
Re-implementation and

Optimization of a Scalable Spike

Detection Algorithm for

Large-Scale Extracellular

Recordings

Kunchangtai “Rickey” Liang

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2022

Abstract

Extracellular recordings are one of the main techniques in neuroscience to record the

activity of neurons in the brain. Recent advances in engineering have made it possible

to record from thousands of channels simultaneously, creating large and complex data

sets. A critical step is the extraction of the activity of single neurons from these record-

ings, a process called spike sorting. The first step in spike sorting is the detection of

events (spikes) generated by neurons, which is time consuming as large amounts of raw

data have to be processed. In this project, an existing algorithms for spike detection

was rewritten in an object-oriented way, and, with the help of profiling, optimised for

performance on large data sets. The final version of the new package hs-detection

achieves both a 5.2x speedup from baseline and real-time performance on large-scale

recordings. In addition, it was integrated as a component into the SpikeInterface pack-

age, a toolkit that unifies access to numerous algorithms used in spike sorting.

i

Acknowledgements

I would like to thank my project supervisor Dr Matthias Hennig, who patiently guided

me throughout the process, discussing the implementation and providing advice for

writing.

I would also like to thank my parents for their mental support during my study.

ii

Table of Contents

1 Introduction 1
1.1 Achievements . 1

2 Background 3
2.1 Extracellular Neural Recordings . 3

2.2 Typical Spike Sorting Pipelines . 4

2.3 Efforts of SpikeInterface . 6

3 Herding Spikes Detection 8
3.1 Pre-processing . 8

3.2 Detection Loop . 9

3.3 Spike Processing . 11

3.4 Implementation Details . 12

4 Implementation of hs-detection 15
4.1 Python/Cython Implementation . 17

4.2 C++ Implementation . 20

4.2.1 Speedup Gained from Design 23

4.3 Further Optimization . 26

5 Experimental Results 30
5.1 Comparison with Other Implementations 31

5.2 Analysis on Parallelization . 31

5.3 Performance Issue with Median . 33

6 Discussion and Conclusions 35
6.1 Future Work . 35

Bibliography 37

iii

Chapter 1

Introduction

Analyzing the activity of neuron cells is essential to gaining a deeper understanding

of the mechanism in the brain. Several approaches are available to neuroscientists

to record the activity of neurons. Among those approaches, extracellular electrical

recording is advantageous due to its non-invasiveness (the recorded neurons are not

damaged) and the ability to record at scale. The recording is performed by putting an

electrode outside of a neuron cell (in the extracellular space), and the voltage trace rep-

resents the extracellular membrane potential of the neuron [7]. The recent development

of high-density multi-electrode arrays (HD-MEAs) allows the simultaneous recording

of thousands of neurons to come true, but the scale of the data is beyond what humans

could process manually.

Therefore, automatic spike sorters have been developed to analyze the recordings.

SpikeInterface (SI) [2] summarizes the previous works by furnishing a unified toolkit

for spike sorting with access to multiple data formats and spike sorters. The next stage

in the toolkit development is modularization, that is, breaking down the spike sorters

into sorting components that can be arbitrarily composed into a new spike sorter. This

project aims to follow this direction and take out the detection part of Herding Spikes

(HS) [15] to build it into a sorting component.

1.1 Achievements

The primary output of this project is the Python package hs-detection, released

on Python Package Index (PyPI) 1 and open-sourced on GitHub 2. This package is

1https://pypi.org/project/hs-detection/
2https://github.com/lkct/hs-detection

1

https://pypi.org/project/hs-detection/
https://github.com/lkct/hs-detection

Chapter 1. Introduction 2

positioned as an optional dependency of SI, serving as the backend of a new sorting

component. It is currently under discussion before being merged into the SI code base.

The code is completely rewritten to employ the object-oriented programming (OOP)

paradigm while addressing code style for better readability and maintainability for

future work. The optimization has led to a 5.2x speedup compared to the original

HS implementation and outperforms the existing detection component in SI by 62%.

Real-time performance has been gained on the test data with the large-scale recording

setting, and a further speedup of up to 2.7x can be achieved through parallelization.

Chapter 2

Background

This chapter presents the background knowledge and the motivation for this project. A

broader introduction is present in the Informatics Project Proposal [12] for this project,

and here we will focus on the content that relates the most to the rest of this dissertation.

2.1 Extracellular Neural Recordings

Neuron cells interact through all-or-none firing events called spikes, which appear as

potential changes with a specific pattern caused by ion flows through the cell mem-

brane. This phenomenon suggests a way to capture a neuron’s activity without invasive

approaches that may affect the cell’s functionality: an electrode can be placed in the

vicinity of the neuron to record the extracellular potential change. A typical spike’s

waveform is shown in Figure 2.1. The first property of extracellular recordings, as

in the figure, is the significant noise level. Unlike the intracellular voltage, which is

influenced only by the neuron itself, the extracellular voltage may contain the effect of

several nearby neurons. Also, the activities of distant neurons and synapse current can

appear as background noise [7]. However, the extracellular spikes still have specific

shapes standing out from the noise. During a spike, the extracellular voltage will first

deviate considerably from the baseline level, and then an afterhyperpolarization (AHP)

phase follows where the voltage goes in the other direction. This biphasic characteris-

tic is often used as a criterion to distinguish spikes from noise. In the implementation

of this project, the spike shape is flipped when processed, so the threshold for spikes is

positive.

Ever since the first extracellular recording in 1962 [9], people have been trying to

improve the recording device to provide more precise information in a larger amount.

3

Chapter 2. Background 4

Figure 2.1: The typical waveform of a spike with both extracellular and intracellular

voltages. Figure taken from [6].

With the rapid advancement of the semiconductor industry, arrays of micro-electrodes

can be manufactured to record simultaneously at multiple locations (channels). Merely

six years ago, people were studying “large, dense electrode arrays ” of 32 channels

[18], but today, we have HD-MEA probes with 5120 channels to record in vivo [20]

and near 20000-channel devices for cultured neurons [22]. The probes with an in-

creasing number of channels are posing a challenge to data processing. For example,

the Neuropixels 2.0 probe [20] can sample at 30 kHz at most, producing 14-bit raw

data. This would give, on 5120 channels, a rate of 150 million data points, or 430 MB,

per second (for comparison, a regular SATA SSD can work at 500MB/s). Some 1.5

TB of raw data could be generated during a typical recording experiment lasting one

hour, which makes it impossible to analyze with human labour. Therefore, computer

software for processing at such a large scale is in demand.

2.2 Typical Spike Sorting Pipelines

In order to identify spike activities from the recorded voltage trace, researchers have

developed different algorithms to accomplish the process called spike sorting. Al-

though the spike sorters may follow various configurations, they can generally be fit-

ted into a typical pipelined design [4, 7]. Firstly, the raw electrical signal may contain

Chapter 2. Background 5

Figure 2.2: The standard structure of a spike sorting pipeline. Figure taken from [7].

noises and Local Field Potential (LFP) signals, which do not contain information about

spikes and should be filtered [4]. It can be achieved with a band-pass filter, as shown

in Figure 2.2. Other pre-processing modules can also be added to fit the needs of the

following algorithm. Following is the spike detection module, which extracts spike

candidates from the pre-processed data. As spikes always involve a notable voltage

change, they can be detected by setting a threshold on the input signal [7]. The thresh-

old can even be a dynamic value to compensate for the shift in signal-to-noise ratio

(SNR). However, detecting spikes from a source relatively farther from the electrode

can be tricky, as the spike amplitude can be close to that of noises. Therefore, some

acceptance criteria can be established based on the shape properties of actual spikes,

e.g. the existence of a biphasic shape [7], to guarantee a low false-positive rate even

with a loose threshold. In addition, extra functionalities can be added to the detection

module to cope with the fact that multiple channels may pick up the same spike event

on an HD-MEA device. For example, in Herding Spikes [15], the detection part also

includes de-duplication and spike localization.

After spike detection, the waveforms of the detected spikes are extracted from the

voltage trace and projected into a low-dimensional feature space which will be fed to

the clustering stage. The most commonly used method for feature projection is prin-

cipal component analysis (PCA); at the same time, other approaches are also widely

Chapter 2. Background 6

adopted, including wavelet decomposition, independent component analysis (ICA),

and machine learning models [4, 7]. Next, the extracted features need to be clustered

and assigned to neurons, and there are two major routes leading to that. The first is

template matching (e.g. [21]). The spikes are first clustered in the feature space to

produce a template corresponding to the siring pattern of one neuron. Then, the de-

tected spikes are matched to the templates to be assigned to neurons. This approach

can effectively handle spike collisions because the collisions can be easily identified

by matching the waveform to the combination of different templates. The other way

to clustering is the density-based method (e.g. [8]). The spike features are clustered

by finding high-density regions separated by low-density spaces, and each region is

considered yielded by the same neuron. This method can naturally incorporate spike

locations (either from the localization in the detection step or an extra localization) by

adding them to the spike features so that distant neurons creating similar spike patterns

can be efficiently split. It is shown to be promising, especially on large-scale electrode

arrays.

