
The Role of Position Embeddings in

Transformers for Automatic Speech

Recognition

Xinying Wei

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2022



Abstract

Position embeddings in transformers provide position information. However, as the

class of a phone is mainly based on its features rather than the position, we hypothesize

that position embeddings in transformers are only useful to a certain extent for phone

classifiation. We conduct several experiments to explore the role of position embeddings

in transformers for phone classification. We find that without position embeddings,

transformers partially learn phone classification. However, position embeddings are

important for transformers to distinguish stops from silence and separate other phones

similar on voicing. They play a crucial role in distinguishing /z/ from /s/. We also find

position embeddings improve the smoothness of the output, and the smoothness helps

to avoid specific types of errors. Without position embeddings, transformers can still

recognize neighbouring frames based on features. Due to the close relation between

phone classification and automatic speech recognition (ASR), our conclusions validate

the importance of position embeddings in transformers for ASR.

i



Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Xinying Wei)

ii



Acknowledgements

I would like to thank my supervisor Hao Tang for spending a lot of time discussing

experiment results with me. Thank him for his insightful comments that inspired me

a lot. Thank him for his comprehensive guidance and help that made me successfully

complete the project.

I would like to thank Gene-Ping Yang for encouraging me when I struggled, and

thank Sung-Lin Yeh for his useful PyTorch tutorial.

I would also like to thank my friends and my family for their support and love along

the way.

iii



Table of Contents

1 Introduction 1

2 Background 3
2.1 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Multi-Head Self-Attention . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Position Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Residual Connection . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Related Work 7

4 Methodology 10
4.1 Problem Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3 Training and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.5 Visualization Approach . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.5.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . 13

4.5.2 Attention Map . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.5.3 Position Similarity . . . . . . . . . . . . . . . . . . . . . . . 14

5 Experiments 15
5.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Losses and PERs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3 Confusion Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.4 Attention Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4.1 Difference of Attention on Phonetic Features . . . . . . . . . 23

5.4.2 Difference of Attention on /z/ and /s/ . . . . . . . . . . . . . 23

5.4.3 Difference of Diagonal Attention . . . . . . . . . . . . . . . 27

iv



5.5 Validation of Hypothesis 5.2 . . . . . . . . . . . . . . . . . . . . . . 29

5.5.1 Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.2 Experiment II . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6 Validation of Hypothesis 5.3 . . . . . . . . . . . . . . . . . . . . . . 33

5.7 Scrambled Inputs With Unscrambled Position Embeddings . . . . . . 35

5.8 Similarity of Postion Embeddings . . . . . . . . . . . . . . . . . . . 36

6 Conclusions 38
6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41

v



Chapter 1

Introduction

Transformer, a deep learning architecture, has shown great performance in a wide range

of tasks [6, 5, 8, 31], including automatic speech recognition (ASR) [41, 52, 19]. The

transformer receives a sequence as input. A core mechanism in transformer architecture

is self-attention. Self-attention captures relations between elements at different positions

in the input sequence, allowing transformers to make use of contextual information. As

the calculation of self-attention is invariant to the order of the input, transformers are

usually provided with position information. Position information in transformers comes

from position embeddings.

Previous studies have come up with plenty of ways to construct different position

embeddings. Vaswani et al. [44] calculate position embeddings that contain absolute

position using sinusoid functions. It is also common to learn position embeddings

during training [9, 8, 21, 25]. Shaw et al. [36] proposed relative position embeddings,

where the calculation of self-attention in transformers is changed. Subsequent studies

[5, 14, 32, 50] make improvements in different aspects based on Shaw et al’s work.

Despite having plenty of ways to construct position embeddings, inconsistencies in

comprehension persist across different literatures. Position embeddings with various

types are usually directly applied to different models without analysis. It remains

unclear whether position embeddings are used properly, or how much they benefit

models. As many proposed position embeddings are applied in a range of different

tasks, it is also questionable if they are suitable for all downstream tasks. Some previous

studies reported their findings on the importance of position embeddings. Gehring et al.

[9] found position embeddings useless in convolutional neural networks for machine

translation. Wang et al. [46] confirmed that position embeddings are necessary for

transformers to do machine translation tasks. Haviv et al. [12] suggested that the

1



Chapter 1. Introduction 2

transformers trained with and without position embeddings have similar perplexities as

language models. Likehomanenko et al. [23] found removing position embeddings in

transformers for ASR tasks results in a severe reduction in performance. However, no

studies are found to analyze the importance of position embeddings in transformers for

phone classification.

Phone is the smallest unit to recognize speech information. Phone classification,

a task that is closely related to ASR, classifies phones at each time frame in a given

utterance. As the class of a phone mainly depends on features at its corresponding

time frame, we hypothesize that compared to tasks where elements have complex

dependencies with each other, phone classification could be relatively less sensitive to

position embeddings.

This project aims to study the role of position embeddings in transformers in the

context of phone classification. We focus on the sinusoid fixed absolute position embed-

ding in [44] since it was the first position embedding used in the original transformer

model [44] and also commonly used [1, 49, 11, 23, 29]. The main contributions of this

project are as follows.

1. Our experiments confirm that transformers without position embeddings can

partially learn phone classification. We further validate that transformers can

partially learn phone classification without any order information.

2. We validate that position embeddings help distinguish stops from silence and

differentiate phones similar on voicing. They are crucial to separate /z/ from /s/.

3. We validate that transformers without position embeddings identify neighbours

of frames based on features.

4. We validate that position embeddings improve smoothness of the output. We also

find that this property reduces specific types of errors.

5. We discover the changes that position embeddings make to self-attention as well

as the patterns that are not changed.

The main structure of this thesis is as follows. The background knowledge of trans-

formers, position embeddings and essential components of transformers is introduced

in chapter 2. Previous work related to transformers without position embeddings is

discussed in chapter 3. The transformer model built in this project is described in

chapter 4. Experiment results are discussed in chapter 5. Chapter 6 concludes this

project, points out the limitation of this project and indicates future work.



Chapter 2

Background

This chapter aims to remind readers of background knowledge of this project. Section

2.1 introduces the structure of transformers. Self-attention mechanism of the transformer

is described in section 2.2. Section 2.3 discusses position embeddings in detail. Section

2.4 introduces the background knowledge of residual connections.

2.1 Transformer

The original transformer proposed in [44] comprises an encoder and a decoder. With the

original encoder-decoder transformer model, we encode the input to a sequence of hid-

den states and decode the sequence of hidden states to outputs. As phone classification

relies on hidden states, only the transformer encoder is required.

An encoder is formed by a sequence of encoder layers connected one after an-

other (Figure 2.1). Each encoder layer consists of two sublayers. The first sub-

layer is a multi-head attention layer followed by layer normalization. The second

sublayer contains two feedforward layers, followed by layer normalization as well.

Residual connection is added in both two sublayers. Input embeddings are com-

bined with position embeddings as the input of the transformer encoder. Input em-

beddings are vector sequences that represent input elements. They typically solely

related to features of inputs themselves and do not carry any position information.

3



Chapter 2. Background 4

Figure 2.1: Encoder Figure 2.2: Residual Connection

2.2 Multi-Head Self-Attention

Self-attention calculates the attention that the input pays to itself. The attention mech-

anism receives queries, keys and values as input. It calculates the similarity between

queries and keys to obtain the attention scores. The attention scores are applied to values

to yield the final result. In self-attention, queries, keys, and values are derived from dif-

ferent linear projections of the same input. In multi-head self-attention, different heads

focus on different features along the sequence. With H heads and dmodel features where

dmodel is a multiple of H, multi-head self-attention evenly assigns dmodel/H features

to each head. The output of multi-head self-attention is obtained by concatenating the

results of all heads and passing them through a linear layer.

Suppose the input is a sequence of vectors X = x1, ...,xT , we have

MultiHead(XQ,XK,XV ) = Concat(head1, ...,headH)W O (2.1)

where XQ, XK and XV come from the same input X, and W O ∈ Rhdv×dmodel is the

projection matrix applied after concatenating heads.

