 4

CPU Caches L1: 48 KB instruction cache, 32 KB data cache

L2: 1 MB per core

RAM 8 GB LPDDR4-3200 SDRAM

Storage MicroSD card slot

Operating System Ubuntu 22.04

3.3 Evaluation methods

3.3.1 Tools

To measure the performance improvements achieved through our optimization efforts

on Raspberry Pi devices, we will utilize several evaluation metrics and measurement

techniques.

Profiling tools, such as perf [10], can be employed to gather detailed performance

data. These tools analyze the execution of the program at run time, providing valuable

insights into the time spent in different functions, cache behavior, memory access

patterns, and potential bottlenecks.

System monitoring tools like top and htop [13] can be used to monitor system-level

metrics during workload execution. These tools provide information on CPU utilization,

memory usage, disk I/O, and network activity. By monitoring these metrics, we can

assess the impact of our optimizations on resource utilization and identify potential

areas of improvement.

3.3.2 Metrics

In order to assess the effectiveness of our optimization techniques and strategies, we will

employ various evaluation metrics to measure the impact of our efforts. These metrics
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will help us quantitatively analyze the performance improvements, identify potential

bottlenecks, and gauge the overall efficiency of our optimizations on Raspberry Pi

devices. In addition, it will allow us to identify successful optimizations and fine-tune

our strategies to further enhance the overall performance and efficiency of computa-

tions. We will first measure the performance of our optimized workloads in terms of

execution time, instructions per cycle (IPC), and overall throughput. By comparing the

performance of the optimized workloads against the baseline, we can assess the extent

to which our optimizations have improved computational efficiency.

Furthermore, we will monitor and record the occurrence of segmentation faults

during the execution of our optimized workloads. By analyzing the frequency and

reasons behind these faults, we can evaluate the success of our efforts in reducing

segmentation faults and enhancing the stability of computations.

Cache behavior metrics will also be analyzed such as cache hit rate, cache miss

rate, and cache utilization, to assess the effectiveness of our cache optimization tech-

niques. By optimizing data locality and minimizing cache misses, we aim to improve

cache performance and reduce memory access latency. In addition, we will analyze

memory access patterns, including the frequency and efficiency of memory accesses,

to evaluate the impact of our memory optimization strategies. For workloads utilizing

multithreading, we will evaluate the scalability and efficiency of parallel execution. We

will measure metrics such as speedup, thread utilization, and synchronization overhead

to assess the effectiveness of multithreading in improving performance.



Chapter 4

Implementation and Results

4.1 Matrix multiplication

4.1.1 Algorithm

Matrix multiplication is a fundamental operation in linear algebra and finds applications

in various scientific and engineering domains. The algorithm computes the product

of two matrices by performing a series of multiplications and additions. Given two

matrices, A and B, the resulting matrix C is obtained by multiplying the corresponding

elements of each row in matrix A with the corresponding elements of each column in

matrix B and summing the products.

4.1.2 Unoptimized Matrix Multiplication Results

This subsection aims to explain the results of matrix multiplication without any opti-

mizations. The purpose is to establish a baseline performance for comparison with the

optimized versions that will be discussed in the subsequent sections. The unoptimized

implementation serves as a starting point, and the insights gained from this section will

guide the optimization strategies discussed later.

In addition, this subsection will contain an in-depth explanation of each metric

presented in the tables. This serves as a baseline to understand the various performance

indicators. However, please note that in the subsequent sections, I will assume familiar-

ity with these metrics and their implications. This approach allows us to delve directly

into the optimizations and their impact without reiterating the explanations of each met-

ric. Thus, this section serves as a comprehensive introduction to the metrics, enabling a

better understanding of the subsequent discussions on optimization strategies.

13



Chapter 4. Implementation and Results 14

Table 4.1: Branches Results for Non-optimized Code

Metrics 500x500 1000x1000 2000x2000 5000x5000

Br mispred 655,736 2,154,564 9,815,120 252,051,974

Br pred 151,042,577 1,065,316,696 8,291,453,122 135,316,732,271

Bus accesses 27,187,485 690,614,024 2,256,012,423 530,334,394,214

Bus cycles 1,676,642,118 21,293,227,885 162,702,449,645 6,698,329,807,220

Table 4.1 presents the performance metrics for matrix multiplication operations

at various matrix sizes. The table features four metrics: Branch mispredictions (Br

mispred), Branch predictions (Br pred), Bus accesses, and Bus cycles. Br mispred

indicates the number of times the processor predicted the wrong outcome of a branch

instruction. Br pred represents how many times the processor predicted the outcome of

a branch instruction. Bus accesses indicate how many times the processor accessed the

system bus. Finally, bus cycles measure the efficiency of bus utilization.

Notably, there is a sharp rise in each of these values as the matrix size increases. For

instance, the number of Branch Mispredictions goes up from 655,736 for a 500x500

matrix to a staggering 252,051,974 for a 5000x5000 matrix. Similar trends are observed

with the other metrics as well, highlighting the strain unoptimized matrix multiplication

places on the system’s resources. Furthermore, the number of mispredictions increasing

can be a bad indicator of performance because each misprediction results in wasted

cycles since the CPU has to flush the wrongly predicted instructions.

Table 4.2: TLB and Page Faults Results for Non-optimized Code

Metrics 500x500 1000x1000 2000x2000 5000x5000

l1d tlb refill 124,660,549 1,004,186,491 8,030,409,938 125,734,877,957

l1i tlb refill 6,332 89,537 686,664 23,556,368

dTLB-load-misses 124,410,946 1,003,635,311 8,028,255,825 125,701,943,182

dTLB-store-misses 7,187 89,291 736,701 30,795,421

page-faults 850 3,057 11,862 73,439

Table 4.2 shows the TLB (Translation Lookaside Buffer) performance metrics for

non-optimized matrix multiplication. The metrics include Level 1 Data TLB refills

(l1d tlb refill), Level 1 Instruction TLB refills (l1i tlb refill), Data TLB load misses

(dTLB-load-misses), Data TLB store misses (dTL-store-misses), and page faults (page-
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faults). The l1d tlb refill measures the number of times the Level 1 Data TLB had to be

refreshed. The TLB is a cache that the memory management unit (MMU) uses to hold

recent translations of virtual memory to physical memory. The l1i tlb refill measures

the number of times the Level 1 Instruction TLB had to be refreshed. dTLB-load-misses

metric represents the number of times a data reference needed for an operation missed

the TLB and had to be retrieved from the main memory, which is a much slower process.

Whereas the dTLB-store-misses metric represents the number of times a store operation

could not find the requested data in the TLB. Finally, a page fault occurs when a program

tries to access a portion of memory that is not currently available in RAM.

The TLB and cache are vital parts of a CPU’s architecture, designed to minimize the

time it takes to access memory by storing frequently or recently accessed data. A high

number of refills and misses indicate that these functionalities are not being utilized

efficiently, which can impact the performance of the computations.

Regarding the page faults, the total size of the matrices for different sizes will

differ based on the size of the matrices. Let’s calculate the total bytes used by each

matrix set and compare it with the number of page faults. The three arrays together

for the 500 by 500 matrices are 3 (matrices) * 500 (rows) * 500 (columns) * 4 (bytes)

= 4,000,000 bytes. With a page size of 4096 bytes, this means 4,000,000/4096 = 732

pages would be required. After applying the same method to matrices of different

sizes, we observed varying numbers of page faults. Specifically, the 1000x1000 matrix

resulted in 2,929 page faults, the 2000x2000 matrix had 11,719 page faults, and the

largest matrix, 5000x5000, experienced 73,242-page faults. As the matrix multiplication

algorithm initializes three large arrays, the first-time access to these arrays triggers page

faults. This occurrence is expected since the system needs to allocate and initialize the

required memory pages. The number of page faults calculated closely corresponds to

the approximate event count for page faults during the initialization phase shown in

Table 4.2. This analysis suggests that the number of page faults observed is within the

expected range for the given matrix sizes and the matrix multiplication algorithm being

used. Consequently, it validates that the page faults are a natural part of the initialization

process and not a cause for concern in terms of the overall efficiency and performance

of the matrix multiplication algorithm.

