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Abstract

In the context of smooth path planning in robot navigation, most of the current curve-

based algorithms are conceptually complex and often involve high computational costs

to acquire numerical solutions for complex application scenarios. Instead, sacrificing

some smoothness, arc-based curves (biarcs or triarcs) could replace those complex

curves (e.g., Bezier curves), as they are conceptually simpler and computationally

cheap. Given by any two points (with Cartesian coordinates and tangent angles) in

a two-dimensional space, valid triarc-based paths can be generated between any two

configurations, while biarc-based paths cannot.

Accordingly, the objectives of this project were to develop a biarc-based path con-

struction program and then extend it for developing a triarc-based program so that

both of them can display alternative path candidates, whilst automatically selecting the

optimal ones that have the lowest energy (energy: a measure of path smoothness). Both

the biarcs and the triarcs construction program were developed based on a geometric

approach where the relevant free control parameters for controlling the variations of

path candidates were mathematically formulated from the initial predefined informa-

tion. Both biarcs and triarcs construction programs were required to process different

predefined information into different critical conditions.

The biarcs construction program can determine the optimal path candidates with

the global minimum energy in biarc generic cases and biarc special cases, while any

biarc edge cases that cannot be reached by biarcs construction need to be addressed

by the triarcs construction program. Moreover, the triarcs construction program can

output a globally optimal path candidate for all triarc special cases. However, due to the

local range of one of the free control variables, the triarcs construction program could

be less confident to determine whether an optimal path candidate could have a global

minimum value of energy in triarc generic cases or triarc edge cases. Accordingly,

further investigations could be performed on modifying this variable with a certain

range or exploring a new one. Additionally, as the path construction programs are based

on a two-dimensional space, they will need to be extended in a three-dimensional setting

so that the modified program can be applied on a robotic car for further performance

testing.
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Chapter 1

Introduction

This chapter describes the context behind this project, starting with the motivation for

this project in Section 1.1. Following the motivation, It then describes the overall aims

and the corresponding objectives of this project in Section 1.2. Finally, the overall thesis

structure will be presented.

1.1 Motivation

As significant progress has been made in hardware technologies and artificial intelli-

gence [1, 2], there is an increasing demand that robots required to undertake various

navigation tasks without human intervention (such as delivery [3], marine exploring [4]

and rescuing missions [5], etc), which requires robots to have the ability of path planning

between their start and end locations [6].

Robots are often simulated as a particle that could change their positions in any

direction, and the shortest path for robots towards their destinations would be usually

preferred if no additional constraints were applied to them [7]. As a result, the path-

planning solutions could be often composed of sharp turns and straight portions, which

indicates that the paths have discontinuous curvatures and tangents [8]. However, there

could be some paths that those real robotic agents are physically impossible to follow

in the aforementioned situation [9].

As shown in Figure 1.1, the car would need to decelerate or stop at these corners of

the back path to handle the sharp turns, which is not desirable for the car’s motion. If the

agent was a robotic wheelchair taking disabled people along the path whilst avoiding

obstacles [10], people could even get injured due to the sudden stops. Therefore, it

would be more feasible for the intelligent agent to take the orange smooth path to its

1



Chapter 1. Introduction 2

goal without suffering from sudden stops as shown in Figure 1.1. In addition, the

discontinuous paths are not desirable for real robots transporting items that need to

avoid collision [11]. Accordingly, the focus of this project was on exploring tools for

smooth path construction in real-time.

Figure 1.1: An example of path planning to avoid obstacles along a differential car’s

path to its destination [12]. The black path that consists of a series of corners and

straight portions is assumed to be the shortest route.

Most of the current smooth-path generation techniques adopt high-derivatives curves

(such as Bezier curves [13], polynomial splines [14], hodographs [15], etc.) that can

construct a continuous path of high accuracy, but they are conceptually complicated [12].

With an increase in the complexity of path-planning problems (such as dynamic urban

areas [16]), the path-planning problems using these techniques usually cannot be

analytically solved, but require numerical solutions, which could induce relatively high

computational loads [17].

However, this is not typically desirable for the robots undertaking navigation tasks

as mentioned earlier, or for those equipped with limited power and computing resources,

as it would be difficult for the robots’ path planning module to generate sufficient path

candidates for use in the selection process (e.g., selecting the shortest or the smoothest

path among them) at each time step. Alternatively, there is another class of low-degree

curves: circular arcs [18]. By sacrificing some smoothness, interpolating high-degree

curves or paths using the arc-based method will require negligible computational loads,

because the related interpolation problem can be split to find the piece-wise solution at

each segment rather than considering the problem as a whole [19]. Accordingly, the

motivation of this project was to explore an arc-based method for path construction that

can be computationally cheap, while being smooth enough to facilitate path planning in

robot navigation.
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1.2 Aims and Objectives

Following the motivation of this project, the overall aim of this project was to investi-

gate an arc-based method (biarcs [20] and triarcs [21]) for path construction between

any two points in a two-dimensional (2D) space, where each point is characterised

with a Cartesian position and a tangent orientation. A path is considered as valid, if

the Cartesian position of its end point meets that of the goal with a correct tangent

orientation. The biarcs-based method for path generation can construct valid paths for

most of the pairs of starting and ending points, except for some edge cases [20], while

it is assumed that the triarcs-based method can achieve valid paths generation for all

the cases. Therefore, the end goal of this project was to develop programs that can

construct valid paths between any two points, whilst optimising smoothness. To achieve

this goal, several objectives of this project are shown below:

• Develop a program capable of constructing and displaying candidate biarc paths,

whilst inspecting any edge cases that cannot be achieved by biarcs.

• By extending biarcs generation, develop a program capable of constructing and

displaying candidate triarc paths, whilst ensuring any edge cases can be addressed

by triarcs.

• Enable automated selection of the lowest energy candidate path from among all

the alternative paths in either of biarcs or triarcs construction program.

1.3 Thesis Structure

Following Chapter 1, Chapter 2 introduces biarcs and triarcs in terms of their back-

grounds and related work, and hence highlight the importance of this study. Chapter 3

describes and discusses the related geometric approaches developed for biarc construc-

tion as well as the program to implement this. Extending from the approaches used

for the biarcs construction, Chapter 4 describes and discusses the related geometric

methods used for triarcs construction as well as the related triarc construction program.

Chapter 5 demonstrates and discusses the results of the biarc and the triarc constructions

respectively. Finally, Chapter 6 will conclude all the key information that has been

mentioned in the thesis, and give relevant recommendations about the future work that

could be performed for the project.



Chapter 2

Background and Related Work

This chapter describes the definitions of biarcs and triarcs in Section 2.1. Following the

definitions, this chapter will then evaluate the related work for biarcs (Section 2.2.1) and

triarcs (Section 2.2.2) in Section 2.2 respectively. In the last Section 2.3, this chapter

reflects on the key points from the literature and hence leads to the methodology that

was used for the arc-based path construction for this project.

2.1 Definitions of Biarcs and Triarcs

Figure 2.1: The illustration of the definitions of biarcs and triarcs

As shown in Figure 2.1, there are three single circular arcs and each arc is characterised

by its arc length and its arc centre with a Cartesian coordinate (i.e., arc 1: (SM, C1), arc

2: (MN, C2) and arc 3: (NG, C3)). A biarc is a curve consisting of two arcs that join at

the same tangent (e.g., the biarc SN with the joining point M or the biarc MG with the

connecting point N). In contrast, a triarc is a curve consisting of three arcs and each of

the two arcs shares the same tangent at their connecting points (e.g., the triarc SG that

is composed of two connecting points: M and N). Accordingly, this project focused on

4



Chapter 2. Background and Related Work 5

finding the parameters (i.e., arc length and arc centre) of each arc for the biarc or triarc

candidate that has the lowest energy (energy: a measure of path smoothness) given by

any two points.

2.2 Related Work Reviews

2.2.1 Biarcs

Biarcs, replacing cubic splines, were initially used as a curve-fitting tool for hull surface

designs in the shipbuilding industry in 1970 [22], and one of the considerations for

the replacement is that using biarcs can improve computational efficiency and hence

save costs for using shipbuilding design software, while cubic splines’ solutions usually

involve numerical iterations that could require extra computational time. Afterward, an

extensive literature has been developed on biarcs.

Biarcs have been used for approximating higher-derivative curves (such as Biezer

curves [23], NURBS curves [24], B-splines [25], etc) in the CNC (computer numerical

control) machining applications, as typical CNC contouring and milling machines are

more capable to execute linear or circular trajectories [26]. Due to the advantage of easy

computation, biarcs have also been used as an interpolation tool to specify paths for

different purposes (such as computer-aided designs for manufacturing [27], initial path

estimations used in path optimisations for automobiles [28], GPS data interpolation for

tracking vehicle trajectories [29], trajectory planning for inverse kinematics of robotic

manipulators [30], shape optimisation in reducing stress concentration [31], etc).

Figure 2.2: One typical example (a non-inflection case [22]) of a family of biarcs

starting from the same point S and ending at the same point G
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According to Figure 2.1, to determine a unique biarc between two points, the biarc

problem can be solved by finding its six unknown variables (i.e., the x and y coordinates

of each arc centre and the radius of each arc), but there are only five known conditions

(i.e., the starting point and its tangent, the ending point and its tangent, and the common

tangent of two arcs at their joint), which leaves one degree of freedom unconstrained.

As a result, there will be a finite number of biarcs existing between two control points,

which is considered as one family of biarcs, for example, as shown in Figure 2.2.

Various conditions have been adopted to make a unique biarc solution due to

different needs (such as using minimum difference between two arcs’ radii [22], middle

point embedding [32], or identifying the region of the boundary of a family of biarcs [33],

etc). However, this is not always the same situation for some biarcs-related optimisation

problems (such as [27]), as Yang et al., aimed to determine an optimal control parameter

(from a family of biarcs) that can minimise the biarcs fitting errors and hence address

the related gouging issue in a CNC contouring application.

Figure 2.3: Several typical geometrical cases of biarcs: the C-shaped [34] and the

S-shaped [27, 35] cases as shown in the first row, and the J-shaped ones [33] as shown

in the second row. It should be noted that each biarc starts from point S, goes through

point M, and ends in point G. The C-shaped and S-shaped biarcs are classified as short

spirals, while the J-shaped ones are considered as long spirals [20].