Suppose the output of heada is ya = ya,1, ...,ya,T . To calculate ya,i where i ∈ 1, ...,T



Chapter 2. Background 5

we have

αi j =
expα′

i j

∑
T
u expα′

iu
α
′
i j =

xQ
i WQ

a (xK
j WK

a )
⊤

√
dk

(2.2)

ya,i =
T

∑
j=1

αi j(xV
j WV

a ) (2.3)

where α′
i j multiplies queries by keys and scales them. dk is the dimension of queries

and keys. αi j applies softmax and becomes the attention weight between the query

xQ
i and the key xK

j . The results of attention multiplied by values for all j ∈ 1, ...,T are

added together to produce the final output ya,i of heada at position i. WQ
a ∈ Rdmodel×dk ,

WK
a ∈Rdmodel×dk and WV

a ∈Rdmodel×dv are projection matrices of queries, keys and values

of heada, where dv is the dimension of values.

As ya,i is computed as the weighted sum of elements at all positions, it loses all order

information during the calculation. This property of self-attention indicates the difficulty

for transformers to utilize position information without explicit position embeddings.

2.3 Position Embeddings

Position embeddings are used to provide order information to models. Absolute position

embeddings provide the absolute position of each element with regard to the whole input

sequence. They are usually combined to input embeddings as part of the input to the

model. Relative position embeddings indicate relative position between element pairs.

They are usually added to queries, keys or values during the calculation of self-attention.

To calculate the fixed absolute sinusoid position embedding [44] at position p, we have

PE(p,2i) = sin(p/100002i/dmodel)

PE(p,2i+1) = cos(p/100002i/dmodel)
(2.4)

where dmodel is the model dimension, i is the index that ranges from 0 to half of the

model dimension, 2i and 2i+1 refer to dimensions in position embeddings, and p is

the position index. Hence, position embeddings in even dimensions dimensions are

obtained using sine, whereas in odd dimensions they are obtained based on cosine. The

divided term 100002i/dmodel ensures that we compute the sine and cosine of position

embeddings with different periods in different dimensions. It greatly mitigates the

occurrence of repetition problems caused by the sinusoidal period.

There appear to be different ways of combining position embeddings and input

embeddings. Some models add position embeddings to input embeddings elementwise



Chapter 2. Background 6

[48, 47, 50], while others concatenate them [38, 10, 16]. In this project, position

embeddings are concatenated to input embeddings for the following reasons.

1. Concatenation, rather than addition, avoids mixing input and position features,

which are two heterogeneous types of features [20].

2. Concatenation may be more appropriate for acoustic modelling because the input

features are fixed speech features rather than learned embeddings [38].

3. Concatenation allows the model to learn position embeddings in a more direct

way [16].

2.4 Residual Connection

Residual connection [13] which is added to a block of layers builds a path from the

input to the output of the block directly. We define the input of a block of layers to be x,

and the desired output of a block of layers to be H(x). Residual connection creates a

map from the desired output H(x) to F(x) and input x:

H(x) := F(x)+x (2.5)

where F(x) is the original output of the block before reaching the point of the residual

connection (Figure 2.2). Residual connection is often applied to mitigate the vanishing

gradient problem since the model is expected to learn to fit F(x) = 0 and purely passes

the input x directly to the next layer block. It makes stacking of encoder layers easier.

Besides, by adding an additional input to the output of a layer block, the output is

allowed to interact directly with the input. More information about the input is able

to be kept across a deep network, including the features of the input as well as order

information conveyed by position embeddings.



Chapter 3

Related Work

Some studies have suggested the necessity of position embeddings in transformers.

Haviv et al. [12] and Likhomanenko et al. [23] show that the fixed absolute sinusoid

position embeddings in [44] are of limited help for transformers on some tasks, including

language modelling and image classification. Similar analysis on position embeddings

also appears on ASR tasks. Zhang et al. [53] remove relative position embeddings from

their convolution-augmented transformer model for ASR, finding it does not decrease

the model’s performance. Park et al. [29] build a convolution-based encoder for ASR.

They find that concatenating position embeddings to the output of the convolutions

helps the model achieve a lower word error rate. Results of Zhang et al. [53] and Park et

al. [29] suggest that the size of the dataset may be a factor influencing the importance of

position embeddings. However, Likhomanenko et al. [23] results suggest fixed absolute

position embeddings in [44] could be vital in transformers for ASR.

Despite the above studies bringing us some insights, the problem of this project

has not been thoroughly solved. Results of image classification [12] and language

modelling [23] cannot be directly applied to phone classification. It has been found that

object detection task and semantic segmentation task learn more position information

than image classification task [18]. Thus, the role of position embeddings in different

tasks may vary, and position embeddings could suggest different importance on phone

classification and on other tasks. Results of Zhang et al. [53] and Park et al. [29] cannot

be directly applied to all transformers since their models are convolution-based. As

it has been shown that convolution layers can learn position information themselves

[9, 18], their results provide limited help on the importance of position embeddings

for the original transformer in [44]. Results of Likhomanenko et al. [23] indicate that

position embeddings are needed for ASR. In spite of the close relation between phone

7



Chapter 3. Related Work 8

classification and ASR, the scope of this project is limited to phone classification. Above

studies [12, 23, 53, 29] compare the performance of transformers with and without

position embeddings without exploring the reasons behind it.

Nonetheless, Wang et al. [45] discuss the importance of position embeddings in a

more convincing way. They discovered that removing position embeddings has a greater

impact on some performance metrics than others, implying that position embeddings in

BERT [6] may be partially necessary for language modelling. Wang et al. [45] propose

three properties of position embeddings, namely monotonicity, translation invariance,

and symmetry respectively. They introduce a term, proximity, to represent the closeness

of position embeddings. Assume ea represents the position embeddings at position

a ∈ N. An inner product φ(ea,eb) suggests the proximity between position embeddings

ea and eb. We have

|a−b|> |a− c| ⇒ φ(ea,eb)< φ(ea,ec) (3.1)

Monotonicity: the proximity of position embeddings goes down as the distance

between positions increases. Monotonicity may help the model distinguish between

close and distant positions.

Translation invariance: the proximity between all position pairs with the same

distance remains constant. It may enable the model to learn that each proximity

corresponds to a fixed distance between two positions.

Symmetry: the proximity of two position embeddings ea and eb is the same as the

proximity of two position embeddings eb and ea. Symmetry eliminates the direction po-

sition information. It makes distinguishing between preceding and succeeding elements

difficult for the model.

They discover that monotonicity and translation invariance benefit downstream

tasks, while symmetry brings negative influence. They claim that position embeddings

may partially support the three properties. It is shown that sinusoid position embeddings

proposed in [44] satisfy translation invariance and symmetry but not monotonicity. It

indicates that when we explore the role of the sinusoid position embeddings in [44], we

also look at the role translation invariance.

According to their visualization of averaged attention weights, all position em-

beddings suggest some patterns of attention distribution correlated to monotonicity

and translation invariance. BERT without position embeddings evenly attends to all

tokens, instead of nearby tokens when position embeddings are included. It suggests

that removing position embeddings harms self-attention and may related to lacking



Chapter 3. Related Work 9

monotonicity and tranlation invariance. Nevertheless, conclusions on language models

may differ when the task is changed to phone classification. The results on the original

transformer in [44] may suggest a difference on BERT as well.

Shim et al. in [37] verify the importance of position embeddings when decomposing

the role of self-attention. They state that the main roles of self-attention in transformers

for ASR task include phonetic and linguistic localization, where phonetic localization

makes self-attention pay attention to traditional phonetic features across the whole

utterance, and linguistic localization relates to frames nearby. They modify the self-

attention matrix and increase the independence of the two roles during training. Their

modified self-attention performs better than the transformer with the original self-

attention and relative position embeddings. It implies that their modified self-attention

lessens the need of relative position embeddings. Their findings may not suit the original

transformer encoder with absolute position embeddings.



Chapter 4

Methodology

This chapter describes the methodology applied in this project. Section 4.1 defines the

problem settings as well as the input and output of the model. The architecture of the

transformer model is presented in section 4.2. Section 4.3 describes how the models

are trained and tested. The dataset and feature extraction is introduced in section 4.4.

Visualization approaches used in this project are introduced in Section 4.5.

4.1 Problem Settings

The input of the transformer is a sequence of Mel spectrogram features with 40 dimen-

sions. Given an utterance containing T frames, the input x = x1, ...,xT is a matrix of

size T ×40. For each time frame i, we get a corresponding class ci according to the

output yi. Hence the output of the model y = y1, ...,yT and the classes c = c1, ...,cT

have the same length to the input x. Phones are classified in the scope of 42 classes.

