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Abstract

Globally, over 55 million people live with dementia, of which Alzheimer’s Disease

(AD) accounts for the majority of dementia diagnoses. The onset of AD could be

delayed through early detection and greater understanding of the risk factors associated

with the disease. While existing machine learning-based AD risk prediction models

have achieved promising results, their clinical utility is restricted by an over-reliance

on diagnostic imaging and biomarker sampling data, low model interpretability, and

poor generalisability. By employing a transfer learning framework, our work aims to

circumvent these limitations, facilitating AD risk prediction in younger, asymptomatic

populations. Our best-performing source model demonstrated a sensitivity of 71.72%,

specificity of 89.26%, AUROC of 86.90% and GA of 80.01 %, with our target model

achieving sensitivity 47.06%, specificity 57.14%, GA 51.86%, and AUROC 50.84%.

Our findings from feature importance analysis concur with previous reports of important

modifiable AD risk factors, and suggest the presence of thyroid disease and kidney

disease as putative AD risk factors. We propose that our model could potentially be

utilised as a population-wide screening tool for prediction of future AD risk, and thus

contribute to lowering the disease burden of AD.
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Chapter 1

Introduction

1.1 Dementia and Alzheimer’s Disease

Dementia is a clinical syndrome associated with progressive, irreversible cognitive

decline – affecting memory, comprehension, ability to learn, social functioning, and

language skills, leading to increasing loss of independence and function [1]. Worldwide,

dementia is thought to affect 10 million new patients annually, with global prevalence

estimated to reach 78 million by the year 2030 [18]. In addition to being the seventh

leading cause of death globally, its socioeconomic burden has been estimated at US$

1.3 trillion in 2019, with figures set to double by 2030 [1]. While there are a number of

causes of dementia, Alzheimer’s disease (AD) is by far the commonest, accounting for

60-70% of all cases [1].

The pathophysiology of AD is characterised by the formation of abnormal protein

aggregates, known as “plaques” or “tangles”, in the nerve cells (or “neurons”) of the

brain. These abnormal protein aggregates disrupt cellular processes, leading to neuronal

damage, and inhibiting normal neurotransmission [3]. This cycle of abnormal protein

aggregate formation and neuronal damage continues over a period of years to decades,

resulting in a progressive loss of brain tissue. While there is currently no cure for AD,

early diagnosis and intervention could delay AD onset and slow disease progression.

As the brain changes seen in AD often precede dementia onset by more than 20 years

[2], identifying potential risk factors could potentially inform strategies to reduce the

risk of developing AD in the population.

1
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1.2 Adopting Machine Learning for Alzheimer’s Disease

Risk Prediction

Recent advancements in computational approaches like machine learning (ML) have

made it possible to personalise patient management plans, and have been adapted for

use in detecting heart diseases, breast cancer and even real-time prediction of septic

shock [4, 15, 49]. Given the success of these medical applications, the development of

ML-based AD risk prediction models have become increasingly popular in the recent

years [20, 29], as they are able to capture complex interactions of risk factors, a clear

advantage over traditional statistical methods [19].

Current approaches to developing ML-based AD risk prediction models suffer from

a number of limitations that restrict their clinical utility [19, 34], including lack of

model interpretability (particularly in “black-box” models) [30, 38], the absence of

external validation, overfitting, poor model generalisability, and an over-reliance on data

acquired through diagnostic neuroimaging (e.g. Magnetic Resonance Imaging MRI

brain scans) and biomarker sampling techniques (e.g. cerebrospinal fluid sampling)

[19, 34, 43].

In an attempt to circumvent these challenges, our work aimed to build on the

transfer learning framework for AD risk prediction, as proposed by Danso et al. [14].

We hypothesise that the adoption of a transfer learning framework will efficiently

improve model generalisability, as it avoids training multiple models from scratch

on different datasets [32, 47]. Since no ML-based AD risk prediction models have

been developed using the EPAD dataset [39], we adopted this dataset as our source

domain, predicting that novel relationships between AD risk factors could potentially be

uncovered from this data. Upon developing the source model on the EPAD dataset, the

knowledge learned by this model was subsequently “transferred” for the development

of a target model, which relied on the PREVENT dataset [37] as our target domain.

This enabled us to both assess and enhance model generalisability to a younger and

undiagnosed population drawn from the PREVENT dataset (i.e. the target domain).

For our study, we relied on two tree-based classifiers, namely the Random Forest

(RF) and the XGBoost algorithm. While both classifiers are considered ensemble-

based algorithms (i.e. algorithms that combine multiple weak learners to form a strong

learner), they differ in terms of the learning strategy employed. For instance, RF

relies on the concept of bagging, that is by training many decision trees on different

bootstrapped samples (i.e. sampling with replacement) of the data [8]. Meanwhile, the
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XGBoost algorithm is based on the gradient boosting technique, whereby decision trees

are sequentially fitted and added to the ensemble, with each newly added decision tree

being trained to correct the prediction errors made by the prior tree [10].

Furthermore, to address existing concerns over model explainability, we explored

effective approaches for visualising risk factors that drive the predictions made by our

models.

1.3 Rationale and Significance

Considering the growing socioeconomic and health burden associated with AD, it is

crucial that timely efforts to mitigate its effects are initiated. Through developing an

intuitive ML model for predicting AD risk within asymptomatic individuals, we aim

to facilitate the identification of patients at high risk of developing AD, as well as

the identification of modifiable risk factors that could potentially reduce the risk of

developing AD. Equally significant is our efforts to generate a highly-interpretable

model, which we envision will provide clinical insight and engender trust in algorithmic

decision-making among clinicians.

The development of a ML model trained solely on patient socio-demographic data,

without relying on data from advanced diagnostic techniques such as neuroimaging

or biomarker sampling, lends itself well for use as a population-wide screening tool

for high AD risk. While common AD diagnostic techniques such as MRI scanning or

cerebrospinal fluid sampling are effective at picking up patients with early-stage AD that

do not display overt clinical symptoms [6, 7, 45], the relatively high cost of performing

these interventions and their side effect profile make it impractical to apply these

techniques for population-wide screening of asymptomatic patients, resulting in missed

opportunities for early intervention in AD. Thus, since the majority of asymptomatic

patients will not routinely receive MRI scans or undergo CSF sampling for AD risk

stratification [36, 14], an alternative AD risk prediction model that does not rely on

biomarkers or medical imaging would enable a sufficiently large number of potential

AD cases to be picked up, enabling clinicians to initiate disease-modifying interventions

earlier in the disease course.
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Materials and Methods

2.1 Machine learning framework for AD risk prediction

As mentioned previously, the development of AD is known to precede the onset of

clinical symptoms and behavioural signs by decades, resulting in considerable difficulty

in the prevention and treatment of AD. Nevertheless, this suggests that there is a

substantial window of opportunity for which early intervention could be taken to delay

AD onset and slow disease progression. The aim of this project was to thus develop a

machine learning-based AD risk prediction model, capable of identifying individuals

at increased risk of developing AD given a range of characteristics or risk factors

(i.e. features), decades before the onset of clinically-apparent AD. The problem was

formulated as a binary classification task which involved the prediction two discrete

labels (“High-Risk” vs. “Low-Risk”).

We employed a transfer learning framework in developing our AD risk prediction

model. As traditional ML methods rely on the assumption that the training and test

data share the same feature space and data distribution, such models may suffer from

a decline in predictive performance when presented with new data with different

distributions to the training set, resulting in an inability to adapt to novel scenarios.

