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Abstract

The importance of recycling has only increased as time progressed. Creating systems

that improve the accessibility of recycling is of great importance. DeepTrash is a private

dataset procured by Danu Robotics by collecting real-world images of unsegregated

garbage on the conveyor belt at a garbage segregation facility. The dataset contains 9618

photos and 44k annotations, with 5 different categories of recyclable waste. This dataset

contains many imbalances such as the number of objects and image imbalance between

classes, foreground-background and foreground-foreground imbalance. The objective

was to implement an object detector that maximises the mean Average Precision while

reducing the differences in classwise Average Precision.

The object detector VarifocalNet was chosen as it contains the loss function, varifocal

loss which mitigates the issues of foreground-background and foreground-foreground

imbalance. The addition of Auto Augment, the cosine annealing learning rate scheduler

and pre-training on the TACO dataset provided improvements to the overall performance

of the object detector. The augmentation of the size of the DeepTrash dataset led to the

inference that certain object classes in the DeepTrash dataset require a greater number

of images and annotations compared to others for the classwise AP to be similar among

the object categories. The best performing object detector was achieved by modifying

the varifocal loss hyperparameter gamma and training on a reduced DeepTrash dataset

which contains 56.9% of images and 29.82% of the annotations. The mAP of this object

detector was 53.3 which is 2.5 mAP higher than the baseline performance which was

trained in the entire DeepTrash dataset. The classwise AP of this object detector is

higher and consistent throughout most of the object classes. Additionally, the issues of

missing labels and their effects are discussed.

In general, the research provides methods for improving the overall and classwise

performance of the VarifocalNet object detector on the DeepTrash dataset and the

limitations of the dataset.
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Chapter 1

Introduction

The industrial revolution of the 18th century [3], which sparked waves of global de-

velopment, is notorious for its exponential resource consumption. This era saw an

acceleration of globalisation and the emergence of various types of pollutants that

contributed to the increase in global temperature. Since the pre-industrial times, the

global temperature has risen by 1.5◦C [19]. If global temperatures rise by another 0.5◦C,

the Earth’s ecosystem might suffer catastrophic and irreparable damage, such as coral

reef degradation, depletion of fisheries and food production damage, among other issues

[10][35][13]. This has a direct impact on humans since it affects food supply. Due to

the growing consumption of commodities as a result of this global economic growth,

waste has become a problem that many developing nations are starting to grapple with

on a major scale. The large-scale consumption produces rubbish that the planet cannot

simply decompose. As a result, the development of garbage management systems

has been eclipsed by the astronomical generation of waste. Rubbish on the streets,

overflowing trash cans, waste in waterbodies like rivers and lakes, and garbage dumps

located in and around major cities are common sights in many third-world nations. This

leads to the spread of many illnesses in areas where most people travel, contaminating

the resources available to the people in the region and increasing bug infestations that

can spread many deadly diseases. This consequent decline in the standard of living that

many of the country’s citizens experience undermines the economic progress brought

on by industrialisation.

The earliest waste management systems were developed at the dawn of the industrial

age since it was an essential pillar for modern society to progress. This is when the

first recycling practices were established to recover recyclable resources such as wood,
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Chapter 1. Introduction 2

metal, paper, etc [27][2]. The world wars of the 20th century resulted in a material

shortage and an economic crisis. To combat these issues, the first modern industrial

recycling techniques were created [45]. Since the turn of the century, there has been a

rise in environmental awareness and recycling has taken on more significance in today’s

socio-economic culture [11] [24]. Although recycling is beneficial to the environment

and natural resources, the process is highly human resource intensive. Human labour

is incredibly expensive; according to a CBSNewYork article, the city of New York

pays $300 million per year to collect garbage [7] which is a staggering sum of money

for many third-world countries. Thus, they implement subpar solutions for managing

their waste. By significantly lowering the cost, automating waste management systems

can contribute to their improvement. These enhancements strengthen the economic

feasibility of recycling and assist in expanding its reach.

In recent years, the development in deep learning has increased drastically which has

provided unparalleled improvement in computer vision. The introduction of the Con-

volutional Neural Network(CNN) [8], allowed itself to be used in various applications

such as classification, object detection and segmentation. Object detectors are deep

learning models which identify and locate an image. Such object detectors have been

used for various tasks but for this dissertation, the task at hand is to identify and localise

waste.

This dissertation focuses on implementing an object detector trained on the DeepTrash

dataset. DeepTrash is a private dataset provided by Danu Robotics. The implementation

used aims to maximise the mAP and the classwise AP of the object detector. The project

used various techniques to improve the object detector and mitigate the imbalances

present in the dataset. Through this approach, the methods that affect/improve the

performance of the object detector are understood.

The structure is as follows: Chapter 2 provides some background on object detectors,

trash object detectors and the two architectures that were implemented: RetinaNet

and VarifocalNet. An overview of the supplementary datasets and the API used were

provided. In Chapter 3, the methods for modifying the supplementary datasets, data

analysis on the DeepTrash dataset, data augmentations, evaluation techniques, and

lastly, how the object detector was trained were covered. Chapter 4 provides the

DeepTrash data analysis, details of the experiments and results of the object detection

training. Chapter 5 presents an overview of the findings, examines them, points out their

shortcomings, speculates on potential future improvements and offers a conclusion.



Chapter 2

Background

2.1 Object Detectors

Computer vision, especially object identification, has advanced significantly as a direct

consequence of the increased research into deep learning. Object detection, the exten-

sion of object identification, is performed by localisation following which a bounding

box is drawn around the identified object. The object detectors are divided into two

parts: two-stage and single stage[47]. Two-stage object detectors have separate modules

for the identification of the image and localisation of the object. Since these systems

have two stages, they are generally more complicated and slower. The single-stage

system classifies and localises the objects in a single sweep using dense sampling[30].

They use bounding boxes present in the labelled data to localise the objects. These are

generally slightly quicker and simpler compared to the two-stage systems.

Two-stage: Two-stage detectors consist of various architectures. The Region-based

Convolutional Neural Network (R-CNN) [15] was one of the first systems to

demonstrate the use of CNNs for object detection. SPP-net [16] used the Spatial

Pyramid Pooling (SPP) layer to process images of any size and ratio. R-CNN

was a revolutionary technology, but it was very slow. SPP-net improved the

speed of the system greatly. Owing to the fact that it can accept an image of any

size/ratio, it reduced the artefacts caused by input deformation. Fast and faster

R-CNN [14, 33] reduced the complexity of training compared to the R-CNN

and SPP-net. The speed of the system increased dramatically while the accuracy

improved slightly. Mask R-CNN [18] improves on Faster R-CNN by adding
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Chapter 2. Background 4

another parallel branch for pixel-level object instance segmentation. This helped

this system outperform all existing state-of-the-art object detectors at the time. It

also introduced the additional functionality of image segmentation.