Thus y is of size T ×42, and c is a vector of scalar indices of length T . Given a frame

index i ∈ [1,T ], to obtain class ci from the output yi = yi,1, ...,yi,42, we have

ci = argmax
ci∈[1,42]

yi,ci (4.1)

The classes of phones are shown in Table 4.1, where sil is silence, spn is spoken noise,

and nsn is non-spoken noise.

4.2 Model Architecture

Our transformer model follows the structure proposed in [44]. To construct the input

of the model, we first concatenate position embeddings (Equation 2.4) with dimension

10



Chapter 4. Methodology 11

aa ae ah ao aw ay b ch d dh eh er ey f

g hh ih iy jh k l m n ng nsn ow oy p

r s sh sil spn t th uh uw v w y z zh

Table 4.1: 42 Phone Classes

Argument Meaning Value

dmodel Model dimension 512, 768

dff Dimension of the feedforward sublayer 2048

N Number of encoder layers 6

H Number of heads 8

dropout Dropout argument 0.1

Table 4.2: Model Arguments

dmodel to the 40 features of the input. After a linear projection of (dmodel + 40)×
(dmodel +40), the concatenated embeddings are fed into the transformer encoder. When

we build the transformer without position embeddings, position embeddings are padded

with zero. In this way, position embeddings carry no information and the model’s

structure remains unchanged.

Arguments of the model are listed in Table 4.2. Aside from the original dmodel

in [44], 512, we also tried 768 since it is a common choice that achieves excellent

performance in plenty of transformers [48, 8, 47, 20]. The choices of 6 layers, 8 heads,

dff = 2048, and dropout = 0.1 follow [44]. It is also a common option to have 12 layers

and 12 heads [8, 20, 32]. Our conclusions on transformers with 6 layers and 8 heads

might apply to those with 12 heads and 12 layers as well.

4.3 Training and Testing

Models are trained using stochastic gradient descent (SGD) optimizer. SGD randomly

picks an utterance from the input each time and applies back propagation to it. Given

a loss function, back propagation calculates the gradient of the loss with respect to

the weights of the model. It adjusts the weights based on the gradient in the direction

of minimizing the loss. In this project, the training objective is to minimize the cross

entropy loss since it is commonly used by classification tasks [24, 27, 26]. Cross



Chapter 4. Methodology 12

entropy loss calculates the cross entropy between the estimated distribution and the true

distribution.

L =−
42

∑
i=1

ti log pi (4.2)

where 42 is the total number of phone classes. p = p1, ..., p42 is the estimated distribu-

tion, where pi is the probability predicted by the model that the phone belongs to class i.

t = t1, ..., t42 is the true distribution, indicating whether the target phone class is class i

(i ∈ 1, ...,42). We have ti = 1 if the target phone class is class i, and ti = 0 otherwise.

The cross entropy loss for each phone is continuously ranging from 0 to 1.

During testing, we compute phone error rate (PER) to measure the performance

of the transformer. PER calculates the minimum number of steps to transform the

predicted phone sequence to the target phone sequence. PER is defined in Equation 4.3.

PER =
I +D+S

N
(4.3)

where I, D, and S correspond to the number of insertions, the number of deletions, and

the number of substitutions respectively. N is the total number of phones in the target

sequence. Since the input and output of an utterance in phone classification are always

the same length, PER for this specific task could be written as Equation 4.4.

PERclass =
S
N

(4.4)

Phone error rate is commonly used in phone classification [43, 22, 33]. The same

way to calculate word error rate is also commonly applied in ASR tasks [38, 41, 19].

It shows us a general ability of the model to predict correct class. PER is measured at

test time rather than training time since it considers only the binary correctness of the

prediction at each time frame, without worrying about how far the prediction at a frame

is away from the target.

4.4 Data

Our experiments are conducted using Wall Street Journal (WSJ) dataset since it is

commonly used and suggests excellent performance on plenty of ASR related tasks

[7, 28, 40, 3]. The dataset with 37395 utterances is split to 9:1 as the training set and

the dev set respectively. We train the model on the training set. When we test the model

on the dev set, we test their performance on generalization or pick up the best epoch.



Chapter 4. Methodology 13

We may also test the model on the training set to check the model’s performance on

fitting the data during training.

Each utterance in the dataset is firstly sampled to obtain the waveform. The wave-

form is converted to the Short-Time Fourier Transform. It is then transformed to the

log Mel spectrogram with 40 dimensions at each time frame. Hence, each time frame

of the log Mel spectrogram contains 40 features. Each log Mel spectrogram feature is

normalized to mean 0 and standard deviation 1. The time frame is sometimes called the

frame in the following content for simplicity.

4.5 Visualization Approach

In addition to phone error rates, we also evaluate transformers according to confusion

matrices and attention maps. We visualize the similarity of position embeddings at

different positions to interpret our findings as well.

4.5.1 Confusion Matrix

Confusion matrix is a common evaluation approach for classification problems [35, 42,

39]. Confusion matrix visualizes the model’s prediction at the class level. It suggests

how often a class is predicted to another class. Each row represents predictions of

a target label, while each column corresponds to a predicted label. An entry at the

row of target label Ctarget and the column of predicted label Cpredict suggests how often

that Ctarget is classified to Cpredict. To derive a confusion matrix, we firstly record the

number of times that each Ctarget is classified to Cpredict. Each value is divided by

the summation of its rows to obtain the distribution with respect to the target class.

Confusion matrices tell us which phone classes are easy for the model to recognise and

which phone classes are difficult for the model to distinguish. By comparing confusion

matrices of transformers with and without position embeddings, we can understand the

influence of position embeddings on each phone class.

4.5.2 Attention Map

Attention maps are commonly used for transformers [45, 4, 37]. Attention map visual-

izes the attention weights of self-attention. It corresponds to the output of Equation 2.3.

Given an utterance of length T , the attention weight matrix of a head is of size T ×T .

Attention maps reflect the distribution of attention paid by each phone in the utterance.



Chapter 4. Methodology 14

They provide insights into how transformers identify relations between phones and

how position embeddings alter it. Each head has an attention weight matrix. Besides

showing the attention of each head separately [37], some work averages the attention

matrices of all heads to look up the general distribution of attention [45, 4]. In this

project, we do both of them.

4.5.3 Position Similarity

To better understand the influence that position embeddings bring to self-attention, we

also visualize the similarity of the fixed absolute sinusoid position embeddings proposed

by Vaswani et al. [44]. Previous work [48] visualizes the similarity of the position

embeddings proposed by Vaswani et al. [44] with a maximum sequence length of 500

by cosine similarity. Cosine similarity of two vectors is obtained by dividing the dot

product of two vectors by the product of Euclidean norms of their magnitude. Given

two position embeddings ea and eb, the cosine similarity between eb and eb is calculated

by Equation 4.5.

similaritycos(ea,eb) =
ea · eb

∥ea∥∥eb∥
(4.5)

We claim that the similarity based on dot product could be more reasonable than cosine

similarity since this is how attention is calculated (Equation 2.3). Hence, we calculate

similarity of position embeddings ea and eb according to Equation 4.6.

similaritydot(ea,eb) = ea · eb (4.6)

Besides looking at the similarity of position embeddings in a whole in [48], we also

look at the similarity in detail. We visualize the similarity of position embeddings of

length 3000 since the maximum length of our utterances is 2344. By visualizing the

dot product similarity of position embeddings at different positions, we can know what

similarity information of positions is supplied to self-attention.



Chapter 5

Experiments

This chapter discusses experiments conducted in this project. Experiment settings are

introduced in 5.1. Section 5.2 shows the training losses and test phone error rates

of the models. To validate the hypothesis we proposed in section 5.2, we generate

confusion matrices and present them in section 5.3. Section 5.4 shows attention maps

of the models and discusses the patterns learned by models in detail. Two additional

hypotheses are generated based on attention maps. They are validated in section 5.5 and

5.6. We further validate if the model learns to ignore the misplaced position embeddings

in section 5.7. The similarity of the fixed absolute sinusoid position embeddings is

visualized and discussed in section 5.8.

