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Abstract

The unknotting problem is the problem of recognising mathematical knots that can be

unknotted into a single loop. Since it was first solved by Haken in 1961, various algo-

rithms have been devised. However, most literature focuses on developing algorithms

and on the mathematical aspects of the unknotting problem, and there are very few

empirical studies have been published. Our aim was to bridge the gap between theory

and practice by using the open-source software, Regina, to empirically evaluate existing

algorithms relating to knot theory. In particular, we tested the following knot algo-

rithms: Burton and Ozlen’s unknot recognition algorithm using normal surface theory,

Reidemeister moves, and polynomial knot invariants Jones and HOMFLY polynomials.

To achieve this, we used an algorithm provided by Chapman and Schaeffer to develop

an almost-uniform knot diagram generator that can generate large knot diagrams. In

this paper, we also present a new theorem and an algorithm for testing whether a knot

diagram is prime. The algorithm was used to develop a prime knot diagram generator

in Python.
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Chapter 1

Introduction

In the mathematical field of knot theory, a knot can be thought of as a flexible and

elastic strand with both ends attached together at a single point. The simplest example

of a mathematical knot is the unknot or equivalently the trivial knot, which is a single

closed loop. A projection of the unknot onto a plane is illustrated in Figure 1.1a. We

call the diagram a knot diagram.

There are two fundamental problems in knot theory. The first is the equivalence

problem - given two knots, are they equivalent? In other words, can one knot be

smoothly deformed into the other without making illegal moves such as cutting and

glueing? The second problem, which is also the main focus of this paper, is a special case

of the equivalence problem called the unknotting problem - given a knot, is it equivalent

to the unknot? A famous example is Haken’s Gordian knot with 141 crossings that

seems intractable at first sight but can be properly untangled [11]. However, in contrast

to knots with loose ends that appear in everyday life, not all mathematical knots can be

unknotted. No matter how hard we try, the trefoil knot illustrated in Figure 1.1b cannot

be manipulated into the unknot. We call these types of knots non-trivial knots.

In fact, the unknotting problem has already been solved in principle. Haken provided

(a) The unknot. (b) Trefoil knot.

Figure 1.1: Knot diagrams of the unknot and the trefoil knot.
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Chapter 1. Introduction 2

the first algorithm in 1961 by studying the space surrounding the knot and searching for

surfaces called the normal surfaces [20]. However, it has not been implemented due to

its extreme computational complexity. Haken’s original algorithm has since then been

refined and developed, and numerous algorithms have been devised. We now also know

that the unknotting problem lies in the complexity classes NP [22] and co-NP [25] [27].

Thus, the question now is whether there exists a polynomial time algorithm for the

unknotting problem. An algorithm announced by Lackenby in 2021 could potentially

provide a quasi-polynomial time algorithm that runs slower than polynomial time but

faster than exponential time [28]. However, most of the existing algorithms run in

exponential time, which reflects the difficulty in tackling the unknotting problem in

practice.

Currently, there is a wide range of computer programs for studying and experiment-

ing with knots, such as Regina [9], SnapPy [14] and Knotscape [2]. Yet, most literature

focuses on developing algorithms and on the mathematical aspects of the unknotting

problem, and we could find very few empirical studies that have been published. Our

aim is to fill the gap by undertaking an empirical evaluation of the knot algorithms

implemented in Regina.

One of Regina’s knot algorithms is Burton and Ozlen’s unknot recognition algorithm

[10], which is based on the work by Haken. A significant result is that their algorithm

appears to exhibit empirically polynomial-time performance, despite it being exponen-

tial time in theory. A major limitation of their experiment, however, is that they only

tested on knot diagrams up to 12 crossings. Thus, it was left unclear whether the same

behaviour could be observed with much larger knots. To overcome this problem, we

generate random samples of large knot diagrams and feed them to Regina. In particular,

it is preferable to sample with distribution as close to uniform as possible to avoid bias

towards particular types of knots.

The PhD thesis of Chapman [12] provides an algorithm for sampling knot diagrams

almost uniformly based on Schaeffer’s planar map sampling algorithm [31]. However,

the algorithm was implemented mainly for the purpose of studying the mathematical

properties of knot diagrams. Therefore, we aim to bridge the gap by applying the random

sampling algorithm to the evaluation of sophisticated knot algorithms implemented in

Regina.

There are three main objectives to this project. The first objective is to develop a

knot diagram generator in Python using Chapman’s algorithm [12]. A bijection between

rooted link shadows and a family of trees called the blossom trees (see Figure 1.2)
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enables us to almost uniformly sample knot diagrams [31]. We discuss the details in

Chapter 4. The second aim is to construct a prime knot diagram generator to reproduce

the experiment done by Burton and Ozlen more closely. We say that a knot diagram is

composite if there is a pair of edges whose removal disconnects the graph. Otherwise,

the knot diagram is prime. To develop the generator, we present a new theorem and an

algorithm for testing whether a knot diagram is prime. The third goal is to use both

generators to empirically evaluate various knot algorithms in Regina, with the main

focus being Burton and Ozlen’s unknot recognition algorithm.

Figure 1.2: A blossom tree.

The remainder of this paper is structured as follows. Chapter 2 briefly introduces

the basic concepts of knots. Chapter 3 studies Regina’s knot algorithms. Chapter 4

examines Chapman’s algorithm for almost uniform sampling of knot diagrams and

provides implementation details. Chapter 5 presents a new theorem and an algorithm

for sampling prime knot diagrams. Chapter 6 discusses the experimental results and

finally, conclusions are presented in Chapter 7.



Chapter 2

Background

We first briefly introduce the basic concepts of knots needed for the rest of this paper.

Our mathematical definitions are somewhat informal but are sufficient for our purposes.

We assume that the reader has basic knowledge of graph theory.

2.1 Knots in the 3-sphere

We consider knots embedded in 3-dimensional space. In particular, it is convenient to

work with knots lying in the 3-sphere that consist of all points in R4 equidistant from

some origin. We denote this space by S3. It is a 3-manifold, meaning that locally, it

resembles Euclidean 3-dimensional space. We can also think of S3 by adding a single

point at infinity to R3 with some suitable topology [13]. A knot is an embedding of the

circle S1 into this space, avoiding the point at infinity. The main benefit of working in

S3 over R3 is that S3 possesses some nice properties that allow us to use the normal

surface theory for recognising unknots in Section 3.1.

When studying a knot, the first step is to represent it in a simpler form that ideally

preserves all its structures and properties. The most popular method involves projecting

the knot onto a plane or (almost equivalently) onto a sphere [24], which we describe

next.

2.2 Planar maps and knot diagrams

A projection of a knot on a plane can be described as a finite, connected graph with

self-loops and multiple edges between pairs of vertices, where each vertex represents a

single crossing of the knot. We call such embedding of graphs on a plane planar maps.

4



Chapter 2. Background 5

(a) A link shadow. (b) A knot shadow.

Figure 2.1: Examples of link and knot shadows.

(a) A link diagram. (b) A knot diagram.

Figure 2.2: Examples of link and knot diagrams.

Since every vertex represents a crossing, every vertex has degree 4, and so the

projected graph is a 4-valent planar map. We call this map a link shadow. In particular,

a link shadow is called a knot shadow if it is made of one strand only. This can be

tested by following the strand and always taking the path straight ahead at each vertex.

If we can pass through all the edges, then it is a knot shadow. Examples of link and

knot shadows are shown in Figure 2.1. Furthermore, a link shadow is called a link

diagram if it has additional crossing information on every vertex, where one of the

strands represents the over strand, and the other represents the under strand. Similarly, a

knot diagram is a knot shadow with crossing information. Both link and knot diagrams

are given in Figure 2.2. Note that we often measure the size of a knot by the number of

crossings in a knot diagram.