Table 4.3 shows the cache performance metrics for Non optimized matrix multipli-

cation algorithm. The l1d cache measures the number of Level 1 Data Cache accesses.

The L1D cache is a high-speed cache memory that is used to store data that is frequently

accessed by the CPU. The l1d cache refill measures the number of refills, also known as



Chapter 4. Implementation and Results 16

Table 4.3: Cache Results for Non-optimized Code

Metric 500x500 1000x1000 2000x2000 5000x5000

l1d cache 2,996,015,325 24,186,801,057 192,770,047,708 3,021,442,315,402

l1d cache refill 70,711,134 1,101,239,200 9,261,796,612 146,292,926,862

l1i cache 1,506,507,434 12,205,886,640 96,993,598,658 1,528,919,539,454

l1i cache refill 380,177 3,923,896 29,801,876 1,113,759,702

l2d cache 153,423,135 4,810,208,180 32,537,200,404 604,514,516,548

l2d cache refill 5,973,799 170,999,354 554,799,158 131,957,855,504

mem access 2,987,533,513 24,159,974,934 192,834,608,179 3,022,327,041,086

L1-icache-loads 1,535,229,533 12,171,880,419 96,920,689,988 1,526,973,582,276

L1-icache-load-misses 321,798 3,815,650 27,625,851 1,113,568,778

cache-references 3,050,763,292 24,148,209,276 192,698,792,825 3,022,007,452,111

cache-misses 72,381,748 1,109,626,391 9,267,511,000 146,270,182,622

L1-dcache-loads 3,033,675,561 24,128,651,075 192,837,494,489 3,023,414,162,006

L1-dcache-load-misses 72,291,084 1,110,306,720 9,266,316,368 146,340,007,928

L1-dcache-stores 255,402,235 2,036,420,616 16,248,425,881 259,386,611,432

L1-dcache-store-misses 44,904 508,394 4,363,062 159,055,499

cache misses, for the Level 1 Data Cache. This occurs when the CPU tries to read from

the L1D cache and finds that the data it needs is not present. The l1i cache: This metric

measures the number of Level 1 Instruction Cache accesses. The L1I cache is a high-

speed cache memory that stores frequently executed instructions. The l1i cache refill

measures the number of refills, also known as cache misses, for the Level 1 Instruction

Cache. This occurs when the CPU tries to read from the L1I cache and finds that the

instructions it needs are not present. The l2d cache measures the number of Level 2

Data Cache accesses. The L2D cache is a slower but larger cache memory that stores

data that is less frequently accessed than the data in the L1D cache. The l2d cache refill

measures the number of refills, also known as cache misses, for the Level 2 Data Cache.

This occurs when the CPU tries to read from the L2D cache and finds that the data it

needs is not present. The mem access metric measures the total number of memory

accesses, both read and write operations. This includes accessing both cache and main

memory. The L1-icache-loads measure the total number of instruction fetches from the

Level 1 Instruction Cache. The L1-icache-load-misses measures the total number of

instruction fetch misses from the Level 1 Instruction Cache. This occurs when the CPU

tries to fetch an instruction from the L1I cache and finds that the instruction it needs
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is not present. The cache-references measure the total number of cache references or

attempts to access the cache. This includes both hits (successful finds) and misses. The

cache-misses measures the total number of cache misses, or unsuccessful attempts to

find the required data in the cache. The L1-dcache-loads measure the total number

of data fetches from the Level 1 Data Cache. The L1-dcache-load-misses measures

the total number of data fetch misses from the Level 1 Data Cache. This occurs when

the CPU tries to fetch data from the L1D cache and finds that the data it needs is not

present.

The cache miss percentages for different matrix sizes (2.373% for 500x500, 4.595%

for 1000x1000, 4.809% for 2000x2000, and 4.809% for 5000x5000) indicate that a

considerable proportion of data accesses result in cache misses. These percentages

aren’t close to zero, suggesting that a significant portion of data accesses results in

cache misses. In an ideal scenario, where the entire array can fit within the L1 cache,

we would expect the average cache miss penalty to be near zero. A high cache miss rate

indicates the majority of the data accessed by the workload is not present in the Level 1

(L1) cache. This implies the workload isn’t well-optimized for the L1 cache, leading to

an increased reliance on slower tiers of memory, like the main memory, which in turn

can result in lower system performance.

Table 4.4: Instructions and Time Results for Non-optimized Code

Metrics 500x500 1000x1000 2000x2000 5000x5000

instructions 5,712,103,252 45,244,310,410 361,435,936,760 5,674,513,062,959

insn per cycle 1.12 0.71 0.74 0.27

CPUs utilized 0.995 0.996 0.996 0.996

time elapsed (seconds) 2.88 36.10 274.76 11894.97

The last table presents the instructions and time performance metrics for matrix

multiplication using a non-optimized code. Task-clock metric represents the total CPU

time used to execute the matrix multiplication operation. The instructions metric shows

the number of instructions executed during the matrix multiplication process. Insn

per cycle metric represents the number of instructions executed per CPU cycle. CPUs

utilized indicate the percentage of CPU utilization during the matrix multiplication.

A significant observation emerged during our implementation - the matrix of size

5000 required an extensive processing duration of 3 hours. This considerable time frame

underscores the critical necessity of enhancing our matrix multiplication algorithm,
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facilitating it to manage larger inputs with improved efficiency. The low value of insn

per cycle suggests that there might be potential bottlenecks or inefficiencies in the code

or algorithm design, which can be targeted for optimization to improve the overall

performance. Furthermore, the matrix multiplication process only utilized one of the

available CPUs, leaving the other three CPUs largely unused. This emphasizes the

importance of optimizing the code to take advantage of all available CPU resources. By

distributing the workload across multiple CPUs, we can achieve better parallelism and

significantly improve overall performance.

4.1.3 Optimization 1: Multithreading Results

Multithreading is a technique where multiple threads of a single process are executed

concurrently. For the task of matrix multiplication, which involves repetitive and in-

dependent calculations, multithreading can be a significant optimization. It allows the

workload to be distributed across multiple cores of a processor, thereby performing

multiple computations simultaneously. The primary difference between the multi-

threaded version and the non-multithreaded version is the way tasks are executed.

In a multithreaded environment, several computations occur in parallel, while in a

non-multithreaded environment, they happen sequentially.

Table 4.5: Branches Results For Multithreading Code

Metrics 500x500 1000x1000 2000x2000 5000x5000 10000x10000

Br. Mispred. 516,079 4,483,754 36,751,410 581,108,299 4,637,042,956

Br. Pred. 124,105,040 1,211,550,208 9,963,413,783 153,380,084,235 1,229,055,697,288

Bus Access 6,175,845 34,798,524 438,727,043 9,408,763,919 100,012,224,929

Bus Cycles 875,830,885 9,683,824,248 79,659,094,943 1,379,041,324,818 11,170,211,508,792

Table 4.5 depicts the branches performance metrics for the multithreaded version of

matrix multiplication. We see that the number of branch mispredictions (Br. Mispred.)

and correctly predicted branches (Br. Pred.) both increase with the size of the matrix.

Moreover, when observing the branch misprediction rates for sizes 500, 1000, 2000, and

5000, they exhibit incredibly low figures: 0.4%, 0.2%, 0.19%, and 0.18%, respectively.

These values are essentially nearing zero. There is a noticeable 29.25%, 45.37%,

67.80%, and 50.85% decrease from the non-optimized code. The implications of such

low branch misprediction rates are profound. First and foremost, it indicates an efficient

prediction algorithm within the processor, demonstrating that the system can predict the
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direction of a branch instruction with remarkable accuracy. This significantly optimizes

the overall performance of the computational tasks, as less time is wasted on rectifying

incorrect predictions.

