
TRiTeX:

A Browser-Based

LATEX Assistant for Beginners

Trista Yang

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Advanced Technology for Financial Computing

School of Informatics

University of Edinburgh

2022

Abstract

TRiTeX is a browser-based self-help LATEX tool that checks five main problems

that happen commonly in beginners’ writing. The problems include commands used

inappropriately, use of obsolete commands and packages, lack of knowledge of LATEX’s

features, packages loaded in the wrong order, and ugly layout. The problems are

detected by pre-defined regular expression tokens with flexible matching patterns. The

problematic text is then transformed into suggested text. The text that has unique

identifiers, such as quantities or citation name, need to extract the identifier by a regular

grammar parser. The work is evaluated by two user studies in the form of questionnaires,

one on the prototype and one on the final version. We produce statistical tests to assess

the improvement we made and analyse the results by the scores and scales. The final

version has an aesthetic and intuitive user interface with more than 20 rules defined,

each matching various patterns.

i

Research Ethics Approval

This project obtained approval from the Informatics Research Ethics committee.

Ethics application number: 46726

Date when approval was obtained: 2022-05-31

The participants’ information sheet and a consent form are included in an appendix, see

Appendices B.1 and B.2.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Trista Yang)

ii

Acknowledgements

Time is a river with many eddies. Edinburgh is the last stop of my study abroad journey

and I have drawn a perfect full stop here. The months have been challenging, I have

only been able to finish this project because of the dedicated support I have received

from so many people along the way.

First and foremost, I would like to express my strongest gratitude to my supervisor

Brian Mitchell for his continuous and invaluable guidance throughout the project. He is

not only a conscientious supervisor, but a knowledgeable teacher, and an earnest friend

to me. I am definitely fortunate to be attracted by his project description and to have

him as my supervisor.

Then I would like to thank my parents for their encouragement, patience, and love

throughout my life journey. My mom is always the best listener whenever I am down or

lost. I never felt alone when she was around. Though my dad is not good at expressing

himself, I can still feel he is loving me in his own way.

My final thank goes to my grandmother who left us this May. She is the most

important person in my childhood who brought me up during the years my parents are

busy with work. I did not get to say goodbye in person because of the pandemic but I

promised in our final call that I will study hard and take care of myself. Now I am here,

with my acknowledgement as my farewell.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Problem statement . 2

1.3 Research objective . 3

1.4 Project overview . 3

1.5 Dissertation structure . 4

2 Background 5

3 User interface 7
3.1 Software selection . 7

3.2 Design principles . 9

3.2.1 Design guideline . 9

3.2.2 Accessibility . 10

3.3 Design process and improvement . 11

3.3.1 Navigation bar . 12

3.3.2 Text area . 13

3.3.3 Suggestions and filter . 14

3.3.4 Overview and documentation 14

4 Back-end checker 17
4.1 Back-end process . 17

4.2 Undo and redo . 18

4.3 Syntax and rules . 19

4.3.1 Patterns without unique identifiers 19

4.3.2 Patterns with identifiers . 20

4.3.3 Patterns with package applied 23

iv

5 Evaluation 24
5.1 User study . 24

5.1.1 Questionnaire design . 24

5.1.2 User study analysis . 26

6 Conclusions 31
6.1 Summary . 31

6.2 Future work . 32

6.3 Reflections . 32

References 34

A Requirements engineering 36

B User Study 38
B.1 Participants’ information sheet . 39

B.2 Participants’ consent form . 42

B.3 Questionnaire . 43

B.4 Results of first user study . 49

B.5 Results of the second user study . 53

v

Chapter 1

Introduction

1.1 Motivation

LATEX is a high-quality document typesetting system that is widely used by scholars

especially in science, technology, engineering, and mathematics (STEM). Different from

word processors which are What You See Is What You Get (WYSIWYG, pronounced

whizzy-wig), LATEX is What You See Is What You Mean (WYSIWYM, pronounced

whizzy-whim) that favours logical markup. The system only accepts plain text as input

and all formatting work has to be done by programming-like commands. The design

separates the presentation and content to help users focus on the content but this also

makes LATEX hard for beginners.

Another difficulty for beginners is caused by the version of LATEX. LATEX 2ε is the

main version that has been widely used since 1994 and it still dominates LATEX3, the

version improved by the experience gained from LATEX 2ε, even though LATEX3 started

in early 1990s. This indicates that the current commands and templates should become

legacy in the near future but users will still find them on the internet. Those out-dated

commands may not work properly or can even crash the document production process.

This project is about designing and creating a browser-based tool, TRiTeX, to assist

Edinburgh’s Informatics Master’s students when writing project documents in LATEX.

These students, especially those lacking high-quality formal training in LATEX, are at the

mercy of the internet’s stockpile of examples that are out-dated, fragile, ugly, or just

plain wrong. The boundary between LATEX being just a means to an end (a document

without “funny” fonts where it is difficult to fiddle the page count) and a genuine

transferable skill (when used “properly”) is, to use a LATEX term, a rubber length. The

1

Chapter 1. Introduction 2

Informatics School’s justifiable pride in teaching high-quality modern programming

could be extended to LATEX by using a self-help tool like TRiTeX.

1.2 Problem statement

TRiTeX is designed to solve five main problems (Table 1.1) that are significant in

beginners’ LATEX. All these problems are addressed by drawing on a curated collection

of flexible substitutions and templates. The tool will detect the problematic text and

suggest corresponding correct text to users.

This document makes use of our discovery for each type of problems, for example:

1. inappropriate use of commands
\bigbreak is used instead of the much-abused \\ to generate appropriate white

space between the blocks of the engineering requirements (Appendix A);

2. out-dated LATEX 2ε instead of LATEX3
all the instances and variations of the LATEX logo are wrapped in a \hologo{}

command so that they can be used safely in headings, captions, bookmarks, and

macros generally;

3. not realising what can be achieved
Table 1.1 loads its descriptions from an external file and the item numbers are

generated automatically;

4. not making proper use of packages
the geometry package is loaded after hyperref as it should be; the cleveref

package is used for cross-referencing (words like ‘Table’ and ‘Figure’ are part of

the hyperlinks) and cleveref is loaded after the package siunitx which is used

to typeset numbers and quantities correctly (\qty{10}{\percent} not 10\%)

Number Description

1 inappropriate use of commands

2 out-dated LATEX 2ε instead of LATEX3

3 not realising what can be achieved

4 not making proper use of packages

5 ugly design

Table 1.1: Common LATEX problems

Chapter 1. Introduction 3

and create properly formatted number columns in tables (for example the first

column of Table 1.1 is type S from siunitx);

5. ugly design
there are no vertical lines in Table 1.1 because they disrupt the horizontal reading

process especially for people with dyslexia, and the document uses the booktabs

package to improve the appearance of tables.

1.3 Research objective

This project aims to design a tool that actively assists beginners in writing LATEX with an

easy-to-learn user interface and strong features. The research objectives can be broken

down into the following research questions:

RQ1. What kinds of problems should be detected by TRiTeX?

RQ2. What technology should be used for TRiTeX’s development?

RQ2.1 Programming language

RQ2.2 Integrated development environment

RQ2.3 Framework and packages

RQ3. What aspects should be considered to make TRiTeX’s interface more usable?

RQ4. What method should be used to capture the problems? How can we generate the

suggested text that retains the information from the source, such as quantities in

numerical expressions and the identification in citations?

RQ5. How should we evaluate the design of TRiTeX?

RQ6. How is TRiTeX’s performance comparing to other LATEX self-help tools?

1.4 Project overview

This project contains three parts: front-end, back-end, and evaluation. Front-end refers

to the graphical user interface, including the input text area, generated suggestions, and

a filter that can view suggestions by tag. We design and evaluate the front-end design

by Human-Computer Interaction principles. Back-end is the core part of TRiTeX: it

uses a regular grammar with regular expression tokens to identify problems in users’

Chapter 1. Introduction 4

Figure 1.1: Project overview

LATEX and the problematic text will be transformed into suggested correct LATEX. The

front-end and back-end make up the implementation work of TRiTeX.