Technically speaking, we regard our planar maps as living not just on a plane but on

a sphere by adding a point at infinity to the plane.

2.3 Prime knots and prime knot diagrams

In this section, we define particular types of knots called prime knots and prime knot

diagrams. First, a composition of two knots can be obtained by removing a small region

from each knot and sticking the two knots together without creating new crossings, as
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shown in Figure 2.3.

Definition 1. (Prime knots). A knot is a composite knot if it is a composition of two

non-trivial knots. Otherwise, the knot is called a prime knot.

Definition 2. (Prime Knot Diagrams). Let G be a knot diagram with more than one

vertex. We say that G is composite if there exists a pair of edges in G whose removal

disconnects the graph. Otherwise, G is prime.

Remark. Prime knots have prime knot diagrams, but not every prime knot diagram is

guaranteed to represent a prime knot.

Figure 2.3: Composition of two knots.



Chapter 3

Regina’s Algorithms Relating to Knot

Theory

In this chapter, we look at Regina’s various algorithms relating to unknot recognition:

Burton and Ozlen’s algorithm using normal surface theory, brute-force search using Rei-

demeister moves, and two polynomial knot invariants Jones and HOMFLY polynomials.

Our primary focus is the algorithm using normal surface theory.

Today, a wide variety of computer programs related to knot theory exist. SnapPea

was created by Weeks in the 1990s to provide tools for experimentation with hyperbolic

3-manifolds and knots [4] [33]. Its kernel was later used to develop another program for

studying hyperbolic structures, called SnapPy [14]. Alternatively, there are interactive

software such as Knotscape [2] and KnotPlot [1], that allows one to easily draw knots.

However, they lack tools for studying the unknotting problem.

Our project uses an open-source software package called Regina, which is designed

for studying low-dimensional topology [9]. Its core strength is working with triangu-

lated 3-manifolds and normal surfaces. In particular, it can compute knot algorithms,

including Burton and Ozlen’s unknot recognition algorithm, Reidemeister moves, and

polynomial knot invariants Jones and HOMFLY polynomials. It has a user-friendly

graphical interface and has options to interfere closely with the source code and carry

out large experiments using its Python scripting tool. Furthermore, SnapPea and SnapPy

can be used in conjunction with Regina. The complete documentation and the source

code can be found in [9]. In the following sections, we study Regina’s algorithms

relating to unknot recognition.

7



Chapter 3. Regina’s Algorithms Relating to Knot Theory 8

3.1 Burton and Ozlen’s unknot recognition algorithm

using normal surface theory

In this section, we first briefly study Haken’s unknot recoginition algorithm and then

focus on Burton and Ozlen’s algorithm, which is built on the work by Haken.

The normal surface theory has played a central role in the study of the unknotting

problem and, more generally, in the field of knot theory. The idea was developed and

used by Haken to provide the first solution to the unknotting problem in 1961 [20].

Later, Haken used it to also solve the more general equivalence problem [21] with

significant contributions by Hemion [23] and Matveev [5]. The major problem of both

algorithms is their extreme computational complexity [24]. Over the years, Haken’s

original unknot recognition algorithm has been refined and developed by numerous

researchers, including Hass et al., who showed that the unknot recognition problem lies

in the class NP [22], and Burton and Ozlen, whose algorithm has been implemented in

Regina [10]. The major strength of the latter algorithm is its sophisticated simplification

tools that appear to lead to a polynomial time behaviour when run in practice, even

though it is exponential time in theory [10]. In addition, it is guaranteed to provide a

conclusive result, unlike many other algorithms that have been implemented [10].

We first give a very brief overview of Haken’s unknot recognition algorithm. Inter-

ested readers should refer to [5] and [20] for comprehensive accounts of the algorithm

and, more generally, the normal surface theory. The main idea is to find a disc embedded

in S3 with the knot as its boundary. Such a disc can only exist if the knot represents

the trivial knot. First, a useful property of knots, given by the famous Gordon–Luecke

theorem, is that they can be fully described by their exteriors [19]. Therefore, it is

common to study the knot exterior K of the knot K, which can be obtained by thickening

it slightly to create what is known as a tubular neighbourhood of K and removing its

interior from S3. The resulting space is a 3-manifold.

As with other algorithms based on normal surface theory, we start by triangulating

K. A triangulation of a 3-manifold can be constructed by decomposing the space into

non-overlapping tetrahedra that are placed in an orderly fashion and fill the entire space

[6]. Note that all 3-manifolds can be triangulated [29]. In particular, the knot exterior K

is a compact 3-manifold, implying we can always triangulate the knot exterior of any

given knot nicely by a finite number of tetrahedra [13]. Finding a triangulation of a

given knot can be done in small polynomial time [10].

The next step is to search for a disc called the esssential disc by considering normal
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surfaces. A normal surface in the knot exterior K is a union of surfaces that are

embedded in the tetrahedra of K in a particular way. Each tetrahedron can have none or

any of the seven possible triangles and quadrilaterals that are shown in Figure 3.1. Once

all possible normal surfaces are found, we look for a normal surface that is an essential

disc. If such a surface is found, then the knot is equivalent to the unknot. Otherwise,

the knot is a non-trivial knot.

Figure 3.1: A diagram illustrating the possible triangles and quadrilaterals in a tetrahe-

dron.

As aforementioned, Burton and Ozlen’s unknot recognition algorithm [10] is based

on Haken’s algorithm using normal surface theory. However, what differentiates their

algorithm from other existing unknot recognition algorithms is its sophisticated sim-

plification techniques. Once a triangulation of the knot exterior K is obtained, it first

reduces the number of tetrahedra while preserving the underlying 3-manifold. This is

achieved by combining a series of simplification techniques such as edge collapsing

and local edge and vertex moves. The full details can be found in [8]. This is a crucial

step as many algorithms later on in the process have running times that depend heavily

on the number of tetrahedra [8]. Although these simplification tools do not necessarily

give the smallest possible number of tetrahedra, it is remarkably successful in practice.

After reducing the number of tetrahedra as much as possible, the algorithm follows

Haken’s algorithm and searches for a disc embedded in S3 with the knot as its bound-

ary. It looks for a connected normal surface that satisfies a number of constraints by

applying integer and linear programming. This part of the algorithm is the root cause of

exponential time in the number of tetrahedra. However, a remarkable result by Burton

and Ozlen is that in practice, the algorithm runs like polynomial time, at least for up

to 50 tetrahedra [10]. Their experiment consisted of testing all 2977 prime knots up

to 12 crossings. They found that the simplification techniques eliminate the need to

go through some of the computationally expensive steps while searching for a normal

surface, which is likely to be the main reason for the polynomial-time behaviour.

A limitation of their experiment, however, is that they only tested on small knots,
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and it was left unclear whether the same result could be observed for knots with

greater than 50 tetrahedra. As a starting point, Burton and Ozlen tested two knots

with approximately 70 tetrahedra, and their results were consistent with the polynomial

time behaviour. The major bottleneck is that to test on knots beyond 50 tetrahedra,

we require much larger knots, namely knots greater than 12 crossings. One possible

solution is to use the prime knot table of the prime knots, which can be obtained from

[9] up to 19 crossings. However, the number of prime knots increases exponentially as

the number of crossings increases and thus, testing on all prime knots of size greater

than 12 would be computationally expensive and impractical. Even if we were to only

randomly sample knots from the knot table, we would still require a huge amount of

data. As an example, Regina’s knot table indicates that there are approximately 294

million prime knots of 19 crossings, requiring about 10 GB of data [9]. To overcome

this issue and build on the work by Burton and Ozlen, we create a generator that can

almost uniformly sample knot diagrams and prime knot diagrams of any given size. We

discuss the algorithms in Chapters 4 and 5.