Moreover, the commonly used biarcs construction approaches usually create a

biarc by using ’equal chords’ (equal length of the two connected arcs), or ’parallel

tangent’ (the tangent at the joining points is parallel to those at the starting and ending
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points) [36]. In most cases, biarcs are constructed in a geometrical way (It has been

verified that the connecting point of a biarc must exist on the same circle passing through

its start and end points [20, 36]). However, since biarcs can be configured into different

geometric shapes as shown in Figure 2.2, the current geometric-based techniques can

only construct a biarc or a family of biarcs of one certain shape at a time.

Bolton [22] adopted two completely different construction methods to build biarcs of

different shapes (i.e., build an S-shaped biarc with the condition of minimum difference

of the radii of the two connected arcs, while constructing a C-shaped biarc with the

condition that the radius of each arc is proportional to the angles between it and the

known tangent vector adjacent to it). Bolton’s work is aligned with another recent study

conducted by Kurnosenko [20]. He proposed a theoretical framework for an entire

categorisation of biarcs where a one-dimensional family of biarcs of a certain shape can

be constructed based on the associated Möbius transformations, but each geometrical

case would require distinct conditions for its construction [20].

Recently, Bertolazzi, instead, proposed a numerical approach that adopted the

sinc function estimation and Taylor’s approximations, without considering mutually

exclusive geometric cases [37]. However, this biarcs construction algorithm would not

stop searching for the variables that satisfy the condition of biarc formation, until the

condition was met, which could be less computationally efficient compared to those

geometrical techniques.

2.2.2 Triarcs

Similarly, triarcs have been also used as a tool for curve fitting and curve interpolation,

but in only a few applications (e.g., curve fitting for CNC tools to machine cam

profiles [38], curve fitting for planar osculating arc splines [39], aiding to evaluate the

geometrical properties of airfoil leading and trailing edges [40], etc). As for triarc

construction, a triarc problem would require solving nine unknown variables (i.e., x

and y coordinates, and the radius of each arc) for a certain triarc solution. If only the

start and the end points were given for use as constraints, there would be three free

conditions left, rather than only one free condition left in a biarc solution.

To simplify the triarcs construction, one certain triarc is usually built by connecting

a predefined biarc to an additional arc at the same tangent [20, 21]. Instead, without

using biarcs as a connection base, Yang et al., did work on an independent geometric

approach to construct a triarc by adding three more conditions to obtain a certain triarc
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solution [41], however, the conditions that were used are customised for their own

curve-fitting applications, which is difficult for generalisation.

2.3 Reflection

Arc-based paths (i.e., biarcs or triarcs) have existed, which are mainly used as a curve-

fitting or interpolation tool in engineering designs, which is the current research trend.

Besides the two end point conditions, most of the studies tend to use extra constraints to

fix any extra degrees of freedom existing in arc solutions to construct unique biarcs or

triarcs as required for their applications. However, this operation would not be suitable

and hence not used in this project, as there is a need to find a group of candidate paths

under free conditions, hence selecting an optimal path among them.

Most of the current geometrical approaches for biarc-path constructions are not

generalisable, as each of them were developed and customised for a certain application

that usually requires a certain shape of biarc configurations. However, since the biarc-

path problem would need to leave one degree of freedom unconstrained for this project,

biarc solutions with different shapes (as shown in Figure 2.3) could exist simultaneously

between two end points, which indicates that the previous existing geometric-based

approaches would not be feasible for use in this project. Moreover, some attempted to

approximate biarc solutions with a numerical approach without splitting biarc problems

into different geometric cases. Accordingly, it is possible to numerically (e.g., brute

force search [42]) construct arc-based paths for this project, which would require

searching for the combinations of different arc radii and arc angles.

However, when searching, both arc radii and arc angles would need to be set as

continuous variables to ensure the solution accuracy so that the search space would tend

to infinity, which would be not feasible. Although their incremental precision can be set

properly (e.g., 0.1), there would still be a huge search space for the biarc path construc-

tion, which would cause computational inefficiency compared to previous geometric

approaches. In addition, compared to any geometric approaches, this search approach

could cause a lower density of valid path solutions with respect to the predefined search

space, which obeys the objectives of this project. Accordingly, this project focuses on

a novel geometric method for biarc path construction that would consistently involve

biarc solutions of different shapes, whilst yielding a sufficiently high density of valid

biarc path alternatives, and being generalisable. Constructing triarc path candidates

would be extended by the biarc construction method, but in a generalisable manner.



Chapter 3

Biarc Construction

This chapter describes how a valid biarc candidate can be constructed and the way of

controlling the shapes of biarcs in two different groups: standard cases and special

cases through a series of calculations. Biarc candidates with almost all the different

end configurations can be constructed under the standard approach (Section 3.1), while

those with only two certain groups of end configurations need to be handled in two

special approaches (Section 3.2). Then, this chapter describes the program design

and developments for biarc generation, as well as the approach of selecting the biarc

candidate with the minimum energy (Section 3.3). One edge case that cannot be

achieved through either the standard approach or the special approaches is identified

(Section 3.3.2), as separating those edge cases from any standard cases and special

cases contributes to developing a complete program for biarc construction.

3.1 Standard Cases

9



Chapter 3. Biarc Construction 10

Figure 3.1: One generic example of a biarc candidate defined with various parameters. It

is noted that every named point shown in this diagram has a two-dimensional Cartesian

coordinate and all the relevant derivations would involve vector-based calculations.

Given by the start configuration at point S (Sx, Sy, tangent angle 1: θt1) and the

end configuration at point G (Gx, Gy, tangent angle 2: θt2), the objective was able to

construct different shapes of biarcs (e.g., a biarc (SG)) starting from point S with an

initial tangent (⃗t1) and ending at point G with an ending tangent (⃗t2) as shown in Figure

3.1. The SG consists of two unique arcs (SM) and (MG), sharing the same tangent at

the joint point (M). The arc SM is defined by radius (r1) and centre (C1), and the line

extending from S along t⃗1 intersects with the line extending from M at the point (V1),

where the magnitude of SV1 or MV1 is k1. As for arc MG, it is defined by radius (r2)

and centre (C2), and V2 is another intersection of the line extending from G along t2
with the line extending from M in another direction, where k2 is the magnitude of M⃗V 2

or G⃗V 2.

Figure 3.2: A diagram of a circular panel for use in defining any tangent or rotating

angles of arcs in this project. It is noted that the panel consists of eight points from P1

to P8, and each point corresponds to two tangent angles of opposite directions.

According to Figure 3.2, an arc’s tangent angle is defined by the tangent angle at a

certain point on the circle of the centre O, while an arc’s angle of rotation is defined by

the angle (e.g., θ) between two points on the circle and it will be positive when rotating
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in an anticlockwise direction and vice versa. Moreover, the circular panel is divided

into four quadrants: quadrant 1 (from P3 to P1), quadrant 2 (from P1 to P7), quadrant 3

(from P7 to P5), and quadrant 4 (from P5 to P3). Given by any tangent angles of an arc,

the position where the arc starts to rotate, can be determined. Therefore, the start point

S of the biarc SG is nearly at P8 within quadrant 2 or at P4 within quadrant 4.

Since the two unit tangent vectors t⃗1 and t⃗2 would not be directly given at the

beginning, they need to be obtained from the two corresponding tangent angles θ1 and

θ2 as specified, which is formulated in (3.1.1) and (3.1.2)

t⃗1 = [cos(θt1) sin(θt1)] (3.1.1)

t⃗2 = [cos(θt2) sin(θt2)] (3.1.2)

where t⃗1 and t⃗2 are two unit tangent vectors of magnitude equal to 1.

3.1.1 Calculations of free variables and joint points

Since the joint point M is not a predefined parameter, its position could be varied. As M

varied, either k1 or k2 would be changed simultaneously, which means either of the two

variables can be considered as a free variable. Since only one free variable is enough to

control the position of M and hence the shapes of biarcs as mentioned in Section 2.2.1,

only k1 was set as free control variable, while k2 would be derived as a solution based

on k1 given start and end information. Therefore, the derivations of k2 and the joint

point M involving vector calculations are described below. Firstly, the two intersection

points V1 and V2 are expressed in (3.1.3) and (3.1.4).

V⃗1 = S⃗+ k1t⃗1 (3.1.3)

V⃗2 = G⃗− k2t⃗2 (3.1.4)

Moreover, to associate the given information with k1 and k2 , the expressions are

shown below.

|V⃗2 −V⃗1|= k1 + k2 ⇒ (V⃗2 −V⃗1)
2 = (k1 + k2)

2 (3.1.5)

To determine the function of k2 against k1 and the given information, the (3.1.5) are

expanded and shown in (3.1.6) (see appendix (A.0.1) for the full derivation).

P⃗P⃗−2k1P⃗t⃗1 − k2[2P⃗⃗t2 −2k1(⃗t1t⃗2 −1)] = 0 (3.1.6)
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where P⃗ = G⃗-⃗S. Therefore, the final solution of k2 given by k1 and the predefined

parameters is expressed in (3.1.7).

k2 =
P⃗P⃗−2k1P⃗t⃗1

2P⃗⃗t2 −2k1(⃗t1t⃗2 −1)
⇒ k2 =

(G⃗− S⃗)(G⃗− S⃗)−2(G⃗− S⃗)k1t⃗1
2(G⃗− S⃗)⃗t2 −2k1(⃗t1t⃗2 −1)

(3.1.7)

The joint point M can then be derived given by k1, k2 and the known parameters as

expressed in (3.1.8) (see appendix (A.0.2) for the full derivation).

M⃗ =
k2

k1 + k2
(⃗S+ k1t⃗1)+

k1

k1 + k2
(G⃗− k2t⃗2) (3.1.8)

Based on the formula (3.1.7), given a real number for k1, it is possible for the

denominator to be equal to 0 so that k2 would tend to infinity. In this case, the

connecting point M cannot be found through (3.1.8), and this singularity problem needs

to be manipulated separately.

Figure 3.3: An example of a biarc candidate where k2 tends to infinity

As shown in Figure 3.3, k2 approaching to infinity indicates that t⃗2 is parallel to

the tangent vector t⃗m of M, which makes the second arc MG as a semicircle. Since the

point M must be on the line extending from V1 with the tangent t⃗m, it can be formulated

below,

M⃗ = V⃗1 +bt⃗m & M⃗ = V⃗1 + b⃗t2 (3.1.9)

Where b is a scalar indicating the distance between M⃗ and V⃗1. It is noted that t⃗m
needs to be substituted with t⃗2, as the former vector is parallel to t⃗2, but it would not be

given at the beginning. Moreover, since the vector G⃗M should be perpendicular to t⃗2,

the dot product of the two vectors can be formulated below.