A potential solution to this would be to retrain the model from scratch using newly

collected training data that reflects the new distribution. In most real-world applications,

as the collection of sufficient data for training is often expensive, a more efficient

approach would be to leverage knowledge learned by the original model and readapt it

for the new data distribution. By adopting a transfer learning framework, we were able

to further relax the identical distribution assumption, thus enabling the generalisation

of our model across two different patient populations. This is illustrated in Figure

4
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Figure 2.1: Figure depicting transfer learning framework (adapted from Danso et al. [14])

2.1, whereby a “source model” was first trained on the EPAD cohort data (i.e. the

“source domain”) [39], and later adapted for building the “target model” which is able

to predict AD risk in the PREVENT cohort data (i.e. the “target domain”). Details of

the PREVENT and EPAD datasets are discussed in the following section.

2.2 Data Description

In developing a transfer learning framework, we mainly relied on two data sources:

(i) the EPAD LCS V.IMI dataset [39], derived from the Longitudinal Cohort Study

(LCS) component of the European Prevention of Alzheimer’s Dementia (EPAD) project,

aimed at developing an environment for testing different interventions for secondary

prevention of AD, and (ii) the PREVENT baseline dataset [37], curated as part of the

PREVENT Dementia programme to aid research into mid-life risk factors of AD. As

both the EPAD and PREVENT studies are related to dementia research, they share

similarities in terms of the types of variables collected, including socio-demographic

information, genetics, cognitive and neuroimaging outcomes, as well as lifestyle and

behavioural characteristics. However, the varying rationales and objectives of both

studies have resulted in differences in terms of their data distribution, making transfer

learning an ideal tool for the assessment of model generalisability . Notably, the EPAD

population consists of individuals drawn across Europe with a mean age of 66 years,
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whereas the PREVENT dataset is limited to a population drawn from the UK and

Ireland with a relatively lower mean age (52 years). Furthermore, some individuals

from the EPAD cohort have been diagnosed with AD while the PREVENT cohort only

consists of individuals who are without an AD diagnosis.

2.3 Data Preprocessing

The EPAD study followed up on participants annually, covering the period between

2016 to 2019. By merging the data of individuals across each visit, we were able to

expand our sample size from 2096 unique individuals to 3690 observations covering 3

years of follow-up data. In contrast, the PREVENT dataset being used is the baseline

data involving 700 observations (before accounting for missing values), covering the

period between February 2014 to October 2018.

2.3.1 Feature Engineering

Transfer learning can be categorised depending on the similarity of the source and

target domains: heterogeneous transfer learning refers to the case when the feature

spaces of the source and target domains are different, whereas homogeneous transfer

learning is applied when the source and target domains share the same feature space.

Our study involved the latter, as the EPAD and PREVENT datasets overlap considerably

in their recorded features or variables, typical of AD risk stratification studies. To enable

homogeneous transfer learning, we first identified common features shared between

both datasets. Excluding any neuroimaging and cognitive assessment outcomes, 33

features have been identified altogether, as summarised in Table 2.1. Furthermore,

due to some differences in the format that common variables were recorded in – for

example, the same variable could be encoded as categorical levels in EPAD but as

numerical values in PREVENT – further preprocessing steps were employed to ensure

a unified representation. Excluding the features corresponding to age and number of

years of education, all other features were encoded to either have binary or ordinal

feature representation. For instance, binary encoding was applied to all medical history

features, with “0” and “1” indicating the absence and presence of a medical condition

respectively. Similarly, features such as “handedness”, “gender”, “smoke”, “drug use”,

“sibling dementia”, and “physical activity” all had two categorical levels and thus

processed to have binary feature representation, as shown in Table X. For the feature
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“marital status”, there were altogether four categories including “single”, “married or

cohabitating”, “divorced” and “widowed”, with each being represented with binary

encoding “1” and “0” based on a response of “yes” and “no” respectively.

Ordinal encoding was used to represent features such as “BMI class” and “Alcohol

unit”, so as to retain the natural ordering or ranking inherent to the categories of these

features. Consequently, the Body Mass Index (BMI) was processed to have four ordinal

levels “0”, “1”, “2”, and “3”, respectively representing each of the following categories

in accordance with WHO classification [50]: underweight (<18.5 kg/m2), normal

(18.5–24.9 kg/m2), overweight (25–29.9 kg/m2), and obese (>30 kg/m2). The feature

“alcohol unit” represents the number of units of alcohol intake per week based on UK

standards, and we have introduced three categorical levels: Never (0 units), Low (1-14

units), High (≥14 units) which were encoded as “0”, “1” and “2” respectively. This

decision was made based on the recommended alcohol intake suggested by the NHS

[31], whereby an alcohol intake of 14 or more units per week is considered excessive.

Finally, further preprocessing procedures were applied to derive the outcome vari-

able “AD risk”. As mentioned previously, the EPAD study collected data on whether a

participant had been diagnosed with AD or not - however, this information was absent

in the PREVENT dataset. Furthermore, as participants who were diagnosed with AD

were subsequently dropped from the EPAD study, only 30 individuals out of the 3690

observations were found to have an AD diagnosis, thus constituting less than 1% of the

dataset. Therefore, to avoid the severe class imbalance as well as ensure consistency

across both datasets, we employed a classification scheme similar to that of Danso et

al. [14] that did not rely on AD diagnosis, but instead classified individuals into “high

AD risk” or “low AD risk”. Ritchie et al. [37] previously described the stratification of

individual AD risk based on the Apolipoprotein E 4 (ApoE 4) genotype of each individ-

ual as well as their parental history of dementia. As this information was collected in

both studies, we were able to derive the outcome variable as follows: Individuals with a

parental dementia diagnosis and ApoE 4 genotype are labelled as “High-Risk”, whereas

all other individuals are labelled as “Low-Risk”.

2.3.2 Handling of Missing Data

As with any real-world dataset, both the EPAD and PREVENT data contained missing

values. The proportion of missing values for each variable are provided in Table 2.2.

Before training the source model, a machine-learning based data imputation technique



Chapter 2. Materials and Methods 8

Table 2.1: Common features between the EPAD and PREVENT datasets.

was applied on the EPAD dataset using the MissForest algorithm [40], which is available

through the missingpy Python package. This step essentially applied the Random Forest

algorithm on the EPAD dataset for missing data imputation in an iterative fashion. For

each column with missing values, the MissForest algorithm fitted a Random Forest

model using the aforementioned column as the outcome variable, and other columns

as the predictors. Meanwhile, missing values in the predictor columns were imputed,

either using their means (in the case of numerical features) or modes (in the case of

categorical features), allowing for the Random Forest model to be trained on both

observed and imputed values. The missing values in the outcome variable were then

imputed with the predictions of the fitted Random Forest model. The algorithm iterates

through each column in the order of increasing number of missing values, and this
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process of training and predicting is repeated until a stopping criterion is met, or a

specified number iterations is reached.

As the PREVENT dataset was mainly used for updating the source model through

transfer learning, we simply applied listwise deletion in handling missing data, i.e.

observations with missing values were omitted, resulting in the remaining 361 complete

observations used for developing the target model.