Table 4.6: TLB and Page Faults Results for Multithreading Code

Metric 500x500 1000x1000 2000x2000 5000x5000 10000x10000

l1d tlb refill 65,213,608 521,661,401 3,302,334,644 48,957,517,988 377,674,687,235

l1i tlb refill 9,367 35,759 686,664 6,464,982 48,376,064

dTLB-load-misses 65,213,608 521,661,401 8,028,255,825 48,936,918,643 377,535,775,617

dTLB-store-misses 13,182 55,254 736,701 9,141,882 65,158,812

page-faults 855 3,061 13,779 92,878 380,952

With reference to the page faults, the multithreaded version displayed a varying

pattern across different matrix sizes. Particularly, the 500x500 matrix encountered 732

page faults, while the 1000x1000 and 2000x2000 matrices resulted in 2,929 and 11,719

page faults, respectively (similar to the non-optimized code). These figures fall within

expected norms and can primarily be attributed to the standard initialization behavior

of the matrices as discussed in the previous section. However, larger matrix sizes of

5000x5000 and 10000x10000 demonstrated a comparatively higher rate of page faults,

with 73,242 and 292,968 page faults respectively. This escalation for larger matrix

sizes can potentially be attributed to the fact that these matrices are likely to exceed the

system’s available memory, triggering a higher number of page faults as the operating

system is forced to swap pages in and out of the physical memory. This discrepancy

between the observed and expected number of page faults for larger matrices suggests

an opportunity for further optimization. Optimizing memory usage, particularly for

larger data structures, could help in reducing the number of page faults and TLB refills,

thereby improving overall system performance.

Table 4.7 depicts the cache results for the multithreaded version. The cache miss

rates for different matrix sizes show a dramatic improvement, each clocking in at

barely above zero: 0.06% for 500x500, 0.06% for 1000x1000, 0.06% for 2000x2000,

0.069% for 5000x5000, and slightly higher 0.08% for 10000x10000. The cache miss

rates in the optimized multithreaded code exhibit a substantial reduction compared to

the non-optimized version, with percentage decreases of approximately 97.47% for

500x500, 98.69% for 1000x1000, 98.75% for 2000x2000, and 98.20% for 5000x5000

matrices. These rates, being strikingly close to zero, suggest that the vast majority of
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Table 4.7: Caches Results for Multithreading Code

Metric 500x500 1000x1000 2000x2000 5000x5000 10000x10000

l1d cache 2,487,058,381 24,241,050,100 202,619,151,935 3,082,262,865,963 24,648,325,161,786

l1d cache refill 1,317,576 17,045,345 124,942,062 2,124,828,090 19,858,261,052

l1i cache 1,322,279,239 12,466,307,029 102,524,116,536 1,574,990,870,274 12,554,531,452,155

l1i cache refill 104,416 1,526,415 16,194,058 344,349,358 2,415,738,380

l2d cache 4,072,120 91,956,642 486,864,759 8,485,776,712 182,444,910,727

mem access 2,700,651,425 24,666,349,126 197,364,735,910 3,077,145,119,305 24,567,641,553,267

L1-icache-loads 1,578,909,022 12,571,994,711 100,420,613,942 1,564,547,582,031 12,544,768,828,261

L1-icache-load-misses 213,035 997,484 9,323,938 344,365,050 2,423,283,196

cache-references 3,073,592,271 24,624,780,201 196,802,199,828 3,061,899,246,264 24,594,219,183,946

cache-misses 1,707,814 15,603,809 113,886,429 2,107,550,303 19,812,328,987

L1-dcache-loads 3,087,631,580 24,622,007,048 196,840,543,125 3,062,443,561,383 24,607,936,772,447

L1-dcache-load-misses 1,729,691 15,614,858 113,904,026 2,108,878,705 19,823,786,667

data accesses hit the L1 cache successfully, thereby reducing the need to access slower

memory tiers. A low cache miss rate, as in this instance, indicates that the majority

of the data needed by the workload is available in the L1 cache. This leads to less

dependency on slower memory layers like the main memory, resulting in a boost in

overall system performance.

Table 4.8: Instructions and Time Results for Multithreading Code

Metric 500x500 1000x1000 2000x2000 5000x5000 10000x10000

CPUs utilized 3.870 3.947 3.958 3.973 3.977
instructions 4,233,361,417 45,271,902,959 373,976,156,024 5,735,441,124,907 45,949,356,479,680

insn per cycle 1.60 1.56 1.57 1.39 1.38
time elapsed (seconds) 0.52 4.38 34.04 816.98 8087.02

Upon transitioning to the multithreaded version, an improvement in computational

performance was clearly observed. In particular, the execution time reduced drastically

across all matrix sizes when compared to the non-optimized version. For instance, the

time elapsed for the optimized code demonstrates substantial percentage decreases in ex-

ecution time compared to the non-optimized code: around 82.64% for 500x500, 87.79%

for 1000x1000, 87.58% for 2000x2000, and a remarkable 98.53% for 5000x5000.

Notably, the multithreaded version was able to handle a 10000x10000 matrix within

approximately 8087 seconds ( 2.25 hours), a task that was previously unfeasible and

led to a nearly two-day computation before it was forcibly terminated.

In addition, the instructions per cycle for the optimized code exhibit significant

percentage increases compared to the non-optimized code: approximately 42.86% for
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500x500, 119.72% for 1000x1000, 111.35% for 2000x2000, and a remarkable 414.81%

for 5000x5000.

In terms of CPU utilization, the multithreaded approach effectively harnessed almost

all of the available processing resources, leveraging nearly four CPUs as indicated by

the ’CPUs utilized’ metric compared to the non-optimized version which only used

one CPU. The high degree of CPU utilization is advantageous as it denotes effective

parallelism. By distributing the workload across multiple CPUs, we were able to achieve

enhanced parallelism, leading to a marked improvement in overall performance.

4.1.4 Optimization 2: Memory Optimization

The second phase of the optimization process focused primarily on memory manage-

ment, with an additional emphasis on enhancing the already multithreaded version

of the matrix multiplication algorithm. The objective here was to further boost the

efficiency of the algorithm by improving its interaction with the computer’s memory

architecture, in particular with the Translation Lookaside Buffer (TLB) and page faults.

The memory optimization phase was subdivided into two primary strategies. The

first strategy involved modifying the matrix multiplication method to a row-by-row

approach within each block, as opposed to the initial row-by-column method. This

modification retained the block-based matrix multiplication design, capitalizing on the

principle of spatial locality - the tendency of processing units to access data that are

close together within a short period of time. By accessing memory in a more contiguous

manner, the algorithm optimized TLB utilization, thus potentially reducing the TLB

miss rate. Accessing memory in a more contiguous manner ensures that the same

pages are accessed repeatedly within a short time period, making it more likely that the

necessary page-table mappings will be stored in the TLB, reducing TLB misses.

In the second part, the matrix initialization process was revamped. Traditionally,

the matrix was initialized within the code itself, contributing to the overhead of the

computation process. To address this, an alternative approach was adopted where the

initialization was decoupled from the computation. Specifically, the matrices were saved

in a file using a separate code, and then, during the matrix multiplication computation,

these files were retrieved. This approach reduces the computational burden during the

multiplication process, thereby reducing overall execution time.

It’s also worth noting that the performance metrics such as branches, caches, in-

struction per cycle, and CPUs utilized were already performing satisfactorily in the
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multithreaded version. Therefore, the optimization focused on elements that needed

improvement - TLB refills and page faults. However, a post-optimization assessment

confirmed that these metrics maintained their performance levels, validating the effec-

tiveness of the memory optimization changes.