Aside from the traditional pipelines, the success of neural networks (NN) has led

to the development of NN-based spike sorters, e.g., [11]. They either follow the same

pipeline structure with functional stages implemented in NN, or build an end-to-end

NN sorter with all stages fused together. The details are out of the scope of this paper.

2.3 Efforts of SpikeInterface

With different spike sorting algorithms keep emerging, a problem arises that there

is no common standard to be followed by developers. Each lab uses its own probe,

saves the recordings in its own file format, and develops spike sorters based on those.

This has contributed to the fragmentation of the software ecosystem [2]. The issue

prohibits the reproduction of results from other teams, making it tough to compare

different algorithms. In this context, the SpikeInterface (SI) [2] was proposed aiming

to provide a solution. SI acts as a layer of wrapper over different packages, providing

a unified interface to handle recording files (BaseRecording) and run spike sorters

(BaseSorter) along with various utilities for pre-/post-processing.

With the improved interoperability among different data and sorters using SI, new

insights have been gained through benchmarks. The authors of SI found that different

sorters mainly disagree on false-positive results, shedding light on the way to model

ensembling [2]. Going further in this direction is the SpikeForest project [13]. A large

Chapter 2. Background 7

amount of data were gathered with ground truth to benchmark commonly used spike

sorters, and it is shown that different algorithms perform differently on different types

of data. Therefore, it has become necessary to analyze the algorithms more in-depth to

identify the cause of such differences.

One of the weaknesses of the old version of SI was that it was nothing more than a

wrapper, treating the spike sorters as black boxes. Thus, it was challenging to analyze

what was happening inside the algorithm. Fortunately, the SI code base 1 is under

active development in an effort to address this issue. One of the current focuses of

SI is to decompose spike sorters into some fundamental building parts. As introduced

in the previous section, most spike sorters follow the same pipelined design, so the

building components can be interchangeable among different pipelines [4]. Hence,

SI tries to make available a set of sorting components that can be used to build new

pipelines. This way, different stages of the algorithms can be compared and analyzed,

enabling further understanding of the problem. However, this modularization work is

still in process and demands continuous development, and the purpose of the project

in this paper is to contribute a new sorting component to SI.

1https://github.com/SpikeInterface/spikeinterface

https://github.com/SpikeInterface/spikeinterface

Chapter 3

Herding Spikes Detection

This chapter describes the detection algorithm in Herding Spikes (HS) [15] and its

code base 1, which serves as the basis of the hs-detection package. Since there have

been modifications and improvements after the publication of [15], this chapter will

mainly refer to the code base and the wrapper in SpikeInterface (SI) 2.

The design of HS follows the typical spike sorting pipeline that can be divided

into detection and clustering. Figure 3.1 shows the composition of the detection (with

localization) stage in HS. Although there is no pre-processing stage in the HS code

base, the wrapper in SI includes one, so it is still included in the diagram to enable

opportunities for joint optimization with the rest of the algorithm. The detection stage

that comes after pre-processing consists of two major parts separated by a queue of

spikes. The detection loop iterates through the voltage trace looking for spike events

and pushes them to the spike queue, while the spike processing part takes the spikes

from the queue for de-duplication and localization and outputs the final result. The

algorithmic details will be introduced in the following sections.

3.1 Pre-processing

The original HS algorithm is designed for a specific data source and does not need

flexible pre-processing. However, SI has wrapped it with data pre-processors to apply

it to a broader range of data. As in a typical spike sorting pipeline described in Section

2.2, a band-pass filter with configurable lower and higher cutoff frequencies is first

added. Even though the HS algorithm has robustness mechanisms to cope with signal
1Specifically, the version at https://github.com/mhhennig/HS2/tree/76c612f7.
2Specific version of the wrapper at https://github.com/SpikeInterface/spikeinterface/

tree/280e2030/spikeinterface/sorters/herdingspikes/herdingspikes.py.

8

https://github.com/mhhennig/HS2/tree/76c612f7
https://github.com/SpikeInterface/spikeinterface/tree/280e2030/spikeinterface/sorters/herdingspikes/herdingspikes.py
https://github.com/SpikeInterface/spikeinterface/tree/280e2030/spikeinterface/sorters/herdingspikes/herdingspikes.py

Chapter 3. Herding Spikes Detection 9

P
re

-p
ro

ce
ss

in
g

D
et

ec
ti

o
n

 lo
o

p
S

p
ik

e
p

ro
ce

ss
in

g

Raw trace
Band-pass
(optional)

Normalization
(optional)

Common
reference

Running
estimation

Threshold
crossing

Shape
acceptance

Spike
Queue

Filtering

Decay
Filtering

Localization
(optional)

Result
write-out

Figure 3.1: The composition of the pre-processing and detection stage in HS.

noises and voltage drifts, the band-pass filter has been proven helpful in some cases

and added to the SI version.

The next point to deal with is the data range. HS expects int16 data from proper

on-probe signal amplifiers. However, it is not guaranteed that all the data will come

in the same form, which could require adjustments to algorithm parameters if not re-

scaled. Therefore, after the band-pass filter, a normalization module will move the

median of the input signal to 0 and scale the distance of the 5th and 95th percentiles

to a given value. The median and percentiles are calculated from some randomly sam-

pled chunks of the data. A type-casting to int16 is then performed when appropriate

because the calculations in the following parts can be faster than floating-point oper-

ations. Since the 16-bit dynamic range is more than enough for most neural record-

ings, a fixed multiplier of 64 is applied on the fly in the detection loop, providing 6

(= log2 64) bits more precision in integer division. However, aside from the efficiency

issue caused by redundant scaling, it also introduces information losses as the lower 6

bits could have contained a more precise result from the normalization (if not omitted).

3.2 Detection Loop

Now that the input is in relatively good shape, it is possible to detect spike events in

the trace. The detection loop iterates through the data by frames and runs through the

Chapter 3. Herding Spikes Detection 10

following steps to locate spikes.

1. The common median/average reference (CMR/CAR) across all channels is sub-

tracted from the input signal. By [15], CMR should give a better detection qual-

ity. However, in practice, CAR is preferred in the code base for a faster running

speed (see also Section 5.3).

2. Now that the voltage traces of all channels are properly centred, running estima-

tions will be generated on each channel for baseline b, which accounts for the

change of local field, and deviation d, which represents the noise level. Instead

of the median, the 67th percentile is chosen as the baseline level to compensate

for a bias towards stronger negative fluctuations. The estimations are updated

online based on the observed signal at the current frame:

• b is increased by d/τb if the input exceeds b+ d, and decreased by d/2τb

if the input falls below b−d, where τb is time constant for b updates. This

asymmetric update will provide an approximation of the 67th percentile.

• d is increased by ∆d if the signal falls between b+ d and b+ 5d, and de-

creased by the same amount if the signal either goes into b ∼ b + d or

exceeds b+ 6d. The decrease of 6d prevents a large drift of d caused by

spikes. A minimum value dmin is also set to guard the following normal-

ization.

After the estimations are updated for the current frame, the input voltage signal

V will be normalized to (V −b)/d so that the detection parameters below denote

values relative to baseline and deviation.

3. With the normalized voltage trace, spikes are detected with the primary detection

threshold θ. Whenever the voltage goes above this value, the corresponding

channel is marked as observing a candidate firing event unless it has already been

marked. However, when a higher voltage than the marked one is encountered

before the event ends at τspike time after the marker, it will replace the current

marker so that the marked value is always the peak of the spike, and its value is

used as the amplitude of the spike.

4. For all the marked channels, the shape of the spike event will be inspected. First,

there might be random fluctuations that briefly rise above θ. Therefore, the volt-

age is averaged from the first threshold crossing to τavg time after the peak. The

Chapter 3. Herding Spikes Detection 11

average amplitude of the signal should pass θavg. Candidates without a peak

length too short will be discarded at this step. Then, afterhyperpolarization

(AHP) must be present within τspike time. A voltage below θAHP must be ob-

served to form a valid biphasic shape of the spike. Finally, the candidate events

passing those criteria are taken as true spikes and pushed to the queue waiting

for further processing.

3.3 Spike Processing

On HD-MEA devices, it is quite common that a spike is picked up by several nearby

electrodes. Therefore, filtering is required to de-duplicate and output only one in the

group of events on multiple channels. As the electrical signal from the spike decays

by distance, it is a natural idea to pick the spike with the largest amplitude–closest to

the source neuron–and discard the others. However, it is essential first to define the

range that a spike event can affect. Given the setting of the recording experiment, it is

possible to decide a radius rneighb that a spike can be detected. At the same time, the

transmission of the signal in the media and the processing on the probe can introduce

jitter to the timing of an event, which can be estimated to be τ jitter. The two param-

eters rneighb and τ jitter together define a spatial-temporal neighbourhood that a spike

can reach at most. For each detected spike, the spike with maximum amplitude in the

neighbourhood should be the centre of its group, and all detections in the spatial neigh-

bourhood of the maximum spike are filtered out (note that it was found this function

had a mistake in the original implementation). This is the easiest and fastest way to

de-duplicate spikes. However, if there are two neurons that are very close (less than

rneighb) and they almost fire at the same time (within τ jitter), one of the two true spikes

will be filtered, which is undesirable. Thus, HS also implements another algorithm

named decay filtering.