Dataset Feature with missing values No. of rows of mising values; Proportion

EPAD (n=3690) handedness 17; 0.46%

years education 1; 0.0003%

marital status 1; 0.0003%

physical activity 56; 1.52%

smoke 163; 4.42%

drug use 163; 4.42%

alcohol unit 90; 2.44%

bmi class 114; 3.09%

PREVENT (n=700 be-

fore dropping missing

values)

handedness 239; 34.14%

years education 1; 0.14%

marital status 2; 0.29%

physical activity 5; 0.71%

smoke 2; 0.29%

drug use 3; 0.43%

alcohol unit 158; 22.57%

bmi class 2; 0.29%

sibling dementia 6; 0.86%

hypertension 2; 0.29%

diabetes 3; 0.43%

hyperlipidaemia 1; 0.14%

anxiety 1; 0.14%

depression 2; 0.29%

sleep disorder 4; 0.57%

eye disorder 2; 0.29%

hearing disorder 2; 0.29%

Table 2.2: Study characteristics
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2.3.3 Handling Class Imbalance

The class distributions for the EPAD and PREVENT datasets are as follows: “High

Risk” (26.86%) and “Low-Risk” (73.14%) ; “High Risk” (23%) and “Low-Risk”

(77%), respectively. We observe that in both datasets, the proportion of observations

corresponding to low AD risk is significantly higher than that of high AD risk, thereby

introducing a problem of class imbalance [27]. In many classification tasks, imbalanced

classes pose added difficulty as most machine learning algorithms were designed to

optimise performance based on an equal number of examples from each class, making

it more challenging for the model to learn from the minority class. This tendency to

learn from the majority class and disregard examples from the minority class – which

is often of more interest to the classification task at hand – frequently results in poor

predictive performance [27].

To address this class imbalance, we applied the Synthetic Minority Oversampling

Technique (SMOTE) [9], an oversampling approach in which new artificial samples

from the minority class were generated. In short, a sample from the minority class

alongside two or more of its nearest neighbours are selected at random. This is then

used to generate a synthetic sample that lies between the chosen sample and its nearest

neighbours. We specifically applied a combination of SMOTE and random undersam-

pling (as described in the original paper by Chawla et al. [9]) as it has been shown to

enhance model performance, and the best resampling ratios were determined through

hyperparamter tuning. Similar to the missing data imputation steps, these techniques

were applied only on the EPAD dataset in developing the source model, but not on the

PREVENT dataset.

2.4 Building the Prediction Models

In developing the prediction models, we trained four ensemble-based machine learning

models with the Random Forest [8] and XGBoost algorithms [10]. In the following

sections, we describe the procedures applied for optimising the model parameters

and hyperparameters, which involved the use of modelling pipelines and K-fold cross

validation.
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2.4.1 Building Modelling Pipelines

It is generally considered good practice to include all preprocessing, hyperparameter

tuning and model training steps as part of a unified modelling pipeline, so as to reduce

data leakage, i.e. information from the validation or test sets are used for model training,

thus resulting in drastically inflated or otherwise invalid predictive performance [23].

A predefined set of hyperparameter values are necessary for both the Random Forest

and XGBoost classification algorithms, with the best configuration subsequently decided

through hyperparameter tuning. Additionally, hyperparameter tuning was also required

for the MissForest algorithm used in missing data imputation, as well as the SMOTE

and random undersampling steps used for class rebalancing. Therefore, in order to

enable the tuning of all hyperparameters at once, we combined these preprocessing

steps and the final classification step into a single modelling pipeline, as illustrated in

the figure below. This yielded two modelling pipelines, rf pipe and xgb pipe, each

corresponding to the Random Forest and XGBoost classifier respectively, which we had

optimised for determining the best source model.

Figure 2.2: The modelling pipeline structure of rf pipe and xgb pipe

2.4.2 Repeated K-fold Cross Validation and Hyperparameter Tuning

In selecting the optimal set of hyperparameters, we applied an approach combining

cross-validation (CV) with hold-out [33] which involved randomly splitting the the full

dataset into two: the training set (used for model training and hyperparameter tuning)

and the test set (used for model evaluation). We chose an 80:20 train-test split ratio,

whereby 80% of the observations from the EPAD dataset were part of the training set
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(EPAD train) and the remaining 20% constituted the test set (EPAD test). The same

train-test split ratio was employed for the PREVENT dataset, resulting in the training

and test sets which we refer to as PREV train and PREV test.

In short, K-fold CV was applied as follows: the training set was further split into

K folds and the model was trained K times, each time with a different fold used for

validation and the remaining K-1 folds used for training and hyperparameter tuning.

Hyperparameters resulting in the lowest validation error when averaged over the folds

were then selected. In both cases, we opted for K=5.

A single run of K-fold CV may often lead to noisy estimates of model performance

as results may vary with different splits of the training. While this could have been

addressed by using a larger number of splits K, it was not possible in our study due

to the limited number of samples available. We thus applied repeated K-fold CV,

which has been shown to demonstrate reduced noise, increased precision, and greater

reliability in performance estimates, relative to single K-fold CV. This involved simply

repeating the K-fold CV procedure multiple times and selecting the best-performing

set of hyperparameters which correspond to the best validation performance when

averaged across all folds from all runs. Repeating our 5-fold CV 5 times resulted in

25 iterations altogether. Furthermore, all splits were stratified to ensure the proportion

of class distribution were consistent across the training and test sets, as well as the CV

folds.

Overall, the process of developing the source and target models can be summarised

as follows:

1. To develop our source model, we first trained our two modelling pipelines, rf pipe

and xgb pipe, using repeated 5-fold CV on the EPAD training set EPAD train.

2. The set of hyperparameter values considered are shown in Table 2.3. By employ-

ing the random search optimisation algorithm, the optimal hyperparamaters were

selected based on the evaluation metric specified for validation. In this case, we

optimised the f1-score metric.

3. We then retrained both pipelines on the entire training set EPAD train using the

optimal hyperparameters, obtaining the two trained model pipelines rf pipe EPAD

and xgb pipe EPAD.

4. We evaluated both rf pipe EPAD and xgb pipe EPAD on the held-out EPAD

test set, EPAD test, based on the performance metrics defined in Section 3.1.
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xgb pipe EPAD produced the best overall performance, and was thus determined

to be our source model, and was subsequently used for developing our target

model.

5. We applied a parameter-based transfer learning approach, which builds on the

assumption that the source and target models share parameters. Using the trained

XGBoost classifier extracted from the best performing source model pipeline

xgb pipe EPAD, we updated its parameters using the PREVENT training set,

PREV train, to obtain our target model, target PREV.

6. A baseline model was trained on PREV train using the XGBoost algorithm.

Similar to Steps 2-3, the optimal hyperparameters (Table 2.3) were determined

through repeated 5-fold CV, yielding the baseline model, baseline PREV, after

retraining was performed on the full, PREV train training set.