Table 4.9: TLB and Page Faults Results for Memory Optimization

Metric 500x500 1000x1000 2000x2000 5000x5000 10000x10000

l1d tlb refill 42,479,207 499,129,221 2,103,540,755 47,114,534,615 365,470,923,777

l1i tlb refill 7,527 29,284 267,555 5,869,394 33,862,985

dTLB-load-misses 42,560,532 455,569,728 2,065,312,197 45,127,599,382 325,456,836,281

dTLB-store-misses 7,318 85,055 317,779 7,654,821 61,285,556

Page faults 865 3,071 13,791 92,890 380,964

time elapsed (seconds) 2.10 4.91 34.82 985.35 8072.05

Table 4.9 provides an overview of tlb and page faults metrics related to memory

management and execution time for matrices of different sizes, under the memory-

optimized algorithm.

As seen in the table, the number of both L1 data and instruction TLB refills has

considerably decreased with memory optimization. For 500x500, the decrease is ap-

proximately 53.35%; for 1000x1000, it’s about 45.43%; for 2000x2000, approximately

57.25%; for 5000x5000, it’s about 43.12%; and for 10000x10000, it’s around 35.22%.

This indicates a more effective utilization of the TLB, which is consistent with the

optimization strategy of reordering the matrix multiplication computation to be row

by row within each block. The Data TLB load and store misses show how often the

processor couldn’t find the required data in the TLB, leading to slower memory access.

Similar to the TLB refills, these metrics also decreased significantly, indicating a more

efficient memory access pattern due to the optimization.

While the memory optimization was successful in reducing TLB refills and misses,

it seems to have had no significant impact on the page faults, as their numbers remain

similar to the previous version ( variations ranging from a decrease of 1.38% for

500x500 to 1.33% for 10000x10000). This might be due to the initialization approach

where matrices are stored and retrieved from a file, which could introduce additional

page faults. In addition, the elapsed time shows the overall execution time for each

operation. The values in the table suggest that the overall performance has remained

stable, even with memory optimization. This can be attributed to the fact that while the

TLB refills and misses have decreased, the number of page faults remained unchanged.
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Hence, even though the memory access pattern improved, the page faults that occurred

during the initialization process might have offset the gains from the TLB utilization

improvement. The unchanged number of page faults and stable overall performance

suggests further optimizations could be explored.

4.1.5 Optimization 3: Transparent huge tables

The third optimization that was explored in this work was the use of Transparent Huge

Pages (THP). THP is a mechanism in modern Linux kernels that enables the operating

system to use huge pages in a way that is transparent to applications [5]. A typical

virtual memory system in Linux uses a page size of 4KB. However, with THP, it can

use larger page sizes, such as 2MB, which can help reduce the number of page faults

and TLB refills.

To understand how this works, it’s essential to discuss the concepts of a page and a

Translation Lookaside Buffer (TLB). The virtual memory of an application is divided

into pages, which are chunks of memory that are loaded into physical memory as

needed. When an application needs to access memory, the CPU must translate the

virtual memory address into a physical memory address, a process known as a page

table lookup. However, this operation is time-consuming, so the CPU keeps a cache of

these translations in a structure called the TLB.

The TLB, however, has a limited size, and when it can’t find a needed translation (a

situation known as a TLB miss), it has to refill it from the page table, which is a slow

operation. Similarly, a page fault occurs when an application tries to access a memory

page that is not currently in physical memory, causing the operating system to load that

page from disk, which is another slow operation.

Using THP can help reduce these costly operations. By increasing the page size

from 4KB to 2MB, each entry in the TLB can cover a larger range of memory addresses,

reducing the number of entries needed and thus possibly reducing the likelihood of a

TLB miss. Similarly, fewer but larger pages reduce the number of page faults, as more

data can be loaded into memory with each page.

Table 4.10 presents an in-depth view of the cache behavior when the Transparent

Huge Pages (THP) optimization was applied to various matrix sizes. Generally, it

indicates a considerable improvement in cache utilization compared to the typical cache

performance without THP and surprisingly defies the expectation of potential cache

degradation that can sometimes accompany the use of larger page sizes in THP.
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Table 4.10: Cache Results for Transparent Huge Tables

Metric 500x500 1000x1000 2000x2000 5000x5000 10000x10000

l1d cache 2,734,366,718 23,423,758,185 195,580,794,888 3,081,309,213,086 24,634,035,669,075

l1d cache refill 1,646,820 16,022,927 117,700,347 2,227,639,270 17,224,073,848

l2d cache 4,829,470 89,354,148 473,540,380 7,535,225,861 96,808,379,843

l2d cache refill 261,067 7,724,434 109,720,053 2,138,804,855 20,251,058,714

mem access 2,939,424,066 23,814,296,224 195,803,053,319 3,076,955,964,995 24,565,854,606,945

L1-icache-loads 1,180,652,449 11,852,701,681 99,771,152,689 1,575,837,515,058 12,574,894,706,974

L1-icache-load-misses 71,436 955,854 9,172,183 179,112,726 2,020,619,098

cache-references 2,352,511,757 23,286,023,221 195,656,949,099 3,092,084,415,399 24,627,921,586,114

cache-misses 1,313,559 13,850,626 113,740,199 2,237,374,584 17,201,498,145

L1-dcache-loads 2,388,205,387 23,315,713,469 195,668,747,006 3,091,830,915,153 24,636,798,709,228

L1-dcache-load-misses 1,289,008 13,814,002 113,934,311 2,236,861,552 17,212,219,340

L1-dcache-stores 212,610,047 2,038,381,897 17,090,192,906 270,212,205,758 2,159,175,359,329

L1-dcache-store-misses 27,165 270,712 2,394,739 48,496,199 473,958,947

It’s particularly interesting to see that the miss rate is remarkably low for all the

matrix sizes considered. The cache miss rates, calculated as the proportion of cache

accesses that resulted in a miss, were only 0.05% for the 500x500 matrix, 0.06% for

both the 1000x1000 and 2000x2000 matrices, and 0.07% for both the 5000x5000 and

10000x10000 matrices. Furthermore, it exhibits a remarkable reduction compared to the

unoptimized code, with percentage decreases of approximately 97.89% for the 500x500

matrix, 98.75% for both the 1000x1000 and 2000x2000 matrices, and 98.54% for both

the 5000x5000 and 10000x10000 matrices. This result indicates that the majority of

data was successfully retrieved from the cache upon the first request, thereby enhancing

overall system performance.

One reason for this positive outcome could be the increased spatial locality afforded

by the larger page sizes. Spatial locality refers to the principle that when a data location

is accessed, nearby data is likely to be accessed in the near future. With larger page

sizes, more of this ’nearby’ data is loaded into memory at once, making it more likely

that future data accesses can be served directly from the cache.

Table 4.11 shows that the utilization of THP significantly reduces the number

of TLB refills for all matrix sizes, as evidenced by the l1d tlb refill, l1i tlb refill,

dTLB-load-misses, and dTLB-store-misses metrics. For instance, the TLB refill val-

ues for the transparent huge tables show decreases of about 25.05% for 500x500,

13.37% for 1000x1000, 15.16% for 2000x2000, 79.47% for 5000x5000, and 86.52%

for 10000x10000 compared to the multithreading code. The reason behind this signif-

icant decrease in TLB refills lies in the essence of THP. As THP increases the page
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Table 4.11: TLB and Page Faults Results for Transparent Huge Tables

Metric 500x500 1000x1000 2000x2000 5000x5000 10000x10000

l1d tlb refill 49,058,369 513,755,171 3,135,827,298 10,321,582,081 53,998,649,402

l1i tlb refill 2,066 20,270 201,049 3,828,288 71,548,179

dTLB-load-misses 51,477,439 514,306,713 3,135,701,751 10,328,287,038 54,058,678,710

dTLB-store-misses 2,914 30,426 269,387 5,228,591 56,903,688

page-faults 855 3,062 13,782 61,164 231,092

size from the standard 4KB to 2MB, the same amount of data can be referenced with

fewer TLB entries. Thus, the probability of experiencing a TLB miss decreases, which

directly leads to fewer TLB refills.