In decay filtering, the spatial neighbours of a channel are further divided into inner

and outer channels, determined by a new radius parameter rinner. There should only be

one neuron covered by the inner neighbours, and the filtering can be done as before.

For outer neighbours, transmission decay is considered. It is expected that for a dupli-

cate spike at an outer neighbour channel, the observed amplitude should have decayed

by at least a ratio of ρ compared to the maximum amplitude. To find a decaying path

from the centre (maximum) spike, the minimum spanning tree algorithm is employed,

with the edge defined as the inner neighbour relation. Should there be another neuron

Chapter 3. Herding Spikes Detection 12

firing in the vicinity, its amplitude should stand out in the decayed amplitudes in the

neighbourhood and will not be filtered. The decay filtering has the potential to achieve

better results, but it has a higher algorithmic complexity and requires more effort in

parameter tuning.

After the nearest channel to the true spike is identified, localization follows to in-

terpolate a spike position more precise than merely electrode locations. By inspecting

the signal amplitude on nearby channels, it is possible to obtain a better spike location

based on the decaying pattern. HS assumes that the voltage roughly decays as ∼ 1/r

to ∼ 1/r2, and a weighted Center of Mass (CoM) is utilized as the refined position.

To decide the range of relevant channels, the concept of inner neighbours defined by

rinner is reused. The signals on inner neighbour channels of the current spike are barely

affected by other events, and to cope with jittering, the voltage amplitude between

±τ jitter time is averaged. To avoid disturbance of the current spike to the running es-

timation, the voltages for averaging are re-centred on the baseline at τrise time before

the peak when the voltage was yet to rise. Then, to counteract noise and other sources

of fluctuations, the median of average amplitudes is subtracted from all amplitudes to

form the weight. The CoM of all channel positions ignoring negative weights (i.e. half

of the inner neighbours are ignored) is accepted as the result.

3.4 Implementation Details

As the final part of the chapter, this section covers not algorithmic but implementa-

tional aspects of HS because implementation details can have a great impact on code

maintainability and performance.

The Herding Spikes sorter is supplied as a Python package published on PyPI 3.

It is a self-contained package with its own implementation of the classes for detection

and clustering, data wrappers, along with helper functions to process electrode layout.

On the other hand, in order to achieve higher efficiency, the aforementioned detection

algorithms are mostly implemented in full C++ code (only pre-processing in Python

but implemented in SI). The Python code interfaces with the C++ part through a layer

of Cython [1] wrapper that allows Python to call C++ functions and converts between

Python objects and C++ types. Some parameters of the algorithm are exposed to the

Python detection class through Cython, while others are hardcoded in C++. The related

parameters used in implementation are summarized in Table 3.1.

3https://pypi.org/project/herdingspikes/

https://pypi.org/project/herdingspikes/

Chapter 3. Herding Spikes Detection 13

When processing a large dataset, chunking is essential, as it is impractical to load

the data into memory all at once. This involves all three layers of the code. In Python,

the data wrapper needs to provide random access to the underlying data file specified

by frame range. In Cython, a loop is needed to iterate through the data by a given chunk

size C and invoke the C++ algorithm with the chunk. In C++, the implementation uses

a rolling-array style that keeps critical information of the detection loop at the end of a

chunk and carries it into the next chunk.

As of the implementation of detection in C++, the code basically observes the

Procedure Programming paradigm. The code flow follows the procedure shown in

Figure 3.1 and wraps each part of the algorithm in a function, with helper functions for

parameters and input processing, probe geometry handling, and other self-contained

functional code snippets. The parameters are saved to global variables, together with

other information that needs to be shared among multiple blocks. The detected spikes

are put into a structure which contains the frame and channel number where the spike

comes from, its amplitude, and some containers (e.g. for the waveform) that provide

information for spike processing. The processed results are finally written to a file

containing the frame, channel, amplitude, position and waveform of the spikes, which

is to be loaded later by the clustering stage.

Apart from setting the -O3 compilation flag 4, the C++ code employs some tricks

to accelerate the computations. Firstly, integers are used instead of floating-point num-

bers whenever possible, which are generally faster in computation, and the 16-bit in-

teger (int16) is used for the input voltage trace, which can even better utilize the

memory bandwidth and the vector cores (auto-vectorization enabled by -O3). To com-

pensate for the inability to represent fractional numbers, extra scaling (e.g. the 64

factor on input) is applied to provide more precision for average (i.e. integer division)

and the update of the running estimates (which would either be too coarse or need

fractional numbers). Also, as division is a very expensive operation on most modern

hardware, the /d in normalization on running estimation is converted to ×d on the

thresholds. Even more, the thresholds are also passed in as a scaled value, which en-

ables more precise adjustment of parameters but requires an extra scaling of the voltage

during the comparison.

4For an example explanation, see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.
html. For a specific compiler, please refer to its documentation.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Chapter 3. Herding Spikes Detection 14

Type Parameter Value a b c Description

Adjustable

C 100,000 fr. The data chunk size.

fL 300 Hz The lower cutoff frequency for band-pass.

fH 6000 Hz The higher cutoff frequency for band-pass.

snorm 20 The desired scale of data.

θ 10 The amplitude threshold of a spike.

θavg 6 The threshold for average amplitude.

θAHP 5.5 d The upper threshold for AHP amplitude.

τspike 1 ms The spike length since the peak to expect AHP.

τavg 0.4 ms The time length to check average amplitude.

τ jitter 0.2 ms The allowed jitter of spike timing.

τrise 0.26 ms The time for the baseline level before peak.

rneighb 90 µm The spatial neighbour radius.

rinner 70 µm The radius for inner neighbours.

ρ 1.0 The expected decay ratio, should be ≤1.

τstart 0.3 ms The time before peak for waveform cutout.

τend 1.8 ms The time after peak for waveform cutout.

Hardcoded

svolt -64 The additional scaling factor on voltage.

τbase 4 fr. The time constant for baseline update.

binit 0 The initial value of baseline.

dmin 200 The lower bound of deviation.

Magic number

sθ 2 The scaling factor at threshold comparison.

dinit 400 The initial value of deviation.

∆d 1 The update on deviation each time.

a The values for adjustable parameters are the default settings in the SI wrapper.
b The values for voltage come with no units because they are relative to normalization.
c The time parameters in ms will be converted to fr. (frames) given the sampling rate.
d This value might be buggy as AHP is expected to be below the baseline (θAHP < 0).

Table 3.1: The parameters in Herding Spikes divided into three categories. Adjustable:

parameters exposed to the user. Hardcoded: parameters defined as constants in the

source file. Magic number: parameters appearing in the code without explicit definition.

Chapter 4

Implementation of hs-detection

This chapter introduces the Python package of hs-detection that is developed start-

ing from the detection part in Herding Spikes (HS) and especially highlights the dif-

ferences between the original implementation and the newly developed package. The

fundamental design goals of hs-detection are:

• Clean up the Python/Cython interface for seamless integration into SpikeInter-

face (SI). Since this package is dedicated to the invocation from SI, the data

wrapper and utilities can be directly provided by SI in a standardized manner.

The dependencies should also be minimized to make a lightweight package.

• Refactor the C++ code for an Object-Oriented Programming (OOP) design. The

current implementation is Procedure-Oriented, which is naturally in line with

the pipelined structure of the detection algorithm. However, the clear code flow

comes with the price of opaque data flow. Therefore, the new implementation

aims for an OOP design which is data-centric. Besides, wrapping data and code

into classes also helps with maintenance and possible future extensions, as the

data structure and the operations can be replaced as a whole without affecting

other parts of the package, as long as the new class exposes the same interface.

Some ideas from the Functional Programming paradigm may also be borrowed

to focus the program on transformations of data.

• Optimize the implementation for better performance. As discussed before, the

HS implementation has tried to improve the running speed of the algorithm. Still,

there exists room for further optimization in several aspects, as shown through

profiling. Moreover, the original implementation is sequential, and the opportu-

nity for parallelization can also be explored.

15

Chapter 4. Implementation of hs-detection 16

An additional goal is portability, but it slightly conflicts with the above. On the

software side, there is no major concern. The package does not contain any Operating

System (OS) dependent code (the installation script can handle OS-dependent config-

urations); therefore, it should work anywhere with a Python environment and a proper

C++ compiler. Although some old systems may not be shipped with a compiler sup-

porting the C++17 standard, whose syntactic sugar is needed to improve the readability

of the code, there should be a newer compiler available to all mainstream platforms. On

the hardware side, optimization could become an issue. All the computational work in

hs-detection is executed by the CPU, but different CPUs can have different compu-

tational capabilities. Although there are general optimization techniques, they usually

do not lead to the best performance. Contrastingly, optimization tricks for a specific

architecture can bring about more significant improvements, but they may cause trou-

bles on another CPU. Here we assume that although the developers may be using a PC

with x86, ARM or other CPUs, the large-scale computation task will be run on a ded-

icated server, where the x86-64 (x64) architecture is still the mainstream. Therefore,

we devised a compromise that the optimization will target modern x64 systems while

keeping the code runnable, though less efficient, on other platforms.