Single stage: The two-stage system solved the problem of object detection by sepa-

rating it into two main tasks; object identification and localisation. Here, You

Only Look Once (YOLO) [31], a single-stage detector re-framed this problem

by making this a regression problem and directly predicting the location of the

bounding boxes. When it was first released, YOLO outperformed any single-

stage detector, but it had several flaws. The main disadvantage was the loss of

localisation accuracy in small and clustered objects. The Single Shot MultiBox

Detector (SSD) [25] was built on VGG-16 [37] with additional layers to improve

performance. SSD became the first single-stage detector that matched the state-

of-the-art two-stage detectors in terms of performance metrics. Even though

SD outperformed YOLO and faster R-CNN in terms of speed and accuracy, it

still had several drawbacks. The object detector had difficulty predicting smaller

objects in the image. The future versions of YOLO such as YOLOv2, YOLOv3

[32], and YOLOv4 [6] improved on the initial version in terms of speed, accuracy

and solved the main issues YOLO was facing. CenterNet [51] proposed a very

different approach by taking the objects as points instead of the traditional bound-

ing boxes. This change increased the accuracy in various tasks like 3D object

detection, keypoint estimation, pose and instance segmentation. CenterNet’s

drawback, however, is that because of its distinctive backbone, it is challenging to

integrate it with other systems and backbones, which leads to poor performance.

The introduction of RetinaNet [21] brought in a new loss function called focal

loss. In comparison to two-stage detectors, the system showed increased accuracy

and speed after the addition of this loss function and the ResNet [17]backbone.

RetinaNet is also easy to implement, train and converge faster.

The performance of object detection/classification has increased dramatically in recent

years. Many object detection systems are utilised for applications requiring real-time

detection. Due to their slow nature and complexity during training, two-stage detectors

are not suitable for such applications. However, more systems are being adopted for

real-time detection with improvements in single-stage detector accuracy.
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2.2 Trash Object Detectors

Object detection systems can be used for varying tasks. The objective at hand is to

identify and locate the garbage in the image. Object identifying/detecting systems based

on convolutional neural networks have been employed extensively in current work on

detecting waste in images. Since deep learning object detectors can be trained on a

different dataset to adapt to a certain task, the open-source dataset TrashNet [46] was

used. Despite being classification-based, earlier works nonetheless provide a wealth

of information regarding useful techniques [5, 38]. [44] has used the TrashNet dataset

[46] but also implemented localisation. This was implemented by using a CNN and a

gaussian clustering method to locate the trash on the image. [4] proposed a method with

the use of an R-CNN.[46] used an augmented version of the dataset. They augmented

the dataset with annotations and increased its size to 10000 images. [39] implemented

a method of trash detection by using systems such SSD[25] ,YOLO-v3 [32],YOLO-

v3-Tiny [1] and PeeleNet [42]. The dataset used was a custom dataset consisting of

30 videos each of 60 minutes. As a result, they were able to obtain more than 48k

objects. These were divided into 3 different sizes (small, medium, and large). While

there are some limitations, such as the inability to identify small objects in the image,

[39] demonstrates the success of this object detector. They overcame the issues by

proposing a new log-based layer which improves the object detector’s performance on

small objects.

2.3 MMdetection

MMdetection is an object detection and image segmentation toolbox [9]. It is a toolbox

that runs on the python API pytorch [29]. This toolbox provides a unified platform for

training, evaluation and testing. The major advantages of MMdetection include modular

design, multiple framework compatibility, native support for graphics processing units

(GPUs) for increased efficiency and frequent framework updates. This toolbox provides

the frameworks and weights for over 200 popular one-stage, two-stage and multistage

models. The architecture of the models in the toolbox is represented using the backbone,

neck, densehead and RoIExtractor. Here, the backbone (e.g. ResNet) is the main body

of the network which extracts features while excluding the last fully connected layer.

The neck (e.g. Feature Pyramid Network) is the part that connects the head to the
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backbone and performs refinements on the raw feature mappings. The densehead (e.g.

RetinaHead) is the part that locates the objects in the image and provides dense locations

of the feature maps. The RoIExtractor is the component that uses RoIPooling-like

operators to extract RoIwise features from single or multiple feature maps. The RoIHead

is the part that takes RoI features as input and makes RoI-wise task-specific predictions,

such as bounding box classification/regression and mask prediction. MMdetection also

has support for scaling with multiple GPUs. The scalability and adaptability of the

system allow for the adoption and customization of a wide range of frameworks to

satisfy the needs and expectations of the user.

2.4 RetinaNet

RetinaNet is a one-stage object detector that uses a novel loss function called the

focal loss to address the classwise imbalances during training [21]. RetinaNet is a

single, integrated network made up of two task-specific subnetworks and a backbone

network. The backbone, which is an off-the-self convolutional network, computes a

convolutional feature map over the whole input picture. On the output of the backbone,

the first subnet applies convolutional object classification and the second subnet applies

convolutional bounding box regression. The authors’ straightforward architecture for the

two subnetworks is intended primarily for dense one-stage detection. The new focal loss

is inspired by two-stage object detectors, in which the imbalance is addressed utilising

two-stage cascade and sampling heuristics. To keep the foreground and background in

a tolerable balance, sampling algorithms like a fixed foreground-to-background ratio

or Online Hard Example Mining (OHEM) [36] are used in the second classification

step. The collection of potential object locations that must be processed by a one-stage

detector is substantially greater and is frequently sampled from all around an image.

RetinaNet utilises a focal loss function, a cross-entropy loss that is dynamically scaled,

to address this issue. As confidence in the correct class improves, the scaling factor

decays to zero. Intuitively, this scaling factor can quickly focus the Object Detector on

difficult cases while automatically de-weighting the contribution of simple examples

during training. In the dissertation, the RetinaNet is used from MMdetection. The

backbone is the X-101-64x4d-FPN. The weights used for training will be the same as

the weights from the MMdetection [22], which was obtained from training on COCO

[23].
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2.5 VarifocalNet

VarifocalNet (VFnet) [49] is a dense object detector which consists of a new loss

function called the Varifocal loss. It uses an IoU Aware Classification Score (IACS) as

the representation of both presence confidence and localisation accuracy. The Varifocal

loss is used to predict the IACS. For IACS prediction and bounding box refining,

[49] suggested a star-shaped bounding box feature representation. VFnet is based

on the architecture of FCOS [40] and ATSS [50]. Fully Convolutional One-Stage

Object Detection (FCOS) [40] is an anchor-box free, proposal free, single-stage object

detection model. By eliminating the predefined set of anchor boxes, FCOS avoids

computation related to anchor boxes such as calculating overlapping during training.

Adaptive Training Sample Selection (ATSS) [50] is a method to automatically select

positive and negative samples according to the statistical characteristics of the object. It

bridges the gap between anchor-based and anchor-free detectors. Varifocal loss takes

inspiration from focal loss. The difference is that focal loss treats all negative and

positive examples equally, while varifocal loss treats them asymmetrically. This is done

to preserve the signals from the positive examples as they are rare. The performance on

the standardised COCO test-dev is cutting-edge, with a score of 51.3 AP. This object

detector from MMdetection is utilised in the dissertation. The backbone used is the

R-101 [17] with DCN [43]. The weights used are the same as the weights acquired via

MMdetection [48] through training on COCO [23].