In addition, the table indicates a substantial reduction in page faults for each matrix

size, bringing the values back down to those calculated in the initial analysis (the first

section). In addition, the page-fault values for the transparent huge tables indicate a

decrease of 34.14% for 5000x5000, and 39.50% for 10000x10000 in comparison to

the multithreading code. A page fault occurs when a program tries to access a part of

memory that is not currently available in the RAM, causing the system to read it from

the disk. The significant reduction in page faults implies fewer expensive disk accesses,

leading to faster memory accesses and overall improved system performance.

Table 4.12: Instructions and Time Results for Transparent Huge Pages

Metric 500x500 1000x1000 2000x2000 5000x5000 10000x10000

Instructions 4,264,540,338 43,350,643,785 365,693,811,039 5,771,246,275,362 46,043,137,099,191
Insn per Cycle 1.61 1.55 1.56 1.59 1.61
CPUs Utilized 3.847 3.949 3.937 3.977 3.968

Time Elapsed (seconds) 0.52 2.24 25.96 730.49 7248.18

Table 4.12 shows that the critical metric of Instructions Per Cycle (IPC) has increased

with the implementation of THP for the sizes 5000 and 10000 ( as it was good for all

the other values before).

The percentage increase between this version and the multithreaded version is

approximately 12.26% for the 5000x5000 matrix and 30.62% for the 10000x10000

matrix. IPC, which measures the number of instructions executed for each clock cycle,

is a useful performance indicator as a higher IPC often corresponds to better system

performance. This increase suggests that with THP, the system is able to execute more
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instructions within the same amount of time, thereby improving its efficiency. Indeed,

the increase in IPC could be attributed to the fewer TLB misses and page faults observed

with THP. As a result, less time is wasted on memory access latencies, allowing the

system to spend more time executing instructions, which consequently leads to a higher

IPC. Furthermore, the table also indicates a decrease in the ”Time Elapsed” for all the

matrix sizes when THP is implemented. The time shows a decrease of approximately

49.11% for the 1000x1000 matrix, 24.73% for the 2000x2000 matrix, 25.23% for the

5000x5000 matrix, and 10.65% for the 10000x10000 matrix than the multithreaded

version. This metric signifies the total runtime of the computation. A reduction in this

metric is favorable as it suggests that the computations are completed faster, further

supporting the increased system performance evidenced by the higher IPC.

4.1.6 Optimization 4: Compiler Optimization

While it’s widely acknowledged that compiler optimizations can lead to significant

performance improvements, I believe it’s essential to underscore the need for developers

to embrace this as a default practice. Instead of considering it an afterthought or a

secondary step in the software development process, compiler optimization should be

integrated into the standard workflow. This proactive approach ensures that the code

is not only functional but also optimized for efficiency from the outset. It introduces

more aggressive optimizations that may significantly improve the runtime performance.

These can include inline function expansion, prediction of branching, loop unrolling,

and vectorization, among others [3].

Table 4.13: TLB and Page faults Results for Compiler Optimization

Metric 1000x1000 2000x2000 5000x5000 10000x10000

l1d tlb refill 9,926,270 101,267,975 1,725,164,139 5,853,731,382

l1i tlb refill 2,885 60,255 941,799 6,465,547

dTLB-load-misses 10,130,421 101,800,674 1,725,598,584 5,855,970,124

dTLB-store-misses 17,473 169,265 1,519,557 10,591,297

Page-faults 3,061 13,781 92,917 278,323

Table 4.13 presented shows the effects of compiler optimization, particularly the

-O3 optimization flag, on metrics related to Translation Lookaside Buffer (TLB) refills

and page faults. It’s noteworthy that the figures for the 500x500 size matrix are not
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included in the table because the execution speed was so swift that the perf tool couldn’t

record the metrics.

Let’s first focus on the remarkable decrease in Translation Lookaside Buffer (TLB)

refills, marked by l1d tlb refill and l1i tlb refill for both data and instruction caches.

For the matrix sizes of 1000x1000, 2000x2000, 5000x5000, and 10000x10000, the tlb

refill metric exhibited approximate percentage decreases of 98.10%, 96.93%, 96.47%,

and 98.45% respectively, when comparing it to the multithreaded version. In addition,

when comparing it to the transparent huge table version, it shows a show a percentage

decrease of approximately 98.07%, 96.77%, 83.28%, and 89.17% for the matrix sizes

of 1000x1000, 2000x2000, 5000x5000, and 10000x10000.

This decline is highly beneficial as TLB refills represent a time-consuming operation

since they involve accessing the page tables located in the main memory or even higher

up in the memory hierarchy. The -O3 optimization flag implements several optimization

techniques, which improve the memory access pattern and, as a result, reduce TLB

refills. Furthermore, these optimization strategies are capable of enhancing the locality

of reference, resulting in more frequent access to the same set of pages and hence fewer

TLB misses.

However, the table also reveals a slight downside to the optimization. Specifically,

there is a minor increase in page faults (Page-faults) for the 5000x5000 configuration,

which could imply an increased need for fetching pages from the disk. This scenario

might have resulted from aggressive optimizations, leading to an altered memory access

pattern that might not align well with the operating system’s page replacement algorithm.

Despite this, the page faults for the other sizes remain consistent with the results from

the previous optimization, indicating that this anomaly might be confined to specific

cases and does not diminish the overall effectiveness of the -O3 optimization.

Table 4.14: compiler

Metric 500x500 1000x1000 2000x2000 5000x5000 10000x10000

CPUs utilized 3.177 3.767 3.927 3.959 3.974

Instructions - 5,649,300,250 66,123,395,653 1,086,842,924,230 8,710,694,278,456

Insn per cycle - 2.11 1.90 1.81 1.70

Time elapsed (seconds) 0.094 0.61 6.17 sec 110.38 1068.60

Table 4.14 presented demonstrates the remarkable effect of the -O3 compiler opti-

mization on the execution time and the efficiency of instructions executed per cycle. As
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with previous tables, the metrics for the 500x500 size matrix are not included, given

that the operation was completed too swiftly for perf to record accurate metrics.

One of the most striking results in this table is the substantial decrease in the to-

tal run time of the program (Time elapsed). This decrease is most notable for the

largest matrix size, 10000x10000, which was completed in only 1068.6 seconds, or

approximately 17.8 minutes. For the shared matrix sizes, it showed a percentage de-

crease of approximately 81.92%, 86.07%, 81.88%, 86.49%, and 86.79% compared to

multithreading code. Furthermore, it showed a percentage decrease of approximately

81.92%, 72.77%, 76.24%, 84.88%, and 85.27% respectively for matrix sizes 500x500,

1000x1000, 2000x2000, 5000x5000, and 10000x10000, when comparing it to Trans-

parent Huge Pages. Comparing it to the unoptimized version that was done in the first

section, it showed a percentage decrease of approximately 96.736%, 98.311%, 97.754%,

and 99.073%. This outcome is remarkable considering the computational complexity

and resource demand associated with handling such large matrix sizes. This significant

speedup is a testament to the effectiveness of the -O3 optimization.

4.2 Fibonacci

The Fibonacci sequence is an intriguing mathematical concept with numerous real-

world applications, making it a compelling case study for optimization on the Raspberry

Pi platform. Named after Italian mathematician Leonardo of Pisa, known as Fibonacci,

this sequence is a series of numbers where each number is the sum of the two preceding

ones, usually starting with 0 and 1. The sequence commences as follows: 0, 1, 1, 2, 3,

5, 8, 13, 21, 34, and so on.