3.2 Brute-force search using Reidemeister Moves

Another approach to recognising the unknot involves making local modifications to

the knot diagram. There are three types of moves called the Reidemesiter moves.

The Type I Reidemeister move twists or untwists a small section of the knot. The

Type II Reidemeister move adds or removes two crossings at once. Lastly, the Type

III Reidemeister move shifts a strand over a crossing. The three types of moves are

depicted in Figure 3.2.

A knot can have very different knot diagrams, depending on the choice of projection.

A powerful theorem by Reidemeister states that two knot diagrams represent the same

knot if and only if there is a sequence of Reidemesiter moves that takes us from

one diagram to the other [30]. This implies that the original knot is unchanged by

Reidemeister moves. Furthermore, a given knot diagram represents the unknot if and

only if it is related to the unknot by a sequence of Reidemeister moves. However, it

should be noted that with this approach, one cannot prove that a non-trivial knot cannot

be unknotted since the algorithm will not terminate. There is also no known method for

efficiently finding a sequence to take us to the unknot, and it is often the case that we

need to increase the number of crossings in the knot diagram first.

The problem can be overcome if we know an upper bound for the number of
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Reidemesiter moves required to reduce a knot to the unknot. We could then terminate

the program once we have exhausted all possible moves. If the knot is still knotted, then

it must be a non-trivial knot. Lackenby showed that a knot with n crossings requires

at most (236n)11 Reidemeister moves to show that it is the unknot [26]. However, the

upper bound is still too large to be useful.

Figure 3.2: Three types of Reidemeister moves.

3.3 Polynomial Knot Invariants

A knot invariant is a quantity of knots that is kept the same for knots that are equivalent,

and thus, they are unchanged by Reidemeister moves. In particular, we consider the

polynomial knot invariants Jones and HOMFLY polynomials, which are polynomials

associated with knots. A major difference between the two is that Jones polynomials

have one variable, whereas HOMFLY polynomials have two. Note that Regina can also

compute Kauffman polynomials, but it is not an invariant since it can be altered by Type

I Reidemeister moves [6].

The two polynomials can be used to distinguish knots to a certain extent. By

definition, trivial knots have Jones and HOMFLY polynomials equal to 1 [6]. If two

knots have different polynomials, then they are not equivalent. However, two knots

with the same polynomial do not necessarily imply that they are equivalent. A major

unsolved problem in knot theory is whether there exists a non-trivial knot with Jones

polynomial 1. Currently, it has been verified that no such non-trivial knots exist for

knots up to 24 crossings [32].



Chapter 4

Random Sampling of Knot Diagrams

As we discussed in Chapter 3, experimenting on all prime knots of a given size is

computationally expensive and impractical. Instead, we developed a generator in

Python that can sample knot diagrams almost uniformly. The algorithm is based on

Chapman’s algorithm [12], which relies on the planar map sampling algorithm provided

by Schaeffer [31]. Note that the algorithm has already been implemented in Schaeffer’s

PlanarMap software. However, it is written in C, and we found it easier to work with

our own code for developing the prime knot diagram generator, which we discuss in

Chapter 5.

We first give a summary of Chapman’s algorithm [12] for sampling a knot diagram

of size n. The algorithm is as follows. 1) Generate a random balanced sequence. 2)

Obtain the binary tree represented by the bracket sequence. 3) Construct a random

blossom tree from the binary tree by placing an extra leaf to the root node and adding a

bud to each internal node. 4) Close the blossom tree to produce a rooted 4-valent planar

map. 5) Remove the orientation and the choice of root edge to obtain a link shadow.

6) Check whether the link shadow represents a knot shadow. Repeat steps 1 to 5 until

we obtain a knot shadow. 7) Convert the knot shadow into a knot diagram by adding

crossing information.

Steps 2, 5, and 6 are deterministic algorithms, while 1, 3, 4 and 7 involve some

randomness. In this chapter, we go through each step in depth, followed by the

implementation details.

12
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4.1 Generating random balanced sequences

The first goal is to generate a balanced sequence that can later be used to represent a

binary tree in Section 4.2. This is achieved by uniformly sampling a bracket sequence

and turning it into a balanced sequence using the Cycle Lemma given by Dvoretzky

and Motzkin [18].

A bracket sequence is a sequence consisting of open brackets ‘(’ and closed brackets

‘)’. For example, (())) and ())())()( are both bracket sequences. Note that we are

particularly interested in bracket sequences with n open and n+1 closed brackets since

we later use the open and closed brackets to represent the internal nodes and leaves of a

binary tree, respectively. We now give a definition of a balanced sequence.

Definition 3. (Balanced sequence). A bracket sequence x1x2...x2n+1 of n open brackets

and n+1 close brackets is balanced if for every 1≤ i≤ 2n, the number of open brackets

is at least the number of closed brackets in x1x2...xi−1xi.

In other words, a balanced sequence is a well-bracketed sequence with an extra

closed bracket at the end. Next, we state the Cycle Lemma provided by Dvoretzky and

Motzkin [18], which says that a bracket sequence of n open brackets and n+1 closed

brackets can be rotated into precisely one balanced sequence.

Theorem 1. (The Cycle Lemma [18]). Let S be a bracket sequence x1x2...x2n+1 con-

sisting of n open brackets and n + 1 closed brackets. Then there exists a unique

1≤ j ≤ 2n+1 such that the sequence x jx j+1...x2n+1x1x2...x j−1 is balanced.

We apply the method provided by [15] to find the balanced sequence from a random

bracket sequence. The algorithm is as follows. Given a bracket sequence x1x2...x2n+1,

iterate over each element of the sequence from left to right. Let partial sum = 0. If the

element is an open bracket, increment partial sum by one. If it is a closed bracket, decre-

ment partial sum by one. The unique balanced sequence is x jx j+1...x2n+1x1x2...x j−1,

where 1≤ j≤ 2n+1 and partial sum at position j−1 is at its minimum. As an example,

suppose we generate a bracket sequence )(())())())(((). Then j = 12 and its balanced

sequence is ((())(())())()).

4.2 Binary trees from balanced sequences

We now obtain a random binary tree from the balanced sequence generated in Section

4.1. Unless stated otherwise, all binary trees in this paper are complete binary trees, in
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which every node has either zero or two children.

First, note that a binary tree can be expressed as a bracket sequence of n open

brackets and n+1 closed brackets traversed in depth-first order, where the open and

closed brackets represent the internal nodes and leaves, respectively. The binary tree

represented by the balanced sequence ((())(())())()) is depicted in Figure 4.1. It is easy

to see that binary trees are fully determined by their balanced sequences. Therefore,

by the Cycle Lemma [18], we can always find a unique binary tree from a uniformly

sampled bracket sequence. In other words, the balanced sequence obtained in Section

4.1 in fact represents a unique binary tree.

Figure 4.1: A binary tree (n = 7) represented by the balanced sequence ((())(())())()).

4.3 Random blossom trees from binary trees

Once we have a binary tree, our next step is to construct a random blossom tree by

adding a root leaf and placing a bud to each internal node.

A blossom tree is a binary tree where the root node has an extra leaf, which we call

the root leaf, and every internal node has an additional child node called the bud that

itself has no children. In other words, a blossom tree of n internal nodes has n buds,

n+2 leaves and 3n+2 edges in total, and every node except the leaves and buds have

three children.