(M⃗− G⃗) · t⃗2 = 0 (3.1.10)



Chapter 3. Biarc Construction 13

Substituting (3.1.9) into (3.1.10), the value of b can be calculated as shown in

(3.1.11).

(M⃗− G⃗) · t⃗2 = 0 ⇒ (V⃗1 + b⃗t2 − G⃗) · t⃗2 = 0 ⇒ V⃗1t⃗2 + b⃗t2t⃗2 − G⃗t⃗2 = 0

b⃗t2t⃗2 = (G⃗−V⃗1)⃗t2 ⇒ b = (G⃗−V⃗1)⃗t2
(3.1.11)

Substituting (3.1.3), (3.1.4) and (3.1.11) back into (3.1.9), the new point M for the

singularity case based on Figure 3.3 can be finally obtained as shown in (3.1.12).

M⃗ = V⃗1 + b⃗t2 ⇒ M⃗ = V⃗1 +[(G⃗−V⃗1)⃗t2]⃗t2

⇒ M⃗ = (⃗S+ k1t⃗1)+ [(G⃗− S⃗− k1t⃗1)⃗t2]⃗t2

⇒ M⃗ = (⃗S+ k1t⃗1)+(G⃗t⃗2 − S⃗⃗t2 − k1t⃗1t⃗2)⃗t2

(3.1.12)

Given the joint point M in (3.1.8) or (3.1.12) and other relevant parameters, the

radius and the centre of each arc can then be determined as shown in Section 3.1.2.

3.1.2 Calculations of arcs’ radii and centres

As for arc SM, the centre C1 is along the line SC1 that is perpendicular to t⃗1. To

determine the position of C1, a unit normal vector corresponding to t⃗1 needs to be

defined as shown in (3.1.13).

n⃗1 · t⃗1 = 0 ⇒ n1xt1x +n1yt1y = 0

n1x =−t1y; n1y = t1x ⇒ n⃗1 = [−t1y t1x]
(3.1.13)

Accordingly, the centre C1 is along n⃗1 obtained from (3.1.13) at equal distance away

from S and M, which can be formulated in (3.1.14) and (3.1.15).

C⃗1 = S⃗+ r1n⃗1 (3.1.14)

|⃗S−C⃗1|= |M⃗−C⃗1| (3.1.15)

By expanding (3.1.15) and substituting (3.1.14) into the expanded expression of

(3.1.15), r1 can be determined as shown in (3.1.16) (see appendix (A.0.4) for the full

derivation).

r1 =

∣∣∣∣∣(M⃗− S⃗)(M⃗− S⃗)

2n⃗1(M⃗− S⃗)

∣∣∣∣∣ ; C⃗1 = S⃗+
(M⃗− S⃗)(M⃗− S⃗)

2n⃗1(M⃗− S⃗)
n⃗1 (3.1.16)

Substituting r1 into (3.1.14), the final expression of C1 can be determined as shown

in (3.1.16). Following the same approach of the derivations of r1 and C⃗1, r2 and hence

C⃗2 can be determined as shown in (3.1.17).

r2 =

∣∣∣∣∣(M⃗− G⃗)(M⃗− G⃗)

2n⃗2(M⃗− G⃗)

∣∣∣∣∣ ; C⃗2 = G⃗+
(M⃗− G⃗)(M⃗− G⃗)

2n⃗2(M⃗− G⃗)
n⃗2 (3.1.17)
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3.1.3 Calculations of arcs’ angles of rotation

An arc’s angle of rotation is considered as a vector in this project, as it contains the

information about both the direction and magnitude of rotation. As shown in Figure 3.1,

θ⃗r1 is the angle of rotation sweeping from the vector C⃗1S to the vector C⃗1M about C1,

while θ⃗r2 is the one sweeping from C⃗2M to C⃗2G about C2.

ˆC1S =
S⃗−C⃗1

|r1|
; ˆC1M =

M⃗−C⃗1

|r1|
(3.1.18)

ˆC2M =
M⃗−C⃗2

|r2|
; ˆC2G =

G⃗−C⃗2

|r2|
(3.1.19)

The direction of θ⃗r1 can be determined based on the sign of the cross product of

the two unit vectors ˆC1S and ˆC1M, and the sign is negative, indicating that θ⃗r2 has

a clockwise direction of rotation. Similarly, the direction of θ⃗r2 can be obtained by

inspecting the sign of the cross product of ˆC2M and ˆC2G, and the sign is positive,

meaning that θ⃗r2 has an anti-clockwise direction of rotation.

θ⃗r1 =−arccos( ˆC1S · ˆC1M); θ⃗r2 =−arccos( ˆC2G · ˆC2M) (3.1.20)

Given the direction of θ⃗r1, θ⃗r1 can be obtained by taking an arccosine function to the

dot product of ˆC1S and ˆC1M as shown in (3.1.20), and similarly, θ⃗r2 can be calculated

through (3.1.21), given the direction of θ⃗r2. However, the aforementioned approach of

calculating arc’s angles of rotation can only be used for one specific group (e.g., the

biarc SG composed of two short spirals as shown in Figure 3.1) where both k1 and

k2 are greater than 0 in this case, but not appropriate for other cases (e.g., the biarc

candidate as shown in Figure 3.4).

Figure 3.4: One example of a biarc candidate with negative k1 and negative k2

As shown in Figure 3.4, θ⃗r1 should represent the angle of rotation sweeping more

than 180◦ from C⃗1S to C⃗1M clockwise. if taking the previous approach, the direction of
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θ⃗r1 would be calculated as the anti-clockwise, while absolute value of θ⃗r1 would not be

greater than 180◦ which is not correct. The same issue also occurred at the calculation

of θ⃗r2 of this new case. Accordingly, only using the technique of cross product would

not be enough to correctly determine the direction of rotation, and hence the correct

angle of rotation.

In fact, a positive k (k1 or k2) means that the related arc is a short spiral having a

rotating angle less than 180◦, while a negative k indicates that the corresponding arc

is a long spiral with a rotating angle greater than 180◦. Therefore one more parameter

(i.e., k) would need to involve in correcting the improper calculations, and hence a more

complete approach is to use a piece-wise function to group θ⃗r1 at various conditions

(see appendix (A.0.5)), and use another piece-wise function for the θ⃗r2 classification

(see appendix (A.0.6)). The classifications of θ⃗r1 and θ⃗r2 are only applicable for the

standard cases, as any cases of biarc construction corresponding to ˆC1S × ˆC1G = 0 or
ˆC2M × ˆC2G = 0 were not be considered here and they are grouped as special cases

which is described in Section 3.2.

3.1.4 Calculations of tangent angles at the joint point

Calculating the tangent angles at the joint point enables the linear interpolation between

any start and end tangent angles for each arc in the subsequent program, hence generat-

ing a series of intermediate points at their corresponding tangent angles in order for the

arc formation. As the joint point M is the connection between arc SM and arc MG in

Figure 3.5, there are two tangent angles at this point, but they are not always equal to

each other based on the rotation mechanism as shown in Figure 3.2.
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Figure 3.5: An illustration of calculating the tangent angles at the joint point M under

different conditions. It should be noted that there are three arc segments: SM taken

from the circle at the centre C1, MG1 taken from the circle at the centre C2, and MG2

taken from the circle at the centre C2. The end tangent angle of the first biarc segment

(e.g., arc SM) is denoted as θm1, while the start tangle angle of the second biarc segment

(e.g., arc MG1 or arc MG2) is denoted as θm2.

As shown in Figure 3.5, there are two biarcs: the biarc SG1 composed of SM and

MG1 connecting at M, and the biarc SG2 composed of SM and MG2 connecting at

M. According to the initial rotating direction at S, arc SM can be considered as the

curve that was obtained by a clockwise rotation starting from P8 in quadrant 2 (Q2) and

ending at P2 in quadrant 1 (Q1) about C1 based on Figure 3.2. Meanwhile, arc MG2

was also obtained by a clockwise rotation. Therefore, as for biarc SG2, θm1 is equal to

θm2.

However, since arc MG1 was obtained due to an anticlockwise rotation, for the

MG1 construction, M would need to be changed from P2 to P6 in quadrant 3 (Q3),

which means θm1 is not equal to θm2 for SG1. Accordingly, as for a biarc, whether its

θm1 could be equal to its θm2 depends on the rotating directions of their θ⃗r1 and θ⃗r2

(i.e.,sign(|⃗θr1|) = sign(|⃗θr2|), indicating θm1 = θm2, while sign(|⃗θr1| ̸= |⃗θr2|), indicating

θm1 ̸= θm2). As for the unequal condition, the relation between θm1 and θm2 depends

on the position of M on the rotating panel, which is formulated in appendix A (A.07).

After performing the linear interpolation given by the start and end tangent angles of

each arc, each corresponding intermediate point constituting an arc can be determined,

which is described in Section 3.1.5.

3.1.5 Calculations of Cartesian points along arcs’ paths

Figure 3.6: An illustration of calculating an arbitrary point (Pi) at its tangent angle (θt)

about the corresponding arc’s centre (xo, yo) within quadrant 4 based on Figure 3.2
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As shown in Figure 3.6, the Cartesian coordinate of Pi (xi, yi) is (xo+rsin(θt),

yo+rcos(θt)), however, the calculations of an arc’s point would be different at different

quadrants, and all of them are summarised within a piece-wise function as shown in

Appendix A (A.0.8).

3.2 Special Cases

3.2.1 Type I: both k1 and k2 approaching to infinity

As illustrated in Figure 3.3, when k2 tends to infinity, the tangent tm will be parallel to

t2. Similarly, when t1 is parallel to tm, this condition also indicates that k1 will tend to

infinity. Accordingly, when both k1 and k2 tends to infinity, the connecting point cannot

be found through (3.1.8) or (3.1.12) as mentioned in Section 3.1.1, and as a result, all

the calculations mentioned from Section 3.1.2 to Section 3.1.3 are not applicable for

this special case (e.g., the one as shown in Figure 3.7).