Evaluation is also important for a human-centred tool, so we designed two user

studies to receive feedback from our target users. The first study is on TRiTeX’s

prototype, to create a feedback loop that can improve the overall design. The second is

on TRiTeX’s final version, with the same questionnaire, to see the result of improvement.

Figure 1.1 outlines the project.

1.5 Dissertation structure

Chapter 2 introduces LATEX versions and packages similar to TRiTeX with discussion

on their limitations and shortages. Chapter 3 describes the whole design process of

the user interface, including software selection, design principles, and improvement

based on the feedback loop. Chapter 4 illustrates the logic of the back-end checker with

examples of each type of rule. Chapter 5 introduces the evaluation process, including

the comparison and analysis of the results of two user studies. Chapter 6 concludes our

current work and suggests future improvements.

Chapter 2

Background

Although LATEX distributions have not included tools really similar to TRiTeX that can

detect several types of problems and promote LATEX3, there are some LATEX packages

that can detect obsolete or inappropriate commands which we can take as reference.

l2tabu is a collection of severe mistakes and obsolete commands with correspond-

ing hints how to correct them (Trettin & Ensenbach, 2016). l2tabu guides users to

employ LATEX 2ε properly. Legacy packages and commands from earlier versions are

introduced in the document, each with an explanation. The authors list suggestions on

obsolete commands, and indicates the outcome when using old commands.

Although l2tabu provides useful examples and instructions, users have to check its

documentation manually to improve their LATEX writing. This processed is automated

by the nag package (Schwarz, 2011). nag detects commands, classes, and packages

that are superseded and warn the users. The warning generated by nag is the simplified

version of explanation in l2tabu document. Listing 1 shows the warning when the

outdated command \bf{} is used. This approach can be helpful for users who want

to improve their LATEX 2ε usage but are tired of reading l2tabu’s long documentation.

Moreover, automating detection is an obvious benefit. Another worthy aspect of nag is

it provides a deliberately “horrible” LATEX document as a demonstration which includes

outdated commands that can be detected by the package. This is a useful teaching tool.

Command \bf{} is an old LaTeX 2.09 command. Use \bfseries{} or

\textbf{} instead on input line 114.

Listing 1: Example nag output

5

Chapter 2. Background 6

chktex (Thielemann, 2016) is also a tool with features relevant to TRiTeX. The

package’s name is an abbreviation of its usage. Whereas nag detects legacy commands,

chktex detects typographic and other errors in LATEX. For example,

\LaTeX is a typesetter. LATEXis a typesetter.

\LaTeX\ is a typesetter. LATEX is a typesetter.

The first line is a typical error detected by chktex as “Command terminates with space.”

The second line shows its correction. Note that not only is the source different, so is the

output: the first command has no space between LATEX and ‘is’ whereas the second does.

chktex supports over 40 warnings, each with a corresponding detailed explanation

in the documentation. The package is fully customizable and can adapt to different

environments and configurations. However, chktex’s flexibility could mean beginners

may find it hard to install, configure, and extend.

Although chktex and nag do not have known bugs and work well with other LATEX

packages, both of them have a severe limitation: they are already outdated. Some of

nag’s recommendations to replace obsolete commands are themselves already obsolete

in LATEX3. The situation is arguably even worse for chktex as the package cannot

understand LATEX3’s expl3 syntax. expl3 is LATEX3’s programming layer which aims to

provide ‘modern-programming-language-like syntax.’ When chktex encounters expl3,

it has a meltdown. The market currently lacks an up-to-date and easy-to-install LATEX

self-help tool like TRiTeX, illustrating the importance and novelty of TRiTeX.

Chapter 3

User interface

The graphical user interface (GUI) and resulting user experience (UX) are critical to the

project. Generally speaking, the GUI should be easy and intuitive. We are introducing

the whole GUI design process in this section from differing aspects: software selection,

design principles, design process, and improvements gained from the feedback loop.

Figure 3.1 shows the final interface of TRiTeX in dark mode.

3.1 Software selection

TRiTeX is a browser-based tool which means Hypertext Markup Language (HTML),

Cascading Style Sheets (CSS), and JavaScript are the core technologies used in the

development. HTML describes the structure of the web page, indicating the types of

Figure 3.1: TRiTeX graphical user interface design (Dark mode)

7

Chapter 3. User interface 8

elements such as “button,” “paragraph,” and “table.” CSS styles the HTML including

colours, fonts, and shapes. CSS is separates content from presentation and makes the

maintenance of the site easier for developers. The same content can be switched to

different styles for different purposes by using a CSS stylesheet. JavaScript makes the

elements created by the HTML and styled by the CSS interactive.

As the author had no prior experience in web design and programming, we have

compared frameworks and editors. We have compared the widely used generic IDE

Visual Studio Code (Microsoft, 2016) with WebStorm IDE (“WebStorm: The Smartest

JavaScript IDE by JetBrains”, n.d.) which is specifically designed for JavaScript-led

website development. VS Code is open-source and lightweight but needs time for config-

uration and extension installation. WebStorm also has extensions but is pre-optimised for

JS, HTML, and CSS, including robust built-in tools such as code inspection, refactoring,

and quick fixes. We choose WebStorm since its features help JavaScript programmers,

especially beginners, avoid legacy, buggy, or redundant code.

Pre-built CSS frameworks like Bootstrap and Foundation are commonly used in

responsive UI implementation. Bootstrap (Otto, 2000) was initially applied to TRiTeX

for its easy-to-modify and easy-to-learn feature but we found it conflicts with other

CSS. Investigations into alternatives made us switch to Tailwind CSS (“Tailwind CSS

- Rapidly build modern websites without ever leaving your HTML.” 2017) which is

also easy to use but had no CSS conflicts and is lighter weight and more modern.

Tailwind CSS is a utility-first framework that seems to be gaining popularity. The main

difference from Bootstrap is that Tailwind does not provide predefined component

classes or themes but builds from scratch. This sounds more complicated but stops the

design being constrained by the predefined components while still fully satisfying our

requirements. TRiTeX does not use a “typical” website layout. Tailwind supports this

more readily than Bootstrap.

Compatibility is also an important factor, referring both to compatibility being cross-

browser and cross-platform. We must ensure TRiTeX works consistently on different

browsers and operating systems. Therefore we used ECMAScript 2015, also known

as JavaScript ES6. This uses the ECMA-262 specification to guarantee cross-browser

compatibility in as much as such compatibility can be guaranteed. Besides browser

differences, operating systems influence compatibility: the same browser may show

the site with slight differences across different platforms. TRiTeX was developed on a

Windows system but primarily tested on a Ubuntu virtual machine (VM). We want to

ensure TRiTeX is compatible with each major browser on both platforms, therefore, we

Chapter 3. User interface 9

test the compatibility of TRiTeX in the most popular web browsers on both platforms.

Details and results are in Chapter 5.

3.2 Design principles

Utility, instead of visual design, is an important factor determining the success or

failure of a browser-based tool. Following professional design principles can guide

web designers to produce a usable and utilized site. There are many different design

principles from different industries and we need to prioritize those which benefit us

most. We should keep the main goals and functionality of TRiTeX in mind and choose

and incorporate the principles according to our needs. We focus on creating an effective

and aesthetic web design in this section. Implementation are discussed in Section 3.3.

3.2.1 Design guideline

We have distilled the guideline for TRiTeX’s design according to the most popular

design principles for UX and GUI suggested by professionals from four sources (Babich,

2019; Memon, 2021; Nielsen, 1994; Yablonski, 2020). Of these, Jakob Nielson’s “10

Heuristics for User Interface Design” (1994) is the most general and useful one where

we strictly comply with every heuristic in it.