Any binary tree can be converted into a blossom tree by attaching a roof leaf to the

root node and placing a bud to one of the three possible positions on each internal node

with equal probability, as shown in Figure 4.2. An example of a blossom tree built from

the binary tree presented in Figure 4.1 is given in Figure 4.3. The black oval-shaped

nodes and the triangle-shaped nodes represent the leaves and buds, respectively. We use

the term fringe nodes to refer to the leaves and buds in a blossom tree. A fringe node is

proper if it is not the root leaf.
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Figure 4.2: Three possible positions to place a bud.

Figure 4.3: A blossom tree (n = 7) constructed from the binary tree shown Figure 4.1.

4.4 Closing blossom trees

The fourth step of the algorithm is to close the blossom tree and obtain its closure, which

essentially means connecting all the n buds and n+2 leaves by edges. The resulting

graph is a so-called rooted link shadow, that is, a 4-valent planar map with a designated

choice of root edge and a choice of orientation of that edge. In this section, we study the

algorithm for closing blossom trees and state a remarkable result by Schaeffer, which

guarantees a uniform rooted link shadow.

We build a closure of a blossom tree by traversing the outer fringe nodes in anti-

clockwise direction, starting from the root. If a bud is followed immediately by a leaf,

we connect these two nodes by an edge without adding any crossings to the graph. We

call these new edges between the fringe nodes closure edges. We continue creating

closure edges in this manner until there are two unmatched leaves left. This will always

be the case since every blossom tree has exactly two more leaves than buds. The partial

closure of the blossom tree depicted in Figure 4.3 is given in Figure 4.4. The closure

edges are represented by the dashed lines between the fringe nodes. Note that the graph

has two unmatched leaves. Lastly, to complete the closure, we join these two leaves

by an edge, choosing either of the two directions with equal probability. The resulting

graph is a rooted link shadow. A completed closure of the tree is given in Figure 4.5.
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Figure 4.4: The partial closure of the blossom tree depicted in Figure 4.3.

Figure 4.5: A completed closure of the blossom tree depicted in Figure 4.3.

A remarkable result by Schaeffer is that closing the tree in this way provides a

bijection between blossom trees and rooted 4-valent planar maps [31]. Since the

algorithms described in Sections 4.1, 4.2 and 4.3 allows us to uniformly sample blossom

trees, Schaeffer’s result implies that we can uniformly sample rooted 4-valent planar

maps by closing uniformly sampled blossom trees.

We now define a particular group of blossom trees, called balanced blossom trees.

Definition 4. (Balanced blossom tree). A blossom tree G is balanced if the root leaf is

one of the last two remaining leaves in the partial closure of G.

It is easy to see that any blossom tree can be turned into a balanced blossom tree by

taking one of the last two leaves to be the new root. Whether the tree is balanced or not

does not make any difference to the closure of a blossom tree, but we see later in Chapter

5 that balanced trees come in useful when testing if a knot diagram is diagrammatically

prime.
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4.5 Link shadows from rooted 4-valent planar maps

In order to study unrooted link shadows, we remove the orientation on the root leaf of

the unrooted 4-valent map obtained in Section 4.4. Note that this process breaks the

uniformity of our generator since it introduces symmetry. Simply put, a generator is

almost uniform over a set M if there exists a subset S of M with |S| ≪ |M| such that the

generator can sample uniformly from M−S but not from M. Chapman showed that the

probability of a random link shadow being symmetric tends exponentially to zero as

the size of the graph increases [12]. Hence, our generator can almost uniformly sample

link shadows. Although we cannot sample knot diagrams uniformly, Chapman’s result

suggests that we can safely sample diagrams without any concerns about uniformity,

particularly for large knots.

4.6 Knot shadows by rejection sampling

Following the creation of a link shadow, Chapman’s algorithm checks to see if it

represents a knot shadow by following the strand and testing whether it is made of

one strand only. If not, we keep generating link shadows until we obtain a valid knot

shadow. A major problem with this rejection sampling approach is that the proportion

of link shadows representing a knot shadow becomes exponentially small as the knot

size becomes large [12]. Diao et al. take a different approach by converting any link

shadow into a knot shadow, which resolves this issue [16]. Their method involves

merging the components of the graph while keeping the number of nodes the same. We

chose Chapman’s rejection sampling method since it is easier to implement, and their

experiments suggest that we can sample a valid knot shadow relatively fast for sizes at

least up to 60. In fact, we found that knot shadows as large as 150 crossings take only a

few seconds to sample.

We check if a link shadow represents a valid knot shadow by following the strand

and taking the path straight ahead at each vertex. If we pass through all the edges, then

the shadow represents a knot shadow.

4.7 Knot diagrams from knot shadows

The last step of the algorithm is to convert the knot shadow obtained in Section 4.6 into

a knot diagram. This is achieved by assigning the under and over strands to each of the
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n internal nodes with equal probability. The resulting diagram is a knot diagram of size

n.

4.8 Implementation

The almost uniform knot diagram algorithm is implemented in Python. In this section,

we give details on how we represent graphs and knots and some main data structures

and techniques used to develop an efficient generator.

4.8.1 Random balanced sequences

We express a bracket sequence as a list consisting of integers 1 and −1 representing

the open and closed brackets, respectively. To generate a random bracket sequence of n

open and n+1 closed brackets, we first construct a list of size 2n+1 of all −1’s. Next,

we randomly choose an index i, 0≤ i≤ 2n, with equal probability. If the i-th element of

the list is −1, then we replace it with 1. We repeat the process until we have exactly n

open brackets in the list. Its balanced sequence is obtained using the method described

in Section 4.1. Recall that the balanced sequence also represents a unique binary tree.

4.8.2 Blossom trees

A blossom tree is constructed from a balanced sequence by a depth-first traversal of its

binary tree and attaching a bud to every internal node. In this subsection, we provide

two different encoding methods to represent a blossom tree of n internal nodes. In both

methods, we start by labelling each node with a unique number between 0 and n−1 in

depth-first order, as shown in Figure 4.6. The leaves and buds are characterised by the

negative numbers −1 and −2, respectively. We use the term node value to refer to the

label assigned to a node.

The first method is a 1-dimensional list that contains all the internal nodes and the

proper fringe nodes in depth-first order, starting from the root node. For example, the

blossom tree given in Figure 4.6 can be encoded as [0,−2,1,2,−1,−2,−1,−2,3,4,−2
−1,−1,−2,−1,5,−2,−1,6,−1,−1,−2]. The second method is a 2d-dimensional list

A. We first define the edge root to be the following. Label each of the four edges

incident to an internal node by a number between 0 and 3 in the anticlockwise direction,

starting from the edge above the node, as illustrated in Figure 4.7. The edge root of an

edge is a tuple (m,n), where m is the node value of the internal node and n is the value
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Figure 4.6: Labelling each node of a blossom tree with a number between 0 and n−1 in

depth-first order.

assigned to the edge. For example, in Figure 4.6, we can say that the edge root (0,3) is

connected the edge root (5,0). We can now describe the second encoding method. For

0≤ i≤ n−1 and 0≤ j≤ 3, the element A[i][ j] is either a tuple or a negative number. If

A[i][ j] = (m,n), then the edge root (i, j) is connected to the edge root (m,n). Otherwise,

A[i][ j] =−1 and A[i][ j] =−2 means that the edge root (i, j) is connected to a leaf and

bud, respectively. Using this second method, the blossom tree illustrated in Figure 4.6

can be represented by the following:

−1 −2 (1,0) (5,0)

(0,2) (2,0) −2 (3,0)

(1,1) −1 −2 −1
(1,3) (4,0) −2 −1
(3,1) −2 −1 1

(0,3) −2 −1 (6,0)

(5,3) −1 −1 −2



Figure 4.7: The diagram illustrates the values assigned to each of the four edges incident

to an internal node.
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4.8.3 Closing Blossom Trees

To close a blossom tree using the method given in Section 4.4, we create a list

fringe nodes containing of all the fringe nodes in depth-first order, starting from

the root leaf. Whenever we see an unmatched bud followed by an unmatched leaf,

we join the two nodes and remove them from fringe nodes. We also update the

2-dimensional list blossom tree 2d describing the blossom tree and store the closure

edge information in closure edges. We continue in this way until we have created

exactly n closure edges, and fringe nodes has two leaves left. The last step is to

connect these leaves and randomly pick one of the two with equal probability to be the

new root leaf.