The environment for the development of hs-detection is characterized as fol-

lows:

• OS: Windows 10 21H2 with Ubuntu 20.04 in Windows Subsystem for Linux

version 2 (WSL2).

• Language environment: Python 3.9 with CPython backend, Cython 0.29.30 [1],

and g++ 10.4 supplied by conda-forge 1.

• CPU: 11th Gen Intel® Core™ i7-11800H @ 2.30GHz, featuring Willow Cove

(Tiger Lake) microarchitecture 2. It has 8 cores/16 threads and 48 KB L1-D

Cache per core plus 24 MB L3 Cache shared.

• DRAM: dual-channel 32 GB DDR4-3200 SDRAM, of which 16 GB is allocated

to the WSL2 Virtual Machine (VM).

• Hard drive: PCIe 4.0 SSD (note that this is mostly irrelevant because everything

used can fit into the in-memory cache).
1https://anaconda.org/conda-forge/cxx-compiler.
2For full CPU capabilities, see https://ark.intel.com/content/www/us/en/ark/products/

213803/intel-core-i711800h-processor-24m-cache-up-to-4-60-ghz.html and also Ice Lake
Client Microarchitecture in [10].

https://anaconda.org/conda-forge/cxx-compiler
https://ark.intel.com/content/www/us/en/ark/products/213803/intel-core-i711800h-processor-24m-cache-up-to-4-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/213803/intel-core-i711800h-processor-24m-cache-up-to-4-60-ghz.html

Chapter 4. Implementation of hs-detection 17

In all of the following program runs with time cost measured, the band-pass filter

is turned off, as there are running estimations to compensate for it. The normalization

and localization are enabled to produce a complete result, while CAR (average) is used

instead of CMR (median) and plain spike filtering instead of decay filtering for a faster

speed. Further, the in-memory cache of the input data file will be warmed up before

the time cost is measured, while the output file will be directed to the null device

in memory so as to eliminate the impact of disk I/O speed to obtain a more reliable

judgement of the algorithm.

The dataset from the experiments comes from [3], which is first introduced in SI.

It contains a simulated 10-min trace of 250 neurons with independent Poisson firing

events recorded using Neuropixels 1.0 (384 channels, 32 kHz). An extra Gaussian

noise has been added to mimic the extracellular environment. To better fit the need

of the experiment, the data is transformed and saved in the channel-dense layout with

float32 format.

4.1 Python/Cython Implementation

The development of hs-detection starts from the original code base of HS and goes

on by gradually replacing the old pieces of code with the new implementation. A unit

test is implemented and regularly executed throughout the process to guarantee that

the program’s behaviour does not change during the re-implementation unless there is

a solid reason to do so. This way, it will be safe to apply any code changes without

worrying about the correctness of detection.

The first step in the development is redesigning the Python code to provide a plainer

interface to connect to SI. A the same time, we have decided to rewrite the Python part

thoroughly, aiming for better readability and maintainability. It has been years since

the first version of HS, and a number of new features have been added to Python

with old bugs fixed. Therefore, we have based the new implementation on Python 3.9

with some helpful features. Also, it was released about two years ago, which should

provide a reasonable breadth of deployment while still having years before end-of-

life. Moreover, type annotations proposed in Python Enhancement Proposal 484 [19]
3 will be employed in the new implementation. Since Python is a dynamically typed

language, the same variable can bind to different data types. Though it is convenient,

3Also incrementally enhanced after PEP-484, see https://docs.python.org/3/library/
typing.html#relevant-peps

https://docs.python.org/3/library/typing.html#relevant-peps
https://docs.python.org/3/library/typing.html#relevant-peps

Chapter 4. Implementation of hs-detection 18

ambiguations may arise when working on interfaces. With type annotations, the code

can hint to the developers about the type expected by an interface without adding extra

runtime constraints, which can help to reduce errors without loss of convenience. Many

modern Integrated Development Environments (IDEs) also have the ability to provide

type hints with auto-completion.

With the basic direction in mind, we may get down to rewriting. The first thing to

highlight is the NeuralProbe class in HS. It is used to handle the data reading from

recordings of a probe as well as the geometry of the electrode layout. Most of the func-

tionalities can now be supported by the BaseRecording interface in SI, which provides

unified access to all kinds of data formats. Some remaining utilities around geometry

can be merged into the main class of HSDetection. However, hs-detection will

be used as a dependency of SI, so it cannot rely on BaseRecording to avoid circular

dependency. This prevents the use of type annotations with BaseRecording. The so-

lution here is to implement a Protocol class that can act as a virtual base class for

BaseRecording without touching the inheritance hierarchy in SI. The Protocol can

supply essential interface hints to the input data of HSDetection. With the NeuralProbe

class removed, all the dependencies on data loading and visualization can then be dis-

missed. Now NumPy [16] is the only required dependency of hs-detection, which

provides the infrastructure of ndarray (the n-dimensional array) and can also cover

the calculation for geometry originally done with other packages.

The next step is about Cython. Without much work to handle, the central class

HSDetection in Python is only a wrapper around the function in Cython with parame-

ter parsing. Nevertheless, the Cython code is merely the entry point of the C++ exten-

sion, which converts the parameters and chunked data and the results between Python

and C++ types. Hence, there is no need to have multiple layers of wrapping and scatter

the code into multiple files. As it is very complicated to interface Python with C++

without the help of Cython, we may consider putting the Python code into Cython and

letting Cython directly handle both parameter parsing and conversion. This is possible

because Cython is a language extension of Python, and it can naturally compile Python

code. Besides, there can be a minor performance gain as the code is compiled before-

hand without invoking just-in-time (JIT) interpretation. Statically typed variables may

also be used where applicable, saving time from dynamic binding. Another highlight

of the hs-detection implementation is the use of pure Python mode 4 with .pxd

augmentation and magic decorators, which allows the static analyzers in modern IDEs

4https://cython.readthedocs.io/en/stable/src/tutorial/pure.html

https://cython.readthedocs.io/en/stable/src/tutorial/pure.html

Chapter 4. Implementation of hs-detection 19

to function fully for Cython code. However, there is a minor problem: even though

NumPy furnishes native support for Cython, a deprecation warning is unavoidable with

versioning issues (solutions only available in the unstable version of Cython).

An extra enhancement added to hs-detection is the ability to handle multiple

data segments. The BaseRecording class abstracts a dataset into one or more data

segments recorded with the same probe settings, where each segment is a recording

continuous in time. Previously, the SI directly wraps the HS package, which does not

have the facility to handle multi-segment data. An auxiliary loop is needed to iterate

the sorter through the segments. Now however, a BaseRecording is directly fed to

hs-detection, so this functionality can be directly added to the new package.

Up to now, the changes only affect the wrappers, i.e. the part of code that does not

include much actual work and does not have a noticeable influence on the performance.

For guidance on performance-impacting changes, performance analysis facilities must

be established first. Since most of the work now goes into pre-compiled Cython code,

some function calls get hidden from Python profilers. Thus, a process profiler is cho-

sen to profile the whole python process. Albeit the Python function/object names are

not easily visible from the profiler on the system side (due to Python’s dynamic bind-

ing), the most time-consuming functions are trackable from either the local C++ code

or NumPy’s shared library. Then, a sampling-based profiler is chosen instead of an

instrumentation-based one so the profiling overhead can be reduced by the sampling

rate and not impacted by the excessive number of function calls (again due to dynamic

binding).

Therefore, the Intel® Vtune™ Profiler [5] is selected, which satisfies the require-

ments here and also suits for the following parts of the work. To balance the accuracy

and overhead, the sampling rate used here is 100 samples/s. The profiling result of the

hs-detection at the current version on 2,000k frames of data is shown in Figure 4.1a.

An immediately visible problem in the result is that the data experiences several type

conversions, which is definitely unnecessary with the float32 input data. A more de-

tailed analysis shows the conversion path in float32->float64->float32->int16,

where the float64 comes from numpy.quantile for the 5th/95th percentile needed

for the scaling factor. As float32 already provides sufficient precision, it can be used

all along the way before being converted to int16. Therefore, instead of using the pre-

defined pre-processor, the normalization is moved into the hs-detection package

with float32 calculation (apparently integer types are not appropriate for scaling).

Figure 4.1b shows that this modification has approximately halved the data fetching

Chapter 4. Implementation of hs-detection 20

0.24

1.09

0.22 0.79
1.40

1.27
0.68 0.37

HSDetection.get_trace
np.multiply np.add

fread DOUBLE_multiply_AVX512

cast_float_to_double
DOUBLE_add_AVX512 cast_double_to_float

cast_float_to_short

(a) The time costs with the pre-defined normalization in SI.