2.6 Datasets

2.6.1 TACO

The Trash Annotations in Context for Litter Detection (TACO) [28] is an open-source

dataset that contains images of various types of garbage in real-world scenarios. These

are captured mainly using mobile phones and stored on Flickr. The dataset contains

high resolution RGB images. There are 60 categories and 28 super categories. In the

dataset, there are 1500 images with 4784 annotations. These annotations are in the

COCO format. The images of this dataset contain multiple object classes. An example

of an image belonging to this dataset with its annotations is shown in the figure 2.1.
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Figure 2.1: Examples of TACO Images

2.6.2 TrashNet

TrashNet [46] is an open-source dataset. This dataset contains images of glass, paper,

cardboard, plastic, metal and trash. The images of this dataset were captured using

Apple iPhone 7 Plus, Apple iPhone 5S and Apple iPhone SE. The dataset contains 2527

images split into 501 glass, 594 paper, 403 cardboard, 482 plastics, 410 metal and 137

trash images. The resolution of the images was downsized from 4034x3024 to 512x314.

This dataset was not created for object detection but rather for the classification of

images. Thus, none of the images is annotated with the objects, rather just split into

different categories. Examples of images from this dataset are shown in the figure 2.2.

Figure 2.2: Examples of TrashNet Images



Chapter 3

Methods

3.1 Data Analysis

The dataset used to train and test the object detectors has several characteristics. Un-

derstanding these characteristics will help create a more tailored object detector for

various tasks. This dataset has a variety of features, such as the ratio of foreground to

background, the number of objects per class in the categories, the number of objects per

image and each category, the size of the objects and their location. Many imbalances

caused by these qualities, such as class, scale and spatial or objective imbalance could

potentially cause the performance to drop [26]. The dataset analysed is the DeepTrash1

collected by Danu Robotics. This is a private dataset. Its intellectual property is owned

by Danu Robotics.

3.2 Datasets

3.2.1 TACO

The TACO [28] dataset has 60 categories which cover a wide variety of waste categories.

Some of the categories from the TACO dataset are similar to the ones present in the

DeepTrash dataset. These categories are Other plastic bottles, Clear plastic bottle,

Other plastic cup for the class Plastic Juice Water Bottle; Egg carton, Drink carton,

1The intellectual property of the DeepTrash dataset is owned by Danu Robotics and is copyright
protected. The dataset will not be publicly released and all the photos are used for demonstration purposes
only. Any use of the under-discussion images in research or industrial is illegal.

9



Chapter 3. Methods 10

Meal carton, Pizza box for Paper Cardboard Container; Plastified paper bag, Single-use

carrier bag, Polypropylene bag for Plastic Shopping Bag; Other carton, Corrugated

carton for Cardboard and Magazine paper, Normal paper for Paper Newspaper. The

category labels for the images and annotations have been changed to match those in the

DeepTrash dataset. This allows the use of additional images from the TACO dataset for

training the object detector.

Category Number of images Number of objects

Plastic Juice Water Bottle 388 566

Paper Newspaper 71 94

Cardboard 120 162

Paper Cardboard Container 76 89

Plastic Shopping Bag 52 64

Table 3.1: Number of images and objects in modified TACO

3.2.2 TrashNet

The TrashNet [46] dataset was created with the exclusive purpose of classifying garbage,

as opposed to both classifying and locating the trash. This results in the dataset having

images with only its category defined. To convert this dataset into one which can be used

for training an object detector, the categories relevant to the DeepTrash dataset were

chosen. These categories were cardboard, paper and plastic. These images were then

annotated in the pascal VOC format[12] using labelImg. LabelImg [41] is a graphical

image annotation tool. It annotates the images in the format of pascal VOC. This pascal

VOC annotation file cannot be used with the DeepTrash dataset or TACO as they both

have annotations files in the COCO format [23]. To convert the pascal VOC annotation

to COCO, a tool called roboflow [34] was used.

3.3 Evaluation

The evaluation of the object detector is conducted at both the training and testing stages.

The metrics used are the same for both stages. The metrics used are Mean Average

Precision (mAP) and Average Precision (AP). Intersection over Union (IoU) is the ratio
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Figure 3.1: Examples of TrashNet Images Annotated

of overlap between the predicted and ground truth bounding box (bbox). A threshold is

used to determine whether the prediction is either a true positive or a false positive. If

no object is detected, then it will be considered a false negative. Using the equations

3.1, 3.2 and the threshold for IoU, the precision for each class is calculated. For the

comparison of performance between the various detectors, both the average precision

per class and the mean average precision (mAP) for all the classes are used. The Average

Precision (AP) is the area under the precision-recall curve, calculated using the formula

3.3, where n is the number of IoU thresholds , Recall(n) = 0 and Precision(n) = 1. The

mean average precision is the mean of AP when the AP is calculated for each object

class. The formula for mAP is shown in 3.4, where APc is the AP of class c and nc is

number of object classes.

Precision =
TruePositive

TruePositive+FalsePositive
(3.1)

Recall =
TruePositive

TruePositive+FalseNegative
(3.2)

AP =
k=n−1

∑
k=0

[Recall(k)−Recall(k+1)]∗Precision(k) (3.3)

mAP =
1
n

c=nc

∑
c=1

APc (3.4)

The evaluation method used for this project is the COCO evaluator [23]. This was

selected since it is the most widely used evaluation system for object detectors. This

method has also been preferred over the pascal VOC system as the COCO evaluator

calculates the Average Precision(AP) over 10 IoU thresholds across all the object classes.

This system has two main metrics for AP; the AP across different IoU and the AP

across different scales. The AP across the IoU range consists of the bbox mAP which

measures the AP through the IoU thresholds of 0.5 to 0.95 with a step of 0.05. The AP
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at 0.5 IoU is the Pascal VOC metric while the AP at 0.75 IoU is the strict metric. The

AP across scales is divided into three measurements: small, medium and large. Small

are objects with an area less than 322, medium refers to objects with an area between

322 and 962 and large is for objects with an area greater than 962.

3.4 Data Augmentations

3.4.1 Auto Augment

Google created a set of data augmentation policies called ”Auto Augment” to enhance

object detection performance [52]. The policies include various augmentations that

apply to colour, geometry and bounding boxes. This implementation for data augmenta-

tions was used at it resulted in an improvement of 2.3 mAP on the COCO dataset using

the ResNet 50 backbone. The improvement was also carried over when the dataset

was switched from COCO to pascal VOC. The sole drawback of this approach is that

the COCO dataset is substantially larger than the DeepTrash dataset. The PyTorch

implementations were used, which have all the augmentations used in the training of

the COCO dataset [23].

3.4.2 Augmenting the Number of Objects in Dataset

The imbalances in the DeepTrash dataset can lead to a lot of undesirable results. Some of

these imbalances can be artificially reduced to understand their impact. The DeepTrash

dataset was first reduced such that all the object categories have a similar number of

images and objects per image. The number of images was set per the object category

with the fewest images/annotations. The annotations of the dataset were randomly

chosen with a probability that depends on the ratio of the images of the desired object

category and the lowest object category mentioned in equation 3.5, where N f is the

number of annotations from the object class with the fewest annotations and Nk is the

number of annotation from the class k. Using this method, the number of images and

objects per image remains consistent throughout the dataset. The dataset was also

modified to keep the number of images in a similar distribution to the original dataset.