4.8.4 Representing knot diagrams by classical Gauss Codes

To use our knot diagram generator in Regina, we need to encode our 2-dimensional

representation of knot diagrams. There are five different codes that Regina accepts:

Regina’s own knot signature, classical and oriented Gauss codes, Dowker-Thistlethwaite

codes and planar diagram codes. In particular, we use the classical Gauss codes since

it is one of the most common encoding methods in the literature and the simplest to

encode.

The algorithm for obtaining a classical Gauss code of a knot diagram of size n is

as follows. First, we associate each crossing with a unique value between 1 and n.

Then, starting from the crossing with value 1, we follow the strand, taking the path

straight ahead and keeping track of the node values whenever we encounter a crossing.

We store its negative value if it is an under strand, and its positive value if it is and

over strand. As an example, the trefoil knot illustrated in Figure 4.8 has a Gauss code

[1,−2,3,−1,2,−3].

Figure 4.8: The trefoil knot.



Chapter 5

Random Sampling of Prime Knot

Diagrams

To reproduce Burton and Ozlen’s experiment [10] as closely as possible, we developed

a prime knot diagram generator. In this chapter, we present a new theorem for checking

whether a knot diagram is composite directly from a blossom tree. The full algorithm

for generating random prime knot diagrams is provided in Section 5.2.

At present, there are several methods for generating prime knot diagrams. Diao et

al. [16] obtain prime knot shadows from a knot shadow with n nodes by decomposing

the graph using an algorithm given by Dowker and Thistlethwaite [17]. However, a

limitation of this approach is that it is not guaranteed to give a prime knot shadow of size

n. Furthermore, it is unclear whether we can even sample diagrams almost uniformly.

Chapman takes a different approach by first generating a simple quadrangulation using

Brinkmann and McKay’s plantri [3] [7]. A quadrangulation is a planar map in which

every face is bounded by exactly four edges. Chapman then obtains its dual graph

by swapping the roles of vertices and faces and uses the fact that the dual of a simple

quadrangulation is equivalent to a prime link shadow. An example of a dual graph of a

quadrangulation is given in Figure 5.1. The white circles and the dashed lines represent

the vertices and edges of the quadrangulation, respectively.

We present a new approach to generating prime knot diagrams. An advantage of

our method is that we can make use of blossom trees and the already created knot

diagram generator without building prime knot diagrams from scratch. The main idea is

to use the properties of blossom trees to find two distinct edges x and y whose removal

disconnects the given knot shadow. If no such edges exist, then it is prime.

We first give a brief summary of our algorithm for sampling a prime knot diagram of

21
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Figure 5.1: The dual graph of a quadrangulation.

size n. The full details are given in Section 5.2. The algorithm is as follows. 1) Obtain

a knot shadow from a balanced blossom tree using the method described in Chapter

4. 2) Find all possible well-bracketed sequences s and t. 3) For each bud, search for a

2-edge cut (x, y) by considering the following three cases: only s is non-empty, only

t is non-empty, and s and t are both non-empty. 5) If x and y are found, then the knot

shadow is composite. Repeat steps 1 to 4 until we find a prime knot shadow. 6) Convert

the prime knot shadow into a prime knot diagram by adding the crossing information to

each node.

5.1 Theorem for recognising composite knot shadows

In this section, we present a new theorem for checking whether a link shadow is

composite. We first define what it means for a balanced blossom tree to have a splitting.

Definition 5. (Splitting). Let B be a balanced blossom tree. B has a splitting if there

exists a subtree X of B and a proper subtree Y of X such that the strings s and t that

form the proper fringe of X−Y are both well-bracketed.

Remark. Y may consist of a single bud or a leaf. Furthermore, s or t may be empty but

cannot both be empty, since then X = Y .

Figure 5.2 illustrates the three different ways in which we can have X and Y . We use

x and y to denote the edges incident to the roots of the subtrees X and Y , respectively.

These edges are represented by the thick edges above each subtree.

We are now ready to prove the following theorem which allows us to check if a

given link shadow is composite. The proof is based on an initial idea and a sketch proof

provided by John Longley.
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Figure 5.2: Three different ways in which we can have X and Y .

Theorem 2. Let B be a balanced blossom tree. The closure of B, G(B), is composite if

and only if B has a splitting.

Proof. Suppose B has a splitting with a subtree X of B and a proper subtree Y of X . Let

x ∈ B−X and y ∈ B−Y be the edges incident to the root of X and Y , respectively. Then

removing x and y would disconnect X−Y from G(B), since s and t are well-bracketed.

In the opposite direction, suppose G(B) is composite. Then there exists a pair of

distinct edges x,y ∈ G(B) such that removing x and y disconnects G(B). Let G′(B) be

the graph that results from removing x and y from G(B). First, note that every edge in

G(B) is either an edge in B called the tree edge, or a closure edge between two fringe

nodes, as shown in Figure 5.3. However, a closure edge can be replaced by one of the

two tree edges incident to its end vertices. Thus, we can assume that both x and y are

tree edges. Now, let X and Y be the subtrees connected to x and y, respectively. There

are two cases to consider: y is within X , or y lies outside X .

Figure 5.3: Tree edges and closure edges of a part of a tree.

Case 1: Suppose first that y lies in X . Clearly, Y is a proper subtree of X since x

and y are distinct. Moreover, there cannot be any closure edge connecting X −Y and

B−X−Y since removing x and y disconnects G(B). Therefore, if s is non-empty, then

it must be well-bracketed. The same holds for t. Hence, B has a splitting.
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Case 2: Suppose now that y lies outside X . Since x and y are distinct, X ∪Y is empty.

There are three subcases to consider: both X and Y consist of a single fringe node only,

Y is a single fringe node and X contains more than one node, and both X and Y consist

of more than one node.

Subcase 2.1: Suppose both X and Y consist of a single fringe node only. If these two

nodes are not connected by a closure edge, then clearly, G′(B) is connected since both

nodes must be attached to some fringes nodes in B−X−Y . If the two nodes are joined

by a closure edge, then x and y represent the same edge so G′(B) is still connected.

Subcase 2.2: Suppose Y is a single fringe node, and X contains more than one node.

If Y is connected to a node outside X by a closure edge, then X must have at least one

leaf that is connected to a node in B−X−Y , since every blossom tree has more leaves

than buds (See Figure 5.4). Note that since B is balanced, there cannot be any closure

edge between two leaves that do not contain the root leaf. If Y is connected to a node in

X , then we can replace y by y′ and Y by Y ′, where y′ is the edge in X that is connected

to y by a closure edge, and Y ′ is the subtree that is connected to y′ (See Figure 5.5).