 0.27

0.54

0.50
0.61

0.56
0.38

HSDetection.get_trace
np.multiply np.add

fread FLOAT_multiply_AVX512 FLOAT_add_AVX512 cast_float_to_short

(b) The time costs with the new float32 normalization.

Figure 4.1: The bar plots showing profiling results on 2,000k frames investigating type

conversions. The lengths of bars are the proportion of CPU time taken by each function.

Note that np.multiply and np.add have a small overhead the does not include actual

computation.

time (HSDetection.get trace).

4.2 C++ Implementation

On the C++ side, the most important objective is to facilitate the OOP paradigm. The

design finally achieved in hs-detection is displayed in Figure 4.2. In the following,

the ideas behind the design of each class are explained:

• Detection. This is the main class in the C++ code inherited from the original

implementation, which interfaces with Cython but also runs the detection loop.

In the HS code, the parameter set as in Table 3.1, along with other internal data,

is scattered in global variables, class members, constants, and magic numbers.

They are all cleaned up in the brand new Detection class. All the magic num-

bers are extracted from their initial places and defined as constants, which allows

one-key replacement when adjusting the values. The precision scale sθ is then

increased from 2 to 256, providing 8 bits of extra precision. On the other hand,

all of the adjustable parameters, as well as the internal states and buffers, are

put into the member variables of Detection and supplied to the modules on de-

mand, with nothing left in the globally shared scope. Therefore, it is possible to

construct multiple Detection instances without conflicts.

Chapter 4. Implementation of hs-detection 21

FirstElem-
Processor

QueueProcessor

MaxSpikeFinder SpikeDecayFiltererSpikeFilterer SpikeProcessor

SpikeLocalizer SpikeShapeWriter

1

1

Point

Detection

ProbeLayout RollingArraySpikeQueue

Spike

TraceWrapper

1..*

1

0..*

1

1

1

41

0..*

1

1

1
1

relys relys relys

relys relys

Figure 4.2: The UML class diagram for the classes and their relationship in

hs-detection. Abstract classes are italic.

In addition from the parameter interface, the Detection class also takes care

of results. The candidate events from the detection loop are pushed to the

SpikeQueue for further processing, and the processed results are returned from

the queue as a group of spikes, which will be handed back to Cython. This is dif-

ferent from HS kin that nothing is returned in memory in HS. Here, we assume

that despite the considerable size of spike waveforms on a large dataset, it is pos-

sible to fit the metadata of spikes into memory. In cases where the waveforms

are not needed, disk writing can be entirely avoided to improve performance.

• ProbeLayout. This class is in charge of the geometry calculations related to

channel locations on the probe. One thing that we did not pay much attention

to on the Python/Cython side is to retain the original NeuralProbe class, that

is, some geometry utilities put together with parameter parsing in HSDetection.

Now it is transferred here together with the neighbour checking implemented

initially in C++ to the ProbeLayout class, which directly accepts the channel

locations from the probe parameters in BaseRecording and hides the geometry

details, and provides support for filtering and localization. Another issue worth

mentioning is that the HS code base projects channel positions to integers when

Chapter 4. Implementation of hs-detection 22

passing to C++, causing a slight bias (around 1 nm level) in localization, and this

is fixed in ProbeLayout.

• TraceWrapper. This class wraps around the raw trace passed in as a pointer to

the data chunk and also manages indexing with the global frame number during

iteration through the chunks.

• RollingArray. This class is the container for trace-like internal data: scaled

trace, common reference, and running estimations. As opposed to TraceWrapper

which wraps a pointer from external code, RollingArray manages its own

memory space. To carry essential information across chunk boundaries, it is

a number of frames longer than the chunk size and always keeps the historical

data available by updating in a rolling manner.

• Spike. This class contains essential information related to a spike, including

frame, channel, amplitude, and position, and is instantiated when a spike is de-

tected, with the position default-initialized waiting for localization. Different

from the HS structure, the Spike here does not contain any extra information

that can be retrieved from RollingArray. The lightweight spikes can help to

reduce the time and space cost when working on the SpikeQueue.

• SpikeQueue. This class is a container of Spikes which temporarily holds the

detected candidates and triggers a round of processing when an adequate amount

of time has passed since the insertion of the head spike that the possible temporal

neighbours are all present, and the processed result, still in the form of Spikes,

will be handed back to Detection for returning. The underlying implementation

employs the list (doubly linked list) in the C++ Standard Template Library

(STL) without fast random access in favour of constant-time deletion.

The processing in the queue borrows some ideas from Functional Programming

for a paradigm centred on data transformations. the processing procedure can be

viewed as a higher-order function (HOF) that takes a set of QueueProcessor

as input to apply some transformations on the queue of spikes.

• QueueProcessor. This class is the abstract base for all processors working

on the SpikeQueue. The subclass implementation should also follow the HOF

design: algorithmic transformations from STL will be given a specific operator,

usually implemented as lambdas, to finish the desired work on the queue.

Chapter 4. Implementation of hs-detection 23

• MaxSpikeFinder. All the processing on spike centres around the maximum

spike (in amplitude) in the neighbourhood. Thus, the processing pipeline follows

the design that the maximum spike is first found and moved to the front of the

queue, and then all other processors will assume that the head element is the

special spike as the centre.

• SpikeFilterer/SpikeDecayFilterer. These two classes just implement the

plain spike filtering and the decay filtering described in Section 3.3. The only

thing to highlight is a bug in the original implementation hidden in this sentence:

‘all detections in the spatial neighbourhood of the maximum spike are filtered

out’. Unarguably, the correct implementation should use the spatial-temporal

neighbourhood for filtering, as implemented in hs-detection.

• FirstElemProcessor. This class connects the SpikeProcessor with the

QueueProcessor. In cope with the special-first-element model, a realiza-

tion of QueueProcessor is needed to apply the operator defined by some

SpikeProcessor to the special-first-element of the queue.

• SpikeProcessor. This class is the abstract base for the processors that only

work on a single spike (normally the one that survives filtering). This, however,

will be wrapped by some QueueProcessor to be uniformly invoked by the

processing function of SpikeQueue.

• SpikeLocalizer. This class handles the localization of the spike in question

given the ProbeLayout, and the signal amplitudes required are delivered by

RollingArray. Here, unlike in the HS that returns the location from the local-

ization module, the localized result is decoupled from the procedure and updated

to the position field of the spike.

• SpikeShapeWriter. This class simply outputs the shape of the spike waveform

to the file, which is to be loaded by other stages in the spike sorting pipeline.

As mentioned before, other information about spikes is not written but kept in

memory, but it is easy to also write it out without affecting other modules.

4.2.1 Speedup Gained from Design

Now that the design has been discussed, the rest of this section will cover some perfor-

mance issues. As shown by the profiling, the spike processing is expected to account

Chapter 4. Implementation of hs-detection 24

only for a small fraction of the time cost. Hence, the focus will be shifted to the detec-

tion loop, which has more potential for optimization.

An interesting observation is that merely sorting out the parameters can lead to a

significant speedup. After careful inspection, the cause is identified to be τbase, the

time constant for baseline update. As the time constant, it is inevitable to be used with

a division like baseline += deviation / tauBase. Yet as a constant parameter, it is pos-

sible to implement integer division with a power of 2 (e.g. 4) with a bit-shift, and there

are more advanced tricks [14] available for arbitrary constant values that are utilized

by many modern compilers (note that floating-point operations are unnecessary with

the scaling of svolt). However, the problem is with the const specifier. When used in

a class, as with the original HS implementation, it specifies that this value cannot be

modified after initialization. Nevertheless, it is essentially a class member bound to an

instance and can be re-initialized for each instance at construction. Thus, it only results

in a constant to the programmer but not the compiler and requires a true division oper-

ation at baseline update. As no division is available in the vectorized form, it also pro-

hibits the auto-vectorization in this part conducted by -O3 optimization. Alternatively,

constexpr specifies the value as a constant expression at compile time. Since it cannot

bind to a specific instance, the static keyword must be used in conjunction. Together,

they specify a value as a compile-time constant, and compilers can perform all kinds

of optimizations with the specific value (e.g. generate a 2-bit right shift for division by

4 and then vectorize) and remove the member from the actual class memory layout. It

is worth noting that to enable auto-vectorization for the running estimations, they must

be split from the loop that detects threshold crossings, as the check on spikes is too

complex for vectorization. An ablation experiment is conducted using the facilities in

Section 4.3 to benchmark the speed for calculating running estimations and is exhib-

ited in Table 4.1. This is the most significant speedup gained from re-implementation

except for parallelization.

1 class Detection

2 {

3 // Original one. This is an instance member constant.

4 const short tauBase = 4;

5

6 // Updated one. This is a compile -time constant.

7 static constexpr short tauBase = 4;

8 }

Listing 4.1: Two kinds of specifiers for tauBase.