1. Always speak the user’s language
We should use words and concepts users are familiar with as the users always

prefer a UI that works the same as their common knowledge. A simple example is

always saying “copy” instead of “duplicate.” This is important as we want users

to focus on TRiTeX’s content rather than deciphering or learning its interface.

2. Ensure user freedom
Always allow users to go back to the previous state of the site, so they can

backtrack their actions easily. TRiTeX’s Undo and Redo lets users restore their

text in case they accidentally accepted a suggestion without first reading through

it. This also empowers users to experiment safely with changes.

3. Make design minimalist and aesthetic
This principle is extremely important for TRiTeX as it is a browser-based tool

rather than a website with innovation. Thus the interface should only contain

essential information. Irrelevant elements distract users.

Chapter 3. User interface 10

4. Make the system suitable for both novices and experts
We definitely want to make beginners comfortable when using TRiTeX but not

at the expense of experienced users. Keeping the options on navbars but setting

keyboard shortcuts on frequent actions is one way to achieve it.

5. Provide efficient help documentation
Providing useful documentation is necessary and beneficial during tool develop-

ment. Explain each component of the tool in concise language, clarify possible

problems and make the documentation easy to search.

6. Give users options but minimize the number of choices
Settings for the system should be provided to users based on their personal

preferences and needs. While this does not mean more choices can improve user

experience, instead, too many choices may exhaust users. We do not want “choice

overload” affecting users’ efficiency on the main part of the site. Leave only

necessary choices to users.

7. Avoid abusing modal dialogues
A modal dialogue is a window that forces users to interact with it before coming

back to their current workflow. It provides a focused and contextual interaction

but prevents users from accessing the rest of the interface. Modal dialogue also

requires immediate attention and interrupts the users from their current work

which will make it annoying when it is used in unnecessary situations. We should

only use modal dialogue for important warnings and avoid presenting it with

nonessential information.

3.2.2 Accessibility

Making the design inclusive is important as we want TRiTeX to be used widely, hence

we take accessibility seriously. We only consider visual and cognitive disabilities as

TRiTeX does not interact with users by auditory or mobility elements. The World Wide

Web Consortium (W3C) has published an international standard for web content design

called Web Content Accessibility Guidelines (WCAG). TRiTeX’s design follows the

globally recognized WCAG 2.1 AA standard.

The Coblis colour blindness simulator (2016) and WebAIM contrast checker (2019)

provide lots of help in dealing with designing for visual accessibility. Initially, we

considered only using colours to represent different types of errors. However that

thought proved problematic for colour blindness users to distinguish error types. Colour

Chapter 3. User interface 11

Blind Awareness (2022) reports an estimated 300 million people with colour blindness

worldwide including 1 in 12 men. Therefore, we use additional visual cues and labels

on error types to assist users with visual disabilities.

Low-vision disability is common among all ages, so all the text in TRiTeX has

an appropriate contrast ratio to the background in order to guarantee readability for

affected users. Allowing for accessibility also makes it readily usable for everyone. The

success criteria of the colour contrast ratio in WCAG 2.1 AA is at least 4.5:1 for normal

text. All components of TRiTeX meet this standard.

Besides visual impairment, users can have cognitive disabilities. Dyslexia, also

known as reading disorder, is a condition causing problems with spelling, reading, and

writing. We have invested substantial effort to make TRiTeX a friendly workspace for

users with dyslexia. We divided the suggestions into cards to avoid large blocks of

text, and intuitive icons are provided consistently to support reading since they help

form an easily identified, minimal reading association between a particular problem

and a suggested solution. We discarded italics to represent key shortcuts and avoided

writing in block capitals. The combination of pure white (#FFFFFF) and pure black

(#000000) was avoided as users with dyslexia can be sensitive to high contrast ratio.

Since dyslexia affects different people differently, we also provided personal preference

settings on display density and font size. Specifically 150 % inter-word spacing, which

is the preferred line height by WCAG 2.1 is the default setting and a roomier option

of 200 % is provided. The default font size is 18 px and a larger option of 20 px can be

easily configured in settings.

3.3 Design process and improvement

We divided the design process into four components: navigation bar (“navbar”), input

text area, suggestions, and filter. We initially gave each component basic functionality

and then improved them with extra features to make the tool more helpful for beginners.

Finally, a user study with LATEX beginners as participants is taken to receive feedback

and make further improvements. This study is important to create a feedback loop

by listening to our target users’ voices. This section introduces the design process of

TRiTeX and the improvements we made.

Chapter 3. User interface 12

3.3.1 Navigation bar

The navigation bar, usually abbreviated as navbar, holds an important role in web design

to aid users in accessing information. We put the navbar on the left-hand side of the

interface, providing the main features of TRiTeX. Our initial design divides the navbar

into three sections, Edit, Settings and Support.

Edit provides features including Undo , Redo , Copy , Copy all , and Paste , each with

a keyboard shortcut. Personal preference options are available in Settings, including

dark mode, display density, and preferred contrast. Support provides the documentation,

specifying the rules and features of TRiTeX.

We found problems with the initial design according to our web testing process

and feedback from the user study. At first, we set the shortcut of Undo as Ctrl + Z

and Redo as Ctrl + Y to comply with common conventions. Undo is supposed

to revert the text replacement and shows the suggestion again. However as TRiTeX

is browser-based, that shortcut conflicts with the browser’s built-in function. Pressing

Ctrl + Z will probably execute the browser’s undo function for the text area and thus

undo the last change in the user’s source but not show the suggestion again. Therefore,

we changed the shortcuts of Undo to Ctrl + Alt + Z and Redo to Ctrl + Alt +

Y respectively, preventing the conflict while keeping it easy for users to remember.

Overriding browsers’ in-built short-cuts have inherent difficulties and inconsistencies as

any Overleaf user can testify having pressed Ctrl + R for find-and-replace only to

have the browser reload the page thus losing all the edits stored in the browser’s text

area history.

We found more functions can be added to facilitate usage. TRiTeX is a tool, not an

editor, so we expect users to write elsewhere. They paste their work into TRiTeX to

check the errors and copy the amended text back to their LATEX editor. In this case, some

may use the browser’s built-in function Select all, to copy the text out. We simply added

a Copy all function as a component of Edit with Ctrl + Alt + C as the shortcut.

Regarding the settings, we have received feedback from the user study mentioning

that the check boxes for display density and preferred contrast do not make sense. To

make these clearer, we display the options of display density by radio buttons with

labels: compact, normal, and roomy. In addition, we added a new preference setting

for font size. It only provides two options, normal and large, to avoid overwhelming

users especially as browsers include built-in page zoom for further refinement. We

also removed the preferred contrast as it was initially designed to make the site more

Chapter 3. User interface 13

(a) Initial design of navbar (b) Final design of navbar

Figure 3.2: Comparison between the initial and final designs of navbar

accessible for people with visual impairment, but now both dark mode and light mode

have a colour contrast within a suitable range. We used CSS to style the dark mode

checkbox so that it is a toggle resembling a light bulb that can be switched on and off.

Lastly, we made changes to the overall navbar design. With much information

all shown together, users may not find the feature they need quickly. We thus made

Edit and Settings collapsible to give users freedom. Also, as Support only contains

documentation, it is redundant to keep documentation as a sub-element. We have

removed the sub-element and users can easily access help and documentation without

expanding the navbar. We also added a Compile button on the top of the navbar to

generate suggestions for users’ input text. A comparison between the initial and the

final design of navbar is shown in Figure 3.2

3.3.2 Text area

The text area is used to input and display users’ LATEX document, where we set its width

as 30 % of full screen to make it suitable for users to read. We also set a placeholder

text for it to give users a hint on the expected input for the field. The placeholder text is

Chapter 3. User interface 14

initially set as “Paste your document here to start!” but we found it causing confusion

according to the user study. The placeholder does not clarify what “document” refers to

as a LATEX project can be made up of many files. Also, TRiTeX generates suggestions

when Compile is clicked instead of when text is pasted, which should be explained in

the placeholder. Considering the feedback, we changed the placeholder text to “Paste

(CTRL+V) the whole .tex document here and click ‘Compile’ to start!” and also added

instructions to the Suggestions area, see Section 3.3.3.