4.2.1 Unoptimized Recursive Fibonacci Results

To commence this exploration, we started with an unoptimized Fibonacci sequence

calculation algorithm. This initial version implements the Fibonacci sequence in a

recursive manner. The recursive algorithm, while being a straightforward representation

of the Fibonacci sequence’s definition, is known for its inefficiency due to a large

amount of repeated computation. Each call to calculate Fibonacci(n) results in two

more recursive calls, leading to an exponential growth in computation as ’n’ increases.

Starting our optimization journey with this unoptimized version allows us to fully

appreciate the impact of different optimization techniques. It provides a clear baseline
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against which we can measure the improvements and gives us a broad scope for potential

performance enhancements. In the subsequent sections, we will delve into the differ-

ent optimization techniques applied to this Fibonacci sequence calculation algorithm,

evaluate their effectiveness, and compare their results to our initial unoptimized version.

Table 4.15: Branches Results for Non-optimized Code

Metric n=40 n=50 n=60

br mis pred 20,131,916 2,475,156,868 304,368,129,667

br pred 1,903,974,952 237,582,877,425 29,223,379,550,135

bus access 2,055,552 3,944,178 818,238,605

bus cycles 1,625,618,438 203,404,136,957 25,302,054,753,254

Table 4.15 presents performance metrics for different values of ’n’ in the Fibonacci

sequence calculation using the unoptimized recursive algorithm.

The data clearly indicate that the branch mispredictions rate sharply escalates with

increasing ’n’, specifically from 0.01% for n=40 and n=50, and then increases to 10.4%

for n=60. This substantial jump in the branch misprediction rate when calculating

Fibonacci of 60 can be attributed to the inherent nature of the recursive algorithm. To

explain this further, consider the branching nature of recursion. The algorithm makes

a decision every time it encounters a recursive call: it needs to ”predict” whether the

recursion will branch off (i.e., make more recursive calls) or hit a base case and start

returning. In the Fibonacci sequence’s case, due to the substantial amount of repeated

computation in the recursive algorithm, it becomes increasingly challenging for the

branch predictor to accurately predict the branches, especially for large values of ’n’.

This increase in the branch misprediction rate is highly detrimental to performance.

Every mispredicted branch causes a pipeline stall or delays as the processor needs to

discard or ”flush” the incorrectly predicted instructions and then fetch and decode the

correct ones. This not only wastes time and computational resources but also disrupts

the smooth flow of instructions through the processor’s pipeline, degrading overall

performance. Therefore, the escalation of branch mispredictions from n=40 to n=60, as

seen in the table, indicates a steep deterioration in the efficiency and performance of the

Fibonacci calculation.

Table 4.16 summarizes the cache behavior for the unoptimized Fibonacci code for

three different sizes of ’n’. One of the most striking aspects of the table is the extremely

low cache miss rates, ranging from 0.01% for n=40 and n=50 to slightly increased



Chapter 4. Implementation and Results 30

Table 4.16: Caches results for Non-optimized Code

Metric n=40 n=50 n=60

l1d cache 4,719,542,002 577,399,676,740 71,011,552,280,387

l1d cache refill 200,259 22,465,808 2,720,683,077

l2d cache 1,006,732 86,582,111 10,354,352,438

l2d cache refill 79,383 305,583 39,319,913

mem access 4,703,347,568 577,362,044,609 71,013,840,137,689

L1-icache-loads 3,975,204,277 486,548,925,738 59,836,129,339,467

L1-icache-load-misses 317,498 35,621,189 4,316,918,791

cache-references 4,710,321,622 577,350,323,915 71,008,518,178,585

cache-misses 186,402 22,014,099 2,728,781,183

L1-dcache-loads 4,708,880,525 577,458,134,196 71,011,437,477,305

L1-dcache-load-misses 189,084 22,531,595 2,724,560,128

L1-dcache-stores 2,228,382,856 272,977,509,591 33,572,976,505,147

L1-dcache-store-misses 23,664 2,618,564 312,922,104

0.02% for n=60.

These results indicate very efficient cache utilization. The low cache miss rate,

particularly for the L1 data cache (L1-dcache), can be attributed to the inherent sim-

plicity of the Fibonacci function. The Fibonacci function, especially in its unoptimized

recursive version, is quite simple. It includes a small number of instructions and does

not demand extensive data manipulation or complex computations that would require

large data structures. As a result, the program’s footprint is relatively small and can

comfortably fit within the L1 cache.

In addition, the Fibonacci function’s recursive nature may further contribute to

efficient cache utilization. Recursive calls entail a repeated set of instructions, which

benefits from the temporal locality - an important principle of cache memory where

if a location is referenced, it is likely to be referenced again shortly. Hence, once

the instructions for the Fibonacci function are fetched into the L1 instruction cache

(L1-icache), subsequent recursive calls can effectively retrieve these instructions from

the cache rather than fetching them from slower memory regions.

Table 4.17 provides essential information about the execution time and instruc-

tion counts for the non-optimized Fibonacci code. It clearly illustrates the impact of

increasing Fibonacci sequence size ’n’ on the program’s execution time.
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Table 4.17: Instructions and Time Results for Non-optimized Code

Metric n=40 n=50 n=60

CPUs utilized 0.996 0.998 0.998

instructions 8,072,132,995 989,867,092,695 121,733,764,587,628

insn per cycle 1.59 1.60 1.60

time elapsed (seconds) 2.83 347.23 42792.48

As the size ’n’ increases from 40 to 60, the task-clock metric, representing the CPU

time in milliseconds, grows from a manageable 2,826.90 msec for n=40 to a staggering

42,696,757.04 msec (11.6 hours) for n=60. This dramatic increase in computation time

underlines the exponential complexity of the recursive Fibonacci algorithm, as each

increase by 10 in the sequence size leads to an approximately 100-fold increase in

execution time. This substantial rise in computation time naturally makes exploring

sequence sizes greater than 60 impractical and, indeed, unproductive. The experiment

clearly shows that without optimization, computing the Fibonacci sequence recursively

for larger values of ’n’ would result in unacceptably long computation times.

On the other hand, the metrics relating to CPU utilization and instructions per cycle

(IPC) show consistent results across different sequence sizes. The CPU utilization is

consistently close to 1, which indicates that the Fibonacci function is able to make

effective use of the CPU during its execution. However, the constant CPU utilization

across different sequence sizes also shows that the recursive Fibonacci algorithm does

not support multithreading, and therefore, cannot take advantage of multiple CPU

cores to speed up the computation. This is a characteristic inherent to the Fibonacci

algorithm, as it relies on the results of previous computations, thus rendering concurrent

computation of separate sequence values impossible.

The instructions per cycle (IPC) values are also consistent, hovering around 1.60 for

all sequence sizes. This IPC value is decent, indicating that on average, the CPU is able

to execute 1.60 instructions per clock cycle. However, the consistent IPC across different

sequence sizes once again highlights the non-parallel nature of the Fibonacci algorithm,

as it doesn’t allow for an increase in instructions per cycle with larger sequence sizes.

Overall, the table underlines the necessity for optimizing the Fibonacci function for

larger sequence sizes. Despite efficient CPU utilization and a good IPC, the exponential

increase in computation time for larger ’n’ values presents a significant obstacle that

needs to be overcome.
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4.2.2 Optimization 1: Memoization Results

In a bid to improve the performance of the Fibonacci function, especially for larger

sequence sizes, a second version of the Fibonacci algorithm was introduced leveraging

a technique known as ”memoization”. Memoization is a specific type of cache opti-

mization used to speed up programs by storing the results of expensive function calls

and reusing them when the same inputs are passed again [1]. This concept is based on

the premise that it is often faster to retrieve a known result from a lookup table or a

similar data structure than to perform complex, time-consuming calculations every time

a function is called. Essentially, memoization transforms a function into a lookup table

by caching previously computed results.