5.1 Experiment Settings

To set the learning rate, we have reviewed the choices from previous studies. Some

transformers are trained with a learning rate of 0.05 with SGD optimizer, and reduces

the learning rate to 0.005 from epoch 120 to epoch 160 [54]. Some transformers are

fine-tuned with the largest learning rate 0.06 and finally drops to 0.003 [8]. It is found

that learning rates ranging from 0.05 to 0.25 suggest no difference with SGD, while

the learning rate of 0.01 leads to slower convergence [30]. In this project, the starting

learning rate is set to 0.05. To prevent fluctuation of the training loss and bring it closer

to the local minimum [51], it is changed to 0.001 after 70 epochs. Instead of training

by batch, we train utterances one by one to avoid padding utterances having different

lengths. Training is stopped at epoch 80 since it shows no evident improvement of PER

on the dev set in the last 10 epochs.

15



Chapter 5. Experiments 16

(a) Training loss. (b) Test PER. (c) Test PER.

Figure 5.1: Training loss and test PER. Numbers 512 or 768 indicate model dimension.

The first and the second inc or exc indicates position embeddings included or excluded

during training and testing respectively.

PE Included or excluded dmodel Final Training Loss Best PER and Epoch

Included 512 0.0986 10.19%, epoch 78

Excluded 512 0.4522 23.00%, epoch 75

Included 768 0.0782 9.60%, epoch 79

Excluded 768 0.4134 22.98%, epoch 78

Table 5.1: Final training losses and the best PERs of different models. PE refers to

position embeddings. dmodel is the model dimension. Final training loss is the training

loss at the 80th epoch. Best PER is measured when models are tested with the same

configurations with training. Epoch is the corresponding epoch of the best PER.

5.2 Losses and PERs

The training loss and the PER along epochs are illustrated in Figure 5.1. The final

training losses and the best PERs are listed in Table 5.1. We can see that transformers

trained without position embeddings suggest some learning ability, while they are still

worse than transformers trained with position embeddings. It is also noticed that the

training loss of transformers without position embeddings fails to converge to zero,

meaning that there exists something that could not be learned by the transformer without

position embeddings during training. This leads to Conclusion 5.1 and Hypothesis 5.1.

Conclusion 5.1. Transformers without position embeddings partially learn phone

classification.

Hypothesis 5.1. Transformers trained without position embeddings fail to learn to



Chapter 5. Experiments 17

Training Configuration Name

PE Included, dmodel = 768 M-inc

PE Excluded, dmodel = 768 M-exc

Table 5.2: Naming of models, where PE refers to position embeddings.

Testing Configuration Name

PE Included, on M-inc at epoch 79 inc-inc

PE Excluded, on M-exc at epoch 78 exc-exc

PE Excluded, on M-inc at epoch 79 inc-exc

PE Included, on M-exc at epoch 78 exc-inc

Table 5.3: Naming of testing configurations, where PE refers to position embeddings.

predict specific phones during training.

To validate this hypothesis, we test the model using 1000 utterances of the training

set. We generate confusion matrices in section 5.3 on both the dev set and the 1000

training utterances. In addition, we get an extremely poor result when we test the

transformer trained with position embeddings without using position embeddings. It

means that the transformer trained with position embeddings learns position information

during training and needs position embeddings when classifying phones. We generate

confusion matrices for it as well to explore the model’s performance with respect to

phone classes.

Since it is observed that dimension 768 works better than dimension 512, all

remaining experiments focus on transformers with dimension 768. For simplicity, we

name the trained transformer models as well as the testing configurations. They are

shown in Tables 5.2 and 5.3.

5.3 Confusion Matrices

When generating confusion matrices, we removed values of entries on the diagonal

line. Entries on the diagonal line from left up to bottom right correspond to correctly

classified cases and tend to have large values. Large values make confusion matrices

makes entries of small values have similar shallow colors and hard to distinguishable.

We additionally set the entry which corresponds to the target phone class /sil/ and the

predicted phone class /nsn/ to zero, since it is comparable in magnitude to the diagonal



Chapter 5. Experiments 18

Figure 5.2: Confusion matrix of inc-inc on the dev set, where the maximum value of the

color bar is normalized to 26 for easier comparison.

values and suggests similar in different configurations. Confusion matrices of inc-inc

and exc-exc on the dev set are shown in Figures 5.2 and 5.3. Confusion matrices of

inc-inc, exc-exc and inc-exc on the 1000 training utterances are shown in Figures 5.5,

5.6 and 5.4 respectively. Since the maximum value among Figures 5.2, 5.3, 5.5 and 5.6

is around 26 in Figure 5.3 , we normalize the maximum value of the color bars in the

above figures to 26 for easier comparison.

By comparing Figures 5.2 and 5.3, we arrive at three findings below.

1. Problems that are not obvious on inc-inc become serious on exc-exc. For example,

exc-exc struggles to distinguish some phone pairs that are similar on voicing, such

as to distinguish /z/ from /s/, and /b/ from /p/. It also has trouble differentiating

stops like /b/ /k/ /p/ /t/ from /sil/. We presume it is due to stops having closures

that could be mistaken for silence. These errors rarely occur on inc-inc.

2. Some phones that are challenging for inc-inc to predict are even more difficult for

exc-exc to correctly classify. For instance, inc-inc makes a few minor mistakes

on occasionally classifying /ih/ and /uh/ as /ah/, /aa/ as /ao/, /ng/ as /n/, and /spn/

as /s/. These mistakes happen more often on exc-exc.



Chapter 5. Experiments 19

Figure 5.3: Confusion matrix of exc-exc on the dev set.

3. Plenty of phone classes are not easily confused by both inc-inc and exc-exc. They

rarely mix up vowels and consonants. They also work well on separating some

phones that are both vowels or consonants but show relatively less similarity on

voicing, such as /ey/ and /ah/, /f/ and /k/.

According to Figure 5.4, M-inc utilizes position embeddings when predicting all

phone classes. Figure 5.5 suggests that M-inc learns to fit the data well. According to

Figure 5.6, the errors of exc-exc on the dev set are also evident on the training data,

indicating that M-exc does not learn well to differentiate stops from silence and to

separate phones similar on voicing during training. It validates our Hypothesis 5.2 and

leads to Conclusions 5.2 and 5.3.

Conclusion 5.2. Without position embeddings, the transformer can learn to differ-

entiate phones that are not similar on voicing.

Conclusion 5.3. Position embeddings are useful for the transformer (1) to distin-

guish phones which are similar on voicing, and (2) to distinguish stops from silence.

Position embeddings play a key role in separating /z/ from /s/.



Chapter 5. Experiments 20

Figure 5.4: Confusion matrix of inc-exc on 1000 training utterances.

Figure 5.5: Confusion matrix of inc-inc on 1000 training utterances, where the maximum

value of the color bar is normalized to 26 for easier comparison.



Chapter 5. Experiments 21

Figure 5.6: Confusion matrix of exc-exc on 1000 training utterances, where the maximum

value of the color bar is normalized to 26 for easier comparison.

5.4 Attention Maps

To explore how position embeddings influence self-attention, we randomly pick up an

utterance from the dev set and visualize attention maps of inc-inc and exc-exc. For

simplicity, we name layer i as Li where i ∈ [1,6]. We name the j-th head in layer i as

LiH j where i ∈ [1,6] and j ∈ [1,8].

It is discovered that M-inc and M-exc learn some common patterns in self-attention.

Both models contain heads that seem to separate consonants and vowels. In Figure 5.7,

the attention given by consonants /k/ and /f/ differs from the attention given by vowels

/uh/ and /ah/. Both models contain heads where frames of the same phone classes pay

attention to each other (Figure 5.8). These heads appear to identify which frames belong

to the same phone class. Both models contain heads that a group of frames of the same

phone class pay attention to frames at the boundary of the phone class (Figure 5.9).

Since it is often the case that frames at the boundary are misclassified to the class on the

other side, we assume the model compares features of frames with boundaries around

them to better identify the the boundaries.

Despite two models learning some common patterns, position embeddings make

some differences. They are discussed in sections 5.4.1, 5.4.2 and 5.4.3 respectively.



Chapter 5. Experiments 22

(a) Partial attention map of L1H1 of inc-inc. (b) Partial attention map of L1H2 of exc-exc.

Figure 5.7: Heads in inc-inc and exc-exc that separate consonants and vowels.

(a) Partial attention map of L2H7 of inc-inc. (b) Partial attention map of L1H7 of exc-exc.

Figure 5.8: Heads in inc-inc and exc-exc where frames of the same class pay attention

to each other.

(a) Partial attention map of L3H3 of inc-inc. (b) Partial attention map of L4H2 of exc-exc.