7. We evaluated both the target and baseline model, target PREV and baseline PREV

respectively, on the PREVENT test set PREV test, and compared their perfor-

mances.
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Model Hyperparameter values considered Optimal hyperparameters

rf pipe EPAD

MissForest algorithm:

max features:[‘sqrt’,‘log2’],

max depth:[10,12,14,16,18,20,22,24,26,28]

SMOTENC/RandomUnderSampler(sampling ratio):

SMOTENC: [0.40,0.45,0.50,0.55,0.60,0.65]

RandomUnderSampler: [0.65,0.70,0.75]

RandomForestClassifier:

n estimators: [20,30,40,50,70,100,150,200,250,300,350]

max features: [’sqrt’,’log2’,6,8,10,12,14,16,18,20]

max depth: [12,14,16,18,20,22,24,26,28,30,32]

min samples split: [2,3,4,5,6,7,8,9,10]

min samples leaf: [1,2,3,4,5]

criterion: [‘gini’,‘entropy’]

class weight: [‘balanced’, ‘balanced subsample’, None]

MissForest algorithm:

max features:‘sqrt’,

max depth:12

SMOTENC/ Ran-

domUnderSam-

pler(sampling ratio):

SMOTENC: 0.40, Rando-

mUnderSampler: 0.70

RandomForestClassifier:

n estimators:350,

max features: ‘sqrt’,

max depth: 28,

min samples split:4,

min samples leaf: 1,

criterion:’entropy’,

class weight: None

xgb pipe EPAD

MissForest algorithm: same as above

SMOTENC/RandomUnderSampler(sampling ratio):

same as above

XGBClassifier:

n estimators: [20,30,40,50,70,100,150,200,250,300,350]

max depth: [12,14,16,18,20,22,24,26,28,30,32]

learning rate: [0.05,0.1,0.15,0.2,0.25,0.30,0.35,

0.4,0.45,0.5]

colsample bytree: [0.6,0.7,0.8,0.9,1]

min child weight: [0.001,0.003,0.005,0.01,0.03]

scale pos weight: [1,1.3,1.35,1.4,1.45,1.5,1.55,

1.6,2,2.5,3,4,5,6,7,8,9,10]

MissForest algorithm:

max features:‘log2’,

max depth:10

SMOTENC/ Ran-

domUnderSam-

pler(sampling ratio):

SMOTENC: 0.65, Rando-

mUnderSampler: 0.65

XGBClassifier:

n estimators:350,

max depth: 24,

learning rate:0.25,

colsample bytree: 1,

min child weight: 0.001,

scale pos weight: 8

baseline PREV

XGBClassifier:

n estimators: [20,30,40,50,70,100,150,200,250,300,350]

max depth: [12,14,16,18,20,22,24,26,28,30,32]

learning rate: [0.05,0.1,0.15,0.2,0.25,0.30,0.35,

0.4,0.45,0.5]

colsample bytree: [0.6,0.7,0.8,0.9,1]

min child weight: [0.001,0.003,0.005,0.01,0.03]

scale pos weight: [1,1.3,1.35,1.4,1.45,1.5,1.55,

1.6,2,2.5,3,4,5,6,7,8,9,10]

XGBClassifier:

n estimators:30,

max depth: 22

learning rate:0.05,

colsample bytree: 0.8,

min child weight: 0.01

scale pos weight: 8

Table 2.3: The set of hyperparameters considered and optimal hyperparameters obtained. Default

values were used for all other hyperparameters. We set random state=42 for random processes.
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Model Evaluation, Feature Importance

and Model Interpretability

In Section 3.1, we introduce the metrics used for model evaluation. This is followed by

Section 3.2 in which we discuss how the importance of each feature can be quantified.

Finally, in Section 3.3, we present the methods we used for model output interpretation.

3.1 Evaluation Metrics

For model evaluation on the unseen test sets, we employed a series of evaluation

metrics suitable for assessing binary classification tasks. As we have access to the

ground truth labels (“High-Risk” or “Low-Risk”) in both our test sets, EPAD test and

PREVENT test, we were able to compare our model outputs to the actual ground truths,

thus enabling us to obtain the following information:

• True Positives (TP): “High-Risk” cases correctly predicted as “High-Risk”

• True Negatives (TN): “Low-Risk” cases correctly predicted as “Low-Risk”

• False Positives (FP): “Low-Risk” cases incorrectly predicted as “High-Risk”

• False Negatives (FN): “High-Risk” case incorrectly predicted as “Low-Risk”

We typically present the proportions of TP, TN, FP and FN in a confusion matrix,

as shown in Figure 3.1.

Another common metric for assessing binary classification is accuracy, i.e. the

proportion of correctly labelled instances, as expressed in Equation (1). However, while

15
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a high accuracy is often desirable, it may present an “over-optimistic” view on model

performance, since accuracy often fails to take class imbalance into account [27]. For

instance, in a binary classification task with a class distribution of 90:10, a model that

predicts correctly for all majority class examples but wrongly for all minority class

examples will still yield a high accuracy score of 90%.

Given that class imbalance is apparent in our datasets, additional metrics such as sen-

sitivity (or recall TP rate), specificity (or TN rate), precision, geometric accuracy (GA),

and F1-score are required to fully assess the effectiveness of our models. Sensitivity and

specificity allow us to assess how good the model is at detecting positive or negative

cases respectively, whereas precision allows us to measure the proportion of identified

positive cases which was actually correct. There is often a trade-off between sensitivity

and specificity, or between sensitivity and precision, such that a high sensitivity could

result in lower specificity and precision, or vice versa [11]. As we aimed to strike a

balance between both pairs of measures, we relied on the GA and F1-score – GA is

the geometric mean of sensitivity and specificity, whereas the F1-score is the harmonic

mean of sensitivity and precision. The equations of these measures are given below:

Accuracy =
T P+T N

(T P+T N +FP+FN)
(1) Sensitivity =

T P
(T P+FN)

(2)

Speci f icity =
T N

(T P+FP)
(3) Precision =

T P
(T P+FP)

(4)

GA =
√

Sensitivity×Speci f icity (5) F1-Score =
2×Precision×Recall
(Precision+Recall)

(6)

Figure 3.1: Confusion Matrix

As recommended by the Transparent Reporting of a Multivariable Prediction Model

for Individual Prognosis or Diagnosis (TRIPOD) guidelines [12], we further evaluated
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our models based on measures of discrimination, i.e. the ability of a prediction model

to distinguish between classes. This was achieved through observing the Receiver

Operating Characteristics (ROC) curve, which is obtained by plotting the TP rate

against the FP rate at different decision thresholds. Classifiers demonstrating curves

closer to the top-left corner are indicative of better performance. Also important is the

area under the ROC curve (AUROC), which reflects the probability that a randomly

selected positive instance has a higher predicted probability of being positive than a

randomly selected negative instance. Perfect models would have a maximum AUROC

value of 1, whereas AUROCs lower than 0.5 would suggest an unreliable model that

performs worse than random chance.

However, as alluded to previously, our datasets suffered from imbalanced classes,

whereby the number of negative or “Low-Risk” cases outweighed the positive or “High-

Risk” cases. As a consequence, the ROC and AUROC may be indifferent to the

class distribution, resulting in an overly optimistic performance, especially when the

negative class is more prevalent. To better account for imbalanced class distributions,

we further employed the Precision-Recall curve (PRC), and the area under the Precision-

Recall curve (AUPRC), which are tailored for applications whereby the rare positive

cases are of more interest. The PRC essentially plots precision against recall (i.e.

TP rate) at different decision thresholds, with a higher value of AUPRC indicating

better performance. Additionally, by employing the bootstrapping technique [16], we

performed one-tailed hypothesis testing to examine the significance in improvement of

the AUROC and AUPRC between both models.