The object per image also was kept consistent with the original dataset. The second

modification was carried out in the same manner as the first, but this time all of the
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objects in the image of the randomly selected annotation’s category were added.

Probability =
N f

Nk
(3.5)

3.4.3 Mixing datasets

The datasets were mixed using two methods:

1. The object detector was trained on a different dataset before being trained on the

DeepTrash dataset

2. The object detector was trained on both the DeepTrash and supplementary datasets

The dataset used in the former method of pretraining the object detector is the TACO

dataset. Compared to the DeepTrash dataset, the TACO dataset has a large number of

trash categories, some of which are also present in the TACO dataset. This dataset was

chosen as it has a variety of objects in an image. The images are filled with multiple

objects of different categories. The area of the images is also well distributed. This

dataset provides a good platform for the object detector to learn to identify and locate the

objects. The second method uses the TACO and TrashNet datasets. Here, the datasets

are modified as detailed in section 3.2. These datasets are used as supplementary

datasets with the DeepTrash to train the object detector. The supplementary datasets are

only used when training while the DeepTrash validation dataset is used for validation.

3.5 Training

The object detectors were trained using the MMdetection[9] toolbox. The architectures

and weights of the object detectors were used from MMdetection. The weights for

the object detectors from MMdetection are those obtained after training these object

detectors for 100 epochs on the COCO dataset. The dataset for training the object

detectors is split as follows: 80% training, 10% validation and 10% testing. The dataset

is split using the tool pycocosplit[20]. Pycocosplit is a program which divides the

annotation files into the desired train, validation and test splits. All the object detectors

make use of the vanilla frameworks, hyperparameters, weights and datasets unless

specified. The object detectors were trained for 25 epochs, where validations occur

after every epoch. The training of these object detectors was exclusively performed on



Chapter 3. Methods 14

GPUs. The GPUs used were the RTX 2080Ti and the RTX 3070. Two different GPUs

were used due to their varying amounts of video memory (11GB and 8GB). This was

implemented because some RetinaNet and VarifocalNet object detectors require more

than 8GB of VRAM.



Chapter 4

Experiments and Results

4.1 Data Analysis

The DeepTrash1 dataset, collected in a real-world setting by Danu Robotics, has images

of unsegregated garbage on the conveyor belt captured at a garbage segregation facility

as seen in the figure 4.1. The dataset contains 9618 photos and 44k annotations in RGB

and 1920x1080 resolution. The dataset contains 5 different classes: Plastic Juice Water

Bottle (PWB), Paper Newspaper (PN), Plastic Shopping Bag (PSB), Cardboard (C) and

Paper Cardboard Container (PCC). Each image belonging to this dataset can have 1 or

multiple classes present as seen in the figure 4.1. The objects in the image are annotated

using the COCO format [23].

(a) (b)

Figure 4.1: Examples of DeepTrash Images

1The intellectual property of the DeepTrash dataset is owned by Danu Robotics and is copyright
protected. The dataset will not be publicly released and all the photos are used for demonstration purposes
only. Any use of the under-discussion images in research or industrial is illegal.

15
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4.1.1 Images and Objects Per Class

Analysing the images per class is one of the simplest techniques to understand the

distribution and representation of object classes. This method of analysis is used widely

for classification tasks as it is the easiest property of the dataset to analyse. From the

figure 4.2a, it is seen that the DeepTrash dataset has a severe over-representation of the

Plastic Juice Water Bottle object class. This is eight times larger than the object class of

Paper Cardboard Containers, which is the least represented object class.

The distribution of the number of objects between the object classes is another method

to understand the dataset’s properties. Figure 4.2b shows the disparity between the

Plastic Juice Water Bottle object class and the other classes. Compared to the worst

represented class of Paper Cardboard Container, the Plastic Juice Water Bottle has a

much higher degree of representation which is around 25 times more. The ratio between

the Plastic Juice Water Bottle and other object classes has also increased. This can

easily cause the object detector to overfit the Plastic Juice Water Bottle object class,

which can cause a loss in the training performance.
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Figure 4.2: Distribution of objects and images

4.1.2 Foreground-Background Analysis

This analysis will focus on the difference between the foreground and background of the

image. The foreground of the image is where the object in the image lies. For example

in the case of the DeepTrash dataset, the foreground consists of objects from the classes

Plastic Juice Water Bottle (PWB), Paper Newspaper (PN), Plastics Shopping Bag (PSB),
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Cardboard (C) and Paper Cardboard Container (PCC). The background of the image

is everything that doesn’t consist of the object that is being detected. The ratio of the

foreground vs background is calculated by the area occupied by each of the classes in

the image. The total area of the image for the calculation used the resolution of the

image. Since the annotations are in the COCO format, the values from the bounding

boxes of the object are used. The bounding box is in the format (top left x coordinate,

top left y coordinate, width, height). The area of the object in the image is calculated

from the annotations. The background is calculated by the difference between the total

area of the image and the object area.

Table 4.1: Ratio of Background to

foreground area

Categories Ratio

PWB2 21.465

PN3 14.002

C4 14.208

PCC5 37.481

PSB6 7.943

Whole dataset 7.089
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Figure 4.3: Ratio of foreground vs background

From the figure 4.3, it is seen that there is a significant disparity between the foreground

and background classes. The ratio of the background to the foreground is shown in

table 4.1. Here, it is seen that the ratio is ≈1:25. This is comparably low to the issue

discussed in the focal loss [21] where the ratio was in the values of 1:1000. This is

substantially lower, yet it could cause the background to be over-represented.

4.1.3 Foreground-Foreground Analysis

Here, the focus is on the foreground objects in the image. The analysis compares

the representation of different foreground object classes. The figure 4.4c shows the

frequency of the foreground classes in the image. This shows a huge disparity between

2Plastic Juice Water Bottle
3Paper Newspaper
4Cardboard
5Paper Cardboard Container
6Plastics Shopping Bag
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the foreground class Plastic Juice Water Bottle and the rest of the classes. The Plastic

Juice Water Bottle occurs multiple times in the images and has the most number of

images as depicted in figure 4.2a
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Figure 4.4: Foreground-foreground analysis

Another important property to analyse is the number of different classes present in the

images. The figure 4.4a shows that majority of the dataset has 2-3 different foreground

classes present in them. This is beneficial since it allows the object detector to detect

several object classes in the image. The distribution of the number of objects in an

image seen in figure 4.4b is also varied, which helps the object detector identify multiple

objects.
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4.1.4 Location and Area of the Objects

4.1.4.1 Distribution of Area

This section focuses on the distribution of the size of the objects across different

categories and the dataset under study. The area is calculated from the bounding box

value from the annotations. This analysis produces different distributions of object sizes

throughout the dataset as seen in figures 4.5a and 4.5b. The table 4.2 shows the number

of objects in the three different categories (small, medium and large). As mentioned

in section 3.3, the COCO evaluator measures the performance concerning object sizes

as well. From table 4.2, majority are classified as large objects. Thus, from the results,

only the metric for the large objects should be considered.
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Figure 4.5: Distribution of area (classwise and whole dataset)

Categories Small Medium Large

Plastic Juice Water Bottle 4 3688 23750

Paper Newspaper 0 24 4078

Cardboard 0 36 2037

Paper Cardboard Container 0 35 1001

Plastic Shopping Bag 0 6 5163

Whole dataset 4 3789 36029

Table 4.2: Distribution of area in the dataset
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4.1.4.2 Locations

The locations of the objects are also important properties because sliding window

classifiers in modern deep object detectors use densely sampled anchors. A large

number of present-day object detectors uniformly distribute the anchors across the

image, giving each component of the image the same weight of importance [26]. For

each occurrence of an object in an image, the value in its corresponding location in

a 1920x1080 matrix is incremented by one. This then makes up a 2D heatmap of the

image showing the frequency of object occurrence for every pixel.