Figure 5.9: Heads in inc-inc and exc-exc where frames pay attention to boundaries.



Chapter 5. Experiments 23

(a) Partial attention map of L1H7 of exc-exc. (b) Partial attention map of L2H1 of inc-inc.

Figure 5.10: A head in exc-exc where frames of the same class pay attention to them-

selves, and a head in inc-inc where frames of the same class pay attention to frames of

the next class.

5.4.1 Difference of Attention on Phonetic Features

Compared to inc-inc, frames of the same class in exc-exc pay more attention to each

other. The squares in Figure 5.10a suggest frames of the same class pay attention to

each other. They are more often found in attention maps of exc-exc. In M-inc, attention

distributed in patches usually looks like rectangles, where frames tend to pay attention

to later frames or previous frames of different phone classes (Figure 5.10b). Even if the

square attention pattern can be found in attention maps of inc-inc, it tends to be more

evident in attention maps of exc-exc (Figure 5.8). We assume without explicit position

information, more attention is paid to features to extract relations between frames. It

leads to Conclusion 5.4.

Conclusion 5.4. The transformer without position embeddings tends to pay more

attention to phonetic features.

5.4.2 Difference of Attention on /z/ and /s/

Attention maps in L6 of exc-exc appear to have two column lines, which correspond to

a frame of /z/ and a frame of /s/ respectively (Figure 5.11). In the eight heads of L6,

nearly all frames pay the greatest attention to /z/, little or similar attention to /s/ and

nearly no attention to other phones. No heads in inc-inc show this pattern. We suppose

L6 of M-exc mainly identifies /z/ and /s/. We find /z/ pays little attention to both /z/



Chapter 5. Experiments 24

Figure 5.11: Attention maps of L6 of exc-exc.

and /s/ (Figure 5.12, 5.14a). It may relate to the fact that /z/ is often classified to /s/. In

addition, /s/ pays different attention to /z/ and /s/ (Figure 5.13, 5.14b). It may relate to

the fact that /s/ is rarely classified to /z/. Recalling that M-exc is particularly prone to

misclassifying /z/ as /s/, it appears to make a great effort in L6 to differentiate between

the two based solely on features.

In order to explore how M-exc learns to classify /z/ and /s/, we visualize the attention

maps of L6 at epoch 30 (Figure 5.15). We name the configuration that testing without

position embeddings on M-exc at epoch 30 as exc-exc-epoch30. It is found that in

exc-exc-epoch30, /z/ is paid with much greater attention by almost all frames, while

nearly no attention is given to /s/ and other phones. Also, all frames pay almost the

same attention to /z/, except for /z/ itself (Figure 5.16). We assume they are attempting

to set /z/ apart from all other phones. Therefore, M-exc first attempts to identify /z/ by

comparing all frames with a particular /z/ frame. The range of comparison expands to a

few frames during training. It leads to Conclusion 5.5.

Conclusion 5.5. Without position embeddings, the transformer tends to filter /z/

and /s/ at the last self-attention layer by comparing all frames with correspondingly

evident frames of /z/ and /s/.



Chapter 5. Experiments 25

(a) /z/ pays little attention to itself. (b) /z/ pays little attention to /s/.

Figure 5.12: Partial attention maps of L6H1 of exc-exc, where /z/ pays little attention to

itself and /s/.

(a) /s/ pays little attention to /z/. (b) /s/ pays much attention to itself.

Figure 5.13: Partial attention maps of L6H1 of exc-exc, where /s/ pays much attention to

itself but little to /z/.



Chapter 5. Experiments 26

(a) Partial attention map of L6H3 of exc-

exc, where /z/ pays little attention to itself.

(b) Partial attention map of L6H3 of exc-

exc, where /s/ pays little attention to /z/.

Figure 5.14: Partial attention maps of L6H3 of exc-exc.

Figure 5.15: Attention maps of L6 of exc-exc-epoch30.



Chapter 5. Experiments 27

Figure 5.16: Partial attention map of

L6H1 of exc-exc-epoch30.

Figure 5.17: Partial attention map of

L2H2 of exc-exc.

5.4.3 Difference of Diagonal Attention

L1H6 and L1H8 in inc-inc shows clear diagonal attention (Figure 5.18a, 5.18b). Frames

pay confident attention to frames at three positions before them in L1H6 and frames at

three positions after them in L1H8. It seems that the two heads learn relative position

information, and distance three is especially useful. This finding is consistent with the

property translation invariance of position embeddings proposed by [45]. A similar

pattern is also found in L2H6. Each frame in the silence area of L2H6 pays attention to

both four or five positions before it and two or three positions after it (Figure 5.18c).

Non-silence area also suggests similar attention, while frames tend to restrict their

attention to frames of the same classes (Figure 5.18d). This head appears to utilize

the position information provided by heads L1H6 and L1H8, combined with feature

information. It is expected to allow the transformer to detect if frames at a few positions

far away belong to their phone classes as well.

We also notice that frames rarely pay attention to themselves. It is most likely

because the information of each frame itself has been provided by residual connections.

Furthermore, frames tend to pay more attention to frames that are a few positions away.

One possible explanation is that frames next to each other tend to have very similar

features, and thus the additional information conveyed by them is limited and not as

useful as the information of frames at two or three positions away.

We hypothesize that when the model makes the decision on a frame, it considers

nearby frames. As a result, when it finds frames before the frame and after the frame



Chapter 5. Experiments 28

(a) Partial attention map of L1H6 of inc-inc. (b) Partial attention map of L1H8 of inc-inc.

(c) Partial attention map of L2H6 of inc-

inc, where frames are silence.

(d) Partial attention map of L2H6 of inc-

inc, where frames are not silence.

Figure 5.18: Heads in inc-inc which learn position information.



Chapter 5. Experiments 29

belong to the same class, the model is inclined to believe the frame is also in that class.

It becomes Hypothesis 5.2.

Hypothesis 5.2. Position embeddings reduce errors by improving the smoothness

of the output.

Hypothesis 5.2 is discussed in section 5.5.

A similar but different attention pattern in exc-exc is shown in Figure 5.17, where

the attention is approximately diagonal as well. It means that M-exc learns to identify

neighbouring frames. Although it presents some position related information, we claim

that

1. this position related information could not be obtained from the explicit position

information since we pad position embeddings with zeros, and

2. this position related information seems hard to be obtained from the implicit order

information since self-attention is expected to ignore orders.

Hence, the position related information is expected to derive from features. We hypothe-

size that the two adjacent frames tend to contain more similarities than others, resulting

in frames in L2H6 of exc-exc paying attention to their neighbouring frames. It turns

into Hypothesis 5.3.

Hypothesis 5.3. In transformers without position embeddings, frames identify

neighbours based on features.

Hypothesis 5.3 is discussed in section 5.6.

5.5 Validation of Hypothesis 5.2

To validate Hypothesis 5.2, two experiments are designed. The first experiment aims

to validate if position embeddings improve the smoothness of the output. The second

experiment aims to explore how the smoothness can help to reduce errors.

5.5.1 Experiment I

In this experiment, we count the number of changes in phone classes for inc-inc and

exc-exc. Besides the utterance that we picked when visualizing attention maps, we

randomly pick another two utterances from the dev set. According to Table 5.4, the

number of changes in exc-exc is much more than that in inc-inc. It means with position



Chapter 5. Experiments 30

Utterance Key 4b7c040p 4bgc031c 4ayc030p Total

Length 375 424 752 1551

Class Changes in inc-inc 22 43 95 160

Class Changes in exc-exc 31 76 150 257

Table 5.4: Number of changes of the phone class in inc-inc and exc-exc. Length is the

number of frames

embeddings, the transformer tends to reduce the changes in the output, and thus the

smoothness is improved. It leads to Conclusion 5.6.

Conclusion 5.6. Position embeddings in the transformer improve the smoothness

of the output.

5.5.2 Experiment II

In this experiment, we focus on the errors that cover no more than three continuous

frames for the following reasons.

1. When errors cover too many continuous frames, they convey incorrect context

information. The smoothness based on the incorrect context is not considered

helpful for the model to make a correct prediction.

2. According to our previous findings in section 5.4, transformers learn distance

three. In three continuous incorrect frames, the maximum distance is two, and

M-inc is expected still able to learn context information outside these frames and

avoid corresponding errors from happening.

We have the definitions below.