We then sought to assess the clinical utility of the model by applying Decision

Curve Analysis (DCA) which plots the “net benefit” at varying probability thresholds –

i.e. the minimum probability of disease risk at which further intervention is warranted

– as proposed by Vickers et al. [48]. In brief, DCA can be used to assess the “net

benefit” of strategies employed based on model predictions, as compared to default

strategies of “intervention for all” or “intervention for none”. The “net benefit” can be

interpreted as the rate at which TP cases are identified and treated, without an increase

in the rate of false-positive (FP) cases. For instance, a net benefit of 0.10 would indicate

an additional 10 patients per 100 subjected to a particular intervention (all of whom

were subsequently confirmed to have AD), with no patients being falsely identified as

having AD.

Finally, to evaluate the efficacy of our transfer learning approach, we employed the

following metric proposed by Taylor et al. [44]: ratio =
(AUCwithtrans f er−AUCwithout trans f er)

AUCwithout trans f er
.



Chapter 3. Model Evaluation, Feature Importance and Model Interpretability 18

3.2 Feature Importance

Feature importance allows us to score each feature based on their importance in affecting

the predictions made by our model. As tree-based algorithms such as Random Forest

and XGBoost were applied in our model, feature importance could easily be obtained

in the form of weights, based on the effect the feature has on the mean decrease in

impurity, i.e. the effectiveness of the feature at reducing uncertainty. These feature

importances were then visualised using bar charts, and arranged from top to bottom in

the order of decreasing importance.

While impurity-based feature importance has been a widely popular approach, it

tends to suffer from unstable or biased results, whereby high-cardinality categorical

features or continuous features are favoured [42]. To overcome this limitation, we

employed a model-agnostic approach namely permutation-based feature importance,

also known as “permutation importance” [5]. Permutation importance relies on the

idea that the importance of a feature is proportional to the decrease in model accuracy

after randomly shuffling the values of that particular feature, as this is indicative of

how dependent the model is on the feature. As with impurity-based feature importance,

permutation importance assigns a score to each feature, which we then visualised using

bar charts.

3.3 Model Interpretability

To better explain our model outputs, we utilised the SHapley Additive exPlanation

(SHAP) algorithm [26], which leverages concepts from coalitional game theory to

ascertain the contribution of each feature in pushing the predicted value away from the

average predicted value (i.e. the “base value”). SHAP is able to provide both global and

local interpretations of model outputs. In terms of global explanations, SHAP provides

quantification of feature effect sizes (similar to feature importance), with the added

advantage of providing information on the directionality of the effect that each feature

has on model outputs. Additionally, through local explanations of SHAP, we can char-

acterise the magnitude and direction of each feature’s influence on the predicted value

on a case-by-case basis, allowing us to distinguish the impacts of the features between

individual instances. Lastly, as SHAP is able to provide mathematical guarantees for

accuracy and consistency, it is preferable over alternative local interpretation techniques

such as Locally Interpretable Model Agnostic Explanations (LIME) [21, 26].
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Results

4.1 Model Performance Analyses

In this section, we present the results of each model performance based on the evaluation

methods described in Section 3.1. The confusion matrix for each model is given in Fig-

ure 4.1, whereby Figures 4.1a and 4.1b correspond to the results when rf pipe epad and

xgb pipe epad were evaluated on the unseen test set of the EPAD dataset respectively,

while Figures 4.1c and 4.1d represent the results obtained by evaluating target PREV

and baseline PREV on the PREVENT test set respectively. The numbers of TP, TN,

FP and FN cases found in these confusion matrices can further be used to derive the

sensitivity, specificity, precision, accuracy of the models, as summarised in Table 4.1.

We observe that xgb pipe EPAD demonstrated superior performance across all evalua-

tion metrics present in the table, achieving a sensitivity of 71.72%, f1-score of 71.36%

and GA of 80.01%, a significant improvement over the performance of rf pipe EPAD

(sensitivity = 64.14%; f1-score = 66.15%; GA = 75.58%). xgb pipe EPAD also demon-

strated slightly enhanced specificity, precision, and accuracy over the rf pipe EPAD

model.

Comparing target PREV against baseline PREV, we notice that target PREV outper-

formed baseline PREV in most of the reported metrics – including sensitivity, precision,

f1-score, as well as GA – as seen from Table 4.1. In contrast, baseline PREV was able

to achieve better performance for metrics such as specificity and accuracy.

The AUROC and AUPRC of each model are given in Figure 4.2. xgb pipe EPAD

outperformed rf pipe EPAD across both AUROC and AUPRC, as shown in Table

4.2. As mentioned previously, significance tests were applied to further substanti-

ate our results, and the obtained p-values suggest a statistically-significant improve-

19
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ment (p-value=0.0269) in the AUPRC performance of xgb pipe EPAD compared to

rf pipe EPAD, with no significant improvement in AUROC performance (p-value =

0.2260). Similarly, target PREV was shown to achieve a higher AUROC than that of

baseline PREV. This was not the case for the AUPRC, whereby baseline PREV demon-

strated a slight improvement by 1.38%. In both cases, the obtained p-values (0.3878

for AUROC); 0.4124 for AUPRC) indicate that there were no significant differences in

AUROC and AUPRC performances between target PREV and baseline PREV. Overall,

we calculated the transfer learning efficacy rate to be 6.41%.

Metric rf pipe EPAD xgb pipe EPAD target PREV baseline PREV

Sensitivity (%) 64.14 71.72 47.06 17.65

Specificity (%) 89.07 89.26 57.14 80.36

Precision (%) 68.28 71.00 25.00 21.43

F1-Score (%) 66.15 71.36 32.65 19.35

Accuracy (%) 82.38 84.55 54.79 65.75

GA (%) 75.58 80.01 51.86 37.66

Table 4.1: The sensitivity, specificity, precision, f1-score, accuracy and GA of each model

Model AUROC
(%)

AUPRC
(%)

p-value
AUROC

p-value
AUPRC

Transfer effi-
cacy (%)

rf pipe EPAD 85.72 74.87

xgb pipe EPAD 86.90 77.02 0.2260 0.0269 N/A

baseline PREV 47.58 24.49

target PREV 50.84 23.11 0.3878 0.4124 6.41

Table 4.2: The AUROCs, AUPRCs, the resulting p-values when comparing AUROCs and

AUPRCs, and the transfer efficacy rate.
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(a) (b)

(c) (d)

Figure 4.1: Confusion matrix of each model

(a) (b)

(c) (d)

Figure 4.2: The ROC and PRC of each model
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4.2 Feature Importance Analyses

4.2.1 Impurity-Based Feature Importance

The impurity-based feature importances of rf pipe EPAD and xgb pipe EPAD are

given in Figures 4.3a and 4.3b respectively. At first glance, the ranking of the most

important features appear to be significantly different between the two models, e.g.

the top 5 features (in descending order of importance) of rf pipe EPAD are “age”,

“years education”, “bmi class”,“alcohol unit”, and “gender”, whereas the top 5 features

for xgb pipe EPAD is “hypertension”, “alcohol unit”, “heart disease”, “gender” and

“osteoarthritis”. Despite these differences, we observe that there is significant overlap

between the top 15 most important features in both models. For instance, features

such as “age”, “gender”, “years education”, “smoke”, “alcohol unit”, “hypertension”,

“hyperlipidaemia”, “eye disease”, “heart disease”, “lung disease”, and “osteoarthritis”

are among the top 15 most importance features shared across both models. Additionally,

both models rank “drug use” and “lower gi disease” among their 5 least important

features.