Figure 4.6: Heatmap of object location in an image

From figure 4.6, it is seen that most of the objects occur around a similar space in the

image. This is understandable as the image contains a conveyor belt filled with trash.

Since most of the heatmaps are evenly distributed, there is no specific location where a

certain object category occurs more frequently than the others.

4.2 Baselines

To get baseline values for the classes and dataset, the object detectors were initially

trained on the vanilla DeepTrash dataset. The object detectors trained on the dataset
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were RetinaNet and VarifocalNet. The object detectors were trained for 25 epochs using

the vanilla framework, hyperparameters and weights.

Category PWB7 PN8 C9 PCC10 PSB11

AP Vfnet 0.625 0.513 0.411 0.398 0.595

AP RetinaNet 0.377 0.204 0.135 0.101 0.274

Table 4.3: Baseline results for Classwise Average Precision

bbox mAP bbox mAP 50 bbox mAP 75 bbox mAP l

Vfnet 0.508 0.661 0.562 0.516

RetinaNet 0.218 0.367 0.225 0.223

Table 4.4: Baseline results for mAP values

From the results in tables 4.4 and 4.3, it is seen that the imbalance in the data has

impacted the classwise results directly. The classwise AP values directly correlate to the

number of images and objects. The foreground-foreground imbalance could also play

a role in influencing accuracy as the number and frequency of objects of Plastic Juice

Water Bottle is much higher than any of the other object classes as seen in the section

4.1.3. The vanilla VarifocalNet object detector uses the step learning rate scheduler.
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Figure 4.7: Baseline loss and mAP vs learning rate

7Plastic Juice Water Bottle
8Paper Newspaper
9Cardboard

10Paper Cardboard Container
11Plastics Shopping Bag
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This is when the learning rate is reduced by a multiplier at a step. In the figures 4.7a

and 4.7b, there is an observable stagnation in the loss and mAP values. This could be

caused by the step learning rate scheduler. The constant learning rate caused the object

detector to get stuck in a local minima. This can be viewed as a correlation between

changes in loss and mAP values and changes in learning rate. The object detector can

be enhanced by changing the learning rate scheduler so that the object detector’s loss

and accuracy do not regularly stagnate at local minima.

Inference Testing

The figures 4.8a and 4.8b show the output of the object detector with the class prediction

and confidence score. In the graph, the distribution of confidence scores for the detection

of objects of different classes is shown in 4.8a. It shows the distribution over the whole

confidence score range. Here, a huge number of objects are detected in the confidence

score range of 0− 30%. This is expected due to the imbalance in the foreground-

background and foreground-foreground imbalance. To get a better idea, the figure 4.8b

represents the distribution of objects with a confidence score of > 30%. This threshold

was chosen as through visual inspection of 200 random images, the majority of the

objects under consideration were identified. It can be observed here that the detector is

learning well, with a majority of the Plastic Juice Water Bottle objects being predicted

with a high degree of confidence. The other classes show a similar distribution but not

at the same magnitude.
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Figure 4.8: Baseline Histogram of Confidence Scores

In the figures B.7 and 4.10, the issue of missing labels is observed. These figures are the

output of the object detector with a confidence threshold of 30%. The figure 4.9b with

the predicted objects from the object detector shows more objects than what is labelled
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in the data. This is fairly consistent throughout the dataset, where the object detector

usually locates more objects than what has been labelled. Through visual inspection

of 200 images, the prediction of these additional objects is accurate majority of the

time. The object class that is most affected by this is the Plastic Juice Water Bottle.

While it isn’t as common as with the Plastic Juice Water Bottle class, the other classes

also have extra objects that are predicted. Visual inspection reveals that while the

majority of objects are correctly predicted, the object detector occasionally has trouble

differentiating between Plastic Shopping Bags and Cardboard. The data’s missing

labels mean that the mAP measures observed should be interpreted cautiously due to the

increase in the number of false positives, thus reducing the precision as well as Average

Precision. The VarifocalNet object detector performance is significantly better, both

0 250 500 750 1000 1250 1500 1750

0

200

400

600

800

1000

(a) Ground Truth (b) Predicted Output

Figure 4.9: Example 1 of comparing the ground truth to inference
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Figure 4.10: Example 2 of comparing the ground truth to inference

in terms of absolute and relative performance. The relative performance is the relative

difference of mAP between the categories. The VarifocalNet and RetinaNet training

times for the entire DeepTrash dataset were 25 hours and 45+ hours, respectively.
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Only the VarifocalNet will be tested with the modifications because it outperforms the

RetinaNet significantly in terms of metrics and training times.

4.3 VarifocalNet Auto Augment

This experiment focuses on the impact of the Auto Augment data augmentation tech-

nique on the VarifocalNet object detector. The baseline methodology, in conjunction

with the Auto Augment method, is used to train the VarifocalNet Object detector.

Category PWB PN C PCC PSB

AP 0.627 0.515 0.413 0.403 0.600

Table 4.5: Auto Augment results for Classwise Average Precision

bbox mAP bbox mAP 50 bbox mAP 75 bbox mAP l

0.512 0.665 0.568 0.519

Table 4.6: Auto Augment mAP values

The results shown in the tables 4.6, 4.5 indicate that the additional Auto Augment

technique has a very minor effect on performance for this task. Thus, adding the

Auto Augment technique does not positively affect the object detector according to the

metrics observed.
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Figure 4.11: Auto Augment Histogram of Confidence Scores

Comparing the figures 4.11b and 4.8b, there is an improvement in what the object

detector classifies as ’easy’ objects. ’Easy’ objects are the objects with high confidence
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scores. As a result, using the Auto Augment technique has advantages that allow it to

be applied in the experiments that follow. The missing labels of the DeepTrash dataset

hide the improvement in the mAP metrics. Thus, many of the mAP metrics are difficult

to compare.

4.4 VarifocalNet Learning Rate Scheduler

The baseline experiments used the step learning rate scheduler which was changed in an

effort to address the problem that was observed in the baseline results. The learning rate

scheduler was altered from step to cosine annealing. This was implemented because the

baseline training of the VarifocalNet object detector had quickly reached a local minima

for both the mAP values and loss values before the learning rate was updated. The new

learning rate schedule maintains a similar AP on the object class Plastic Juice Water

Bottle while improving the AP of other object classes and the overall mAP values as

seen in tables 4.7 and 4.8.