3.3.3 Suggestions and filter

Suggestions and Filter work together, where each suggestion is shown on a card with its

relevant information and the filter can select to view a specific type of suggestion or all

suggestions. The suggestion card is designed to contain three pieces of information: type

of error, original text, and suggested replacement text. Each card contains a “Replace”

button that will replace the original text with the suggested text when clicked. The

filter contains four options, all suggestions, macro, punctuation, and math. The selected

option in the filter will be shown with a blue border and all other options with a grey

border, where the contrast ratio is high enough for colour blindnesses to distinguish.

We found the design of the suggestion card can be improved by displaying more

information on it. We added an explanation for each suggestion on why the original text

is not correct and show the tag of each suggestion on the upper-right corner of the card.

We also set the font of the original text and replacement text to a monospaced font, to

let the user easily catch the key information on the card. Figures 3.3a and 3.3b takes a

multiple-cite error as an example to see the difference between the initial design and

the improved design of suggestion cards.

The initial design shows another weakness, the user will not receive any feedback

if there is no error detected by TRiTeX. To avoid confusion, we designed two cards to

explain the current status, one shown when the text area is empty and one shown when

no issue was found for the selected type. Figures 3.3c and 3.3d shows the design for the

cards, where we use icons and colours to show key information on the card.

3.3.4 Overview and documentation

TRiTeX consists of two web pages, the main page and the documentation. Figure 3.1

shows the main GUI of TRiTeX, which strictly follows the design principles discussed

in Section 3.2. The interface is intuitive with a simple but aesthetic visual design.

Chapter 3. User interface 15

(a) Initial design of suggestion card (b) Final design of suggestion card

(c) Card for empty text area (d) Card for no issue text

Figure 3.3: Suggestion card designs

Figure 3.4: TRiTeX documentation

Chapter 3. User interface 16

The documentation page is designed in the same colour scheme as the main page,

with a search box and a scrollspy indicating the currently active content in the viewport.

The documentation contains information about TRiTeX’s input text, rules, and a template

LATEX document with all types of errors, as shown in Figure 3.4.

Chapter 4

Back-end checker

We use Node.js (Dahl, 2007), a runtime environment that uses JavaScript on the server

to handle the back-end work of TRiTeX. Node.js contains a set of built-in modules

that can be used without further installation and a package manager that easily install

JavaScript packages with a single line of command. This chapter introduces the back-

end implementation process of TRiTeX, including the Undo and Redo functions and the

syntax of the checker.

4.1 Back-end process

To understand how we design the functions, we start by introducing how TRiTeX works.

Users paste their LATEX document in the text area and click the “Compile” button to start

back-end checking. The back-end receives the raw value of the text area. As JavaScript

uses a backslash(\) as an escape character, it will misunderstood LATEX commands.

We use JavaScript’s .replace() function to escape all the backslashes in the LATEX

documents. For example, \begin{document} becomes \\begin{document}.

The back-end then detects problematic text in the escaped text by regular expression

tokens. A regular expression (regex) is a string that describes a search pattern in a text.

It is usually used for “find” or “find and replace" operations on strings. For example,

[bf]at can match bat and fat, but not match cat or mat. Regexs help us create a

flexible pattern to match the error in the input text.

When a problem is detected by the tokens, the back-end calls the corresponding

function with the problematic text sent as a parameter. Each rule uses a different function

to transform the original text into the suggested text, which is discussed in Section 4.3.

We have created five empty arrays to store information for generating suggestion cards,

17

Chapter 4. Back-end checker 18

including the problematic text, warning sentence, suggested text, type of problem, and

package if available. The functions push the corresponding information for each error

to the arrays. When all problematic text has run its function, the back-end generates a

suggestion card for each problem.

Each suggestion card has a unique ID and a “Replace” button to replace the original

text with the suggested text in the text area. The replace function finds and replaces

the original text and the card is deleted. The filter works together with the suggestion

cards, where it gets the index of errors for each tag from the array that stores the type of

problems. The filter is used to display suggestion cards by selected type.

4.2 Undo and redo

We create undo and redo functions for TRiTeX, to allow the user freedom to complete

their work. Users may accidentally resolve a suggestion they do not agree with or found

the initial decision is correct. An undo and redo function can make users more confident

with using TRiTeX. The browsers have built-in undo functions on the actions in the text

area but they cannot deal with custom actions (replace the original text with suggestions)

in TRiTeX.

We use a JavaScript stack to achieve undo-redo operations. A stack is a linear data

structure, we create two arrays, one for undo and one for redo to store stacks. The stack

follows the Last In First Out (LIFO) principle, that is the item inserted at last will be

the first one to come out. The insert operation is called push and the delete operation

is called pop, both take place from the end of the array. As mentioned in Section 4.1,

TRiTeX stores the information of suggestion cards by arrays. Therefore, we set up five

arrays each for the undo and redo stacks to store the information of actions. When the

user replaces a problematic text with a suggestion, we push the information of the card

to the undo stack. When the user undoes the action, we replace the last element in the

suggested text array with the last element in the original text array and generate the

suggestion card again. We then pop the undo stack and push the information to the

redo stack. Redo works in a similar process, where we replace the original text with the

suggestion and delete the card.

Chapter 4. Back-end checker 19

4.3 Syntax and rules

The core part of the back-end of TRiTeX is how we transform problematic LATEX into

“correct” LATEX. Different types of problems require different solutions.

4.3.1 Patterns without unique identifiers

The easiest type of problems are those matches a pre-defined pattern and can be dealt

with pure regular expression. For example, \begin{figure}[h] is a wrong use of the

placement specifier parameter that happens commonly. [h] is the specifier that puts the

float approximately in the same place as in the source text, but tables and figures should

all go to the top or bottom of a page. Hence, we need other specifiers to replace h. H

places the float exactly the same place as in the source tet, t refers to the top, b refers to

the bottom, and p allows the float to take up a whole page itself. Another specifier ! is

special, there are many internal parameters in LATEX that constrain the float’s position

and ! can override them.

Therefore we use [!tbp] or [!btp] as the specifiers to position the float, de-

pending on the user’s preference to have it at the top or bottom of a page. There

are many similar inappropriate patterns besides \begin{figure}[h], for example,

\begin{table}[!h], \begin{figure}[htbp], and \begin{table}[tbpH]. We

have to create a flexible matching pattern that can detect all these problems.

The regular expression to find this type of problem is:

\\begin{(table|figure)}\s?\[[tbphH!]{0,5}[hH][tbphH!]{0,5}\]

We also generate a railroad diagram for the regex by Avallone (Last updated 2021),

which helps us better understand the syntax of this expression, see Figure 4.1.

The syntax diagram should be read from the left to the right. The matched string

starts with \begin{, followed by the float type, which can be table or figure, then

Figure 4.1: Float specifier regex syntax diagram

Chapter 4. Back-end checker 20

Figure 4.2: Card design for float position

ends the brace by }. A whitespace can be allowed after the braces depending on user

habits. Inside the square bracket, it matches all types of combinations of the place

specifiers, with h or H necessary and other specifiers are allowed for at most four times

before and after the h/H. This can detect all combinations of placement specifiers that

are used inappropriately.

When the pattern is detected, the back-end checks whether the float type is a

figure or a table by a simple if-else function. The suggestion for each float type is

fixed: \begin{figure}[!tbp]%[!btp] and \begin{table}[!tbp]%[!btp]. LATEX

uses % to start in-line comment. As we cannot automate the choice of top or bottom

and other in-text changes may cause repositioning, we provide one correct version with

its alternative provided as a comment. To clarify this to users, we added an explanation

of the design in the suggestion card, as shown in Figure 4.2.