Neighbour of a frame: one frame before the frame or one frame after the frame.

Frame at the boundary: the frame which belongs to a different target phone class to at

least one of its neighbours.

Frames at the boundary: a frame at the boundary, or a group of continuous frames

where at least one of them is at the boundary.

Frames not at the boundary: a frame that is not at the boundary, or a group of

continuous frames where none of them is at the boundary.

Errors covering no more than three continuous frames are classified into the follow-

ing three types. Each error type follows examples.



Chapter 5. Experiments 31

Type 1 errors. In this case, frames at the boundary are incorrectly classified as the

target class on the other side of the boundary (Table 5.5, 5.6).

Type 2 errors. The model incorrectly classifies the frames at the boundary as a

phone class that is not the target phone class of either side of the boundary (Table 5.7).

Type 3 errors. Frames not at the boundary are misclassified (Table 5.8).

We assume that the context information may help the transformer avoid Type 2

and Type 3 errors because the frames in these two scenarios are misclassified as phone

classes that don’t fit in with their neighbours.

We count the number of frames that encounter the three types of errors in inc-inc

and exc-exc respectively using the three utterances same to Experiment I. When finding

a group of no more than three frames are misclassified, we take account in the errors,

look for which errors they belong to, and count the errors by frames. Compared to

exc-exc, inc-inc shows less Type 1 errors in utterances 4b7c040p and 4bgc031c, while

utterance 4ayc030p suffers from more Type 1 errors in inc-inc than exc-exc. Compared

to exc-exc, inc-inc makes fewer Type 2 errors.

Frame 178 179 180 181 182

Target uh uh uh k k

Predict uh uh k k k

Table 5.5: Type 1 error made by inc-inc in

utterance 4b7c040p at frame 180.

Frame 316 317 318 319 320

Target v dh dh dh ah

Predict v v v v ah

Table 5.6: Type 1 error made by inc-inc in

utterance 4bgc031c at frames 317 - 319.

Frame 99 100 101 102 103

Target ah ah ah r r

Predict ah ah v v r

Table 5.7: Type 2 error made by exc-exc

in utterance 4ayc030p at frames 101 and

102.

Frame 228 229 230 231 232

Target k k k k k

Predict k sil sil sil k

Table 5.8: Type 3 error made by exc-exc in

utterance 4bgc031c at frames 229 - 231.

According to our hypothesis, M-inc may tend to classify the frame at the boundary

to the classes of its neighbours in order to keep the smoothness of the output. We

hypothesize that this may reduce Type 2 errors but increase Type 1 errors to some extent,

and it could be the reason that results in more Type 1 errors of inc-inc in utterance

4ayc030p. To validate our hypothesis, we compare the prediction of inc-inc and exc-exc

frame by frame. According to Table 5.10, at frame 231, exc-exc makes a Type 2 error

and classifies the frame /n/ to /l/, while inc-inc makes a Type 1 error and classifies the



Chapter 5. Experiments 32

Utterance Key 4b7c040p 4bgc031c 4ayc030p Total

Length 375 424 752 1551

Type 1 errors
inc-inc 6 14 49 69

exc-exc 15 22 39 76

Type 2 errors
inc-inc 0 0 3 3

exc-exc 0 1 15 16

Type 3 errors
inc-inc 0 1 9 10

exc-exc 3 20 18 42

Table 5.9: Statistics of three types of errors made by inc-inc and exc-exc in three

utterances.

frame to the class of the later frame /ao/. We assume the feature at frame 231 could

be confusing and somewhat similar to /l/. Considering the smoothness of the output,

inc-inc tends to make a decision between /n/ and /ao/. In this way, Type 2 error is

avoided while Type 1 error happens. Similar cases can also be found in Table 5.11.

Position embeddings prevent M-inc from misclassifying the frame as /t/ and make it

classify the frame to /d/ since it is the class of the previous frame.

Frame 229 230 231 232 233

Target n n n ao ao

inc-inc n n ao ao ao

exc-exc d d l ao ao

Table 5.10: Type 1 error made by inc-inc

and Type 2 error made by exc-exc at frame

231 in utterance 4ayc030p.

Frame 199 200 201 202 203

Target d d ih ih ih

inc-inc d d d ih ih

exc-exc d dh t t ih

Table 5.11: Type 1 error made by inc-inc

and Type 2 error made by exc-exc at frame

201 in utterance 4ayc030p.

In addition, inc-inc has fewer Type 3 errors. It means when the prediction of a set

of frames of the same class is generally correct, it tends to avoid the mistakes in the

middle of them (Table 5.12, 5.13). To be concluded, position embeddings improve the

smoothness of the prediction, and the smoothness suggests effectiveness in reducing

Type 2 errors and Type 3 errors. Our Experiment I and II together validate Hypothesis

5.2. Experiment II leads to Conclusion 5.7.

Conclusion 5.7. The smoothness of the output reduces specific types of errors.



Chapter 5. Experiments 33

Frame 356 357 358 359 360

Target ow ow ow ow ow

inc-inc ow ow ow ow ow

exc-exc ow ow ow ah ow

Table 5.12: Type 3 error made by exc-exc

in utterance 4ayc030p at frame 359.

Frame 25 26 27 28 29

Target sil sil sil sil sil

inc-inc sil sil sil sil sil

exc-exc sil sil t p sil

Table 5.13: Type 3 error made by exc-exc

in utterance 4bgc031c at frame 27 and 28.

5.6 Validation of Hypothesis 5.3

To validate Hypothesis 5.3, we apply different permutations to different utterances at

different epochs, and no position embeddings are fed into the model. In this way, the

order information is removed, and the inputs fed into the transformer are only bags of

frames. We assume if M-exc learns to identify neighbours based on orders of the inputs

rather than features, the performance of the model would suggest an evident decrease

when the order is scrambled. We name the model that is trained with scrambled inputs

without position embeddings as M-exc-scram. Other model settings of M-exc-scram

are the same as M-inc and M-exc.

Model Final Training Loss Best PER and Epoch

M-exc-scram 0.4151 23.64%, epoch 78

M-exc 0.4134 22.98%, epoch 78

M-inc 0.0782 9.60%, epoch 79

Table 5.14: Final training losses and Best PERs of M-exc-scram and previous models

for comparison. Final training loss is the training loss at the 80th epoch. Best PERs are

measured when models are tested with the same configurations to training. Epoch is

the corresponding epoch of the best PER.

According to Figure 5.19 and Table 5.14, when the inputs are scrambled, the model

does not suggest an evident decline in performance. When visualizing attention maps,

it is found that the only diagonal attention is about each frame paying attention to

itself (Figure 5.20), which contains no order related information. No attention maps in

the scrambling case are found to contain diagonal order related attention. Hence, the

transformer without position embeddings learn identify neighbours based on features



Chapter 5. Experiments 34

(a) Training loss. (b) Test PER.

Figure 5.19: Training loss and test PER of M-exc-scram, M-exc and M-inc. Models are

tested using the same configurations as training.

rather than the orders. It validates our Hypothesis 5.3 and leads to Conclusion 5.8 and

5.9.

Figure 5.20: Partial attention map of L3H3

of M-exc-scram.

Figure 5.21: Similarity map of the fixed abso-

lute sinusoid position embeddings proposed

by [44] with length 3000.

Conclusion 5.8. The transformer without any order information can partially

learn phone classification. The performance is similar to the transformer trained with

unscrambled inputs but without position embeddings.

Conclusion 5.9. The transformer without position embeddings learns limited



Chapter 5. Experiments 35

(a) Training loss. (b) Test PER.

Figure 5.22: Training loss and test PER of M-inc-scram, M-exc-scram and M-exc. Models

are tested using the same configurations as training.

position related information based on similarity of features to identify neighbours of

frames.

5.7 Scrambled Inputs With Unscrambled Position Em-

beddings

We scramble the inputs and apply them with the unscrambled position embeddings.

In this way, for the input, position embeddings carry disordered position information.

We name the model that is trained with scrambled inputs and unscrambled position

embeddings as M-inc-scram. Other model settings of M-inc-scram are the same as

M-inc and M-exc. According to Figure 5.22, when unscrambled position embeddings

are applied to the transformer with scrambled inputs, the training loss and the PER keep

going down, whereas it is hard to achieve the performance of the transformer trained

with scrambled inputs but no position embeddings. We hypothesize that when the

model is provided with disordered position embeddings, it tries to ignore the position

embeddings but could not totally ignore them.