Category PWB PN C PCC PSB

AP 0.620 0.519 0.431 0.415 0.613

Table 4.7: Cosine Annealing learning rate Classwise Average Precision

bbox mAP bbox mAP 50 bbox mAP 75 bbox mAP l

0.518 0.67 0.575 0.526

Table 4.8: Cosine Annealing learning rate mAP values

In the figure 4.12, the impact of changing the learning rate scheduler is observed. The

loss or mAP values do not stagnate around a local minima due to the constant updating

of the learning rate values. This change was effective since the overall loss values at the

end of training were lower than the baseline results. In the figure 4.12, there is constant

improvement in the mAP values throughout the training period, although the rate of

increase starts to reduce as the training period approaches 25 epochs. The distribution

of the confidence score has also seen an improvement. From figure 4.13, there is a shift

in the distribution in the confidence score towards the right. In the figure 4.13b, there

is an increase in the objects detected with high confidence for the class Plastic Juice

Water Bottle (PWB). The rest of the classes show a similar improvement in distribution
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Figure 4.12: Cosine Annealing learning rate loss and mAP vs learning rate
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Figure 4.13: Cosine Annealing learning rate Histogram of Confidence Scores

but the magnitude is not as extreme. The small improvements in the mAP values from

table 4.8 could be attributed to this shift in confidence score.

4.5 DeepTrash Equal

In this experiment, the DeepTrash dataset was modified into two new datasets with a

number of images similar to the object class with the fewest images. The first dataset,

which contained roughly the same number of objects per image throughout, is labelled

DeepTrash Equal (DpTrsh eq). The second dataset, which has the same number of

objects per image as the original dataset, is labelled DeepTrash Equal2 (DpTrsh eq2).

The number of objects and images for the new datasets are shown in the table 4.9. The

table 4.9 shows that the Paper Cardboard Container class, which has the lowest number

of images and objects, is kept consistent across the two datasets while the other object
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classes are modified. The reduction of the dataset is performed using the methods

explained in section 3.4.2.

Category DpTrsh eq DpTrsh eq2

Number of Images
PWB12 2140 2386

Number of Objects 2556 6740

Number of Images
PN13 1012 1179

Number of Objects 1098 1509

Number of Images
C14 999 1026

Number of Objects 1136 1165

Number of Images
PCC15 758 758

Number of Objects 812 812

Number of Images
PSB16 1027 1636

Number of Objects 1092 1300

Table 4.9: Number of images and objects in modified DeepTrash

VarifocalNet trained on DeepTrash Equal

The training of this object detector was performed using the same methods as used

in section 4.4. The results demonstrated in table 4.10 show that most of the object

categories have similar values of AP although the Paper Cardboard Container has the

highest AP and the Plastic Juice Water Bottle has the lowest AP. The overall mAP in

table 4.11 is much lower due to a massive difference in total objects and images. The

classwise result is quite contrasting compared to the baseline. From tables 4.3 and

4.10, it is clear that the Paper Cardboard Container is a much simpler object for the

object detector to learn, whereas the ability of the object detector to learn the object

class Plastic Juice Water Bottle has been significantly impacted by the reduction in the

number of objects per image.

From figure A.2, the object detector performs quite similarly to when it was trained

on the entire DeepTrash dataset. The behaviour of the loss and mAP values follow

the same trend as shown in the figures 4.12, though their overall magnitude is lower.

Comparing the distribution of confidence scores of the objects predicted by the object

12Plastic Juice Water Bottle
13Paper Newspaper
14Cardboard
15Paper Cardboard Container
16Plastics Shopping Bag
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Category PWB PN C PCC PSB

AP 0.307 0.308 0.313 0.361 0.373

Table 4.10: DeepTrash Equal Classwise Average Precision

bbox mAP bbox mAP 50 bbox mAP 75 bbox mAP l

0.33 0.467 0.369 0.339

Table 4.11: DeepTrash Equal mAP values
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Figure 4.14: DeepTrash Equal Histogram of confidence scores

detector, the differences are seen. In figure 4.14, the majority of the predicted objects,

both in the whole range and > 30%, show a clear trend of decreasing number of objects

as the confidence score increased. This trend is seen in all the classes. This is the main

cause of the much lower mAP values. Thus, from the figure 4.14b, a conclusion that the

object detector is underfitting can be derived.

VarifocalNet trained on DeepTrash Equal2

The second part of this experiment is to have a similar distribution of the images as

shown in the table 4.9 but the objects per image remain the same as in the original

DeepTrash dataset. The composition of the modified dataset is shown in the table 4.9.

There is an increase in the number of objects, particularly in the Plastic Juice Water

Bottle class, while the rest have a slight increase. This increase in the number of images

throughout all the classes is to combat the underfitting observed in figure 4.14b.

The object detector was trained using the baseline hyperparameters and framework, but

with the additional data augmentation technique, Auto Augment. The training was run
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Category PWB PN C PCC PSB

AP 0.418 0.364 0.322 0.391 0.417

Table 4.12: DeepTrash Equal2 Classwise Average Precision

bbox mAP bbox mAP 50 bbox mAP 75 bbox mAP l

0.383 0.52 0.425 0.391

Table 4.13: DeepTrash Equal2 mAP values

for 25 epochs. The results of the training observed in table 4.12 using this dataset show

that all the categories have similar AP. When comparing these results to table 4.10, the

AP values for Plastic Juice Water Bottle have increased dramatically while the rest of

the classes show a small increase in mAP. The increase in annotations, particularly for

the Plastic Juice Water Bottle class, is responsible for this. The mAP of the class Paper

Cardboard Container is also approaching the value seen in table 4.3. The results in table

4.10 demonstrate that the DeepTrash dataset does not require an equal distribution of

objects/images throughout the dataset for classwise AP to be similar across the object

classes.
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Figure 4.15: DeepTrash Equal2 Histogram of confidence scores

When comparing the figures 4.14b and 4.15b, it is clear that there is a significant increase

in the number of objects across all confidence scores, indicating an improvement in the

underfitting caused by the previous experiment.
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4.6 Pre-Trained VarifocalNet on TACO

In this set of experiments, the object detectors are pre-trained with the TACO datasets

to understand its impacts. The VarifocalNet object detector was trained using the TACO

dataset with the weights from the COCO dataset training. The performance of the

TACO dataset is not particularly significant.

bbox mAP bbox mAP 50 bbox mAP 75 bbox mAP l

0.206 0.240 0.216 0.217

Table 4.14: TACO mAP values

Trained on TACO then DeepTrash

With the exception of changing the learning rate scheduler, adding Auto Augment,

and using the initial weights from the object detector trained using the TACO dataset,

this object detector’s training was carried out using the same hyperparameters as the

baseline in section 4.2.

Category PWB PN C PCC PSB

AP 0.619 0.511 0.418 0.421 0.604

Table 4.15: Pre-Trained DeepTrash Classwise Average Precision

bbox mAP bbox mAP 50 bbox mAP 75 bbox mAP l

0.515 0.665 0.571 0.521

Table 4.16: Pre-Trained DeepTrash mAP values

From the metrics in tables 4.16 and 4.15, changing the initial weights from the COCO

dataset to the TACO dataset does not show a significant difference in the final mAP

values, either classwise or the dataset-wide metrics. The loss pattern in the figure

A.5 is similar to figure 4.12. The figure depicts the pattern of the mAP values, which

exhibits a slight larger gradient in the early phases of the training period, as well as

a smoother and more consistent trend throughout the training period. Comparing the

distribution with figures 4.16b and 4.8b, there is a positive change in the distribution.