We have met a problem when testing this rule, that the original text in the text area

has not been replaced when we click the replace button. After checking the back-end

code, we found the problem is caused by JavaScript’s replace() function. The function

takes two input parameters, where the second replaces the first in the string. The first

parameter is a regular expression and the square brackets will be read as part of the

regex syntax. To avoid the problem, we added a backslash before each square bracket

of the original text to escape the bracket.

4.3.2 Patterns with identifiers

A more complicated pattern contains identifiers that we need to keep from the source. For

example, \cite{ref1}\cite{ref2} is a multiple citation which should be corrected

to \cite{ref1,ref2}. We need to retain the information, that is the identification of

Chapter 4. Back-end checker 21

Figure 4.3: A simple arithmetic example on parsing process (Stalla, 2022)

the citation in this case, from the source. We use a parser for each pattern to achieve

this purpose. A parser is always used as a component of a compiler or a translator, it

contains two components that make up the parsing process. The first stage is a lexer,

also known as a scanner, that breaks the string into tokens. Each token is a group of

characters and the compiler understands the string by tokens as the unit. The second

stage is the parser, which uses a syntax tree that combines pre-defined grammar with

the tokens from the first stage. Figure 4.3 is a simple arithmetic example of the process.

We can see the lexer groups the character ‘4’, ‘3’, ‘7’ into a number token ‘437’. It then

uses a parse tree to represent the calculation process of the original string.

We use PEG.js (Futago-za Ryuu, 2017), a parser generator for JavaScript, to extract

the identifiers from the problematic text. PEG.js generates the parser by a grammar

specifying the expected input and the function’s output. The parser can be generated

online and downloaded as a JavaScript file. Another method to generate the parser is to

call the peg.generate function and pass the grammar as a parameter. We used the first

one during the implementation. Although it requires a slightly larger space to store the

files, it can speed up the back-end process and improve the user experience.

Another aspect we considered in designing the parser is whether the input passed to

the parser should be pre-processed. Different from many other parser generators, PEG.js

combines the lexer and parser all in one. This makes developing and understanding the

grammar easier but do has other drawbacks. The use of a lexer can easily filter out the

noise in the input, such as whitespaces and comments, forwarding only meaningful

tokens to the parser. We need to pay extra effort on describing the grammar to ignore

the noise if we use the original source without pre-processing. Also, parsing the whole

text input has been tested to be time-consuming. Therefore, we use regular expression

tokens to match the error from the original input at first and send only the problematic

text to the parser.

We use an example here to better understand how the parser works. We want to

solve the multiple citation problem in the input text and start with defining the regular

expression token: \\cite{[^\\\{\}]{0,}}[,~\s]{0,}){2,}

Chapter 4. Back-end checker 22

Figure 4.4: Multiple citation regular expression syntax diagram

The regex matches the \cite{identifier} pattern that appears more than one

time continuously. We allow a flexible pattern of punctuation after each citation, for

example, \cite{A},\cite{B} and \cite{C}~\cite{D} can both be detected. With

the problematic text received by the parser, it parses the text and outputs the identifier.

For this example, the grammar is shown below.

cite=token:(citetoken)*

citetoken="\\\\cite{"

whitespace*

id:[^\\\{\}]+

whitespace*

"}" {

return id.join(’’);

}

whitespace = [\t\n\r]

The grammar extracts the identifier by defining the string between \\cite{ and }

as an ID token. The parser returns all IDs as a string by JavaScript’s join() function.

The function joins the selected elements into a string, with a comma as the default

separator. For example, parsing the input \\cite{ref1},\\cite{ref2} generates the

output identifier ref1,ref2. We use double backslashes here to escape the backslash

in the original command. The multiple citation function then generates the suggested

text by the identifier, which is \\cite{ref1,ref2} in this example and pushes the

information to the corresponding arrays. Figure 3.3b shows a suggestion card for a

multiple citation problem.

Chapter 4. Back-end checker 23

Figure 4.5: Card design for typesetting quantities

4.3.3 Patterns with package applied

Some wrongly used LATEX commands are caused by users’ lack of knowledge of

extra packages. TRiTeX also provides suggestions that require extra packages. The

patterns are matched by regex and some are parsed to extract identifiers. The only

difference is the value they push to the array for packages. The replace function gets the

corresponding element in the package array, if the value is ‘no’, it ignores the package

relevant operations. Else the function detects if the required package already exists,

and if not, we add \usepackage{package_name} by matching other packages and

\begin{document}. This is why TRiTeX requires the user to paste the whole document

instead of snippets.

Some packages require a specific loading order. The hyperref package should

usually be the last but there are exceptions, for instance, geometry and cleverref.

The cleverref should be loaded after siunitx which is used to provide a clear and

consistent combination of mathematical value and unit. Without the package, users

usually use 30\% to represent 30 percent, or use $90^\{circ}$ to represent 90 degree

angle. Both expressions work but they do not typeset the quantities or numbers correctly.

Here we need to load the siunitx package. We match \usepackage{cleverref} and

load siunitx before it if exists. If not, siunitx is loaded before hyperref or on the

line before \begin{document}. Figure 4.5 shows the suggestion card for typesetting a

quantity inappropriately.

There are more than 20 syntax that each matches a flexible pattern of errors in the

back-end of TRiTeX, detecting different types of problems.

Chapter 5

Evaluation

5.1 User study

A user study is a useful approach for understanding users and improving our design.

Designers always assume users share the same understanding with them without realis-

ing it, this is an availability bias that needs to be eliminated by interacting with users.

We have designed two user studies to evaluate TRiTeX’s design and participants in both

studies are university students in STEM. The first user study is designed to receive

feedback from them, so we can figure out some problems to be improved. The second

study produces a data-supported assessment of our work by our target users. The study

is in the form of a questionnaire.

5.1.1 Questionnaire design

As the two user studies have different objectives, our original thought was to set two

different questionnaires that focus on different aspects. However, this cannot evaluate

whether the improvement work is successful as the questions are different. Therefore

we designed a questionnaire containing both open-ended and close-ended questions

that were helpful for analysing results and receiving feedback. The questionnaire is

designed using these four principles:

1. Keep the questionnaire brief with only important questions
This benefits both users and designers. Data collection and analysis for a long

questionnaire with slightly varied questions can be time-consuming and pointless.

Users may also lose interest with a huge amount of questions and answer the

questions without focus.

24

Chapter 5. Evaluation 25

2. Use simple and straightforward terms instead of unnecessary jargon
Avoid confusions that may influence users’ responses.

3. Order the questions logically
Generally, the questionnaire should start with questions about user information to

distinguish levels of LATEX experience within the user base. Questions and ratings

about the design in the middle and end up with open-ended questions that illicit

users’ opinions and experiences.

4. Ask one question at once
Asking multiple questions at once can make users stressed about answering them.

Also, if questions about scaling include more than one component, users will

be confused if they have different answers on each component. For example if

a question asks “Is the interface intuitive and aesthetic?” then a user who finds

the interface aesthetic but not intuitive does not have a corresponding choice that

captures both aspects of their opinion.

System Usability Scale (SUS) is also a worthwhile measure for product evaluation.

SUS is a “quick and dirty” usability scale created by Brooke et al. (1996). It contains

10 questions each with five options, from Strongly disagree via Neutral to Strongly

agree. The questions focus on the usability of a product and the responses are converted

to a score that produces a percentile ranking. As TRiTeX should be measured from

different aspects, we only take SUS as a reference when designing the questionnaire.