Chapter 4. Implementation of hs-detection 25

Time cost of const static constexpr Speedup

Running est. 161.248 s 11.899 s 13.55x

Total 224.271 s 65.304 s 3.43x

Table 4.1: Ablation study for the constant-division issue with the same settings as in

Section 4.3, but not averaged on three runs because of the large margin. The total time

includes approximately 3.2 s overhead related to file buffers.

0.65

2.18

1.22
1.83

1.64
0.99

HSDetection.get_trace
np.multiply

fread FLOAT_multiply_AVX512 FLOAT_add_AVX512 cast_float_to_short

np.add

0.78

SHORT_multiply_AVX512

(a) The time costs with Cython/NumPy implementation.

0.77 0.52

fread

HSDetection.get_trace

Detection::traceScaleCast

Detection::Step

(b) The time costs with C++ implementation.

Figure 4.3: The bar plots showing profiling results on 6,000k frames for moving the

normalization and quantization into C++.

From Figure 4.1b, it can be seen that multiplication, addition and type conversion

from float32 to int16 are three standalone functions which read in the data, perform

the respective operations, and write out the result. This is how a Python expression

is interpreted. It can be seen in the figure that NumPy has tried to make use of the

widest AVX-512 instructions to improve performance, but the three pairs of load/store

introduce considerable memory access. As an alternative, a function for normalization-

and-quantization can be implemented that reads in the data, performs the multiplica-

tion, addition and type conversion, and writes out the result. Another pair of bars are

presented in Figure 4.3 to visualize the speedup on 6,000k frames. In addition, though

with little performance impact, the global scaling svolt is merged into the normalization

scale snorm, as they actually have exactly the same effect.

An additional improvement in C++ is the enforcement of memory alignment. The

start addresses of all memory buffers are aligned to the multiple of a power of 2, and

the number of channels is padded accordingly so that the address for each channel is

also aligned (most probes are designed with a multiple of 64 channels, so in most cases,

Chapter 4. Implementation of hs-detection 26

this has no effect). On the one hand, the address of each memory chunk in the size of

a frame is aligned to the multiple of 64 bytes (the typical cache line size and the width

of AVX-512), facilitating better vectorization assembly generated by the compiler and

better memory access pattern in memory-dense regions. On the other hand, the start

address of the large memory blocks allocated in RollingArrays aligns to 4 KB, the

typical page size, for better paging in virtual memory. Also, the rolling length of the

arrays is set to some power of 2 based on chunk size to support efficient indexing with

bitwise operations.

4.3 Further Optimization

The code in hs-detection has been dramatically optimized through the above pro-

cess, but up to now, we have only looked into some general strategies for optimization.

In the final section of this chapter, we will explore some techniques to look into the

microarchitecture of the CPU. Although the profiling results demonstrated in this sec-

tion depend heavily on the architecture of the development platform, the optimizations

taken ought to work across platforms. Finally, the possibility for parallelization will

also be inspected.

A different profiling strategy from the above is adopted in this section, aiming to

concentrate on possibly small improvements in the C++ code. Firstly, a C++ wrapper

is developed in place of the HSDetection class in Cython to make the code runnable as

a pure C++ program, relieving the time measurement from all the Python overheads.

Secondly, the normalization factor for pre-processing is pre-computed and directly

loaded when used, so the fixed overhead to sample the data and calculate the factor

is eliminated. The only overhead remaining is the reading of the raw data. Therefore

thirdly, each benchmark includes consecutive 10 repeated runs on the 6,000k frames

(approximately 9 GB) pre-loaded into memory in order to highlight even small speed

changes, and the results shown are averaged on three rounds of benchmarking after a

warm-up round. The profiler is still Vtune™, which also provides event-based profil-

ing that makes use of the hardware performance counters in the CPU to provide an

extremely detailed profiling report at a low overhead. However, to grant access to

the hardware events, the profiling here runs on bare-metal Windows OS instead of the

WSL2 VM.

The first thought for further optimization is to look into the most time-consuming

part of the algorithm, the detection loop. Through the previous changes, the so-called

Chapter 4. Implementation of hs-detection 27

79.73
78.62

65.13 64.74

60

65

70

75

80

85

Baseline Spike buffer Loop merging Alignment 512

T
im

e
 c

o
s
t
(s

)

Figure 4.4: The speedup gained from inspection of microarchitecture usage. overead

around 3.2s

detection loop actually contains 4 loops, each iterating through the data once. The

scaling loop contains the normalization from the Python fused with scaling for preci-

sion svolt ; the common-reference loop calculates the CMR/CAR across all channels;

the running-estimation loop is split from the main loop for better vectorization (see be-

low, this is over-split but the vectorization brings more gain); the main detection loop

does the actual work of checking threshold and shape criteria. Of the four loops, the

main detection loop takes more than half of the time. Therefore, the hotspots in this

loop will be analyzed for bottlenecks. Although the profiling summary does not show

a large portion of the CPU time stalled by memory access (8.9% for the loop), when

looking into the decomposed result for machine instructions, more than 40% of the

clockticks are spent in a small group of instructions with dense memory access, which

is related to the fetching of voltage trace and the pushing of spikes to queue. Based on

this result, it can be speculated that there are conflicts (e.g. break of locality) between

the memory access patterns of trace fetching and queue pushing, which can be proved

by removing the queue pushing. A reasonable explanation is that the underlying list

for the SpikeQueue needs complicated procedures to insert an element, breaking the

sequential access pattern of trace reading. The solution chosen is to allocate a contigu-

ous array to temporarily hold the detections from the detection loop and dump them

into the queue later. However, to avoid reallocations that again break memory access, a

huge array is needed to hold all the detected spikes from a data chunk, thus exchanging

space for time. The speed achieved is illustrated in Figure 4.4.

Next, what is drawing attention is the metrics on memory. Vtune™ shows the

Chapter 4. Implementation of hs-detection 28

Version L1 Bound L2 Bound L3 Bound DRAM Bound Memory Bound

Before 0.7% 2.1% 0.3% 0.8% 8.7%

After 0.9% 0.1% a 0.0% a 0.0% a 2.4%

a These metrics may not be reliable due to a low number of events sampled.

Table 4.2: The comparison of changes caused by loop merging in memory-related

profiling metrics on the main detection loop. Note that the value of Memory Bound is

not the sum of preceding values as they are calculated from different hardware events.

fraction of CPU pipeline slots wasted waiting for memory access to finish through

Memory Bound, which is further broken up into L1/L2/L3/DRAM Bounds for the

proportion of clockticks spent waiting for each level in the cache hierarchy. The metric

values are listed in row Before of Table 4.2 (metrics for the main detection loop are

listed as they are the most typical). The low value in L1 Bound and higher values in the

following levels imply an insufficient utilization of the fastest L1 cache. A considerable

ratio of memory requests even passes through the whole hierarchy and are served by

the main memory. This phenomenon is plausible considering that the iteration on the

lengthy voltage trace can easily outrun the caches. Similar patterns can be observed in

other loops, and the solution becomes apparent: there is no necessity to read the data

four times. Each frame can undergo all the processing before the next frame is read

(not possible to split further as calculating the common reference requires all channels

in a frame). However, for the sake of the following parallelization, the four loops are

not all merged together. The implementation carried out is to merge the scaling and

common-reference loops into one and the running-estimation and detection loops into

the other. The vectorization is not affected as the channels in each frame still form

vectors. The change in memory bounds metrics for this optimization is compared in

Table 4.2. Moreover, one sub-metric under the L1 Bound, 4K Aliasing, suggests that

it may not be the best practice to align several large blocks to the 4K boundary as in

RollingArrays, which may cause conflicts in the L1 Cache. However, Vtune™ also

hints that it is usually not a major problem with optimized hardware. Yet it can still

deliver a minor speedup in the memory-dense regions. Therefore, a smaller alignment

of 512 B is still tested, and it is shown in Figure 4.4 that there is indeed a slight

performance gain.

As the final effort for additional speedup, parallelization is applied to the loops us-

ing the multi-threading feature of OpenMP [17] built-in to most compilers. One option

Chapter 4. Implementation of hs-detection 29

is to parallelize everything by channel since the running estimation and detection are

time-dependent. Nevertheless, the common reference must be calculated on all chan-

nels and introduces a serialized region with two additional synchronizations. Thus, an

alternative is taken for full parallelization with only one synchronization point added,

that is, to parallelize the scaling and common reference by time and the common refer-

ence and detection by channel. This is why we do not merge everything into one loop

in the previous step. As a side effect of parallelization, insertion to the SpikeQueue

needs modifications. Some spike processors on the queue count on the fact that the

spikes are detected and pushed to the queue in time order, but it is not guaranteed

because the thread for part of the channels may run faster than others. Luckily, the

temporary linear buffer for the spikes introduced before can be sorted before dumping

its contents into the queue. However, it requires thread safety through atomic opera-

tions when saving the spikes to the buffer. Fortunately, as spikes are expected to occur

sparsely, the extra atomic locking and sorting will not cost too much overhead.