Since y′ is contained in X , this case is equivalent to case 1.

Figure 5.4: Y connected to a node outside X by a closure edge.

Subcase 2.3: Lastly, suppose both X and Y consist of more than one node. Then

each of these subtrees have one extra leaf which must be connected to the root leaf or

a bud in B−X −Y (See Figure 5.6). As aforementioned, these two leaves cannot be

connected by a closure edge, since B is balanced. Therefore, G′(B) must be connected.

Thus, the only possibility is case 1. Y must be a proper subtree of X , and s and t

that form the proper fringe of X−Y must be well-bracketed.

□
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Figure 5.5: Y connected to a node in X by a closure edge.

Figure 5.6: Both X and Y consist of more than one node.

Note that if we redefine the term splitting by also allowing s and t to include the

last closure edge between the last two remaining leaves, then the theorem holds for any

blossom tree. An example of this case is illustrated in Figure 5.7. The subtree Y is the

single bud inside X . We can observe that s contains the last closure edge, and t is empty.

The graph is composite since removing the edges x and y disconnect the graph. The

proof remains the same, except we need an additional argument to show that y cannot

lie outside X : if the last closure edge lies within the tree X or Y , then there is always a

bud inside the tree that is connected to a leaf outside it.

For the rest of the paper, we use our first definition of splitting for two reasons.

Firstly, if s and t are allowed to be well-bracketed sequences only, then we only need to

look at the n buds compared to the n+1 closure edges when using the second definition.

Secondly, it turns out that we can efficiently find the edge x if we know the path to a
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bud. We present the following lemma to prove this fact.

Figure 5.7: An unbalanced blossom tree with the last closure edge inside X .

Lemma 1. Suppose a balanced blossom tree B has a splitting with subtree X of B and

a proper subtree Y of X. Let x and y be the corresponding edges that disconnect the

graph, and s be the usual well-bracketed sequence that lies within X. If s is non-empty,

then the left child of the root of X is a single bud.

Proof. Since s is non-empty and well-bracketed, the leftmost fringe node of X must be

a bud. Let r denote the root node of X . Aiming for a contradiction, suppose that the

left child of r has children. Then the left child of r together with its children is itself a

tree. Any subtree of a blossom tree contains exactly one more leaf than buds, so s is not

well-bracketed. □

Remark. The above lemma holds only when the blossom tree is balanced.

5.2 Algorithm for Sampling Prime Knot Diagrams

We now present our algorithm for generating random prime knot diagrams directly from

a balanced blossom tree.

5.2.1 Generating knot shadows

The first step is to generate a knot shadow by constructing a balanced blossom tree and

obtaining its closure using the algorithm described in Chapter 4. We also require a list

of addresses of all the fringe nodes. An address of a node k is the path from the root

node to k. It can be described by a string of three letters ’l’, ’m’ and ’r’, representing left,

middle and right child nodes, respectively. The addresses are obtained by a depth-first

traversal of the tree.
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5.2.2 Finding possible well-bracketed sequences s and t

The next step is to search for all possible well-bracketed sequences s and t. Recall

that a blossom tree of n internal nodes has precisely n buds, and every well-bracketed

sequence starts with a bud. Therefore, we only need to look at the n buds in turn and

find all possible well-bracketed sequences that start from that bud. This is more efficient

than considering all pairs of edges x and y, and then searching for the well-bracketed

sequences. Most importantly, Lemma 1 shows that if s is non-empty, then the left child

of the root of a subtree X is always a single bud, and so we can easily identify the

unique edge x if we know the path to that bud.

There are several requirements for s and t to be one of the possible sequences. The

first condition is that both sequences must be well-bracketed. This implies that a valid

sequence represents either a closure edge or a set of consecutive closure edges. The

second condition is that if s is non-empty, then the path from x to the first node of s

must always follow the left path since X is a tree. Similarly, if t is non-empty, then the

path from x to the last leaf of t must always follow the right path. A pseudo-code for

finding all possible s and t is given in Algorithm 1.

5.2.3 Finding a 2-edge cut (x, y)

The third step is to search for a pair of edges (x, y) whose removal disconnects the graph.

Such a pair is called a 2-edge cut. To find these edges, we look at each bud in turn and

consider the following three cases: only s is non-empty, only t is non-empty, and s and

t are both non-empty. Let abud = b1b2...bm be the address of the bud, where m is some

non-negative integer and each bi represents either ’l’, ’m’ or ’r’.

5.2.3.1 s is non-empty and t is empty

Suppose s is non-empty but t is empty. Then using Lemma 1, the address of x is

α(x) = b1b2...bm−1. To find y, we look at the addresses of the last leaf of s and the

fringe node immediately next to it. Let these two addresses be denoted by a1 and

a2, respectively. Since both X and Y are trees, we must have a1 = α(x)rkmrp and

a2 = α(x)rk+1lq, for some non-negative integers k, p and q. If both conditions are

satisfied, then the address of y is given by α(y) = α(x)rk+1, and the pair (x, y) is a

2-edge cut. A diagram illustrating the first case is depicted in Figure 5.8a. We use the

white oval-shaped nodes to describe a fringe node that could be a leaf or a bud.
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(a) s is non-empty and t is empty. (b) s is empty and t is non-empty.

(c) s and t are both non-empty.

Figure 5.8: Diagrams illustrating the three possible cases.

5.2.3.2 s is empty and t is non-empty

If s is empty and t is non-empty, then we cannot use Lemma 1 to find x. Instead, we

first find the edge y. Let a1 be the address of the fringe node immediately before the

bud. If there is a path y1y2...yk such that a1 = y1y2...ykrp and abud = y1y2...yk−1mrq for

some non-negative integers k, p and q, then y is the edge with the address y1y2...yk.

Suppose we found y. Our next step is to search for x. Let a3 be the address of

the last leaf of t. Since X is a tree, x must be an edge such that α(y) = α(x)lp and

a3 = α(x)rq for some non-negative integers p and q. If both x and y are found, and both

X and Y are trees, then the pair (x, y) is a 2-edge cut.

5.2.3.3 Both s and t are non-empty

Suppose now that both sequences are non-empty. Then using Lemma 1, the address of x

is α(x) = b1b2...bm−1. We require four addresses to find y: the last leaf of s, the fringe

node immediately next it, the first bud of t and the fringe node immediately before

it, denoted by a1, a2, a3 and a4, respectively. y is an edge such that a2 = α(y)lp and

a4 = α(y)rq for some positive integers p and q. Furthermore, the address of y must be
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strictly longer than that of x since Y is a proper subtree of X . If both x and y are found,

and both X and Y are trees, then the pair (x, y) is a 2-edge cut.

Algorithm 1 Finding possible well-bracketed sequences s and t
for each bud i do

bud1 add← address of bud i

c1← closure edge from bud i

c1 last leaf add← address of the last leaf of c1

if the last string of bud1 add is ’l’ then
c1 is a possible s

end if
if the last string of c1 last leaf add is ’r’ then

c1 is a possible t

end if
for each bud j = i+1 to total number of buds do

bud2 add← address of bud j

c2← closure edge from bud j

if c2 comes immediately after c1 & the last leaf of c2 is not the root leaf then
c2 last leaf add← address of the last leaf of c2

if the last string of bud2 add is ’l’ then
c3 = c1 + c2 is a possible s

end if
if the last string of c2 last leaf add is ’r’ then

c3 = c1 + c2 is a possible t

end if
end if

end for
end for



Chapter 6

Experimental Results and Discussions

6.1 Almost uniform knot diagram generators

The knot diagram sampling algorithms studied in Chapter 4 and Chapter 5 were imple-

mented in Python to be used for evaluating various knot algorithms in Regina. In this

section, we consider the correctness and the efficiency of the generators.