To validate our hypothesis, we generate attention maps for epochs 10, 30, 50, and 79

respectively, finding that the diagonal attention gradually diminishes during training. We

claim that the diagonal attention comes from position embeddings because the sequence

is of scrambled order while position embeddings keep their original order. The gradually



Chapter 5. Experiments 36

(a) Epoch 10. (b) Epoch 30.

(c) Epoch 50. (d) Epoch 79.

Figure 5.23: Attention maps of L1H3 of M-inc-scram across different epochs. M-inc-

scram is tested with scrambled inputs and unscrambled position embeddings as well.

weakened diagonal attention confirms our hypothesis. It fails to completely disregard

position embeddings but still makes their impact down to a low level. It leads to

Conclusion 5.10.

Conclusion 5.10. Transformers applied with disordered position embeddings learn

to lessen the impact of position embeddings, whereas they cannot entirely disregard

position embeddings.

5.8 Similarity of Postion Embeddings

As described in section 4.5, we calculate the dot product similarity of the fixed absolute

sinusoid position embeddings proposed by Vaswani et al. [44] as shown in Figure 5.21.



Chapter 5. Experiments 37

(a) Partial similarity map of position embed-

dings, where the similarity does not keep de-

creasing as the distance goes up.

(b) Partial similarity map of position embeddings

where position embeddings of identical distance

have the identical dot product similarity.

Figure 5.24: Enlarged similarity maps.

It can be found that the similarity of position embeddings generally decreases as the

distance between positions grows. Shadow diagonal lines in the enlarged similarity

map (Figure 5.24a), however, show that the similarity of position embeddings at some

particular distances is higher than the similarity at distances closer to them. It indicates

that the fixed absolute sinusoid position embeddings of [44] partially satisfy the property

of monotonicity in [45]. We can also notice that position embeddings of the identical

distance have the identical dot product (Figure 5.24b). It is in accordance with the

property of translation invariance in [45]. It further demonstrates that the attention

patterns in Figure 5.18a and 5.18b come from position embeddings.

From Figure 5.24b, the similarity changes sharply in the distances ranging from

one to five. It implies that between distances from one to five, fixed absolute sinusoid

position embeddings offer evident relative position information. It suggests that the help

of position embeddings for long dependencies between frames is limited. Transformers,

on the other hand, typically learn shorter distances, like three, in phone classification.

It means that the transformers’ demand for relative position information for phone

classification can be met by the fixed absolute sinusoid position embeddings.



Chapter 6

Conclusions

In this project, we explore the role of position embeddings in transformers for phone

classification, a task closely related to ASR. We eliminate position embeddings in

transformers by padding them with zeros. Several experiments are carried out to

compare transformers with and without position embeddings. We arrive at the following

conclusions in the context of phone classification.

1. Position embeddings help the transformer to separate phones with similar voicing

and to differentiate stops from silence. They are crucial in distinguishing /z/ from

/s/. Position embeddings change the way that the transformer learns, especially

how to identify /z/ and /s/. Position embeddings tell the transformer specific

useful distances so that the smoothness of the output is improved. It suggests that

the transformer learns relative position information from our absolute position

embeddings. Errors that are thought to relate to the smoothness are reduced.

When position embeddings carrying disordered sinusoid position information are

fed to the transformer, it learns to reduce their influence but fails to totally ignore

it.

2. Even trained without position embeddings, the transformer can distinguish a large

number of phone pairs and maintain an acceptable phone error rate. The trans-

former trained without position embeddings cannot learn well on distinguishing

phones with similar voicing or distinguishing stops from silence during training.

3. Without position embeddings, the transformer learns limited position related

information based on features. It allows the transformer to identify neighbouring

frames.

38



Chapter 6. Conclusions 39

Due to the close relation between phone classification and ASR, we assume the role

of position embeddings in transformers for phone classification also applies to ASR.

Since it has been validated that the model learns relative position information from the

absolute position embeddings, we also demonstrate the importance of convolutional

networks in wav2vec 2.0 [2] and HuBERT [15].

In spite of the conclusions mentioned above, the project still has limitations. They

are discussed in section 6.1. Work that can be done in the future is discussed in section

6.2.

6.1 Limitations

Our experiments focus on the fixed sinusoid absolute position embeddings proposed by

[44]. It results in the following limitations.

1. We have shown that the transformer learns relative position information. It

remains unknown if absolute position embeddings bring additional help compared

to relative position embeddings.

2. Learned position embeddings are often employed in transformers as well [6, 8, 45].

We have not investigated that to what extent the learned position embeddings in

transformers facilitate phone classification.

As a result, our conclusions on position embedding in transformers for phone classifica-

tion are partial.

Moreover, our conclusions draw from attention maps are based on a single utter-

ance. Our analysis in section 5.5 is based on three random utterances. Hence, the

generalizability of our conclusions is limited.

The metric in section 5.5 has limitations as well. We classify errors into three types,

assuming some are related to the smoothness, and count them. However, it is not always

the case that the errors we count are the results of a lack of smoothness. Also, there

could be other types of errors mitigated by the smoothness while we do not consider

them. For example, we take account of errors covering no more than three continuous

frames since we notice relative position three is learned by the transformer. However,

since the model suggests to pay attention to frames on both sides, it is possible that the

smoothness also suggests assistance in avoiding errors continuing four or five frames.

Our metric is only a rough estimate.



Chapter 6. Conclusions 40

We did not verify the downside of the position embeddings. Absolute position

embeddings may make the model more easily overfit. Transformers trained with

absolute position embeddings may rely too much on absolute position information when

classifying phones. The smoothness of the output may bring negative effects within an

incorrect context as well.

6.2 Future Work

According to the limitations in section 6.1, the following work can be done in the future.

1. Conduct experiments on learned absolute position embeddings in transformers

for phone classification.

2. Experiments can be done to explore if absolute position embeddings in trans-

formers provide additional help compared to relative position embeddings. It

has been shown that relative position embeddings have more advantages than

absolute position embeddings [17, 23, 5], especially for sequences that are longer

than those in the training set [34]. It is also claimed that the sinusoid position

embeddings may decrease performance on long utterances if they contain similar

acoustic features at different positions [55].

3. Extend the experiments to ASR to validate to what extent our conclusions hold.



Bibliography

[1] Alexei Baevski and Michael Auli. Adaptive input representations for neural

language modeling. arXiv preprint arXiv:1809.10853, 2018.

[2] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec

2.0: A framework for self-supervised learning of speech representations. Advances

in Neural Information Processing Systems, 33:12449–12460, 2020.

[3] William Chan, Daniel Park, Chris Lee, Yu Zhang, Quoc Le, and Mohammad

Norouzi. Speechstew: Simply mix all available speech recognition data to train

one large neural network. arXiv preprint arXiv:2104.02133, 2021.

[4] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xiaolin Wei, Huaxia Xia,

and Chunhua Shen. Conditional positional encodings for vision transformers.

arXiv preprint arXiv:2102.10882, 2021.

[5] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan

Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length

context. arXiv preprint arXiv:1901.02860, 2019.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[7] Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: a no-recurrence

sequence-to-sequence model for speech recognition. In 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5884–

5888. IEEE, 2018.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,

Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

41



Bibliography 42

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[9] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.

Convolutional sequence to sequence learning. In International Conference on

Machine Learning, pages 1243–1252. PMLR, 2017.

[10] Shuqin Gu, Lipeng Zhang, Yuexian Hou, and Yin Song. A position-aware bidirec-

tional attention network for aspect-level sentiment analysis. In Proceedings of the

27th international conference on computational linguistics, pages 774–784, 2018.

[11] Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection via

bert. In 2021 International Joint Conference on Neural Networks (IJCNN), pages

1–8. IEEE, 2021.

[12] Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer

language models without positional encodings still learn positional information.

arXiv preprint arXiv:2203.16634, 2022.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[14] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. De-

berta: Decoding-enhanced bert with disentangled attention. arXiv preprint

arXiv:2006.03654, 2020.

[15] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan

Salakhutdinov, and Abdelrahman Mohamed. Hubert: Self-supervised speech

representation learning by masked prediction of hidden units. IEEE/ACM Trans-

actions on Audio, Speech, and Language Processing, 29:3451–3460, 2021.