Chapter 5

Experimental Results

This chapter presents the results achieved by the implementation of the hs-detection

package. From the previous chapter, we can already conclude that the goals of the

coding style have been met. Therefore, this chapter will focus on the analysis of per-

formance. Although memory consumption is also a crucial criterion for evaluating a

program, it is not emphasized here because we have exchanged space for time during

optimization.

Here are the baseline settings of the experiments: The band-pass filter is turned off

as its time consumption is irrelevant to the detection algorithm, while the scaling (nor-

malization in previous versions) is on for the general use case. Nextly, CAR (common

average reference) is chosen over CMR (common median reference) to save time and

facilitate a valid benchmark (further analyzed in Section 5.3). On the spike processing

side, simple spike filtering is used instead of decay filtering, but they have only neg-

ligible differences in speed and filter ratio (the number of output spikes can influence

processing time in subsequent modules). The localization and waveform write-out

processors are both turned on for a complete result, but the output file is redirected to

the null device to reduce disk I/O cost. However, other parameter settings are all kept

default due to the lack of tools for parameter tuning.

The dataset for the experiment has been introduced in Section 2.1. Aside from the

original form in 384 channels, it is also transformed into a 6144-channel (=384×16)

recording in the following way: the whole length of the original recording is sliced

into 16 chunks, and they are concatenated in the channel dimension. The geometry of

the probe is copied and translated to other locations. This transformed recording can

serve as an example of the large-scale data produced by modern HD-MEAs.

The experiments are conducted on a computational server instead of the develop-

30

Chapter 5. Experimental Results 31

ment machine since we expect the processing of large-scale data will take place on

servers that may not be equipped with the most up-to-date hardware (e.g. with the

AVX-512 instructions). The platform used, which should be representative for most

users, is specified below:

• OS: Scientific Linux 7.9 (access to hardware performance counters disabled).

• CPU: 2x Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz, featuring Haswell mi-

croarchitecture 1. Each CPU has 12 cores/24 threads and 32 KB L1-D Cache per

core plus 30 MB L3 Cache shared.

• DRAM: 64 GB DDR4 SDRAM.

• Hard Drive: rotational HDD (note that the main memory is large enough to fit

the cache of the whole dataset).

5.1 Comparison with Other Implementations

To demonstrate the performance gain through the re-implementation based on the

Herding Spikes (HS) code base, we benchmark the output of each section in Chapter

4 and compare them with the original HS implementation. Also, to get an understand-

ing of how the program performs compared to other algorithms, the peak detection

from the sortingcomponents in SpikeInterface (SI) is taken, with the default param-

eter settings 2 (not enabling spike localization due to mechanism issues). All of the

algorithms are invoked form the user-faced wrapper functions in SI. The result on the

384-channel data is illustrated in Figure 5.1, and hs-detection offers a 5.2x speedup

compared to HS and outperforms peak detection by 62% even with an extra local-

ization module.

5.2 Analysis on Parallelization

To test the scalability of the parallel implementation of hs-deteciton, we run the

pure C++ mode on the multi-core test platform with the 6144-channel data with the

1For full CPU capabilities, see https://ark.intel.com/content/www/us/en/ark/products/
81908/intel-xeon-processor-e52680-v3-30m-cache-2-50-ghz.html and also Haswell Mi-
croarchitecture in [10].

2https://github.com/SpikeInterface/spikeinterface/blob/e17d2ff4/
spikeinterface/sortingcomponents/tests/test_peak_detection.py#L30-L32

https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e52680-v3-30m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e52680-v3-30m-cache-2-50-ghz.html
https://github.com/SpikeInterface/spikeinterface/blob/e17d2ff4/spikeinterface/sortingcomponents/tests/test_peak_detection.py#L30-L32
https://github.com/SpikeInterface/spikeinterface/blob/e17d2ff4/spikeinterface/sortingcomponents/tests/test_peak_detection.py#L30-L32

Chapter 5. Experimental Results 32

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
co

st
 (

s)

Num of frames (x200,000)

HS

peak-det

v1

v2

v3

Figure 5.1: The performance comparison among versions of hs-detection (v1-v3 for

Section 4.1-4.3), Herding Spikes (HS), and SI’s peak detection (peak-det). The data

is in 384 channels with a sampling rate of 32 kHz.

0

20

40

60

80

100

120

1 2 3 4 6 8 12 16 24

Ti
m

e
co

st
 (

s)

Num of threads

Other

Spike proc.

Detection

Running est.

Common avg.

Scale-cast

Figure 5.2: The scalability of hs-deteciton on multiple cores. The Other category

includes data loading and some initialization/finalization work. The data has 6144 chan-

nels at a 32 kHz sampling rate. The corresponding real-time speed is at 112.5 s time

cost.

Chapter 5. Experimental Results 33

pre-computed normalization factor to save initialization time. To further reduce the

time taken by file loading, only 120k frames (10%) of the test data are used, repeated

30 times. The equivalent recording length is 112.5 s. The number of threads uti-

lized ranges from 1 to 24, and the corresponding time costs are depicted in Figure 5.2.

It can be seen clearly that the speedup quickly saturates, with the best performance

only of 2.7x achieved with 16 cores. Among the major components displayed in the

figure, the main detection loop scales the best, while the scaling/type-casting and run-

ning estimation can degrade with too many cores. Those two parts are among the

most memory-dense regions and cannot benefit from loop merging to hide the memory

latency. On the development platform where hardware performance events are avail-

able, profiling results show that the memory bandwidth would quickly saturate with

only a few threads, which would begin to compete for resources. Adjusting the chunk

size parameter may help resolve this issue by improving caching yet introducing more

chunking overhead. However, when it comes to the demand for real-time processing,

it can be approximated even with only one core available, and four to six cores will be

sufficient to serve a doubled number of channels with the same sampling rate.

5.3 Performance Issue with Median

It has been mentioned before the common median reference (CMR) is too slow to be

useful, and the profiling report from Vtune™ in Figure 5.3 shows why. The algorithm

to calculate median (nth element in C++ STL) is actually a partial sort, which in-

cludes a bunch of conditions and irregular memory access. In a modern super-scalar

CPU with out-of-order execution, the inability to predict the next instruction to execute

significantly harms performance. As shown in the figure, a lot of instructions executed

are not retired (Bas Speculation), wasting resources on useless work. Meanwhile, each

branch misprediction requires a re-steer of instruction fetching, causing the instruction

decoding to perform poorly (Front-End Bound).

Chapter 5. Experimental Results 34

Figure 5.3: The CPU pipe diagram showing the microarchitecture usage with CMR.

Interpretation of the diagram: this shows the inefficiencies in the CPU pipeline, just like

a flow going through a pipe. Flowing in from the left is the full capability of the CPU

pipeline slots. The pipe gets narrowed when some slots are not doing useful work,

e.g., flushed due to branch misses or waiting for hardware resources. The output pipe

to the right represents actual instructions executed by the CPU. For details on the five

components, see Top-down Microarchitecture Analysis Method (TMAM) in [10].

Chapter 6

Discussion and Conclusions

In this project, we have taken the detection algorithm from Herding Spikes (HS) and

re-implemented it into a new package hs-detection. We have set the following goals:

1. seamless integration into SpikeInterface (SI) as a sorting component, 2. OOP design

in the C++ code, and 3. performance optimization and parallelization. To address the

first two goals, we have entirely rewritten the Python/Cython and C++ code starting

from the HS code base while keeping code readability and maintainability in mind. An

additional outcome is that some bugs in the original implementation are identified and

fixed in the new package.

As to the performance, several opportunities are exploited to make full use of the

popular x86-64 architecture while preserving compatibility on other platforms. The fi-

nal version has gained more than 5x speedup compared to the original implementation

and is also 60% faster than the existing detection component in SI. With the outstand-

ing processing speed, the algorithm can achieve real-time detection on the large-scale

dataset with 6144 channels and a 32 kHz sampling rate, i.e., near 200 million data

points per second, with a typical computational server. Although the implementation

cannot scale linearly with multi-threading, a further 2x speedup may be obtained with

up to 6 cores.

6.1 Future Work

With the achievements stated above, we can conclude that the established goals have

been accomplished. However, it is not yet the time to celebrate, as not all problems are

solved by this single piece of work. We expect the output of this project could serve as

a new foundation for future works in different directions.

35

Chapter 6. Discussion and Conclusions 36

One possible direction in contributing to the modularization work in SI is to de-

velop tools to evaluate the detection (possibly with localization) result. All existing

evaluation tools for spike sorting apply to the whole sorting pipeline. Nevertheless,

when decomposing spike sorters into components, testing the quality of results pro-

duced by each module is of vital importance. The research community demands such

a tool that helps understand the pros and cons of different algorithms.

Another interesting track is the development of real-time, online spike sorters. In

most scenarios today, the recording generated by a probe is stored in files waiting to be

analyzed later. However, with the continuing development of HD-MEA devices that

can record on a larger and larger scale, the space and time spent to save the raw data

keep increasing. Therefore, it will be helpful if the data recorded can be processed

before being saved to external storage. Some software is needed for this job, designed

to accept the data stream from the recording device, process it on-the-fly, and write out

the results. Although hs-detection is specialized for processing the data that resides

readily in the memory, its real-time speed makes it suitable as the starting point of such

an online toolkit.