Figure 3.7: One example of a biarc candidate composed of two semicircles where both

k1 and k2 tends to infinity

Accordingly, the connecting point M as shown in Figure 3.7 would need to be

derived with a new free variable denoted as m. The position of the M can then be

formulated in (3.2.1).

M⃗ = S⃗+
|G⃗− S⃗|

m
(3.2.1)

Where m could range from the negative infinity to the positive infinity. Accordingly,

the centres and the radii of the two connecting arcs are formulated in (3.2.2) and (3.2.3)

respectively.

r1 =
|M⃗− S⃗|

2
; C⃗1 =

M⃗+ S⃗
2

(3.2.2)

r2 =
|G⃗− S⃗|

2
; C⃗2 =

M⃗+ S⃗
2

(3.2.3)

Moreover, according to Figure 3.7, it is clear that the value of θ⃗r for each arc is

equal to 180◦, while the related rotating direction can be determined based on the sign
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of the cross product of the two vectors: G⃗-⃗S and t⃗2. Therefore, the angle of rotation of

each arc can be formulated in Appendix A (A.09) and (A.010) respectively.

Furthermore, the calculations of the tangents angles at the joint point, and the related

Cartesian points of an arc follow exactly the same methods as mentioned in Section

3.1.5 and Section 3.1.6 respectively.

3.2.2 Type II: V1 = V2

Figure 3.8: Two examples of the biarc candidates of the type II special cases. It is noted

that the biarc at the left side has two end tangents that are facing away to each other,

while the biarc at the right side has two end tangents that are facing towards each other.

As shown in Figure 3.8, in each example, the lines extending from S, M and G

intersect at the same point V, which means V1 = V2 according to Figure 3.1. As a result,

formula (3.1.5) will not be applicable for use in deriving the relation between k1 and

k2, as it will be equal to zero. The intersection point V will always be positioned at

the middle position between S and G, as k1 will always remain the same and always

equal to k2 in their absolute values, regardless of how a biarc candidate could be varied

given by S and G. Therefore, k1 cannot be considered as a free control variable for biarc

variations when V1 = V2. Accordingly, a new free variable (θ f ) needs to be defined in

order to vary the position of the connecting point M. This new variable is a local angle

rotating from G to M about V, and it is not related to the angle rotation panel based on

Figure 3.2. Accordingly, the calculations of M for the condition of V1 = V2 is shown in

(3.2.4).

M⃗ = [Mx, My]

⇒ Mx =Vx + cos(θ f )(Gx −Vx)− sin(θ f )(Gy −Vy)

⇒ My =Vy + sin(θ f )(Gx −Vx)+ cos(θ f )(Gy −Vy)

(3.2.4)

Where Mx and My are the x and y coordinates of M⃗, Vx and Vy are the coordinates

of V⃗ and Gx and Gy are the x and y coordinates of G⃗. θ f ranges from -360◦ to 360◦, but
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it is not equal to the absolute values of either 0◦, 180◦ or 360◦, which will make one of

the arcs infinite and hence there will be a straight line between S and G. Based on (A.08)

and (A.09), both k1 and k2 can decide the angles of rotation. However, in these special

cases, the values of either k1 and k2 are fixed once S and G are given. Accordingly, they

need to be reformulated for the type II special cases, as shown in (3.2.5).

(k1, k2) =


(−|G⃗− S⃗|

2
,
|G⃗− S⃗|

2
) S⃗+ |G⃗− S⃗|⃗t1 ̸= G⃗

(
|G⃗− S⃗|

2
, −|G⃗− S⃗|

2
) S⃗+ |G⃗− S⃗|⃗t1 = G⃗

(3.2.5)

Where the first condition indicates that S and G are facing away from each other,

while the second one indicates that the two points are facing towards each other. Then,

the subsequent computation procedures from radius and centre calculations to the arc

points calculations will still follow the methods as mentioned from Section 3.1.2 to

Section 3.1.5.

3.3 Program Design and Developments

3.3.1 Automatic initialisation of the free variables

To meet the objectives of this project, the program would need to take an arbitrary

user-defined inputs (a start and an end configurations as mentioned in Section 3.1)

only, and then find all the biarc candidates for that certain input information, ultimately

finding the one with the lowest energy. Since different values of k1 (for standard cases)

or m (for special cases) correspond to different connecting points M for a certain input

information, varying the free variables can product different biarc candidates. However,

not all the values of k1 or m can produce a valid biarc solution (e.g., only one arc exist

when k1 = 0 or m = 0 or or θ f = 0◦, etc.), which means randomly choosing a value of

the free variables is not an effective way for the program development.

To improve the smartness of this program, the first task was to enable the program

to identify where to begin to vary k1 or m or θ f . As for special cases type I, a biarc will

be formed by two arcs of equal length, when the initial value of m is set as 0.5 which

can be directly observed from formula (3.2.1). As for special cases type II, there will be

always valid biarcs that can be constructed, as long as θ f is not equal to the absolute

value of 0◦ or 360◦, and hence the initial value of θ f could be set as 90◦.

However, since an initial value of k1 cannot be directly identified based on formula

(3.1.7), which will add difficulty for the program to automatically initialise a k1 if
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following (3.1.7) only. Similarly, to avoid random initialisation for k1, the initial value

of k1 can be simply determined by incorporating one particular condition (i.e., k1 = k2)

into formula (3.1.7). Therefore, the initial value of k1 can be derived as shown in (3.3.1)

(see full derivation in Appendix A (A.0.11)).

k1int = k2 =
−(G⃗− S⃗)(⃗t1 + t⃗2)±

√
[(G⃗− S⃗)(⃗t1 + t⃗2)]2 +2(1− t⃗1t⃗2)(G⃗− S⃗)(G⃗− S⃗)

2(1− t⃗1t⃗2)
(3.3.1)

The initial value of k1 can either be the negative version or the plus version based

on (3.3.1), but it cannot be the both. Therefore, in this project, a positive version is

assigned to the initial value of k1 with no specific reasons. Accordingly, given by the

initial value of k1, or m or θ f , the initial biarc candidate would be generated, once the

certain condition corresponding to one of the free variables was passed in the program.

Then, several conditions to distinguish different biarc cases is described in Section

3.3.2.

3.3.2 Separation of different biarc cases

Since the program was designed as whole to be capable of generating different cases

of biarc candidates, it would need to analyse the user-defined information (⃗S, G⃗, θt1,

θt2) as given and then make a decision on whether a group of biarc candidates can be

constructed by a standard approach or special approaches, or no biarcs would exist

(biarc edge case). Any type I special cases will occur when both k1 and k2 tends to

infinity as mentioned in Section 3.2.1. Based on formula (3.3.1), both k1 and k2 will

tend to infinity, when t⃗1 is equal to t⃗2, and additionally are perpendicular to the vector

(G⃗-⃗S), which hence can be used as a condition to separate the type I special cases.

As for any type II special cases, after testing, it was found that they can only occur

when both t⃗1 and t⃗2 are parallel to the vector (G⃗-⃗S), and additionally are facing either

away from each other or towards each other. However, as shown in Figure 3.9, no biarcs

will be constructed with reference to each pair of mutually tangent circles, when both t⃗1
and t⃗2 are parallel to (G⃗-⃗S), and additionally they have the same direction, which hence

can be considered as the condition for use in the edge case separation.
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Figure 3.9: The demonstration of biarc edge cases

To maintain each pair of circles are mutually tangent given by a fix S and a fix

G, C2 will vertically move downwards as C1 moves upwards vertically, which means

the radius of the circle of C2 will decrease, as the radius of the circle of C1 increases.

Therefore, arc SM will approach to the line segment SG in this process from the left

side to the right side as shown in Figure 3.9. Accordingly, it can be deduced that there

will be a straight line formed between S and G merely. when the circle of C1 tends to

infinity, whilst the circle of C2 shrinks to a point. Finally, any valid biarc candidates will

be grouped as a standard case by the program, as long as the user-defined information

does not satisfy the conditions of either any biarc special cases or any biarc edge cases.

3.3.3 Program Integration



Chapter 3. Biarc Construction 22

Figure 3.10: Three self-defined biarc calculators with the main calculating procedures

for use in the process of biarcs construction with different critical conditions as illus-

trated in Figure 3.11. It is noted that ’GE’, ’SP I’ and SP II’ indicate ’standard’, ’special

type I’ and ’special type II’ respectively.

As shown in Figure 3.10, each calculator is one entire self-defined function com-

posed of a series of minor self-defined functions responsible for the relevant calculations

at different steps. As for each calculator, it will take a value of the corresponding free

variable as the input argument, and then output a series of Cartesian vectors to represent

the arc points as required to construct a biarc candidate. Some minor functions can be

shared between each calculator, as the approach of the related calculations is identical

as mentioned earlier. It is particular to note that any angles associated with the rotating

panel (Figure 3.2) will always be automatically adjusted within the interval between

-360◦ and 360◦ in each calculator.

Figure 3.11: The program architecture of biarcs construction defined in Python.

As shown in Figure 3.11, the program will firstly analyse the input and then decide

the approach to be used for biarcs construction. If the input information after processed,

indicates the condition of a biarc edge case, then program will directly output a straight
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line between S and G, or the warn to indicate that no biarcs will exist. When a critical

condition indicates other cases (’GE’, ’SP I’, or ’SP II’), the program will perform the

initialization of the relevant free control variables, and then incorporate the initialised

values (the input arguments) to a corresponding calculator, and hence display the initial

biarc candidate as the output for the corresponding case.

Moreover, as for any special type II cases, the range of the values of θ f can be

defined with the two values (-360◦ and 360◦) without any specific calculations as

mentioned in Section 3.2.2. However, as for any standard or special type I cases, given

by the initialisation of the related free variables, the program will need to compute their

lower and upper limits by investigating the variations in the energy of a biarc at different

values of free variables.

Specifically, the program will compute an incremental step for the related free

variable according to the predefined S and G. Then, the program will vary the free

variable step by step, and calculate the energy of the biarc candidate at each step until

almost no variations can be found in the energy calculations, where the critical values

of the free variable will be considered as the lower and upper bounds for a certain group

of biarc candidate. At the same time, the program will find the critical step (e.g., k1m,

mm or θ f m) of the free variable corresponding to the lowest energy value, and use it

as the input argument to the relevant biarc calculator to compute and display the biarc

candidate of the lowest energy. The energy of a single biarc candidate can be calculated

through (3.3.2).