6.1.1 Correctness

Several approaches were taken to ensure the correctness of the general knot diagram

generator. First, we generated samples of relatively large knot diagrams up to n = 20

crossings and checked by hand that the outputs represented 4-valent planar maps of

size n. To test whether a link shadow is a valid knot shadow, we followed the strand,

taking the path straight ahead at each vertex and checking that we passed through all

the edges. We were also able to test its correctness in Regina since it raises an error if a

Gauss code is not in the correct format or does not represent a knot diagram. No errors

were raised in all the samples and experiments we conducted.

In contrast, testing the correctness of the prime knot diagram generator was far more

challenging. It is easy to verify that two edges disconnect a graph if we are provided

with the edges. However, proving that a knot diagram is prime requires one to look

at all combinations of edges and show that they do not disconnect the graph. Besides

checking the correctness by hand, one effective test was to use the fact that a balanced

blossom tree can be presented in two different ways, depending on which of the last two

remaining leaves we choose to be the new root. We generated a large sample of prime

knot diagrams of sizes ranging from n = 3 to n = 12, and for each sample, we made

30
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(a) Generating random link shadows. (b) Generating random knot diagrams.

Figure 6.1: Average running times for generating random link shadows and knot diagrams

from the general knot diagram generator.

sure that these two conjugate blossom tree representations outputted identical results.

Of course, there are more reliable and perhaps efficient methods to test its correctness

than by hand. An inefficient but simplest method would be a brute-force search of all

pairs of edges and checking whether they disconnect the graph. If no such edges exist,

then the diagram is prime.

6.1.2 Efficiency

We measured the efficiency of the generators by obtaining the experimental running

times. In the first experiment, we sampled 2000 link shadows of each size between

n = 1 and n = 150. The average running times are shown in Figure 6.1a. The graph

suggests that the running time increases linearly with the number of crossings in the

diagram. However, this may not remain true in the limit, since there is a very slight

hint of curvature. Nevertheless, all the steps from sampling a binary tree to creating

a blossom tree and closing the tree can be done immediately, even for large diagrams.

For example, on average, it takes just 0.0015s to sample a link shadow of n = 150.

In the second experiment, we generated 1000 general knot diagrams of each size

between n = 1 and n = 100. The smaller sample size compared to the first experiment

is due to the difficulty in generating knot diagrams. Figure 6.1b describing the average

running times displays a clear exponential curve. The result can be explained by the

fact that the probability of a random link shadow representing a knot shadow decreases

exponentially with size. This is evident in Figure 6.2a which shows the average number

of link shadows that were rejected per sample. The result is also in line with Chapman’s
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result [12]. Even so, the generator can successfully find a valid knot shadow extremely

fast. For example, a knot diagram of n = 100 can be attained in approximately 0.42s

on average. This is a remarkable result since it implies we can carry out a variety of

experiments in knot theory on knot diagrams as large 150 crossings very efficiently.

In the third experiment, we generated approximately 80 prime knot diagrams of

each size between n = 4 and n = 15 . The smaller knot size is due to the difficulty in

finding knot shadows that are prime. Checking whether a given knot shadow is prime

took less than one second in all the samples, even with the prime knot shadows, where

our generator had to conclusively verify that no 2-edge cuts exit. This indicates that

the extreme running times were mainly due to the number of composite knot shadow

rejections. This can be observed from Figure 6.2b. The y-axis is plotted on a logarithmic

scale. Note that we obtained the number of composite knot shadow rejections rather

than the running times to gain a better understanding of the difficulty in obtaining prime

knot diagrams. The graph reveals that the average number of composite knot shadow

rejections required to obtain a prime knot shadow increases exponentially with the

number of crossings. Furthermore, the growth rate is much higher than that of Figure

6.2a. In other words, it is much more challenging to find a prime knot shadow than it is

to find a knot shadow. Knot diagrams as small as 12 crossings required approximately

22,858 knot shadow rejections before obtaining a prime knot shadow, which reflects

the difficulty in obtaining a prime diagram. As an initial exploration, we also obtained

a prime knot diagram of size 20 and found that it required approximately 2 million

rejections.

The result clearly shows that it is extremely difficult to generate prime knot dia-

grams, and therefore, our prime knot diagram generator is less useful for studying and

evaluating knot algorithms. One possible solution is to use the method provided by

Diao et al. [16], which reduces the given knot shadow of size n into smaller prime knot

shadows. Although this does not guarantee a prime knot shadow of n crossings, we can

at least obtain prime knot shadows from every knot shadow without wasting it.

6.2 Unknot recognition algorithm using normal surface

theory

The next core part of the project was to use our knot diagram generators to evaluate the

unknot recognition algorithm developed by Burton and Ozlen [10]. We first provide the
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(a) Link shadow rejections. (b) Composite knot shadow rejections.

Figure 6.2: Average number of rejections per sample.

results obtained using the general knot diagram generator. Then, in Subsection 6.2.2,

we discuss the results from the prime knot diagram generator.

6.2.1 Experimental results using the general knot diagram genera-

tor

As an initial experiment, we tested the algorithm on only the trivial knots. We took

3000 samples of knot diagrams of various sizes up to 100 crossings and found that all

except a very few had either 2 or 3 tetrahedra. The maximum number of tetrahedra

we observed was 4. The small number of tetrahedra meant each knot took less than

one second to prove that it is equivalent to the unknot. This was as expected since the

unknotting problem lies in the complexity class NP and we can verify that a knot is the

unknot in polynomial time [22].

In the next experiment, we tested the algorithm on only the non-trivial knots. As

previously mentioned in Section 3.1, a limitation of Burton and Ozlen’s experiment is

that they only investigated knots up to 50 tetrahedra. The problem was overcome by

sampling large knot diagrams from our generator. Firstly, to test how large a number of

tetrahedra we can generate, we sampled 400 knot diagrams of 150 crossings. Figure 6.4

describes the frequency of the numbers of tetrahedra. The results indicate that there were

193 knot diagrams with over 50 tetrahedra and 11 diagrams with over 100 tetrahedra,

with the largest being 143. This is nearly three times the maximum number of tetrahedra

obtained by Burton and Ozlen. Furthermore, all the samples required less than one

second to find a triangulation and compute the number of tetrahedra. However, it was

computationally infeasible to test Burton and Ozlen’s unknot recognition algorithm on
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(a) Individual running times. (b) Average running times.

Figure 6.3: Individual and average running times for the unknot recognition algorithm

using normal surface theory.

knot diagrams with greater than 90 tetrahedra. The largest sample we were able to test

was 87. This can be explained by the fact obtaining the complement and a triangulation

of a knot can be done in small polynomial time, but the rest is exponential time in theory

[10].

Figure 6.4: Frequency of the numbers of tetrahedra for n = 150 (sample size = 400).

The aim of the next experiment was to reproduce and extend the experiment done

by Burton and Ozlen. Their data set consisted of only the prime knots, whereas our

experiment consisted of general non-trivial knot diagrams. Nevertheless, our results

are consistent with theirs and show a polynomial-time behaviour up to 50 tetrahedra.

This can be seen in Figure 6.5. Note that the y-axes are plotted on a logarithmic

scale. We can also see that the polynomial time behaviour continues from 50 up to 87

tetrahedra. Figure 6.5b describing the average running times has several outliers around
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(a) Individual running times. (b) Average running times.

Figure 6.5: Individual and average running times for the unknot recognition algorithm

using normal surface theory.