According to the principles and references discussed above, we designed a ques-

tionnaire that contains 10 questions (see Appendix B.3). Q1 asks the user’s LATEX level

which helps us divide the users into groups. Q2–Q4 branch from Q1, showing only when

the user has used LATEX before. Those questions focus on the method they learnt LATEX

and their experience with LATEX self-help tools. Q5–Q7 are Likert scales, focusing on

the interface, features, and user experience respectively. A Likert scale is a close-ended

and forced-choice scale with choices from one end to another. In Q5–Q7, six choices

are provided for each question: Strongly disagree, Disagree, Neutral, Agree, Strongly

agree, and Don’t know / Prefer not to say. Q8 is a net promoter score (NPS) that gauges

the user’s likeliness of using TRiTeX in the future on a scale from 0 to 10. Q9–Q10

are open-ended questions that help identify weak spots: one asking suggestions for

improvement and one asking about future features to add to TRiTeX.

Chapter 5. Evaluation 26

5.1.2 User study analysis

The questionnaire can be divided into four sections: user base, Likert scales, Net

Promoter Score, and open-ended questions. We analyse the results for the first three by

different methods in this section. Feedback from open-ended questions is discussed in

Section 3.3 and Section 6.2.

5.1.2.1 User base

We have collected 30 responses in total with 15 participants for each study. The mean

completion time of the questionnaire is less than 5 minutes, which indicates that the

length is acceptable and can keep users focused on the questions. All the participants

are university students, including both undergraduates and postgraduates. For the LATEX

level of participants, we found none of the students suggests he/she is confident in his

LATEX writing. Only 3 participants never used LATEX before and all other participants

have experience but are not good at it, as shown in Table 5.1.

In terms of the method they learnt LATEX, we surprisingly found none of the par-

ticipants has taken relevant courses at University or School. Most participants search

for guides during the writing, some read online tutorials and a few do both. This result

indicates that Universities’ lack of formal training on LATEX also proves the importance

of TRiTeX as the sources on the internet are unreliable and can be obsolete. Another

unexpected result is that none of the participants has used LATEX self-help tools before

so we failed to collect responses on Q4.

5.1.2.2 Likert scales

The Likert scales contain three topics, interface, feature, and user experience. We focus

on the indicators that received negative responses and discuss our improvement on

them. 73 % responses to the argument “I know how to use TRiTeX without reading

LATEX level Beginner Novice Intermediate Expert

First study 2 8 5 0

Second study 1 8 6 0

Total 3 16 11 0

Table 5.1: LATEX level of participants

Chapter 5. Evaluation 27

(a) First study (b) Second study

Figure 5.1: Response distribution on “I know how to use TRiTeX without reading docu-

mentation.”

(a) First study (b) Second study

Figure 5.2: Response distribution on “The information on suggestion cards is clear and

helpful.These figures have duplicate labels with Figure 5.1

.

documentation.” are Disagree and Neutral. This shows the instruction on the interface

is unclear to users, hence we amended the placeholder text and added an instruction to

the default suggestion card. Details of the improvement are discussed in Sections 3.3.2

and 3.3.3. The final version has received mostly positive feedback and only one response

is Neutral, as shown in Figure 5.1.

The argument “The information on suggestion cards is clear and helpful.” also

receives more than half neutral or below responses. We believe it is because the original

design only presents the original text and the suggested replacement text, without any

explanation that helps users to understand the suggestion. To change the situation, we

have redesigned the layout of the suggestion cards and added an explanation of the

problem to the card. Details are discussed in Section 3.3.3 and improvement of the card

design is shown in Figure 3.3. The improved version receives satisfying feedback on

the argument, with most participants choosing Strongly Agree. Figure 5.2 shows the

response distribution for this argument.

We also compare the results of the studies by converting the options into scores,

with Strongly disagree - 1 point, Disagree - 2 points, Neutral - 3 points, Agree - 4 points,

and Strongly agree - 5 points. As none of the responses chose Don’t know/Prefer not

to say, we will ignore this option in the analysis. The total score is 35 points for the

interface, 15 points for the features, and 20 points for the user experience. The overall

score for the Likert scale is 70 points.

Chapter 5. Evaluation 28

Category Min Max Avg Med

Interface 65.7 91.4 83.2 82.9

Feature 53.3 86.7 74.6 73.3

UX 70.0 95.0 83.7 85.0

Overall 70.0 85.7 81.5 81.4

(a) First user study

Category Min Max Avg Med

Interface 85.7 100.0 95.6 94.3

Feature 80.0 100.0 90.2 86.7

UX 85.0 100.0 95.0 95.0

Overall 85.7 98.6 94.3 94.3

(b) Second user study

Table 5.2: Likert scale statistics (%)

µµµ111 sss111 µµµ222 sss222 nnn t-score p-value

Interface 29.13 4.05 33.47 0.92 15 −4.047 0.0011

Feature 11.23 1.21 13.53 0.42 15 −6.955 <0.0001

UX 16.73 1.42 19.00 0.63 15 −5.659 <0.0001

Overall 57.06 6.03 66.00 2.12 15 −5.417 <0.0001

Table 5.3: Welch’s test result

Table 5.2 shows the statistics of both studies, including minimum, maximum, aver-

age, and median on each topic and the overall score. As each topic has a different total

score, we convert each result to a percentage. For example, the overall average score is

57.06 out of 70 for the first study, the value is 57.06
70 = 81.5 % in the table.

We can see the results have improved substantially from the first study to the second.

The study on the final version has received exclusively positive feedback, with each

topic receiving maximum score responses. Indeed the maximum overall score for the

first study is equal to the minimum overall score for the second study.

To strengthen our interpretation of the results we apply a Welch’s t-test to each

topic’s result and the overall score. Welch’s t-test is a statistical method used to determine

if two individual populations have equal means. Different from the commonly used

Student’s t-test, Welch’s t-test does not assume the populations share the same variance.

In order to perform statistical significance tests, we need the following hypotheses:

Hypothesis H0 (null hypothesis): the means between the scores are equal (there is

no difference)

Hypothesis H1 (alternative hypothesis): the means between the scores are not

equal (there is a difference)

Chapter 5. Evaluation 29

The Welch’s t-test takes the mean, standard deviation, and sample size for each

group to calculate the t-score. The t-score can be converted to the p-value, which is the

probability of observing the null hypothesis. Table 5.3 shows the result of Welch’s t-test,

where µ,s,n refers to the mean, standard deviation, and sample size respectively and

the subscript indicates which user study.

The p-values for all topics and the overall score indicate that the null hypothesis is

rejected at the significance level α = 0.01. There is a difference between the mean of

the scores, meaning our improvement is probably meaningful for 99 % of users.

5.1.2.3 Net Promoter Score

Q8 asks how likely the user will keep using TRiTeX in the future, on a scale of 0

to 10. This is a Net Promoter Score (NPS) which is a measure of the satisfaction

and enthusiasm of users for a product (Reichheld, 2003). Users who respond 0–6 are

detractors unhappy with TRiTeX, 7 or 8 are passives who are satisfied with it, and

9 or 10 are promoters enthusiastic about it. Note that we only treat the responses by

category, not by specific numbers. For example, 0 and 6 each count as an equal detractor

in our analysis. Although the results of NPS are often overstated in business circles

(Keiningham et al., 2007), its use here to indicate general satisfaction is acceptable.

(a) NPS score of the first study

(b) NPS score of the second study

Figure 5.3: NPS score comparison

Chapter 5. Evaluation 30

The NPS score is calculated by %promoters-%detractors. It can range from −100 (all

detractors) to 100 (all promoters): the closer to 100, the more favourable the result. An

NPS score greater than 0 indicates the product has more promoters than detractors. As

the NPS benchmark can be completely different across industries, there is no standard

for a “good” NPS score, so we evaluate by comparing the results.

Figure 5.3 shows the NPS score of TRiTeX in each study. We can see both studies

have 8 passives. There are 3 promoters and 4 detractors in the first study, forming an

NPS score of −7. The second study has surprisingly received a score of 47 with no

detractors and all 7 non-passive responses are promoters. This result suggests that the

user satisfaction of TRiTeX has increased noticeably from our prototype to the final

version. Even if we analyse the final version alone, we still find the NPS result is highly

positive. All users are satisfied with TRiTeX and nearly half of them are enthusiastic

about it. They are likely to use TRiTeX in their future LATEX writing.