[16] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian

Simon, Curtis Hawthorne, Andrew M Dai, Matthew D Hoffman, Monica Din-

culescu, and Douglas Eck. Music transformer. arXiv preprint arXiv:1809.04281,

2018.

[17] Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang. Improve transformer

models with better relative position embeddings. arXiv preprint arXiv:2009.13658,

2020.



Bibliography 43

[18] Md Amirul Islam, Sen Jia, and Neil DB Bruce. How much position information do

convolutional neural networks encode? arXiv preprint arXiv:2001.08248, 2020.

[19] Naoyuki Kanda, Guoli Ye, Yashesh Gaur, Xiaofei Wang, Zhong Meng, Zhuo

Chen, and Takuya Yoshioka. End-to-end speaker-attributed asr with transformer.

arXiv preprint arXiv:2104.02128, 2021.

[20] Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language

pre-training. arXiv preprint arXiv:2006.15595, 2020.

[21] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient

transformer. arXiv preprint arXiv:2001.04451, 2020.

[22] Xinjian Li, Siddharth Dalmia, Juncheng Li, Matthew Lee, Patrick Littell, Jiali

Yao, Antonios Anastasopoulos, David R Mortensen, Graham Neubig, Alan W

Black, et al. Universal phone recognition with a multilingual allophone system.

In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 8249–8253. IEEE, 2020.

[23] Tatiana Likhomanenko, Qiantong Xu, Gabriel Synnaeve, Ronan Collobert, and

Alex Rogozhnikov. Cape: Encoding relative positions with continuous augmented

positional embeddings. Advances in Neural Information Processing Systems,

34:16079–16092, 2021.

[24] Frederick Liu and Besim Avci. Incorporating priors with feature attribution on

text classification. arXiv preprint arXiv:1906.08286, 2019.

[25] Xuanqing Liu, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Learning to

encode position for transformer with continuous dynamical model. In International

conference on machine learning, pages 6327–6335. PMLR, 2020.

[26] Yang Liu, Alexandras Neophytou, Sunando Sengupta, and Eric Sommerlade.

Cross-modal spectrum transformation network for acoustic scene classification.

In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 830–834. IEEE, 2021.

[27] Diego Jesús Lozano-Mejı́a, Enrique Paul Vega-Uribe, and Willy Ugarte. Content-

based image classification for sheet music books recognition. In 2020 IEEE

Engineering International Research Conference (EIRCON), pages 1–4. IEEE,

2020.



Bibliography 44

[28] Tomohiro Nakatani. Improving transformer-based end-to-end speech recognition

with connectionist temporal classification and language model integration. In Proc.

Interspeech, 2019.

[29] Jinhwan Park, Chanwoo Kim, and Wonyong Sung. Convolution-based attention

model with positional encoding for streaming speech recognition on embedded

devices. In 2021 IEEE Spoken Language Technology Workshop (SLT), pages

30–37. IEEE, 2021.

[30] Martin Popel and Ondřej Bojar. Training tips for the transformer model. arXiv

preprint arXiv:1804.00247, 2018.

[31] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. Language models are unsupervised multitask learners. Ope-

nAI blog, 1(8):9, 2019.

[32] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of

transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res.,

21(140):1–67, 2020.

[33] Shaghayegh Reza, Seyyed Ali Seyyedsalehi, and Seyyedeh Zohreh Seyyedsalehi.

Persian language phone recognition based on robust extraction of acoustic land-

marks. In 2020 27th National and 5th International Iranian Conference on

Biomedical Engineering (ICBME), pages 106–112. IEEE, 2020.

[34] Jan Rosendahl, Viet Anh Khoa Tran, Weiyue Wang, and Hermann Ney. Analysis

of positional encodings for neural machine translation. In Proceedings of the 16th

International Conference on Spoken Language Translation, 2019.

[35] Saurabh Sahu, Vikramjit Mitra, Nadee Seneviratne, and Carol Y Espy-Wilson.

Multi-modal learning for speech emotion recognition: An analysis and comparison

of asr outputs with ground truth transcription. In Interspeech, pages 3302–3306,

2019.

[36] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative

position representations. In Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human



Bibliography 45

Language Technologies, Volume 2 (Short Papers), pages 464–468, New Orleans,

Louisiana, June 2018. Association for Computational Linguistics.

[37] Kyuhong Shim, Jungwook Choi, and Wonyong Sung. Understanding the role

of self attention for efficient speech recognition. In International Conference on

Learning Representations, 2021.

[38] Matthias Sperber, Jan Niehues, Graham Neubig, Sebastian Stüker, and Alex

Waibel. Self-attentional acoustic models. arXiv preprint arXiv:1803.09519, 2018.

[39] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Andrew Ilyas, and Alek-

sander Madry. From imagenet to image classification: Contextualizing progress on

benchmarks. In International Conference on Machine Learning, pages 9625–9635.

PMLR, 2020.

[40] Emiru Tsunoo, Yosuke Kashiwagi, Toshiyuki Kumakura, and Shinji Watanabe.

Towards online end-to-end transformer automatic speech recognition. arXiv

preprint arXiv:1910.11871, 2019.

[41] Emiru Tsunoo, Yosuke Kashiwagi, Toshiyuki Kumakura, and Shinji Watanabe.

Transformer asr with contextual block processing. In 2019 IEEE Automatic Speech

Recognition and Understanding Workshop (ASRU), pages 427–433. IEEE, 2019.

[42] KG Van Leeuwen, P Bos, Stefano Trebeschi, Maarten JA van Alphen, Luuk

Voskuilen, Ludi E Smeele, Ferdi van der Heijden, RJJH Van Son, et al. Cnn-

based phoneme classifier from vocal tract mri learns embedding consistent with

articulatory topology. In Interspeech, pages 909–913, 2019.

[43] Jan Vaněk, Josef Michálek, and Josef Psutka. Recurrent dnns and its ensembles

on the timit phone recognition task. In International Conference on Speech and

Computer, pages 728–736. Springer, 2018.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

[45] Benyou Wang, Lifeng Shang, Christina Lioma, Xin Jiang, Hao Yang, Qun Liu,

and Jakob Grue Simonsen. On position embeddings in {bert}. In International

Conference on Learning Representations, 2021.



Bibliography 46

[46] Xing Wang, Zhaopeng Tu, Longyue Wang, and Shuming Shi. Self-attention with

structural position representations. arXiv preprint arXiv:1909.00383, 2019.

[47] Yongqiang Wang, Abdelrahman Mohamed, Due Le, Chunxi Liu, Alex Xiao, Jay

Mahadeokar, Hongzhao Huang, Andros Tjandra, Xiaohui Zhang, Frank Zhang,

et al. Transformer-based acoustic modeling for hybrid speech recognition. In

ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 6874–6878. IEEE, 2020.

[48] Yu-An Wang and Yun-Nung Chen. What do position embeddings learn? an

empirical study of pre-trained language model positional encoding. arXiv preprint

arXiv:2010.04903, 2020.

[49] Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng

Wang, Jiashu Lin, Xin Jiang, Xiao Chen, and Qun Liu. Nezha: Neural con-

textualized representation for chinese language understanding. arXiv preprint

arXiv:1909.00204, 2019.

[50] Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and Hongyang Chao. Re-

thinking and improving relative position encoding for vision transformer. In

Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 10033–10041, 2021.

[51] Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I Jordan. How

does learning rate decay help modern neural networks? arXiv preprint

arXiv:1908.01878, 2019.

[52] Albert Zeyer, Parnia Bahar, Kazuki Irie, Ralf Schlüter, and Hermann Ney. A

comparison of transformer and lstm encoder decoder models for asr. In 2019 IEEE

Automatic Speech Recognition and Understanding Workshop (ASRU), pages 8–15.

IEEE, 2019.

[53] Yu Zhang, James Qin, Daniel S Park, Wei Han, Chung-Cheng Chiu, Ruoming

Pang, Quoc V Le, and Yonghui Wu. Pushing the limits of semi-supervised learning

for automatic speech recognition. arXiv preprint arXiv:2010.10504, 2020.

[54] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point

transformer. In Proceedings of the IEEE/CVF International Conference on Com-

puter Vision, pages 16259–16268, 2021.



Bibliography 47

[55] Pan Zhou, Ruchao Fan, Wei Chen, and Jia Jia. Improving generalization of

transformer for speech recognition with parallel schedule sampling and relative

positional embedding. arXiv preprint arXiv:1911.00203, 2019.