E =
2

∑
i=1

(ci)
2li =

2

∑
i=1

1
(ri)2 (ri|θ⃗ri|) (3.3.2)

Where ci is the curvature of arc i, and it is equal to 1 divided by the square of the

radius of arc i, while li is the arc length of arc i, and it is equal to the multiplication

between the radius and the magnitude of the angle of rotation of arc i.

Furthermore, one slider widget corresponding to each critical condition (’GE’, ’SP I’

or SP II’) was defined in order to vary the values of the related free variable within its

range, hence displaying any alternative biarc candidates of different cases. The slider

will work by manual control, and once the slider slides from the initial value of the

related free variable to other values, the initial biarc candidate obtained from the free

variable initialization will be removed, and then the program will read the new value

of the free variable from the sliding action and use it as the input to the relevant biarc

calculator for new biarc candidates construction.



Chapter 4

Triarc Construction

This chapter describes how a valid triarc candidate with different cases can be con-

structed (i.e., triarc standard cases (Section 4.1), triarc special cases (Section 4.2), and

triarc edge cases (Section 4.3)). This chapter then describes the process of developing a

complete program that combines various calculators for different cases computation, the

way of generating alternative triarc candidates by using the related biarc construction

methods, and the approach of selecting a triarc candidate of the lowest energy in triarc

cases (Section 4.4).

4.1 Standard Cases

Figure 4.1: One standard instance of a triarc candidate defined with the related parame-

ters. The triarc starts from S along the tangent t⃗1, through two joint points M1 and M2,

and ends at G along the tangent t⃗2. The following derivations are based on this Figure.

To connect the user-defined information with all the three free variables k1, k2 and

24
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k3 as shown in Figure 4.1, the first step is to convert the predefined information into V1

and V3 as expressed in (4.1.1).

V⃗1 = S⃗+ k1t⃗1; V⃗3 = G⃗± k3t⃗2 (4.1.1)

Where V⃗3 can be obtained in two ways, which will be used for later derivations.

Similar to (3.1.5), the relation between k1 and k2 can be established by calculating the

distance between V1 and V2, while the relation between k3 and k2 can be obtained by

calculating the distance between V3 and V2, as expressed in (4.1.2)

(V⃗2 −V⃗1)
2 = (k1 + k2)

2; (V⃗2 −V⃗3)
2 = (k2 + k3)

2 (4.1.2)

By expanding the two expressions in (4.1.2), the new expressions are shown in

(4.1.3) and (4.1.4) respectively.

V⃗2V⃗2 −2(⃗S+ k1t⃗1)V⃗2 + S⃗S⃗+2k1S⃗⃗t1 = 2k1k2 + k2
2 (4.1.3)

V⃗2V⃗2 −2(G⃗− k3t⃗2)V⃗2 + G⃗G⃗−2k3G⃗t⃗2 = 2k2k3 + k2
2 (4.1.4)

Where V⃗3 = G⃗ - k3t⃗3 for use in deriving (4.1.3) and (4.1.4). Finally, by subtracting

(4.1.3) by (4.1.4), the relation between the three free variables and the predefined

parameters can be expressed in (4.1.5).

2(G⃗− S⃗− k1t⃗1 − k3t⃗2)V⃗2 = 2k2(k1 − k2)− (⃗SS⃗− G⃗G⃗)−2(k1S⃗⃗t1 + k3G⃗t⃗2) (4.1.5)

Although k1, k2 and k3 were all known, V⃗2 cannot be directly solved using (4.1.5)

only, as V⃗2 is a 2D vector that contains two Cartesian components. Randomly choosing

V⃗2 could be possible, however, it is not clear whether this action would always lead

to valid triarc candidates to be constructed. Therefore, there must be a range where

V⃗2 could be varied, or V⃗2 needs to have a valid initialisation. Accordingly, V⃗2 can be

analytically solved by a binary linear equation pair that can be established between

(4.1.5) and one additional equation. By using V⃗3 = G⃗ + k3t⃗3 and (4.1.2) as well as

further simplifications similar to (4.1.3) and (4.1.4), this additional linear equation can

be obtained and expressed in (4.1.6).

2(G⃗− S⃗− k1t⃗1 + k3t⃗2)V⃗2 = 2k2(k1 − k2)− (⃗SS⃗− G⃗G⃗)+2(k1S⃗⃗t1 − k3G⃗t⃗2) (4.1.6)

By incorporating the condition of k1 = k3 = k2, the binary linear equation pair can

be further simplified and shown in (4.1.7).

[−2V⃗2(⃗t2 + t⃗1)+2(⃗S⃗t1 + G⃗t⃗2)]k2 = G⃗G⃗− S⃗S⃗−2V⃗2(G⃗− S⃗)

[2V⃗2(⃗t2 − t⃗1)+2(⃗S⃗t1 − G⃗t⃗2)]k2 = G⃗G⃗− S⃗S⃗−2V⃗2(G⃗− S⃗)
(4.1.7)
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Both the two sides of each linear equation are equal to zero, arising from the

subtracting action between the two expressions in (4.1.2) under this particular condition

(k1 = k3 = k2). Therefore, three new equations are expressed in (4.1.8).

Eqn1 : G⃗G⃗− S⃗S⃗−2V⃗2(G⃗− S⃗) = 0 ⇒ V2xFx +V2yFy =
1
2
(G⃗G⃗− S⃗S⃗)

Eqn2 : 2V⃗2(⃗t2 − t⃗1)+2(⃗S⃗t1 − G⃗t⃗2) = 0 ⇒ V2xtx1 +V2yty1 = G⃗t⃗2 − S⃗⃗t2

Eqn3 : −2V⃗2(⃗t2 + t⃗1)+2(⃗S⃗t1 + G⃗t⃗2) = 0 ⇒ V2xtx2 +V2yty2 = S⃗⃗t1 + G⃗t⃗2

(4.1.8)

Where V2x and V2y are the x and y components of V⃗2, and Fx and Fy are the x and y

components of (G⃗− S⃗). tx1 and ty1 are the x and y components of (⃗t2 − t⃗1), while tx2 and

ty2 are the Cartesian components of (⃗t1 + t⃗2). In particular, ty1 and ty2 cannot be equal to

zero simultaneously, or tx1 and tx2 cannot be equal to zero at the same time so that V⃗2

is solvable. Accordingly, V2x and V2y can be solved using one of the two equations in

different conditions as shown in Appendix B (B.0.1).

By substituting the obtained V⃗2 into either of the two expressions in (4.1.2), k2 can

then be determined as shown in (4.1.9) (see the full derivation in Appendix B (B.0.2).

k2 =
−2(V⃗2t⃗1 − S⃗⃗t1)+

√
4(V⃗2t⃗1 − S⃗⃗t1)2 −12(2V⃗2S⃗− (⃗S)2 −V⃗2

2
)

6
(4.1.9)

Where the solution of the plus version is assigned to the initial value of k2. and

hence both k1 and k3 have the same initialisation equal to k2. Accordingly, the positions

of M1 and M2 can then be determined and expressed in (4.1.10).

M⃗1 =
k2

k1 + k2
(⃗S+ k1t⃗1)+

k1

k1 + k2
V⃗2; M⃗2 =

k2

k2 + k3
(G⃗+ k3t⃗2)+

k2

k2 + k3
V⃗2 (4.1.10)

Similar to Section 3.1.2, r1, C⃗1, r2, C⃗2, and r3 and C⃗3 can be determine and expressed

in (4.1.11).

r1 =

∣∣∣∣∣(M⃗1 − S⃗)(M⃗1 − S⃗)

2n⃗1(M⃗1 − S⃗)

∣∣∣∣∣ ; r2 =

∣∣∣∣∣(M⃗2 − M⃗1)(M⃗2 − M⃗1)

2n⃗m(M⃗2 − M⃗2)

∣∣∣∣∣ ; r3 =

∣∣∣∣∣(M⃗2 − G⃗)(M⃗2 − G⃗)

2n⃗2(M⃗2 − G⃗)

∣∣∣∣∣
C⃗1 = S⃗+ |r1|n⃗1; C⃗2 = M⃗2 + |r2|n⃗m; C⃗3 = G⃗+ |r2|n⃗2

(4.1.11)

Where n⃗1 and n⃗2 are the unit normal vectors to t⃗1 and t⃗2 respectively, while n⃗m is

defined as an unit normal vector to the line segment V1V2. The methods used for the

subsequent calculations are similar to those as mentioned from Section 3.1.3 to Section

3.1.5 so that the triarc example as shown in Figure 4.1 with the initial critical condition
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of (k1=k2=k3) can be constructed. Once any arbitrary user-defined information is given,

varying either V⃗2, k1, k2 or k3 can change the shape of a triarc candidate. Based on

(4.1.6), one of the four variables can be obtained, once the other three are known. To

generate alternative triarc candidates, V⃗2, k1 and k2 are considered as the free control

variables. Specifically, after one triarc candidate with an identical value of k is initially

constructed, the initial triarc candidate (e.g., the one as shown in Figure 4.1) will then

need to be considered to be formed by two biarcs: SM2 (controlled by k1) and M1G

(controlled by another k1) in biarc construction. When a new V⃗2 is given, k1 and k2 in

triarc construction will need to be recalculated through (4.1.10) and they are still equal

to each other, while k3 will then need to be recalculated through the expression at the

right side in (4.1.2). The new value of k3 can be therefore updated through (4.1.12).

(V⃗2 −V⃗3)
2 = (k2 + k3)

2 ⇒ k3 =
(k2)

2 +2V⃗2G⃗− G⃗G⃗−V⃗2
2

2(V⃗2t⃗2 − G⃗t⃗2 − k2)
(4.1.12)

Where V⃗2 is actually constrained in an interval that was manipulated by the triarc

construction program which is described in Section 4.4.

4.2 Special Cases

Figure 4.2: One example of a triarc candidate composed of three semicircles where k1,

k2 and k3 tend to infinity

Based on the first expression in (4.1.7), k2 (equal to k1 and k3) will tend to infinity

when its left factor of multiplication is equal to zero, and hence the critical conditions

to determine any triarc special cases can be derived and shown in (4.2.1).