In the context of the Fibonacci function, memoization is particularly beneficial. The

recursive Fibonacci algorithm without memoization is known to exhibit overlapping

subproblems, i.e., it repeatedly computes the same sub-sequences within the Fibonacci

sequence. By storing the result of each Fibonacci calculation within a cache or memory,

we avoid these redundant calculations. Once the function calculates the Fibonacci

number for a certain value of ’n’, it stores this number in memory. If the function is

later called again with the same ’n’, it will not re-calculate the result but instead fetch it

directly from the memory. By using memoization, the time complexity of the Fibonacci

function can be reduced from exponential to linear, as each Fibonacci number is now

calculated only once.

Table 4.18: Branches Results for Memoization Code

Metric n=100,000 n=500,000 n=1,000,000 n=5,000,000 n=100,000,000

br mis pred 1,350,229 7,458,693 15,137,232 88,856,257 1,858,051,890

br pred 65,667,576 591,229,717 1,280,684,424 6,455,204,189 130,798,838,298

bus access 3,591,127 5,966,656 10,559,531 86,427,914 1,966,257,017

bus cycles 143,214,755 783,680,461 1,633,945,850 8,175,187,001 167,361,267,008

It is noticeable from Table 4.18 that the Fibonacci function’s performance has

considerably improved, especially with regard to the branch misprediction rate, which

has decreased to 0.02% for n=100,000, and 0.01% for all larger Fibonacci sequences

signifying a 99.9% reduction when compared to the non-optimized code. This can be

explained by the inherent characteristics of memoization. In essence, memoization

reduces the number of recursive function calls. For a function like Fibonacci, which
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involves a considerable amount of repetitive and overlapping computations, memoiza-

tion avoids redundancy, thereby reducing the total number of function calls. Since each

function call involves a decision (or branch) on whether to calculate or retrieve the value

from the memory, fewer function calls will consequently lead to fewer branches and

thereby fewer opportunities for branch mispredictions.

What makes this particularly interesting is the consistency of the low branch mis-

prediction rate across different sequence sizes. The rates are as low as 0.01 even

for considerably large Fibonacci sequence sizes like n=1,000,000, n=5,000,000, and

n=100,000,000. This indicates that memoization has not just reduced the misprediction

rate, but also made it more consistent irrespective of the size of the sequence, a marked

improvement over the non-optimized version.

Table 4.19: Caches Results for Memoization Code

Metric n=100,000 n=500,000 n=1,000,000 n=5,000,000 n=100,000,000

l1d cache 358,720,562 1,503,682,645 3,033,051,220 15,145,674,160 305,130,443,232

l1d cache refill 484,471 5,595,396 6,243,769 29,751,539 915,329,995

l2d cache 5,382,676 30,743,248 54,756,226 288,116,599 6,392,628,480

l2d cache refill 354,122 1,999,532 6,737,231 16,050,901 274,843,119

mem access 352,814,258 1,514,797,978 3,445,590,030 15,429,511,879 301,069,432,705

L1-icache-loads - 1,395,013,780 2,675,364,509 13,539,178,826 272,560,639,926

L1-icache-load-misses - 13,915,565 27,754,965 159,027,781 3,299,520,730

cache-references - 1,539,589,542 2,965,399,019 14,954,081,256 298,836,883,005

cache-misses - 5,956,499 5,677,323 30,374,775 897,672,279

L1-dcache-loads - 1,530,570,560 2,978,991,199 14,695,359,625 298,837,040,905

L1-dcache-load-misses - 5,968,208 5,776,350 31,762,271 899,888,779

L1-dcache-stores - 718,575,292 1,383,706,720 6,854,694,631 139,514,972,891

L1-dcache-store-misses - 1,345,340 1,716,412 9,625,204 210,118,124

As we can see from Table 4.19, the L1 data cache miss rate is relatively low:

0.39% for n=500,000, 0.22% for n=1,000,000, 0.30% for n=5,000,000, and 0.19% for

n=100,000,000. This is a good indication as it suggests that most of the required data

were present in the L1 data cache during the execution of the program, which generally

leads to improved performance.

The reason for the low cache miss rates in this scenario is the memoization opti-

mization technique. By storing and reusing previously calculated results, memoization

reduces the total number of computations, which subsequently reduces the amount of

data that needs to be frequently accessed. Therefore, the required data tends to fit in the
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relatively small L1 cache, leading to lower cache miss rates. This not only speeds up

the Fibonacci function execution but also makes it more efficient in terms of memory

usage.

It’s worth mentioning that for n=100,000, certain metrics could not be recorded due

to the quick execution of the program. Perf, the tool used for performance analysis,

might not have been able to capture the cache metrics due to the rapid execution. This

in itself is a good indicator of how well memoization has improved the performance of

the Fibonacci function, making it significantly faster.

Table 4.20: Instructions and Time Results for Memoization Code

Metric n=100,000 n=500,000 n=1,000,000 n=5,000,000 n=100,000,000

CPUs utilized 0.433 0.897 0.909 0.813 0.947

instructions 821,910,895 2,882,387,450 5,512,085,746 28,553,979,939 562,498,114,256

insn per cycle 1.44 1.13 1.14 1.15 1.13

time elapsed (seconds) 0.74 6.39 20.14 84.14 840.98

The most notable outcome from this optimization is a significant reduction in the

execution time as seen in Table 4.20. The optimized version calculates Fibonacci

for n=100,000,000 in approximately 840 seconds or less than 14 minutes. This stark

improvement demonstrates the efficiency of memoization, particularly in recursive

algorithms where computations often repeat.

However, one metric that seems to have regressed is the instructions per cycle (IPC).

The program is executing about 1.13 to 1.44 instructions per cycle, depending on the

input size. In general, a higher IPC indicates that the processor is effectively utilizing

its instruction-level parallelism, which typically leads to better performance. The lower

IPC in this case could be attributed to a few factors. One possible explanation is the

overhead introduced by the memoization process. While the reuse of precomputed re-

sults significantly reduces the computational workload, it involves additional operations,

such as checking the cache for stored results and updating the cache with new results.

These operations can increase the total instruction count, which might explain the lower

IPC. While it’s clear that memoization has significantly improved the execution time

of the Fibonacci function, the decrease in IPC suggests there might still be room for

further optimization.



Chapter 4. Implementation and Results 35

4.2.3 Optimization 2: Dynamic programming and Compiler Opti-

mization Results

The final stage of optimization was executed in two main parts, bringing together both

memoization and dynamic programming. While recursion has its merits, it can lead

to substantial overhead in certain algorithms like Fibonacci, where computations are

often repeated. Dynamic programming mitigates this by avoiding recursion altogether.

Instead of calling the function recursively for previous terms, the dynamic programming-

based approach calculates the Fibonacci sequence iteratively. By storing intermediate

results in an array or vector, this method ensures that each Fibonacci term is calculated

only once, leveraging previously computed results.

Along with the mentioned changes to the code, the function was compiled using the

-O3 optimization flag. As detailed in a previous section, this compilation flag enables

the compiler to apply a series of performance-enhancing transformations. In this stage

of optimization, the primary focus was directed toward addressing the instructions

per cycle and the execution time, both of which presented challenges in the previous

memoization stage. Since these metrics were identified as areas requiring improvement,

the subsequent optimization efforts were specifically tailored to enhance them. By

transitioning to an iterative approach and utilizing advanced compilation techniques,

we concentrated on refining these critical performance indicators, while other metrics,

already displaying satisfactory results, were monitored for consistency but were not the

central concern.

It is also worth noting that the cache results from the final optimization stage have

not been included in this section. The reason behind this omission is the remarkable

consistency between these results and those observed in the previous memoization-

based optimization. The cache behavior remained largely unchanged, exhibiting very

good performance characteristics similar to before. This consistency in the cache results

further underscores the effectiveness of the memoization and dynamic programming

combination in maintaining optimal cache utilization. Therefore, the detailed cache

table was deemed unnecessary for this section, as it would only reiterate previously

established findings. Similarly, the branch misprediction rates from this final optimiza-

tion stage were not explicitly detailed, as they remained consistent with the previously

observed rates in the memoization code.