When taking only the objects with a confidence score higher than 30%, the distribution

shifts more towards higher confidence. Even when comparing this to figure 4.13b, the
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Figure 4.16: Pre-Trained DeepTrash Histogram of Confidence Scores

shift in distribution appears in the classes of Plastic Juice Water Bottles and shopping

bags. When comparing the confidence scores in figures 4.16b and 4.8b, this method

demonstrates a considerable difference. This improvement is not shown in the mAP

values as discussed earlier in section 4.3, due to the missing labels of the DeepTrash

dataset.

Trained on TACO then DeepTrash Equal2

This experiment aims to measure the difference in performance when the object detector

is pre-trained using the TACO dataset, and then trained on a reduced dataset where

the object classwise imbalance has been manually reduced. The reduced dataset is the

DeepTrash Equal2. The training parameters are the same as in the previous experiment.

Category PWB PN C PCC PSB

AP 0.425 0.346 0.314 0.365 0.404

Table 4.17: Pre-Trained DeepTrash Equal2 Classwise Average Precision

bbox mAP bbox mAP 50 bbox mAP 75 bbox mAP l

0.371 0.512 0.408 0.379

Table 4.18: Pre-Trained DeepTrash Equal2 mAP values

The tables 4.17 and 4.18 show that the mAP has a very negligible change. The behaviour

depicted in figure 4.17b is similar with and without the pre-trained weights of TACO.
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Figure 4.17: Pre-Trained DeepTrash Equal2 Histogram of Confidence Scores

4.7 VarifocalNet Datamix

The experiment under discussion aims to understand the impact of adding supplementary

datasets to the DeepTrash dataset. The DeepTrash dataset is not used for this experiment

as the difference in the number of annotations and images added will be extremely

negligible due to the difference in the size of the datasets. Thus, the dataset that will

be modified is the DeepTrash Equal2. The VarifocalNet was trained using modified

datasets that included the dptrsh eq2 described in section 3.4.3, as well as the modified

datasets of TACO and TrashNet indicated in section 3.2. The validation data for this is

the same as the one used in the rest of the experiments. The validation dataset has not

been changed as the performance on the DeepTrash dataset is the main priority. While

Auto Augment has been introduced and the learning rate scheduler has been altered,

the object detector’s hyperparameters remain the same as the baseline in section 4.2.

The training was done for 25 epochs. From the results shown in tables 4.19 and 4.20,

almost no change in performance is observed compared to the section 4.6.

Category PWB PN C PCC PSB

AP 0.412 0.329 0.315 0.363 0.426

Table 4.19: Datamix Classwise Average Precision

bbox mAP bbox mAP 50 bbox mAP 75 bbox mAP l

0.369 0.514 0.402 0.377

Table 4.20: Datamix mAP values



Chapter 4. Experiments and Results 33

0.2 0.4 0.6 0.8 1.0
Confidence score

0

1000

2000

3000

4000

5000

C
ou

nt

PSB
PCC
C
PN
PWB

(a)

0.4 0.6 0.8 1.0
Confidence score

0

100

200

300

400

C
ou

nt

PSB
PCC
C
PN
PWB

(b)

Figure 4.18: Datamix Histogram of Confidence Scores

The results of this experiment, as shown in tables 4.19 and 4.20, and figure 4.18b,

reveal that there is less improvement than when the object detector was pretrained using

TACO.

4.8 Varifocal Loss Hyperparameter

The distribution of the confidence score, as shown in figure 4.15b, has a decreasing

trend. In order to address this, the gamma hyperparameter value of the varifocal loss

was decreased. Gamma is the parameter that controls the loss amount given to each

object given how hard or easy the object is. As shown in figure 4.15b, most of the

objects are difficult to identify due to their low confidence score. Therefore, lowering

the gamma value assists the object detector in preserving the signal from the objects

with a high confidence score, making more of the objects easily identifiable as training

progresses. The VarifocalNet was trained using the dataset DeepTrash Equal2 and

using the same methods in section 4.6. The only change was the hyperparameter of the

varifocal loss function, gamma. This was changed from 2 to 1.25.

Category PWB PN C PCC PSB

AP 0.382 0.534 0.573 0.661 0.512

Table 4.21: Loss Hyperparameter Classwise Average Precision

The results in tables 4.21 and 4.22 reveal that there is a huge improvement in both the

overall and classwise performance. Even when compared to the results with the baseline
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bbox mAP bbox mAP 50 bbox mAP 75 bbox mAP l

0.533 0.653 0.583 0.537

Table 4.22: Loss Hyperparameter mAP values

section 4.2 or the learning rate scheduling section 4.4 presented in tables 4.4, 4.3, and

4.7, 4.8, the performance of most classes has increased significantly. All the classes

except for the Plastic Juice Water Bottle class have shown improvement. This could be

due to the missing labels of the dataset or the lack of images and objects compared to

the whole DeepTrash dataset. Figure 4.17b shows an improvement in the distribution of
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Figure 4.19: Loss Hyperparameter Histogram of Confidence Scores

the object’s confidence score for all the categories. The performance increase in tables

4.21 and 4.22 can be primarily attributed to this.



Chapter 5

Discussion and Conclusions

In this dissertation, object detection techniques were analysed to detect 5 different

categories of recyclable waste in the DeepTrash1 dataset. The driving force behind

the development of this dissertation is the problem with garbage disposal that plagues

most major metropolitan areas worldwide. Garbage disposal and segregation need

a significant amount of human resources, making it an expensive practice for many

communities to undertake. To address this, developing an automated system that

decreases the cost and time required to sort recycled waste will benefit both cities and

the environment.

The dataset under research , DeepTrash (collected by Danu Robotics from a trash sorting

facility) was observed to suffer from numerous imbalances, namely object and image

imbalance between classes, and foreground-background and foreground-foreground

imbalance. These imbalances prevent the object detector from correctly learning the

dataset, which results in poor performance. To mitigate these problems, two object

detectors were chosen, RetinaNet and VarifocalNet. They were chosen because they

have a loss function that attempts to minimise the effects of class imbalance. First,

baseline testing was performed on the two object detectors, VarifocalNet and RetinaNet.

These tests demonstrated the problems of object classwise imbalance and loss and

accuracy being trapped at local minima due to the learning rate. Due to this, additional

experiments were performed such as changing the learning rate scheduler, adding data

augmentation techniques, modifying the size and properties (objects per image) of the

dataset, and pretraining on a dataset which is similar to the DeepTrash dataset and

1The intellectual property of the DeepTrash dataset is owned by Danu Robotics and is copyright
protected. The dataset will not be publicly released and all the photos are used for demonstration purposes
only. Any use of the under-discussion images in research or industrial is illegal.
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modifying the hyperparameters of the loss function.