Chapter 6

Conclusions

6.1 Summary

In this project, we have designed a browser-based LATEX self-help tool to assist beginners

in writing proper LATEX. We designed a prototype first for TRiTeX and created a feedback

loop through user studies to improve the design. We can conclude our work by answering

the research questions we discussed in Section 1.3.

RQ1: TRiTeX solves five types of problems: commands used inappropriately, use

of obsolete commands and packages, lack of knowledge on LATEX’s features, package

loaded in wrong order, and ugly layout. Each type contains pre-defined templates to

match and replace the problems.

RQ2: TRiTeX uses HTML and CSS to create the layout of the web page and

the back-end is written in JavaScript with node modules applied. We use JetBrains’

WebStorm IDE in respect of its smart and powerful features. Tailwind CSS is a fast and

customizable framework and we use it to utilize the front-end design.

RQ3: The interface provides user settings on font size, line height, and dark or light

mode. These ensure users’ personal preference and also make TRiTeX accessible for

more people. The functions can be executed by both button and keyboard shortcuts to

ensure user experience of both novices and experts.

RQ4: We capture the problems by pre-defined regular expression patterns. The

patterns are flexible and the back-end transforms them into correct text. For patterns

with identifiers, we use a parser generated by PEG.js to extract the value of the identifier.

RQ5: We took two user studies in the form of questionnaire to evaluate our design,

one for the prototype and one for the final version, and analyse the result by different

methods to see the effect of improvement and the overall feedback.

31

Chapter 6. Conclusions 32

RQ6: Comparing to other LATEX self-help tools we discussed in Chapter 2, we

can see TRiTeX has its strength and drawbacks as well. TRiTeX is easy to install

and configure and it provides up-to-date suggestions, which is friendly to novices.

The installation guide on chktex is hard for users who still need a self-help tool

and nag provides only out-dated LATEX 2ε suggestion. However, both tools have more

configuration options, which means the environment is more complex and customizable.

6.2 Future work

We have received some advice on new features from the open-ended questions in the

user study but have not got time to implement them. A replace-all function should be

added to the suggestion area. Users may be tired of clicking on the replace buttons one

by one if they agree with all the suggestions. This is not hard to achieve in technology

and I would like to take this task as the next step of TRiTeX. Other suggested features

are not that prior, including more colour schemes and more text fonts.

There are two known limitations of the current version of TRiTeXto be improved.

First, the back-end can not understand which part of the document is an in-line comment.

We have paid much effort to make the checker ignore the comments. However, we

cannot delete all comments in the text area as there can be notes useful for users, the

replace function still detects text in in-line comments and replace them. While this

problem is not “fatal” and it only influences patterns with extra packages, we make an

explanation of it in the documentation.

Second, we have tried to replace all types of labels entered manually, for example,

“Section 4” and “Table 1.1” should be replaced with Chapter 4 and Table 1.1. These

references should use the cleverref package and \cref{} command to generate

labels automatically. However, as the environment for floats (tables and figures) is

complicated and many users keep some floats labelled and some not, it is extremely

hard to write a replacement syntax without a risk.

6.3 Reflections

Through this project, I have learned a lot of knowledge about web design which is

a completely new field for me. I wasted lots of time on the front-end design at first

learning and testing new items. Fortunately, I have finally designed an interface I am

satisfied with. The UI is both aesthetic and minimized. While there have been shortages

Chapter 6. Conclusions 33

in the design. As I did not understand the relationship between CSS and HTML, many

markups are messy with some styles defined in the CSS and some defined in-line.

There are also redundant codes that can be defined as a single class in the CSS. Those

experiences and lessons can help me with future web design projects a lot.

JavaScript is also a new programming language for me, which is challenging for me.

Its syntax and expressions are completely different from other programming languages

I have used before. The definitions and concepts, for example, DOM, is abstract and

have been hard to understand for me. Therefore I took the time to learn the language.

The escape characters have crushed the project once as I did not find a way to keep the

backslashes in LATEX commands from the original input. After trying different functions

to keep the raw value, I finally found the solution is to escape the backslashes in the

input text before doing any operation on it.

Although there are many difficulties encountered, the software we selected is proved

to be reliable. Tailwind CSS is a light-weighted and customizable framework which

can be my first choice in web development CSS tools. WebStorm has many strong

built-in features and useful plugins that help me a lot in programming and designing.

I have learnt a lot from the development of TRiTeX in both front-end and back-end

implementation. Regular expression and syntax trees are also strong language processing

tools which can be useful in future work.

References

Avallone, Jeff. (Last updated 2021). regexper-static.

Awareness, Colour Blind. (2022). Colour Blindness. Colour Blind Awareness. https:

//www.colourblindawareness.org/colour-blindness/

Babich, Nick. (2019). The 12 Do’s and Don’ts of Web Design | Adobe XD Ideas. Ideas.

https://xd.adobe.com/ideas/principles/web-design/12-dos-donts-web-design-2/

Brooke, John et al. (1996). SUS - A quick and dirty usability scale. Usability evaluation

in industry, 189(194), 4–7.

Colblindor. (2016). Coblis — Color Blindness Simulator – Colblindor. Color-

blindness.com. https://www.color-blindness.com/coblis-color-blindness-simulator/

Dahl, Ryan. (2007). Node.js. https://nodejs.org/en

Futago-za Ryuu, David Majda. (2017). PEG.js: Parser Generator for JavaScript.

Keiningham, Timothy L, Cooil, Bruce, Andreassen, Tor Wallin, & Aksoy, Lerzan.

(2007). A Longitudinal Examination of Net Promoter and Firm Revenue Growth.

Journal of Marketing, 71(3), 39–51. https://doi.org/10.1509/jmkg.71.3.39

Memon, Masooma. (2021). The 21 Main UX Laws Every Designer Must Follow +

Examples. Maze. https://maze.co/collections/ux-ui-design/ux-laws/

Microsoft. (2016). Visual Studio Code. Visualstudio.com. https://code.visualstudio.com/

Nielsen, Jakob. (1994). 10 Heuristics for User Interface Design. Nielsen Norman Group.

https://www.nngroup.com/articles/ten-usability-heuristics/

Otto, Mark. (2000). Bootstrap. Getbootstrap.com. https://getbootstrap.com/

Reichheld, Frederick F. (2003). The one number you need to grow [PMID: 14712543].

Harvard Business Review, 81(12), 46–54.

Schwarz, Ulrich M. (2011). CTAN: Package nag - Detecting and warning about obsolete

LATEX commands. www.ctan.org. Retrieved August 13, 2022, from https://www.

ctan.org/pkg/nag

Stalla, Alessio. (2022). A Peggy.js Tutorial. https://tomassetti.me/a-peggy-js-tutorial/

34

https://www.colourblindawareness.org/colour-blindness/
https://www.colourblindawareness.org/colour-blindness/
https://xd.adobe.com/ideas/principles/web-design/12-dos-donts-web-design-2/
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://nodejs.org/en
https://doi.org/10.1509/jmkg.71.3.39
https://maze.co/collections/ux-ui-design/ux-laws/
https://code.visualstudio.com/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://getbootstrap.com/
https://www.ctan.org/pkg/nag
https://www.ctan.org/pkg/nag
https://tomassetti.me/a-peggy-js-tutorial/

REFERENCES 35

Tailwind CSS - Rapidly build modern websites without ever leaving your HTML.