Figures 4.4a and 4.4b describe the feature importances of target PREV and base-

line PREV respectively. In comparing the top 15 most important features for both

models, 7 common features were identified, including: “age”, “years education”,

“single”,“heart disease”, “hyperlipidaemia”, “lower gi disease”, and “sleep disorder”.

While similar features were identified as being important in both models, the ranked or-

der of features by importance differs between models. For instance, target PREV ranks

“sleep disorder” and “single” as the 1st and 5th most important features respectively,

whereas baseline PREV ranks both variables as the 3rd and 4th most important features

respectively. Furthermore, while “upper gi disease was found to be the most important

feature for baseline PREV, the exact same variable is ranked as the least important for

target PREV.

Further comparisons can be drawn between the feature importances of the source

xgb pipe EPAD and target target PREV models. Upon updating the source model, about

half of the original features remain in the top 15 most important features for the target

model, namely “age”, “years education”, “sleep disorder”, “single”, “heart disease”,

“eye disease”, “hypertension” and “hyperlipidaemia”. Other features, such as “alco-

hol unit”, “gender”, “smoke”, “osteoarthritis”, “liver disease”, “lung disease”, and

“upper gi disease”, are supplanted.
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4.2.2 Permutation-Based Feature Importance

As mentioned in Section 3.2, we also implemented permutation-based feature impor-

tance as an alternative approach to the impurity-based feature importancee. The permu-

tation importance analysis results for each model can be found in Figures 4.5 and 4.6. A

comparison between the permutation importances of rf pipe EPAD and xgb pipe EPAD

demonstrates that there is a considerable overlap (over 70%) among the top 15 most

important features. In particular, “age”, “year education”, and “hyperlipidaemia” are

ranked as the top 3 most important features respectively in both models. Both mod-

els also include “gender”, “bmi class”,“hypertension”,“alcohol unit”,“smoke”, “thy-

roid disease”, “kidney disease”, “liver disease” as part of their top 15 most important

features, albeit with some differences in the order of their rankings. Further similarities

are observed across both models, whereby “widowed” and “sleep disorder” are respec-

tively ranked as the second least important and least important features, with negative

values for their permutation importances indicating that they may have a negative impact

on predictions.

In examining the permutation importances of target PREV and baseline PREV,

we observe that both models rank “bmi class, “drug use”, “lower gi disease”, and

“liver disease” among their top 15 most important features, as seen in Figures 4.6a and

4.6b. Furthermore, only the top 11 most important features are observed to have positive

scores in both models, whereas all remaining features have a score equal or less than

0. For instance, “years education” has been ranked as the least important feature in

both models – in sharp contrast to the results of previously reported feature importances

whereby “years education” has always been among the top 10 or top 15 most important

features. Finally, we can examine how the permutation importances change as a result

of updating the source model, xgb pipe EPAD, for the development of the target model,

target PREV.. In this case , features such as “age”, “gender”,“bmi class”, “depression”,

“kidney disease”, and “liver disease” remain among the top 15 most important features,

whereas all other features that were originally among the top 15 have dropped in rank,

to the extent of having negative permutation importance scores.
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(a) Impurity-based feature importance (rf pipe EPAD)

B (b) Impurity-based feature importance (xgb pipe EPAD)

Figure 4.3: Impurity-based feature importance for rf pipe EPAD and xgb pipe EPAD
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(a) Impurity-based feature importance (target PREV)

(b) Impurity-based feature importance (baseline PREV)

Figure 4.4: Impurity-based feature importance for target PREV and baseline PREV



Chapter 4. Results 26

(a) Permutation importance (rf pipe EPAD)

(b) Permutation importance (xgb pipe EPAD)

Figure 4.5: Permutation importance for rf pipe EPAD and xgb pipe EPAD
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(a) Permutation importance (target PREV)

(b) Permutation importance (baseline PREV)

Figure 4.6: Permutation importance for target PREV and baseline PREV
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4.3 Model Interpretability with SHAP

While the feature and permutation importances allow us to quantify the significance

of each feature for our models on a global level, we can further examine how each

feature contributes to a prediction at an individual level through SHAP values. Given

that the xgb pipe EPAD model outperformed the rf pipe EPAD model, our analysis

will mainly be based on the former. Figure 4.7 illustrate the SHAP explanations of four

randomly selected predictions obtained through applying the xgb pipe EPAD model

on the unseen EPAD test set, with each of Figure 4.7a, 4.7b, 4.7c, 4.7d corresponding

to a TP, FN, TN, and FP case respectively. Through the SHAP explanations, we can

determine both the direction and magnitude of each feature’s effect, based on the colour

and the length of the bar respectively. For instance, features labelled in blue correspond

to protective factors, whereas those labelled in red indicate risk factors. A longer bar

length would suggest a larger impact of the feature in driving the prediction.

4.3.1 SHAP explanations for xgb EPAD pipe

In Figure 4.7a, we observe that the individual is correctly predicted as “High-Risk”, with

a probability of 86%. For this individual, the effects of protective factors – including a

high number of years of education and a normal BMI – are offset by risk factors such

as hyperlipidaemia, hypertension, an age of 71, not being single, smoking, the absence

of lung disease and a sibling with dementia, resulting in a prediction of “High-Risk”.

In Figure 4.7b, we examine a 70 year-old individual with relatively fewer years of

education who has been incorrectly predicted as being “Low-Risk”. Consistent with

the previous individual, “years education”, “age”, “sibling dementia”, “hypertension”

and “bmi class” appear to be significantly impacting the prediction outcome, with the

main differences being that age and the absence of sibling dementia are now protective

factors, whereas the lower number of years of education is now a risk factor.

Figure 4.7c represents an individual who is correctly predicted as being “Low-Risk”,

with a probability of only 6% for being “High-Risk”. Again, a relatively high number

of years of education, normal BMI, and an absence of hyperlipidaemia are protective

factors against AD risk, offsetting the effects of risk factors such as smoking, alcohol

consumption and physical activity.

Finally, in Figure 4.7d, risk factors such as heart disease, hyperlipidaemia, an

abnormally high BMI, and low number of years of education are seen to drive the

prediction of this particular individual, resulting in a high AD risk probability of 89%
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being predicted despite being a “Low-Risk” individual in reality.

4.3.2 SHAP explanations for target PREV

We applied the same approach in the interpretation of predicted outcomes, when the

target model,target PREVENT, was applied on the unseen PREVENT dataset. Similarly,

four random samples, each of which corresponding to a TP,FN,TN, and FP case, are

selected and their SHAP explanations are provided in Figures 4.8a, 4.8b, 4.8c, and 4.8d

respectively. For all cases, we observe that “years education” appears to be the most

important protective feature. Additionally, the absence of anxiety (Figures 4.8a and

4.8d) appears to be protective, whereas the presence of anxiety (Figures 4.8b and 4.8c)

appears to increase AD risk. We further note that “married or cohabiting” appears to be

a risk factor in all cases, particularly in Figures 4.8b and 4.8c where it is the risk factor

exerting the greatest impact on the predictions.

4.3.3 SHAP summary plots

While the above examples provide local interpretations of a randomly sampled instances

from the test sets, a global interpretation based on aggregations of SHAP values of

each feature is given in the form of the SHAP summary plots (Figure 4.9), allowing

us to directly compare the feature effects and importances between the source model

xgb pipe EPAD and the target model target PREV. Each point on the summary plot

represents an instance from the test set. The SHAP values are given on the x-axis,

whereas the features are arranged along the y-axis in order of decreasing importance

from top to bottom. The value of each feature is colour-coded along a red-blue spectrum,

with red representing higher feature values and blue representing lower feature values.