−2V⃗2(⃗t2 + t⃗1)+2(⃗S⃗t1 + G⃗t⃗2) = 0 ⇒ S⃗t1 +Gt⃗2 = (⃗t1 + t⃗2)V⃗2

⇒ V⃗2 → ∞ ⇒ (1) : t⃗1 = −⃗t2 ⇒ (2) : (G⃗− S⃗)⃗t2 = 0 ⇒ (G⃗− S⃗)⊥ t⃗2
(4.2.1)

According to (4.2.1), it was found that t⃗1 is opposite to t⃗2 and both the two vectors

are perpendicular to the line segment GS when k1, k2 and k3 tend to infinity, which can

be used as the critical conditions for the program to distinguish any triarc special cases.
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Accordingly, V⃗2 is not finite and it cannot be considered as one free control variable

for any triarc special cases. Taking the triarc candidate as shown in Figure 4.2 for an

instance, it can be considered to be made of two biarcs of type I special cases: SM2 and

M1G. To generate alternative triarc candidates of special cases, there are only two free

control variables that need to be defined: m1 controlling biarc SM2, and m2 controlling

biarc M1G, and the control mechanism for each of them follows (3.2.1). In order to

have a valid initialisation, both the values of m1 and m2 would be set as 0.5 so that a

triarc candidate can be formed as three semicircles of equal radius connecting of each

other (e.g., the one illustrated in Figure 4.2). Accordingly, the radius of each semicircle

and C2 can be calculated as expressed in (4.2.2).

r1 = r2 = r3 =
|G⃗− S⃗|

6
; C⃗2 =

S⃗+ G⃗
2

(4.2.2)

Except for C2, the calculations of C1, M1, M2 and C3 depend on the angle (θb)

between the line segment SG and the horizontal. Prior to the calculations, a vector (⃗Z)

related to θb would need to be defined as shown in (4.2.3). Therefore, C1, C3, M1 and

M2 can be obtained as shown in (4.2.4).

Z⃗ = [r1 cos(θb), r1 sin(θb)] (4.2.3)

C⃗1 = S⃗+ Z⃗; C⃗3 = S⃗+5Z⃗; M⃗1 = S⃗+2Z⃗; M⃗2 = S⃗+4Z⃗ (4.2.4)

When calculating the angle of rotation, both θ⃗r1 and θ⃗r3 can be obtained based

on Appendix A (A.0.5), while (θ⃗r2) can be determined using Appendix A (A.0.6).

Finally, the subsequent computations (tangent angles calculations and Cartesian points

calculations) will still follow the methods as mentioned from Section 3.1.4 to Section

3.1.5, as the triarc special cases are similar to the biarc type I special cases as described

in Section 3.2.1.

However, the critical conditions for separating the biarc type II special cases does

not independently exist in triarc construction. As shown in Figure 3.8, if the first arc

SM is divided into two equal or unequal arc segments in length, V1, V2 and V3 can

exist at different Cartesian positions. Therefore, when both t⃗1 and t⃗2 are parallel to the

vector (G⃗-⃗S), and additionally are facing either away from each other or towards each

other, any triarc candidates under this critical condition can be constructed by the triarc

standard approach as described in Section 4.1.
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4.3 Edge Cases

When both the two unit vectors t⃗1 and t⃗2 have a vertical direction (i.e., [0, 1]) or a

horizontal direction (i.e., [1, 0]), both tx1 and tx2 will be equal to zero so that V2x

cannot be solved according to Appendix B (B.0.1) under the two scenarios, which are

considered as the critical conditions for any triarc edge cases (e.g., the one as shown in

Figure 4.3).

Figure 4.3: One example of a triarc edge case

Instead, to construct the V⃗2 as shown in Figure 4.3, θ⃗r1 and r1 would need to be

chosen randomly (e.g., |⃗θr1|=30◦ and r1=0.3(|G⃗− S⃗|), as long as the following biarc to

be constructed is valid) so that C1 can be determined with respect to the S. By using

the tangent angles interpolation and the Cartesian points interpolation, arc SM1 can be

initially constructed with an end point M1 at the tangent t⃗4. Given by M1 and G, a biarc

with the joint point M2 at the tangent -⃗t5 will then need to be initially constructed using

the biarc construction program so that the initial triarc candidate starting from S and

ending at G can be formed. The V⃗2 can be determined by finding the intersection point

between the line extending from M1 at t⃗4 and the line extending from M2 at t⃗5.

To generate an alternative triarc candidate, given by a new V⃗2 with respect to the

initial V⃗2, the related parameters can be calculated following from formula (4.1.9) to

formula (4.1.12). Once the new triarc candidate is formed, it will then need to be

considered to be formed by two biarcs: SM2 controlled by k1 and M1G controlled by

another k1 for further variations of triarc alternative candidates. As for any biarc edge

cases, when both the related t⃗1 and t⃗2 are horizontal or vertical, the problem of biarc

edge cases can be addressed by using the approach as mentioned here, otherwise, the

problem can be directly resolved by using the triarc standard approach.
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4.4 Program Integration

The triarc construction program will firstly determine the method to be adopted for

generating triarc candidates by analysing the user-defined information as given. As

for any triarc standard cases, the program will initialise a valid triarc candidate by

calculating the V⃗2 when k1, k2 and k3 have identical values. Then, the program can vary

V⃗2 to generate alternative triarc candidates, but the V⃗2 must be assigned with a range,

hence reducing the computational efforts of finding an optimal triarc candidate. Since

the program will consider the current triarc candidate to be formed by two biarcs that

share the same middle arc at each V⃗2, and then execute the biarc construction method

to further construct other alternative triarc candidates, the variations of each biarc are

independent so that the initial arc of a triarc candidate could intersect with its end arc

at a certain V⃗2. With respect to the initial V⃗2, it will be set to vary in four orthogonal

directions in the 2D Cartesian space, until the limit of V⃗2 for each direction is found

when the biarc intersection issue occurs.

Figure 4.4: One example of a triarc edge case

The variations of V⃗2 will be confined within the shape formed by connecting the four

limits (u1, u2, u3, and u4 as shown in Figure 4.4) to each other. As there will be two free

variables (i.e., k1 and k2) controlling two biarcs within one triarc candidate, the range

of each variable can be found using the same method as mentioned in Section 3.3.3. By

iterating the available steps of V⃗2, k1, and k2, the triarc candidate with the minimum

energy can be determined. As for any triarc special cases, once the triarc program

have finished the initialisation procedure, the initial triarc candidate will only need to

be controlled by two biarc control variables (i.e., m1 and m2) for further variations.

After k1 and k2 are assigned with a range, the optimal triarc candidate will be found

by iterating their available steps that can generate valid triarc candidates. As for any

triarc edge cases, the program will construct a V⃗2 from initialisation, and use the same

method (as used in triarc standard cases) to determine the optimal triarc candidate

among alternative triarc candidates.
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Results and Discussions

5.1 Biarc Standard Cases

(a) E=0.072 at k1= 273.21 (b) E=0.017 at k1=-1203.98

(c) E=0.018 at k1=-1602.31 (d) E=0.003 (lowest) at k1=-6500

Figure 5.1: The illustration of several examples of biarc candidates of different energy

constructed at different values of k1 under the configurations (i.e., S⃗=[200, 350], G⃗=[400,

150], θ1=30◦, θ2=30◦)
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(a) when θ1= 30◦ and θ2= 30◦ (b) when θ1= 20◦ and θ2= 150◦

Figure 5.2: Two different energy distributions against the whole range of k1 at the same

S⃗ ([200, 350]) and G⃗ ([400, 150]), but different pairs of tangent angles

When either k1 or k2 is equal to zero, the energy will tend to infinity. As in either

of the cases. the radius of the related arc will become zero, which makes its curvature

approaching to infinity based on (3.3.2). Therefore, as shown in Figure 5.2 (a), there

are two spikes occurring near k1=0 and k1= 546.41 (i.e., k2=0) respectively. When k1 is

further decreased from the left spike or increased from the right spike, both the radius

and the arc-length of each arc will increase (e.g., as illustrated in Figure 5.1 (b) and (c)).

However, the biarc energy will increase as shown in Figure 5.2 (a), since the squared

function in (3.3.2) makes a decrease in curvature being more dominant than an increase

in arc-length for energy variations.

Since the energy distribution against k1 in Figure 5.2 (a) is symmetric, there is

another biarc candidate that also has the lowest energy (E=0.003) at k1=6500, besides

the one as shown in Figure 5.1 (d). As for any symmetric energy distributions that

exist, the value of the minimum energy depends on the precision of the limits of k1.

For any biarc standard cases, when the four significant figures behind the difference

between the energy at the current k1 and the energy at the previous k1 can be rounded

to zero, the current values of k1 will then be set as the limits. If the precision was set as

less than 4 significant figures, the value of the minimum energy would shift toward the

centre of the distribution. Furthermore, the minimum energy of a biarc configuration

might not always occur at the lower or the upper limit of k1. Instead, it can occur

around the middle position along the range of k1 (e.g., Figure 5.2 (b)). Accordingly, it

is reasonable to iterate through the entire interval of k1 to find the biarc candidate that

has the minimum energy among other alternative ones.
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5.2 Biarc Special Cases

(a) E=3.142 at m= 0.5 (b) E=0.862 at m=-1.45

(c) E=0.397 at m= 4.52
(d) E=0.022 (lowest) at m= 71

(e) E=0.628 at θ f = 90◦ (f) E=2.817 at θ f = 166.30◦

(g) E=0.683 at θ f = 254.53◦ (h) E=0.618 (lowest) at θ f = -80◦

Figure 5.3: SP I (type I special cases) biarc candidates from (a) to (d) under the

condition (⃗S=[2, 2], G⃗=[10, 2], θ1=θ2=-90◦), and SP II (type II special cases) biarc

candidates from (e) to (h) under the condition (⃗S=[20, 35], G⃗=[40, 35], θ1= 180◦, θ2=

0◦)
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(a) As for the type I special case (b) As for the type II special case

Figure 5.4: Two energy distributions corresponding to the two conditions in Figure 5.3

As for the type I special case, when m is slid to 0, arc SM will shrink to one point at

which M will coincide with S, or arc MG will shrink to one point where M will coincide

with G when m is slid to 1. In either case, the energy will tend to infinity so that there

are two spikes taking place near m=0 and m=1 respectively as shown in Figure 5.3

(a). The SP I biarc candidate with the lowest energy can be found by either decreasing

or increasing the value of m, as the related energy distribution is almost symmetric

about m=0. Therefore, besides the one as shown in Figure 5.3 (d), there is another biarc

candidate of E = 0.022 that can be constructed at m = -71, but in a configuration similar

to the biarc candidate (e.g., Figure 5.3 (b)). However, it may not be necessary to iterate

the values of m in both negative and positive directions for path selection in real-world

applications (e.g., robot’s obstacles avoidance). If the obstacles existed at the left side

of the starting position (S), it would be more effective to only consider the alternative

biarc candidates that are generated by increasing the value of m positively.