There are also some specific points leading to further optimization of hs-detection:

• The current parallelization model in hs-detection only applies to the loops on

the voltage trace due to strong data dependency in spike processing. However,

the processing does not necessarily need to be performed by the main thread and

can be dispatched to worker threads given enough cores. Here the producer/con-

sumer model can be employed to be built upon the SpikeQueue. The threads for

the detection loops act as producers that put the detected spikes into the queue,

while the workers for spike processing fetch the spikes asynchronously from the

queue to process them. With proper workload balancing, it can achieve better

parallelism than the current implementation.

• Computational accelerators (e.g. GPUs) can sometimes facilitate better paral-

lelism with suitable task characteristics. Most of the detection loops can be fully

parallelized by channel, and the channel-dependent common reference may have

an efficient implementation with collective operations on many-core systems.

Therefore, it is possible to assign each channel to a core in a many-core pro-

cessor, and it only needs to handle simple computations. Moreover, many-core

platforms often supply a higher bandwidth to memory, exactly solving the mem-

ory starving issue with the parallelized hs-detection.

Bibliography

[1] Robert Bradshaw et al. Cython: C-Extensions for Python. Version 0.29.30. May

2022. URL: https://cython.org/.

[2] Alessio P Buccino et al. “SpikeInterface, a unified framework for spike sort-

ing”. In: eLife 9 (Nov. 2020). Ed. by Laura L Colgin, Sonja Grün, and Fabian

Kloosterman, e61834. ISSN: 2050-084X. DOI: 10.7554/eLife.61834.

[3] Alessio P. Buccino et al. sub-MEAREC-250neuron-Neuropixels. 2021. URL: https:

//dandiarchive.org/dandiset/000034/0.211030.0713/files?location=

sub-MEAREC-250neuron-Neuropixels.

[4] Alessio P. Buccino, Samuel Garcia, and Pierre Yger. “Spike sorting: new trends

and challenges of the era of high-density probes”. In: Progress in Biomedical

Engineering 4.2 (Apr. 2022), p. 022005. DOI: 10.1088/2516-1091/ac6b96.

[5] Fix Performance Bottlenecks with Intel® VTune™ Profiler. Version 2022.2.0.

Intel Corporation, Mar. 2022. URL: https://www.intel.com/content/www/

us/en/developer/tools/oneapi/vtune-profiler.html.

[6] Franz Hamilton, Tyrus Berry, and Timothy Sauer. “Tracking intracellular dy-

namics through extracellular measurements”. In: PLOS ONE 13.10 (Oct. 2018),

pp. 1–13. DOI: 10.1371/journal.pone.0205031.

[7] Matthias H. Hennig, Cole Hurwitz, and Martino Sorbaro. “Scaling Spike De-

tection and Sorting for Next-Generation Electrophysiology”. In: In Vitro Neu-

ronal Networks: From Culturing Methods to Neuro-Technological Applications.

Ed. by Michela Chiappalone, Valentina Pasquale, and Monica Frega. Cham:

Springer International Publishing, 2019, pp. 171–184. ISBN: 978-3-030-11135-

9. DOI: 10.1007/978-3-030-11135-9_7.

[8] Gerrit Hilgen et al. “Unsupervised Spike Sorting for Large-Scale, High-Density

Multielectrode Arrays”. In: Cell Reports 18.10 (2017), pp. 2521–2532. ISSN:

2211-1247. DOI: https://doi.org/10.1016/j.celrep.2017.02.038.

37

https://cython.org/
https://doi.org/10.7554/eLife.61834
https://dandiarchive.org/dandiset/000034/0.211030.0713/files?location=sub-MEAREC-250neuron-Neuropixels
https://dandiarchive.org/dandiset/000034/0.211030.0713/files?location=sub-MEAREC-250neuron-Neuropixels
https://dandiarchive.org/dandiset/000034/0.211030.0713/files?location=sub-MEAREC-250neuron-Neuropixels
https://doi.org/10.1088/2516-1091/ac6b96
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://doi.org/10.1371/journal.pone.0205031
https://doi.org/10.1007/978-3-030-11135-9_7
https://doi.org/https://doi.org/10.1016/j.celrep.2017.02.038

BIBLIOGRAPHY 38

[9] D. H. Hubel and T. N. Wiesel. “Receptive fields, binocular interaction and func-

tional architecture in the cat’s visual cortex”. In: The Journal of Physiology

160.1 (1962), pp. 106–154. DOI: 10.1113/jphysiol.1962.sp006837.

[10] Intel® 64 and IA-32 Architectures Optimization Reference Manual. Version 248966-

045. Intel Corporation. Feb. 2022. URL: https://www.intel.com/content/

www/us/en/developer/articles/technical/intel-sdm.html.

[11] Jin Hyung Lee et al. “YASS: Yet Another Spike Sorter”. In: Advances in Neural

Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Asso-

ciates, Inc., 2017. URL: https://proceedings.neurips.cc/paper/2017/

file/1943102704f8f8f3302c2b730728e023-Paper.pdf.

[12] Rickey K. Liang. “Towards Modularized Framework for Spike Sorting”. Infor-

matics Project Proposal. Apr. 2022.

[13] Jeremy Magland et al. “SpikeForest, reproducible web-facing ground-truth vali-

dation of automated neural spike sorters”. In: eLife 9 (May 2020). Ed. by Markus

Meister, Ronald L Calabrese, and Markus Meister, e55167. ISSN: 2050-084X.

DOI: 10.7554/eLife.55167.

[14] Niels Möller and Torbjorn Granlund. “Improved Division by Invariant Integers”.

In: IEEE Transactions on Computers 60.2 (Feb. 2011), pp. 165–175. ISSN:

1557-9956. DOI: 10.1109/TC.2010.143.

[15] Jens-Oliver Muthmann et al. “Spike Detection for Large Neural Populations

Using High Density Multielectrode Arrays”. In: Frontiers in Neuroinformatics

9 (2015). ISSN: 1662-5196. DOI: 10.3389/fninf.2015.00028.

[16] Travis E. Oliphant et al. NumPy: The fundamental package for scientific com-

puting with Python. Version 1.21.6. Apr. 2022. URL: https://numpy.org/.

[17] OpenMP Application Programming Interface. Version 4.5. OpenMP Architec-

ture Review Board, Nov. 2015. URL: https://www.openmp.org/.

[18] Cyrille Rossant et al. “Spike sorting for large, dense electrode arrays”. In: Na-

ture Neuroscience 19.4 (Apr. 2016), pp. 634–641. ISSN: 1546-1726. DOI: 10.

1038/nn.4268.

[19] Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. PEP 484 – Type Hints.

standard. Python Enhancement Proposals, 2015. URL: https://peps.python.

org/pep-0484/.

https://doi.org/10.1113/jphysiol.1962.sp006837
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://proceedings.neurips.cc/paper/2017/file/1943102704f8f8f3302c2b730728e023-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/1943102704f8f8f3302c2b730728e023-Paper.pdf
https://doi.org/10.7554/eLife.55167
https://doi.org/10.1109/TC.2010.143
https://doi.org/10.3389/fninf.2015.00028
https://numpy.org/
https://www.openmp.org/
https://doi.org/10.1038/nn.4268
https://doi.org/10.1038/nn.4268
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/

BIBLIOGRAPHY 39

[20] Nicholas A. Steinmetz et al. “Neuropixels 2.0: A miniaturized high-density

probe for stable, long-term brain recordings”. In: Science 372.6539 (2021), eabf4588.

DOI: 10.1126/science.abf4588.

[21] Carsen Stringer et al. “Spontaneous behaviors drive multidimensional, brain-

wide activity”. In: Science 364.6437 (2019), eaav7893. DOI: 10.1126/science.

aav7893.

[22] Xinyue Yuan et al. “Versatile live-cell activity analysis platform for characteriza-

tion of neuronal dynamics at single-cell and network level”. In: Nature Commu-

nications 11.1 (Sept. 2020), p. 4854. ISSN: 2041-1723. DOI: 10.1038/s41467-

020-18620-4.

https://doi.org/10.1126/science.abf4588
https://doi.org/10.1126/science.aav7893
https://doi.org/10.1126/science.aav7893
https://doi.org/10.1038/s41467-020-18620-4
https://doi.org/10.1038/s41467-020-18620-4

	Introduction
	Achievements

	Background
	Extracellular Neural Recordings
	Typical Spike Sorting Pipelines
	Efforts of SpikeInterface

	Herding Spikes Detection
	Pre-processing
	Detection Loop
	Spike Processing
	Implementation Details

	Implementation of hs-detection
	Python/Cython Implementation
	C++ Implementation
	Speedup Gained from Design

	Further Optimization

	Experimental Results
	Comparison with Other Implementations
	Analysis on Parallelization
	Performance Issue with Median

	Discussion and Conclusions
	Future Work

	Bibliography