In this case, binary features may only have two colours (either red or blue) whereas

continuous or ordinal features can take any colour along the spectrum.

The summary plot for the xgb pipe EPAD model is shown in Figure 4.9a. We ob-

serve that “age” is the most important feature, followed by “year education”, “bmi class”

and “hyperlipidaemia”, findings that are consistent with the local interpretations dis-

cussed previously. Furthermore, the effects of some features are extremely evident,

based on the distribution of red and blue points. For instance, the presence of hyperlipi-

daemia (denoted in red) is associated with a increased predicted AD risk, as suggested

by their association with positive SHAP values. In contrast, the absence of hyperlipi-

daemia (denoted in blue) is associated with negative SHAP values, and thus a decreased
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(a) TP: “High-Risk” individual correctly predicted as “High-Risk” from the unseen EPAD test set

(b) FN: “High-Risk” individual incorrectly predicted as “Low-Risk” from the unseen EPAD test set

(c) TN: “Low-Risk” individual correctly predicted as “Low-Risk” from the unseen EPAD test set

(d) FP: “Low-Risk” individual incorrectly predicted as “High-Risk” from the unseen EPAD test set

Figure 4.7: SHAP visualisations for xgb pipe EPAD on four instances sampled from the unseen

EPAD test set

predicted AD risk. The same pattern can be observed for other binary features such as

“married or cohabiting”, “liver disease”, “heart disease”, and “sibling dementia”.

A similar summary plot for the target PREV model is shown in Figure 4.9b. We

note that “years education”, “osteoarthritis”, “married or cohabiting”, “age”, and

“bmi class” are among the top 5 most significant features, displaying considerable

similarity to that of xgb pipe EPAD. In examining the effects of each feature, it appears

that the presence of anxiety is associated with increased AD risk, consistent with our

findings from the local SHAP explanations (Figure 4.8). Furthermore, binary features

such as “hypertension”, “kidney disease”, “thyroid disease” display the same effects,

in which a value of 0 (i.e. not present) is associated with increased AD risk.
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(a) TP: “High-Risk” individual correctly predicted as “High-Risk” from the unseen PREVENT test set

(b) FN: “High-Risk” individual incorrectly predicted as “Low-Risk” from the unseen PREVENT test set

(c) TN: “Low-Risk” individual correctly predicted as “Low-Risk” from the unseen PREVENT test set

(d) FP: “Low-Risk” individual incorrectly predicted as “High-Risk” from the unseen PREVENT test set

Figure 4.8: SHAP visualisations for target PREVENT on four instances sampled from the

unseen PREVENT test set
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(a) SHAP summary plot for xgb pipe EPAD

(b) SHAP summary plot for target PREV

Figure 4.9: SHAP summary plots
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4.4 Decision Curve Analysis

We applied Decision Curve Analysis (DCA) to our best-performing models, including

the best source model, xgb pipe, and the best target model, target PREV. The results

from DCA are presented in Figure 4.10. The x-axis represents the range of probability

thresholds, essentially reflecting the varying preference of a medical professional to

intervene. A value towards the left end of the x-axis would represent a preference that

weighs the relative harm of missing an AD diagnosis greater than the harm or cost of

unnecessary intervention, whereas the a value towards the right end would suggest the

opposite. On the y-axis, we are given the net benefit in units of TP per patient.

In Figure 4.10a, we examine the net benefit of the xgb pipe EPAD model, which

is represented as a solid red curve. The solid black curve represents the net benefit

conferred by assuming that all patients will develop AD and treating them all (i.e. “treat

all”), whereas the dashed line represents the net benefit of assuming that no patients

will develop AD and therefore not treating anyone (i.e. “treat none”). Curves at higher

values of the y-axis would imply that following that particular strategy will lead to

greater benefit. In this case, we observe that between a probability threshold of about 0.1

to 0.75, the net benefit of our model is greater than that of the default strategies of “treat

all” and “treat none”. For instance, at a probability threshold of 0.4 (indicating that a

doctor will potentially intervene if AD risk is 40% greater), the xgb pipe EPAD model

has a net benefit of about 0.14 over the strategy of treating no one, further suggesting

that 14 additional true positives per 100 patients are treated, with no additional increase

in false positives. For probability threholds below 0.1, the net benefit of xgb pipe EPAD

appears to be slightly lower than the “treat all” strategy but higher than the “treat none”

strategy, whereas for probability thresholds above 0.75, the net benefit of our model is

lower than that of the “treat none” strategy.

Similarly, we compare the net benefit of our target model, target PREV against the

net benefits of default strategies, “treat all” and “treat none” in Figure 4.10b. In this case,

we observe that the net benefit of target PREV is only marginally higher than that of

both default strategies for a small range of probability thresholds, somewhere between

0.18 and 0.25. For larger probability thresholds, the target PREV model performs worse

than the “treat none” eventually confers negative benefit, though it does demonstrate

superior performance over the “treat all” strategy.
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(a) SHAP summary plot for xgb pipe EPAD

(b) SHAP summary plot for target PREV

Figure 4.10: SHAP summary plots



Chapter 5

Discussion

This study developed an ML-based AD risk prediction model based on a transfer

learning framework, as inspired by the approach adopted by Danso et al. [14]. Using

data drawn from two different populations, we developed a source model on the EPAD

dataset, and subsequently updated this model using the PREVENT dataset. Our best-

performing source model was able to achieve a sensitivity of 71.72%, specificity of

89.26%, AUROC of 86.90% and GA of 80.01 %. While at first glance these results

appear to be lower than the model performance reported in Danso et al., we note that

our model was developed using a significantly smaller data set (n=3690), in contrast

to the number of samples available (n=84856) in the dataset used by Danso et al.. For

our target model, we achieved a sensitivity of 47.06%, specificity of 57.14%, GA of

51.86%, and AUROC of 50.84%. In this case, we were able to obtain better sensitivity

compared to the target model developed by Danso et al. (sensitivity = 38.1%, specificity

= 84.7%, GA = 56.5%, AUROC=63%), but lower specificity, GA and AUROC. This

can be explained by the sensitivity-specificity trade-off – the increased sensitivity of

our target model is at the expense of the lower specifcity, whereas Danso et al. achieved

a high specificity at the cost of a lower sensitivity.

To improve on the AD risk prediction algorithm proposed by Danso et al., we

applied additional preprocessing procedures. In handling missing data, Danso et al.

applied listwise deletion, essentially discarding all observations for which there are

missing values on any of the variables. Despite being a straightforward and popular

approach, listwise deletion could potentially result in a significant loss of information,

leading to biased analysis in subsequent modelling. To account for this problem, we

explored several missing data imputation techniques, including mean/mode imputation,

K-nearest neighbours (KNN) imputation and the MissForest algorithm, eventually

35
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opting for the MissForest algorithm [40], given the different limitations associated

with mean/mode imputation and KNN imputation. While mean/mode imputation tends

to bias the variance and standard errors of the imputed variables, KNN imputation

suffers from the need for additional data preprocessing for since distance metrics such

as the Euclidean distance is used, in addition to being sensitive to outliers and noise

(). In contrast, not only can the MissForest algorithm be easily applied on mixed data

types, it is robust to noise and also able to capture nonlinear relationships or complex

interactions between variables. While the use of the MissForest algorithm is known to

be computationally expensive due to its added complexity compared to other missing

data imputation approaches, given the relatively small sample size of our datasets this

issue was less apparent in our study. However, we acknowledge that this may pose a

challenge for larger datasets.