As for the type II special case, when θ f is slid to ±180◦, 0◦, or ±360◦, one of the

arcs will shrink to one point, causing the energy approaching to infinity. Therefore,

there are five spikes that can occur near these angles as shown in Figure 5.3 (b), as

θ f ranges between -360◦ and 360◦. Since the energy distribution is symmetric about

θ f =0◦, θ f has another three values that can create one biarc candidate having the same

lowest energy of 0.618, apart from the one generated at θ f = 80◦ as shown in Figure 5.3

(h). Due to the property of symmetry, seeking one optimal SP II biarc candidate can be

further simplified by iterating the values of θ f merely in one-quarter of the whole range

(e.g, (180, 360◦]) where there must be one optimal SP biarc candidate taking place.
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5.3 Triarc Standard and Special Cases

(a) E=6.283 at k11=k21= 1.7 (b) E=4.106 at k11=-4.6 and k21= 4.5

(c) E=3.06 at k11=-3.9 and k21=-7.5

(d) Min E=0.473 at k11=-17.7 and k21=

186.6

(e) E=5.655 at m1= m2= 0.5 (f) E=3.144 at m1=1.7 and m2=-2.7

(g) E=4.165 at m1= 0.4 and m2=-0.6 (h) Min E=0.053 at m1=-70 and m2= 71
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Figure 5.5: Examples of standard triarc candidates from (a) to (d) under the condition

(⃗S=[20, 20], G⃗=[25.2, 20], θ1=300◦, θ2=60◦), and triarc candidates of special cases

from (e) to (f) under the condition (⃗S=[10, 10], G⃗=[20, 10], θ1=-90◦, θ2=90◦). It is

noted that both k11 and m1 are used for biarc SM2 variations in their own cases, while

both k21 and m2 are used for biarc M1G variations in their own cases.

(a) As for the triarc generic case (b) As for the triarc special case

Figure 5.6: Two energy distributions corresponding to the two conditions in Figure 5.5

After iterating all the available V⃗2, the triarc group with the lowest energy occurred

at the V⃗2 ([22.6, 21.5]) where there are several alternative triarc candidates that can be

constructed as shown from Figure 5.5 (a) to (d). Based on the discussion of biarc cases,

the biarc energy could decrease in most of the cases as the absolute value of the related

control variables increase. As for the standard condition, the triarc candidate with the

lowest energy (e.g., Figure 5.5 (d)) could be found when k11 increases negatively, whilst

k21 increases positively, and vice versa.

However, the variations of biarc SM2 and biarc M1G are independent of each other

so that arc SM1 can intersect with arc M2G in some pairs of k11 and k21, and hence

any triarc candidates with this issue are not considered as valid ones. Accordingly, as

shown in Figure 5.6 (a), the 2D energy contour contains an empty space with no energy

values where any pairs of k11 and k21 can cause an invalid triarc candidate, and hence

these combinations were removed by the triarc construction program before any energy

computations.

Moreover, as mentioned earlier, the range of a certain V⃗2 can be confined by con-

necting several critical points where the intersection issue occurred due to independent

variations of k11 and k21. In fact, when this issue occurred, it could be addressed by

tuning k11 or k21 again so that some of the points of limits might not exist, which means
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the approach of finding the range of V⃗2 in this project may not be unique. The lowest

energy (0.053) of the standard triarc group is near zero so that the range of the V⃗2 could

be acceptable. However, due to the uncertainties of finding the range of V⃗2, it could be

hard to decide whether an optimal triarc candidate obtained from other standard cases

has a local minimum or a global minimum. Meanwhile, as the range of a V⃗2 becomes

larger, the triarc program will require more computational efforts to find an optimal

triarc candidate for any standard cases, which could be less feasible for any cases that

result in a large range of V⃗2.

As for the triarc special case, the triarc candidate with the lowest energy (as shown in

Figure 5.5 (h)) can be found by decreasing m1, whilst increasing m2, and vice versa. If

the triarc candidate with the global minimum energy was infeasible in a real application

(e.g., robot’s obstacles avoidance as mentioned earlier), the robot could pick a feasible

one with similar low energy (e.g., as shown in Figure 5.6 (b) where almost all of the

pairs of m1 and m2 can construct a triarc candidate with the values of energy less than

1. Moreover, finding an optimal triarc candidate of any triarc special cases will only

involve tuning m1 and m2 without any further computations for V⃗2, so the optimal triarc

candidate that is obtained will have a global minimum value of energy.

5.4 Triarc Edge Cases

Under the triarc edge case, the triarc group with the lowest energy occurred at the V⃗2

([42.5, 24.0]) where there are several alternative triarc candidates that can be constructed

as shown from Figure 5.7 (a) to (d). Similarly, the optimal triarc candidate (Figure 5.7

(d)) can be found by decreasing k11, whilst increasing k21. Similar to Figure 5.6 (a),

there is also an empty space in the energy distribution as shown in Figure 5.8, as not all

the pairs of k11 and k21 can produce valid triarc candidates due to the intersection issue.

Since determining an optimal triarc candidate for any triarc edge cases will still involve

in finding a range of the related V⃗2, it could be difficult to judge whether the optimal

triarc candidate among the related triarc candidate group has a local minimum value or

a global minimum value.
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(a) E=0.449 at k11=4.4 and k21= 3.0 (b) E=1.97 at k11=-4.6 and k21= 90.7

(c) E=0.391 at k11=-6.9 and k21= 20.9 (d) E=0.473 at k11=-208.7, k21= 335.8

Figure 5.7: Examples of triarc candidates of one edge case from (a) to (d) under the

condition (⃗S=[30, 20], G⃗=[50, 20], θ1=θ2=0◦)

Figure 5.8: The energy distribution of the triarc edge case
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Conclusion

Due to the advantages of arc-based paths (conceptually simpler and less computational

efforts) compared to other complex curves, this study focused on the arc-based path

construction (i.e., biarcs and triarcs) within the context of path planning in robot

navigation, which has been presented in this thesis. Both biarc and triarc construction

methods are geometric-oriented, due to the advantages (less computational efforts and

greater density of valid path candidates) compared to other numerical methods. In either

construction method, a valid arc-based path can be obtained with a series of parameters

calculations (i.e., arcs’ joint points, arcs’ centres, arcs’ radii, arcs’ angles of rotation,

arcs’ tangent angles and arcs’ Cartesian points).

According to various user-defined information, the biarc construction program will

consider three categorisations (standard cases, special cases (type I and type II), and

edge cases). Special type I cases will occur when both t⃗1 and t⃗2 are perpendicular to the

line segment composed of S and G, and additionally are equal to each other. Any biarc

candidates of these cases will always consist of two semicircles. Special type II cases

will occur when both t⃗1 and t⃗2 are parallel to the line segment (SG), and additionally are

either towards or opposite each other. However, any biarc edge cases will occur when

the two tangent vectors have the same direction, and additionally are parallel to SG,

which cannot be handled by the biarc construction program. All the other conditions

will be identified as biarc standard cases by the biarc construction program.

As for biarc standard cases, some of the energy distributions could be symmetrical

about a certain point so that there will be two optimal candidates having the same lowest

energy that occurs at the lower and upper bounds of k1 respectively, while there could

be only one optimal candidate that occurs around the middle position of k1. However,

as for biarc special type I cases, the energy distributions under any arbitrary conditions
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will always be symmetric about 0 so that these cases will always have two optimal biarc

candidates occurring at the two bounds of m, which means the range of m could be cut

in half for use in practice. As for biarc special type II cases, there will always be four

optimal biarc candidates of the same lowest energy so that one quarter range of θ f could

be enough for use in practice without any further constraints (e.g., obstacles). Since

only one free control variable is enough for tuning the variations of biarc candidates,

any valid optimal biarc candidates to be found by the biarc construction program will

have a global minimum value of energy.

By extending the biarc program to the triarc construction program, the triarc program

will also need to classify different user-defined information into three categorisations

(triarc standard cases, triarc special cases, and triarc edge cases). Any triarc special

cases will occur when both t⃗1 and t⃗2 are perpendicular to SG, but the two tangent vectors

are opposite of each other. Any triarc edge cases will occur when both t⃗1 and t⃗2 have a

vertical direction or they have a horizontal direction where any biarc edge cases can be

solved here. As for any triarc standard cases or triarc edge cases, displaying alternative

triarc candidates can be achieved by varying V⃗2, k11 and k21. At a certain V⃗2, the triarc

candidate will be considered as two biarcs controlled by k11 and k21 respectively.

The method of finding the range of V⃗2 is based on the intersection issue where arc

one and arc three of a triarc candidate could intersect at some pairs of k11 and k21

due to their independent variations. However, the intersection issue can be handled by

re-tuning k11 and k21 at where it occurs. As a result, the range of V⃗2 under a certain

configuration could be not unique so that it may be difficult to judge whether an optimal

triarc candidate obtained for a certain triarc standard case or a certain triarc edge case

will have a global minimum value of energy. Additionally, more computational efforts

could arise for the triarc program as the range of V⃗2 becomes greater. Accordingly,

further investigations could be performed on how to determine a certain range of V⃗2, or

deriving another free control variable to replace V⃗2.

As for any triarc special cases, only two free control variables (i.e., m1 and m2)

are needed for controlling the variations of triarc candidates, as V⃗2 does not exist in

these cases. Therefore, an optimal triarc candidate obtained for a certain triarc special

case will have a global minimum value of energy. Furthermore, the two arc-based

construction algorithms were developed in a 2D space in this project, it could be

difficult to directly apply them onto a differential robotic car for further practical testing.

Therefore, future work can also be focused on extending the 2D algorithms in a 3D

space and then testing the path-planning performance with the modified 3D algorithms.