(2017). tailwindcss.com. https://tailwindcss.com/

Thielemann, Jens T. Berger. (2016). CTAN: Package chktex - Check for errors in

LATEX documents. www.ctan.org. https://www.ctan.org/pkg/chktex

Trettin, Mark, & Ensenbach, Marc. (2016). CTAN: Package l2tabu - Obsolete packages

and commands. www.ctan.org. Retrieved August 13, 2022, from https://www.ctan.

org/pkg/l2tabu

WebAIM. (2019). WebAIM: Contrast Checker. Webaim.org. https://webaim.org/resources/

contrastchecker/

WebStorm: The Smartest JavaScript IDE by JetBrains. (n.d.). JetBrains. https://www.

jetbrains.com/webstorm/

Yablonski, Join. (2020). Laws Of UX. O’Reilly. ISBN: 9781492055310. Retrieved July

31, 2022, from https://lawsofux.com/en/

https://tailwindcss.com/
https://www.ctan.org/pkg/chktex
https://www.ctan.org/pkg/l2tabu
https://www.ctan.org/pkg/l2tabu
https://webaim.org/resources/contrastchecker/
https://webaim.org/resources/contrastchecker/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://lawsofux.com/en/

Appendix A

Requirements engineering

TRiTeX MUST:

1. be easy and intuitive to use

2. be easy to install

3. be easy to configure

4. have useful configurability

5. be easy to extend functionality

6. provide some genuine benefit

7. correct at least some typical rookie

errors

8. run reliably with a consistent GUI

on at least two commonly used

main-stream browsers

TRiTeX MUST NOT:

1. mislead users into a false sense of

security or smugness about their

LATEX

2. provide suggestions that are out-

dated or wrong, or which directly

lead to ugly layouts

TRiTeX SHOULD:

1. support users with simple accessi-

bility requirements

2. meet or exceed accessibility re-

quirements or guidelines

3. adhere to good HCI design princi-

ples

4. follow good software engineering

and programming practices

5. be easy to maintain

6. allow personal preferences for user

control

7. use suggestions gleaned from reli-

able sources

8. prefer LATEX3 code over LATEX 2ε

9. be rapid to use for documents re-

quiring many suggestions

36

Appendix A. Requirements engineering 37

TRiTeX SHOULD NOT:

1. unduly confuse typical Edinburgh

Informatics students

2. exclude users with simple accessi-

bility needs

3. be limited to one browser or operat-

ing system

Appendix B

User Study

38

Participant Information Sheet

Project title: TriTeX – A Browser-Based LaTeX Assistant for

Beginners

Principal investigator: Brian Mitchell

Researcher collecting data: Trista (Yiying) Yang

This study was certified according to the Informatics Research Ethics Process, RT

number 46726. Please take time to read the following information carefully. You

should keep this page for your records.

Who are the researchers?

Brian Mitchell, Trista Yang.

What is the purpose of the study?

Our aim is to create a tool that actively helps beginners, so we want to hear our

target users' feedback. The study takes users' comments as feedback to improve the

editor and also the study result is used to evaluate our work.

Why have I been asked to take part?

You are a beginner to LaTeX who is the target user of TriTeX.

Do I have to take part?

No – participation in this study is entirely up to you. You can withdraw from the study

at any time, up until we have finished data analysis and conclusion without giving a

reason. After this point, personal data will be deleted and anonymised data will be

combined such that it is impossible to remove individual information from the

analysis. Your rights will not be affected. If you wish to withdraw, contact the PI. We

will keep copies of your original consent, and of your withdrawal request.

What will happen if I decide to take part?

During the study, you will answer a questionnaire with both close-ended and open-

ended questions regarding the interface and feature design of TriTeX.

Appendix B. User Study 39

B.1 Participants’ information sheet

Are there any risks associated with taking part?

There are no significant risks associated with participation.

Are there any benefits associated with taking part?

No.

What will happen to the results of this study?

The results of this study may be summarised in published articles, reports and

presentations. Quotes or key findings will be anonymized: We will remove any

information that could, in our assessment, allow anyone to identify you. With your

consent, information can also be used for future research. Your data may be

archived for a maximum of 4 years. All potentially identifiable data will be deleted

within this timeframe if it has not already been deleted as part of anonymization.

Data protection and confidentiality.

Your data will be processed in accordance with Data Protection Law. All information

collected about you will be kept strictly confidential. Your data will be referred to by a

unique participant number rather than by name. Your data will only be viewed by the

researcher Trista Yang and principla investigator Brian Mitchell.

All electronic data will be stored on a password-protected encrypted computer, on

the School of Informatics’ secure file servers, or on the University’s secure encrypted

cloud storage services (DataShare, ownCloud, or Sharepoint) and all paper records

will be stored in a locked filing cabinet in the PI’s office. Your consent information will

be kept separately from your responses in order to minimise risk.

What are my data protection rights?

The University of Edinburgh is a Data Controller for the information you provide. You

have the right to access information held about you. Your right of access can be

exercised in accordance Data Protection Law. You also have other rights including

rights of correction, erasure and objection. For more details, including the right to

lodge a complaint with the Information Commissioner’s Office, please visit

www.ico.org.uk. Questions, comments and requests about your personal data can

also be sent to the University Data Protection Officer at dpo@ed.ac.uk.

Appendix B. User Study 40

Who can I contact?

If you have any further questions about the study, please contact the lead

researcher, Trista Yang, s1810787@ed.ac.uk.

If you wish to make a complaint about the study, please contact

inf-ethics@inf.ed.ac.uk. When you contact us, please provide the study title and

detail the nature of your complaint.

Updated information.

If the research project changes in any way, an updated Participant Information Sheet

will be made available on http://web.inf.ed.ac.uk/infweb/research/study-updates.

Alternative formats.

To request this document in an alternative format, such as large print or on coloured

paper, please contact Trista Yang, s1810787@ed.ac.uk.

General information.

For general information about how we use your data, go to: edin.ac/privacy-research

Appendix B. User Study 41

Participant number:_______________________

Participant Consent Form
Project title: TriTeX – A Browser-Based LaTeX Assistant for Beginners

Principal investigator (PI): Brian Mitchell

Researcher: Trista (Yiying) Yang

PI contact details: brian.x.mitchell@ed.ac.uk

By participating in the study you agree that:

• I have read and understood the Participant Information Sheet for the above study,
that I have had the opportunity to ask questions, and that any questions I had were
answered to my satisfaction.

• My participation is voluntary, and that I can withdraw at any time without giving a
reason. Withdrawing will not affect any of my rights.

• I consent to my anonymised data being used in academic publications and
presentations.

• I understand that my anonymised data will be stored for the duration outlined in the
Participant Information Sheet.

Please tick yes or no for each of these statements.

1. I allow my data to be used in future ethically approved research.

 Yes No

2. I agree to take part in this study.

 Yes No

Name of person giving consent Date Signature

 dd/mm/yy

Name of person taking consent Date Signature

 dd/mm/yy

Appendix B. User Study 42

B.2 Participants’ consent form

Appendix B. User Study 43

B.3 Questionnaire

Appendix B. User Study 44

Appendix B. User Study 45

Appendix B. User Study 46

Appendix B. User Study 47

Appendix B. User Study 48

Appendix B. User Study 49

B.4 Results of first user study

Appendix B. User Study 50

Appendix B. User Study 51

Appendix B. User Study 52

Appendix B. User Study 53

B.5 Results of the second user study

Appendix B. User Study 54

Appendix B. User Study 55

	Introduction
	Motivation
	Problem statement
	Research objective
	Project overview
	Dissertation structure

	Background
	User interface
	Software selection
	Design principles
	Design guideline
	Accessibility

	Design process and improvement
	Navigation bar
	Text area
	Suggestions and filter
	Overview and documentation

	Back-end checker
	Back-end process
	Undo and redo
	Syntax and rules
	Patterns without unique identifiers
	Patterns with identifiers
	Patterns with package applied

	Evaluation
	User study
	Questionnaire design
	User study analysis

	Conclusions
	Summary
	Future work
	Reflections

	References
	Requirements engineering
	User Study
	Participants' information sheet
	Participants' consent form
	Questionnaire
	Results of first user study
	Results of the second user study