80 tetrahedra. This is due to the small sample size for larger knot diagrams. Figure 6.5a

also shows a high variability in the running times. For example, a knot diagram with

69 tetrahedra had a running time of 5226s, but another sample of the same number of

tetrahedra took just 774s to solve. Further study of the algorithm is required to explain

these differences in the results. Nevertheless, the results clearly indicate a polynomial

time behaviour at least up to around 80 tetrahedra.

6.2.2 Experimental results using the prime knot diagram generator

In this section, we evaluate Burton and Ozlen’s unknot recognition algorithm using our

prime knot diagram generator. Our aim was to reproduce their experiment as closely as

possible by testing on prime knot diagrams.

Firstly, we generated approximately 80 prime knot diagrams of each size between

n = 4 and n = 15, and computed the number of tetrahedra of each knot diagram. The

results were striking. Although our sample size was rather small, we found that we

could generate a larger number of tetrahedra using prime knot diagrams compared to

general knot diagrams of the same size. As an example, Figure 6.6 shows the frequency

of the numbers of tetrahedra we observed for n = 13. Clearly, there is a wider variety

of numbers of tetrahedra in Figure 6.6b than in Figure 6.6a. Furthermore, we obtained

a maximum of 14 tetrahedra with non-trivial prime knot diagrams, compared to just 6

using general non-trivial knot diagrams. Similar results were observed for all the sizes

n.

As aforementioned, Burton and Ozlen tested on all 2977 prime knots up to 12
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(a) Non-trivial general knot diagrams with n = 13

(sample size = 79).

(b) Non-trivial prime knot diagrams with n = 13

(sample size = 79).

Figure 6.6: Frequency of the numbers of tetrahedra for non-trivial general and prime

knot diagrams for n = 13.

crossings. As an experiment, we generated 3000 random non-trivial knot diagrams of

12 crossings. However, we could not find any knot diagrams as close to 50 tetrahedra. In

fact, the maximum we obtained was just 8, and the majority had either 2 or 3 tetrahedra.

This suggests that there may be a property of prime knots that causes them to have a

larger number of tetrahedra. This could also suggest the reason why we found slightly

larger tetrahedra with prime knot diagrams.

In the next experiment, we tested the algorithm using our generated prime knot

diagrams. The empirical running times were very similar to that obtained using the

general knot diagram generator. Unfortunately, we were not able to fully reproduce

Burton and Ozlen’s experiment due to the difficulty in obtaining prime knot diagrams.

However, the results suggest that prime knots and prime knot diagrams may have a

larger number of tetrahedra compared to general knot diagrams. This is an interesting

topic for future work.

6.3 Reidemeister Moves

As we discussed in Section 3.2, a given knot diagram represents the unknot if and

only if it is related to the unknot by a sequence of Reidemeister moves. However, it

cannot be used to prove that a given knot is a non-trivial knot, since the program will

not terminate. Hence, we tested the algorithm on knots equivalent to the trivial knots

and found the empirical running times for transforming the knots into the unknot. The
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results are shown in Figure 6.7. The data set consists of 400 samples of trivial knot

diagrams up to 100 crossings. Clearly, it becomes difficult to generate large trivial knot

diagrams as the size increases. The graph shows that turning the knot into the unknot

can be done extremely fast. This was as expected since the unknotting problem lies in

the complexity class NP [22].

Figure 6.7: Running times for the experiment using Reidemeister moves.

6.4 Polynomial Knot Invariants

The final part of the experiments investigated the polynomial invariants Jones and

HOMFLY polynomials. Prior to carrying out both experiments, we generated a large

sample of non-trivial knot diagrams up to n = 150. This was achieved using Burton and

Ozlen’s unknot recognition algorithm. We then used these knot diagrams to obtain the

empirical running times for computing the Jones and HOMFLY polynomials.

6.4.1 Jones Polynomial

Figure 6.8 shows the individual running times for computing the Jones polynomial.

Clearly, computing the Jones polynomial is much faster than the algorithm using normal

surface theory. For example, finding the Jones polynomial of a knot diagram of n = 141

took approximately 0.0060s, on average. As we discussed in Section 3.3, it has been

verified up to 24 crossings that there are no non-trivial knots with Jones polynomial

equal to 1 [32]. Therefore, up to 24 crossings, computing the Jones polynomial is a

much faster method for unknot recognition. During the experiment, we also looked for
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counterexamples of the Jones conjecture by testing on large knot diagrams. However,

of the 10000 samples we tested, none were found.

Figure 6.8: Individual running times for computing the Jones polynomial.

6.4.2 HOMFLY Polynomial

Regina can also compute HOMFLY polynomials. As with the Jones polynomial,

computing the HOMFLY polynomial can be done very quickly. For example, finding

the HOMFLY polynomial of a knot diagram of n = 141 took approximately 0.0145s,

on average. However, the graph shows that HOMFLY polynomials take slightly longer

to compute than Jones polynomials. This is clear since HOMFLY polynomial is a

generalised version of Jones polynomials and requires working with two variables

instead of one.

Figure 6.9: Individual running times for computing the HOMFLY polynomial.



Chapter 7

Conclusions

The aim of this project was to empirically evaluate Regina’s various knot algorithms,

with the main focus being Burton and Ozlen’s unknot recognition algorithm using

normal surface theory. To achieve this, we used the algorithms provided by Chapman

and Schaeffer to develop an almost uniform knot diagram generator. Furthermore, we

presented a new theorem and an algorithm for testing whether a knot diagram is prime.

The main advantage of our method was that we could make use of blossom trees and

the already created knot diagram generator without building prime knot diagrams from

scratch. Both the general and prime knot diagram generators were implemented in

Python. Our experiments showed that we could sample general knot diagrams very

efficiently, even with knot diagrams as large as 150 crossings.

Using the knot diagram generator, we reproduced and extended Burton and Ozlen’s

experiment. We found that the polynomial-time behaviour continues above 50 tetra-

hedra, even though the algorithm is exponential time in theory. However, it was

computationally infeasible to test on knot diagrams with greater than 90 tetrahedra.

Our aim was also to use the prime knot diagram generator to reproduce their

experiment more closely. However, we could only sample prime knot diagrams up to

15 crossings due to the difficulty in finding knot shadows that were prime. Nevertheless,

the experiment suggested that prime knot diagrams have a slightly higher number of

tetrahedra compared to general knot diagrams of the same size. We believe that there

are some properties of prime knots and prime knot diagrams that cause a higher number

of tetrahedra. This is an interesting topic for future work.

Lastly, we used the knot diagram generator to obtain empirical running times for

simplifying knots into the unknot using Reidemeister moves and computing the poly-

nomial knot invariants Jones and HOMFLY polynomials. We tested on knot diagrams

39
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up to 100 crossings and observed that all three algorithms could be computed much

faster than the unknot recognition algorithm using normal surface theory. However,

they cannot be used as an unknot recognition algorithm on their own.

There are several areas for further research. Firstly, we were unable to test the

correctness of the prime knot diagram generator on large samples. One possible method

would be a brute-force search of all pairs of edges and checking whether they disconnect

the graph. Secondly, we could follow the method provided by Diao et al. [16], which

reduces a given knot shadow of size n into smaller prime knot shadows. Although

this does not guarantee a prime knot shadow of n crossings, we can at least obtain

prime knot shadows from every knot shadow without wasting it. Lastly, another future

research could be developing a link diagram generator. In contrast to knots, a link can

consist of more than one strand. The generator can then be used to carry out similar

experiments in Regina. Note that we have to encode the links using planar diagram

codes since Gauss codes are only defined for knots.
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