In most binary classification tasks, class imbalance is often observed where the

class of interest (i.e. the positive class) is in the minority. As discussed previously,

this reduces predictive performance, especially on the minority class. It is common to

apply resampling techniques to rebalance the class distribution, either by increasing the

number of samples from the minority class or decreasing the number of samples from

the majority class. Common techniques to achieve this include random oversampling

or random undersampling, which involve duplicating random observations from the

minority class or removing random observations from the majority class respectively.

As random oversampling simply adds exact copies of examples from the minority class

to the dataset, this increases the risk of a model overfitting. Therefore, instead of naive

random oversampling, we applied the more advanced SMOTE technique [9] which

simulated artificial samples from the minority class, and obtained enhanced performance

by combining it with random oversampling. Additionally, as class imbalance could

contribute to misleading or overly optimistic results for some standard evaluation

metrics such as accuracy and AUROC, we reported additional performance metrics

such as sensitivity, specificity, precision, GA, f1-score and AUPRC to ensure that

performance estimates of our models were realistic and objective. Additionally, decision

curve analysis was applied for our source and target models, with the results we

obtained justifying the use of our model in clinical settings, as it is able to better inform

shared decision-making strategies surrounding AD that take both clinician and patient

preferences into account, while also providing key information to healthcare financiers

performing cost-benefit analyses into secondary prevention strategies for AD.

Our work examined both the feature importance and the permutation importance of
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each model in some detail. We acknowledge the challenge in pinpointing the relative

differences in terms the features’ impact sizes and rankings between models. However,

given that the xgb pipe EPAD model demonstrated superior performance over all other

models, we will focus our discussion on the top 15 most important features identified

for the xgb pipe model, specifically the results from permutation importance analysis

for this model, given its enhanced reliability over impurity-based feature importance

(the reasons for which are discussed in Section 3.2).

Consistent with the results of Danso et al., age was identified to be the most

important risk factor for our model. Of the Top 15 most important risk factors, only

“age” and “gender” were non-modifiable risk factors, with the remaining 13 features all

considered to be modifiable. Of the 13 modifiable risk factors that were identified, 6 of

these (education level, BMI, hypertension, hyperlipidaemia, osteoarthritis, smoking)

corresponded with the top 10 most important risk factors for the model developed by

Danso et al. Interestingly, more than half of the top 15 modifiable risk factors identified

through our study concur with the top 12 modifiable risk factors by the 2020 Lancet

commission report on dementia [25], including less education, high BMI, hypertension,

excessive alcohol consumption, depression and smoking.

As our model relied on a larger number of features, we were able to identify

novel risk factors that were important for risk prediction but not included for model

development by Danso et al.. For instance, while alcohol consumption, thyroid disease,

kidney disease and eye disease were ranked among the top 15 most important risk

factors in our study, these features were not present in the study of Danso et al.. Of

these, lung disease, thyroid disease , kidney disease and eye disease were not included as

established risk factors in the Lancet report [25]. However, emerging evidence appears

to support an association between the presence of certain thyroid [17], kidney [51], eye

[24] and lung diseases [35, 46], and the pathophysiology of AD, lending credence to

our findings from feature importance analysis. For example, a systematic review by

Figueroa et al. concluded that there is association between thyroid dysfunction and

AD [17], though a cause-effect relationship is as yet not fully established. Another

review examined the relationship between chronic kidney disease and AD, via a variety

of mechanisms including impaired clearance of uraemic toxins and renin-angiotensin-

aldosterone system dysfunction [51].

While feature importance is able to provide us with valuable information, there

are certain limitations or pitfalls that we should be aware of when interpreting feature

importance results. For instance, when two features are highly correlated, this would
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result in a lower importance value for both features as the importance weights are

“shared” across both features, even if they might actually be very important [22]. For

instance, by looking at the features used in our models, it may be possible for “smoke”

and “lung disease” , or for “physcial activity” and “bmi class” to be correlated, resulting

in misleading feature importance weights. Therefore, it may be worthwhile considering

alternative methods such as drop-column importance [28], or conditional variable

importance, as proposed by Strobl et al. [41]. Additionally, it may be beneficial

to enhance model interpretability by establishing causal relationships between risk

factors and predicted outcomes. It is important to note that the results of feature

importance and SHAP explanations do not imply any cause-effect relationships, and

further investigations based on causal inference [13] techniques are required.

Although we have attempted to avoid loss of information through the application

of missing data imputation methods, the problem of information loss was inevitable,

as a result of the need to group certain categorical features when harmonising the

feature representations across the EPAD and PREVENT datasets, necessary for the

purposes of homogeneous transfer learning. For instance, due to differences of how

the “physical activity” variable was recorded across both datasets, we were unable

to retain the intensity and exact frequency of physical activity that was performed,

eventually resorting to a binary encoding of the variable which only corresponds to

a response of “Yes” or “No”. In contrast, this level of granularity with respect to the

physical activity feature was retained in the model developed by Danso et al.. This

may be a potential cause for “physical activity” not being ranked as high in the feature

importance for our model. The same applies for variables such as “lung disease”,

which was derived by collapsing several different types of diseases such as asthma,

pneumonia, and Chronic obstructive pulmonary disease (COPD) into a single category.

Furthermore, in developing our source model, the outcome was not based on actual

AD diagnosis, but derived according to parental dementia diagnosis and APoE4 carrier

status, which are proxy outcome measures. It would be beneficial to develop a model

using actual AD diagnosis as an outcome measure, so as to enable direct clinical

correlation. Finally, we note that the target model target PREV developed in our study

was able to outperform the baseline model baseline PREV across most of the measures

considered – including AUROC, sensitivity, precision, f1-score, and GA, – therefore

substantiating that a transfer learning framework was indeed more efficient and effective

than the traditional machine learning framework of retraining a model from scratch.

However, we acknowledge that the performance of our target model could be further
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improved. We attribute the low transfer efficacy rate of 6.41% to the limited sample size

of the PREVENT dataset (n=361). While more powerful algorithms such as support

vector machines or artificial neural networks could be considered, this may lead to an

increase in computational cost in addition to a loss of model explainability, as there is

often a trade-off between applying more complex model for enhanced performance and

model interpretability.



Chapter 6

Conclusions

Our work demonstrates ensemble-based ML models that are able to predict high AD

risk in asymptomatic individuals drawn from a population with a lower mean age, with

promising results. We were also successful in generating data visualisations that intu-

itively convey the relative importances of each feature in driving the predictions made

by our models, to enhance model explainability alongside increasing its clinical utility.

Through our work, we identified a number of putative modifiable risk factors for AD,

which could lend themselves to suggesting future avenues for research. Considering the

highly implementable nature of our model, we predict that, with further improvements

and external validation, our predictive model has the potential to revolutionise existing

diagnostic and management protocols surrounding AD, enabling high-risk patients to

be screened and identified by clinicians prior to the onset of clinically-overt symptoms,

without relying on expensive neuroimaging or biomarker-based screening techniques. In

the same vein, the application of our AD risk prediction model could also have positive

implications from a healthcare financing perspective, enabling the mass screening of

asymptomatic individuals for AD risk as part of an integrative secondary prevention

program.
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