Table 4.21 provides an insightful overview of the final optimization stage, illustrat-

ing significant improvements in critical areas. One of the most noteworthy enhance-
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Table 4.21: Instructions and Time Results for Dynamic and Compiler Optimization

Metric n=100,000 n=500,000 n=1,000,000 n=5,000,000 n=100,000,000

instructions - 1,427,428,097 2,572,502,805 13,069,387,640 249,130,170,601

insn per cycle - 1.51 1.68 1.71 1.79

CPUs utilized 0.094 0.091 0.078 0.085 0.166

time elapsed (seconds) 0.76 5.98 14.75 64.14 586.58

ments is observed in the instructions per cycle (IPC). In this optimization phase, the

IPC values display an upward trend, reaching 1.79 for n=100,000,000. The dynamic

and compiler optimization method exhibited IPC increases of approximately 33.63%,

47.37%, 48.70%, and 58.41% for Fibonacci sequence sizes n=500,000, n=1,000,000,

n=5,000,000, and n=100,000,000, respectively, compared to the memoization method.

This is an encouraging indicator of the optimization’s efficacy, demonstrating a more

efficient utilization of CPU cycles. The increase in IPC is a clear indication of better par-

allelization of instruction execution, thus leading to more optimal use of the processor’s

resources.

Equally significant is the marked reduction in the overall execution time. So, for the

Fibonacci sequences of sizes n=500,000, n=1,000,000, n=5,000,000, n=100,000,000,

the dynamic and compiler optimization method exhibited decreases in elapsed time by

approximately 6.42%, 26.79%, 23.78%, and 30.23%, respectively, compared to memo-

ization. By moving away from recursion and employing a combination of memoization

and dynamic programming, along with compiler optimization techniques, the execution

time for the given Fibonacci sequence calculations has been substantially reduced. For

instance, the execution time for n=100,000,000 has been cut down to approximately

586.59 seconds, a tremendous improvement that underscores the effectiveness of the

adopted strategies. The final optimization stage, characterized by dynamic programming

and compiler adjustments, has successfully addressed previously identified challenges.
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Discussion

This study explored various facets of performance optimization for matrix multiplica-

tion, spanning from threading, memory optimization, and compiler optimization, to

employing Transparent Huge Tables (THT). Each phase of optimization was methodi-

cally scrutinized, and relevant metrics were collected to quantify their impact.

The initial optimization technique deployed was multithreading, which capitalized

on the intrinsic parallelism in matrix multiplication. Results confirmed that threading

significantly curtailed execution times, especially for larger matrix dimensions. The

profound acceleration attained by the multithreaded version underlined the vitality of

harnessing hardware parallelism to optimize computationally intensive tasks, a concept

aligned with Amdahl’s Law.

Subsequently, the focus shifted to memory optimization, aiming to improve the

algorithm’s engagement with the computer’s memory architecture, specifically the

Translation Lookaside Buffer (TLB) and page faults. The strategic alterations in

the matrix multiplication method and the decoupling of matrix initialization from

computation formed the crux of this strategy. Despite the successful reduction in TLB

refills and misses, the number of page faults remained unaffected, indicating potential

areas for further optimization.

Transparent Huge Tables (THT) was another technique employed, which leveraged

larger page sizes to optimize memory access patterns. The enabling of THT led to a

decrease in TLB misses, substantiating the effectiveness of this approach in improving

the algorithm’s interaction with memory systems. The use of THT optimized memory

utilization, bolstered processing speed, and revealed how this technique can become an

integral part of optimizing similar high-performance computing tasks.

Lastly, compiler optimization was explored, specifically the -O3 optimization flag.

37
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This measure proved significantly beneficial, leading to a substantial drop in cache

misses and TLB refills. However, a slight uptick in page faults was observed for specific

matrix sizes. Despite this, the overall execution time saw a significant drop, and the

number of instructions executed per cycle displayed a remarkable increase.

The optimization of the Fibonacci function unfolded through a carefully planned,

multi-stage process, demonstrating the intrinsic relationship between various optimiza-

tion techniques and their cumulative effect on improving performance. Initially, the

recursive version of the Fibonacci function was analyzed, revealing inherent inefficien-

cies such as overlapping subproblems. The introduction of memoization transformed

the function by improving the time complexity from exponential to linear. It reduced

not only the branch misprediction rate but also the L1 data cache miss rate. This stage

provided a foundational understanding of the power of caching and avoiding redundant

calculations in recursive algorithms.

Moving from recursion to memoization was a crucial step, but further optimization

was achieved by employing dynamic programming. This eliminated recursion altogether

and iteratively calculated the sequence, leveraging previously computed results. Com-

bined with the -O3 optimization flag that allowed the compiler to perform more detailed

optimizations, the function exhibited significant improvements in execution time and

instructions per cycle (IPC). This stage emphasized the importance of a comprehensive

approach that includes both algorithmic changes and compiler-level enhancements.

One of the key achievements in this process was the reduction in time complexity

from exponential to linear. This success, coupled with consistent cache behavior and

the significant increase in IPC, underscored the importance of targeted optimization.

The marked reduction in execution time for large Fibonacci calculations, such as cutting

down the time for n=100,000,000 to 586.59 seconds, demonstrated the effectiveness of

combining memoization, dynamic programming, and compiler adjustments.

While the optimizations discussed in the report have demonstrated significant

performance enhancements, it’s vital to recognize their context. These strategies were

meticulously tailored to harness the unique characteristics of the Raspberry Pi (RPi)

architecture. Even though one could think that similar optimizations could be applied

to server-based code, potentially yielding more robust results than an array or cluster

of RPis, the intention of this study was specific. It aimed to elucidate methods to

maximize the performance of code on RPi devices. The Raspberry Pi has its distinctive

set of challenges and advantages due to its hardware constraints and design philosophy.

Hence, the specifics in this report are particularly suited for RPi environments.
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Conclusions

The comprehensive and multi-layered exploration of two distinct workloads, Fibonacci

sequence calculation, and matrix multiplication, has revealed the profound impact of

methodical optimization. By engaging with these workloads at a granular level and em-

ploying a combination of techniques ranging from memoization, dynamic programming,

and compiler-level enhancements, remarkable improvements in efficiency, performance,

and resource utilization were achieved.

Through the Fibonacci sequence, we uncovered how recursive inefficiencies could

be overcome with memoization and further refined with dynamic programming. Mean-

while, the deep analysis of matrix multiplication served as a vivid illustration of the role

of algorithm design in maximizing computational efficiency. Both these workloads were

meticulously tailored to run efficiently on the Raspberry Pi, a platform that symbolizes

accessible and low-cost computing.

The methodologies employed in these two applications are not isolated to these

specific problems but represent a robust and versatile framework. The same approach,

which involves identifying inefficiencies, iteratively applying optimization techniques,

and carefully analyzing the results, can indeed be generalized to any application. This

adaptability signifies a path towards greater optimization in a wide array of computa-

tional problems, enhancing the efficiency and potential of the devices and systems we

rely on.

The future of this research and its application is tantalizingly promising. With

two fully working and optimized workloads tailored for the Raspberry Pi, the next

step involves broadening the horizon to more complex architectures. The objective

now shifts to orchestrating these workloads across an array of Raspberry Pi devices,

endeavoring to create a system that can compete with traditional servers. This paradigm
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could herald a new era in distributed computing, leveraging the cost-effective and

energy-efficient nature of Raspberry Pi to deliver robust computational capabilities.

Ultimately, this research has illuminated not just the paths to optimization for

specific problems but also the art and science of computational efficiency itself. By

doing so, it has laid down a roadmap that can be followed for diverse applications,

unlocking new potentials and guiding future explorations in both academia and industry.

The convergence of detailed analysis, innovative techniques, and visionary goals offers

an inspiring testament to what can be achieved through relentless inquiry, creativity,

and commitment to excellence.
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