Appendix A

Relevant Formula used in Chapter 3

(V⃗2 −V⃗1)
2 = (k1 + k2)

2 ⇒ (G⃗− k2t⃗2 − S⃗− k1t⃗1)2 = k2
1 +2k1k2 + k2

2

⇒ (P⃗− k2t⃗2 − k1t⃗1)2 = k2
1 +2k1k2 + k2

2

⇒ P⃗P⃗−2k2P⃗⃗t2 −2k1P⃗t⃗1 + k2
2t⃗2t⃗2 +2k1k2t⃗1t⃗2 + k2

1t⃗1t⃗1 = k2
1 +2k1k2 + k2

2

⇒ P⃗P⃗−2k2P⃗t⃗2 −2k1P⃗t⃗1 + k2
2 +2k1k2t⃗1t⃗2 + k2

1 = k2
1 +2k1k2 + k2

2

⇒ P⃗P⃗−2k2P⃗⃗t2 −2k1P⃗t⃗1 +2k1k2t⃗1t⃗2 −2k1k2 = 0

⇒ P⃗P⃗−2k1P⃗t⃗1 − k2[2P⃗⃗t2 −2k1(⃗t1t⃗2 −1)] = 0

(A.0.1)

M⃗−V⃗1

V⃗2 − M⃗
=

k1

k2
⇒ k2(M⃗−V⃗1) = k1(V⃗2 − M⃗)

⇒ k2M⃗− k2V⃗1 = k1V⃗2 − k1M⃗ ⇒ k2M⃗+ k1M⃗ = k1V⃗2 + k2V⃗1

⇒ (k1 + k2)M⃗ = k2V⃗1 + k1V⃗2 ⇒ M⃗ =
k2

k1 + k2
V⃗1 +

k1

k1 + k2
V⃗2

⇒ M⃗ =
k2

k1 + k2
(⃗S+ k1t⃗1)+

k1

k1 + k2
(G⃗− k2t⃗2)

(A.0.2)

M⃗ = V⃗1 + b⃗t2 ⇒ M⃗ = V⃗1 +[(G⃗−V⃗1)⃗t2]⃗t2

⇒ M⃗ = (⃗S+ k1t⃗1)+ [(G⃗− S⃗− k1t⃗1)⃗t2]⃗t2

⇒ M⃗ = (⃗S+ k1t⃗1)+(G⃗t⃗2 − S⃗⃗t2 − k1t⃗1t⃗2)⃗t2

(A.0.3)
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(⃗S−C⃗1)
2 = (M⃗−C⃗1)

2 ⇒ S⃗S⃗−2S⃗C⃗1 +C⃗1C⃗1 = M⃗M⃗−2M⃗C⃗1 +C⃗1C⃗1

2M⃗C⃗1 −2S⃗C⃗1 = M⃗M⃗− S⃗S⃗ ⇒ 2C⃗1(M⃗− S⃗) = M⃗M⃗− S⃗S⃗

2(⃗S+ r1n⃗1)(M⃗− S⃗) = M⃗M⃗− S⃗S⃗ ⇒ 2S⃗M⃗−2S⃗S⃗+2r1n⃗1M⃗−2r1n⃗1S⃗ = M⃗M⃗− S⃗S⃗

2r1n⃗1(M⃗− S⃗) = M⃗M⃗−2S⃗M⃗+ S⃗S⃗ ⇒ r1 =

∣∣∣∣∣M⃗M⃗−2S⃗M⃗+ S⃗S⃗

2n⃗1(M⃗− S⃗)

∣∣∣∣∣
⇒ r1 =

∣∣∣∣∣(M⃗− S⃗)(M⃗− S⃗)

2n⃗1(M⃗− S⃗)

∣∣∣∣∣
(A.0.4)

θ⃗r1 =



−arccos( ˆC2G · ˆC2M)+2π k1 < 0 and ˆC1S× ˆC1M ≤ 0

arccos( ˆC2G · ˆC2M)−2π k1 < 0 and ˆC1S× ˆC1M > 0

arccos( ˆC2G · ˆC2M) k1 > 0 and ˆC1S× ˆC1M > 0

−arccos( ˆC2G · ˆC2M) k1 > 0 and ˆC1S× ˆC1M ≤ 0

(A.0.5)

θ⃗r2 =



arccos( ˆC2M · ˆC2G)−2π k2 ≤ 0 and ˆC2M× ˆC2G < 0

−arccos( ˆC2M · ˆC2G)+2π k2 < 0 and ˆC2M× ˆC2G > 0

−arccos( ˆC2M · ˆC2G) k2 > 0 and ˆC2M× ˆC2G > 0

arccos( ˆC2M · ˆC2G) k2 > 0 and ˆC2M× ˆC2G ≤ 0

(A.0.6)

θm2 =



(θm1 −180◦)−180◦ (θm1 ∈ Q1 or θm1 ∈ Q4) and θm1 > 0

(θm1 +180◦)+180◦ (θm1 ∈ Q1 or θm1 ∈ Q4) and θm1 < 0

(θm1 −540◦)−180◦ (θm1 ∈ Q2 or θm1 ∈ Q3) and θm1 > 0

(θm1 +540◦)+180◦ (θm1 ∈ Q2 or θm1 ∈ Q3) and θm1 < 0

−θm1 −180◦ (|θm1|= 90◦ or |θm1|= 270◦) and θm1 > 0

−θm1 +180◦ (|θm1|= 90◦ or |θm1|= 270◦) and θm1 < 0

−θm1 |θm1|= 180◦ or |θm1|= 360◦

θm1 +360◦ |θm1|= 0◦ and |⃗θr2|> 0

θm1 −360◦ |θm1|= 0◦ and |⃗θr2|< 0
(A.0.7)
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(xi, yi) =



xo + r sin(|θt |), yo + r sin(|θt |) θt ∈ [−90◦, 0◦]; |θ⃗r|< 0

xo + r sin(180◦−θt), yo + r cos(180◦−θt) θt ∈ [90◦, 180◦]; |θ⃗r|> 0

xo−r sin(360◦−|θt |), yo + r cos(|360◦−θt |) θt ∈ [−360◦, −270◦]; |θ⃗r|< 0

xo−r sin(θt−180◦), yo + r cos(θt−180◦) θt ∈ (180◦, 270◦]; |θ⃗r|> 0

xo−r sin(|θt |−180◦), yo−r cos(|θt |−180◦) θt ∈ (−270◦, −180◦]; |θ⃗r|< 0

xo−r sin(360◦−θt), yo−r cos(360◦θt) θt ∈ (270◦, 360◦]; |θ⃗r|> 0

xo + r sin(180◦−|θt |), yo−r cos(180◦−|θt |) θt ∈ (−180◦, −90◦); |θ⃗r|< 0

xo + r sin(θt), yo−r cos(θt) θt ∈ [0◦, 90◦); |θ⃗r|> 0

(A.0.8)

where |⃗θr| is the magnitude of the angle of rotation of an arc.

θ⃗r1 =

−180◦ (G⃗− S⃗)× t⃗2 ≥ 0

180◦ (G⃗− S⃗)× t⃗2 < 0
(A.0.9)

θ⃗r2 =

−180◦ (G⃗− S⃗)× t⃗2 ≤ 0

180◦ (G⃗− S⃗)× t⃗2 > 0
(A.0.10)

k2 =
(G⃗− S⃗)(G⃗− S⃗)−2(G⃗− S⃗)k1t⃗1

2(G⃗− S⃗)⃗t2 −2k1(⃗t1t⃗2 −1)
⇒ k2 =

(G⃗− S⃗)(G⃗− S⃗)−2(G⃗− S⃗)k2t⃗1
2(G⃗− S⃗)⃗t2 −2k2(⃗t1t⃗2 −1)

⇒ −2k2
2 (⃗t1t⃗2 −1)+2(G⃗− S⃗)⃗t2k2 +2(G⃗− S⃗)⃗t1k2 − (G⃗− S⃗)(G⃗− S⃗) = 0

⇒ k2
2(1− t⃗1t⃗2)+(G⃗− S⃗)(⃗t1 + t⃗2)k2 −

1
2
(G⃗− S⃗)(G⃗− S⃗) = 0

⇒ k2 =
−(G⃗− S⃗)(⃗t1 + t⃗2)±

√
[(G⃗− S⃗)(⃗t1 + t⃗2)]2 +2(1− t⃗1t⃗2)(G⃗− S⃗)(G⃗− S⃗)

2(1− t⃗1t⃗2)

⇒ k1int = k2 =
−(G⃗− S⃗)(⃗t1 + t⃗2)+

√
[(G⃗− S⃗)(⃗t1 + t⃗2)]2 +2(1− t⃗1t⃗2)(G⃗− S⃗)(G⃗− S⃗)

2(1− t⃗1t⃗2)
(A.0.11)
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Relevant Formula used in Chapter 4



(Eqn1, Eqn2) (Vy = 0 and ty1 ̸= 0) or (Vx = 0 and tx1 ̸= 0)

(Eqn1, Eqn3) (Vy = 0 and ty1 = 0) or (Vx = 0 and tx1 = 0)

(Eqn1, Eqn2) (Vx ̸= 0 and Vy ̸= 0) and (tx1 ̸= 0 and ty1 ̸= 0)

(Eqn1, Eqn2) (Vx ̸= 0 and Vy ̸= 0) and (tx1 ̸= 0 and ty1 ̸= 0)

(Eqn1, Eqn2) (Vx ̸= 0 and Vy ̸= 0) and (tx1 = 0 and ty1 ̸= 0)

(Eqn1, Eqn3) (Vx ̸= 0 and Vy ̸= 0) and (tx1 = 0 and ty1 = 0)

(B.0.1)

(V⃗2 −V⃗1)
2 = (k1 + k2)

2 ⇒ (V⃗2 −V⃗1)
2 = (2k2)

2

⇒ 3k2
2 +2(V⃗2t⃗1 − S⃗⃗t1)k2 +(2V⃗2S⃗− (⃗S)2 −V⃗2

2
) = 0

⇒ k2 =
−2(V⃗2t⃗1 − S⃗⃗t1)±

√
4(V⃗2t⃗1 − S⃗⃗t1)2 −12(2V⃗2S⃗− (⃗S)2 −V⃗2

2
)

6

⇒ k2 =
−2(V⃗2t⃗1 − S⃗⃗t1)+

√
4(V⃗2t⃗1 − S⃗⃗t1)2 −12(2V⃗2S⃗− (⃗S)2 −V⃗2

2
)

6

(B.0.2)
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