The outcome of these results was positive as they provided an understanding of the

methods to improve the overall and classwise performance. The addition of Auto

Augment provided a small improvement in the confidence of the object detector on a

large number of images. In the vanilla implementation of the framework, the learning

rate was set to be a step function, stepping at epochs 16 and 22. However, this was

observed to get stuck in the local minima. To cater to this, cosine annealing function

was proposed for the task at hand. This slightly improved the mAP while also lowering

the overall loss and increasing the number of objects with high confidence. Changing

the size of the dataset in terms of images and objects per image yielded some intriguing

results. This demonstrated that for the object detector to learn the object classes

equally, some object classes required a larger number of objects and images. The object

detector was then trained using the reduced dataset as well as extra data from TACO

and TrashNet. The results did not provide significant improvement. The object detector

was then pretrained on TACO using transfer learning as it is a very common practice.

This experiment did not provide a significant improvement in terms of the mAP values

but showed that more objects from different categories have a higher confidence score

(this issue is discussed in section 5.1). Finally, the hyperparameter of the loss functions

was modified to study the effect of hyperparameter tuning. The findings suggest that

hyperparameter optimisation is possible, as the Object Detector trained on DeepTrash

Equal2 as given in section 4.8 exhibits a significant improvement in mAP values when

compared to training on DeepTrash Equal2 or on TACO then DeepTrash as described

in sections 4.8 and 4.6 respectively.

Following these results, several open questions arise: Can a class-wise varifocal loss

improve the performance of the object detector? How may the effects of an incompletely

labelled dataset be reduced? Before these open questions are discussed, the limitation

so far will be discussed.

5.1 Limitations

5.1.1 Time and Resources

The amount of time and resources that are typically utilised for such deep learning

research is one of the biggest limitations of this work. The training of most of the object
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detectors for 25 epochs took around a day. This hinders the object detector from being

run for 100 epochs, as most object detectors are when trained on the COCO datasets.

The limitations of VRAM also occurred as the GPUs for training, the 2080ti and 3070

have 11GB and 8GB respectively.Consequently, it was not possible to utilise a larger

Object Detector, such as VarifocalNet -X, an object detector that attained state-of-the-art

mAP values on the COCO test-dev.

5.1.2 Missing Labels in Dataset

After careful visual analysis, the DeepTrash dataset has missing labels. As in super-

vised learning, the dataset is extremely important as any deep learning object detector

completely depends on it. The impact of this is seen in the mAP values as they do

not fully correspond to how the object detector performs in the real-world scenario

through visual analysis. The issue is that having incomplete labelling leads to many true

positives being considered as false positives which affects the precision, thus affecting

the AP and mAP values of the object detector. In the case of fully supervised networks,

there is no temporary fix to get around this issue.

5.2 Open Questions

1. Can a class-wise varifocal loss improve the performance of the object detector?

When the loss functions’ hyperparameters were changed, different object classes

were affected differently. Creating a varifocal loss that has been optimised for each

class could potentially improve the performance based on the results observed.

Additionally as different classes require different number of annotations and

images to reach the same AP values. This property of the dataset could be

used as an additional hyperparameter which could be optimised for improved

performance

2. How may the effects of an incompletely labelled dataset be reduced?

When the metric results are compared to visual inference, it is clear that the

object detector performs better than the metrics indicate. This is owing to the

dataset’s incomplete labelling. As a result, the number of false positives increases

when evaluating, lowering the AP and mAP. Given the increasing use of object
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detectors in many tasks, the fact that there are no measures that can resolve this

problem poses a significant difficulty. There is currently no way to resolve this

problem other than labelling the unlabelled objects in the dataset.

5.3 Conclusions

Throughout this dissertation, methods that can improve the performance of the object

detector were assessed. The existence of object class imbalance was proven through

baseline experiments and data analysis in section 4.2 and 4.1 respectively. The problem

of incomplete dataset labelling was discovered. The results of the experiments indicated

that using the Auto Augment data augmentation technique and the cosine annealing

learning rate scheduler improved the object detector’s ability to learn object categories.

The experiments involving training on the artificially reduced datasets yielded some

intriguing results. When the number of objects per image was kept consistent, the object

detector did not learn the object classes equally. The object class Plastic Juice Water

Bottle needed many more objects to achieve the same AP as Paper Cardboard Container.

The addition of supplementary datasets to the DeepTrash Equal2 while training did not

provide any additional benefit. Training the object detector initially on TACO, then on

the DeepTrash and DeepTrash Equal2 datasets showed minor improvements in terms

of metrics. When comparing the confidence scores, a significant improvement was

observed. The lack of observable improvement in the mAP metrics was attributable

to the incomplete labelling of the DeepTrash dataset. Using the confidence score

graphs from all of the experiments in sections 4.5 and 4.6, a hypothesis was developed

that adjusting the varifocal loss hyperparameters would increase the object detector’s

performance. This was accurate because DeepTrash Equal2 with the modified varifocal

loss hyperparameters in section 4.8 generated the best mAP and greater classwise AP

for most object classes.

Overall, these experiments resulted in the best performing object detector with an mAP

of 53.3 (section 4.8), which is a 2.5 mAP improvement over the baseline in section

4.2(mAP of 50.8) and a 1.5 mAP improvement over the best performing object detector

trained on the DeepTrash dataset (mAP of 51.8) in section 4.4.There is an improvement

of 14.5 mAP when comparing the experiments with and without the varifocal loss

hyperparameter change in section 4.8 and 4.6 respectively. The best performing object

detector’s dataset, DeepTrash Equal2, contained 56.9% of the images and 29.82%
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of the annotation when compared to the dataset used in training in section 4.4. The

incomplete labelling of the dataset caused a problem when using only the mAP and AP

for comparison. When comparing visually, the object detectors trained on DeepTrash

data performed similarly or better than the object detector with an mAP of 53.3 in

section 4.8. The Plastic Juice Water Bottle is the object class most affected by missing

labels. This class is especially necessary because plastic bottles are the most profitable

for recycling.

Labelling datasets with clustered objects such as trash, satellite pictures, etc, is a

key topic that must be addressed carefully. Otherwise, the measurements will fail to

accurately reflect true performance, compromising the research’s validity.
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Appendix A

Additonal data from Experiments

A.1 Number of Images Predicted

Table A.1: Number of objects Predicted

Categories GT og aa lr eq eq2 td tdeq2l

PWB1 5524 7547 7495 6820 1666 4284 6825 1978

PN2 799 1288 1267 1174 703 847 1111 780

C3 415 824 886 721 763 761 755 643

PCC4 224 416 419 338 453 450 345 351

PSB5 1008 1705 1714 1557 934 1170 1496 850

Where GT is the Ground Truth;og refers to section 4.2;aa refers to section 4.3;lr refers to

section 4.4;eq refers to section 4.5;eq2 refers to section 4.5;td refers to section 4.6;tdeq2l

refers to section 4.8;

A.2 Loss and mAP vs Learning Rate

1Plastic Juice Water Bottle
2Paper Newspaper
3Cardboard
4Paper Cardboard Container
5Plastics Shopping Bag
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Figure A.1: Auto Augment loss and mAP vs learning rate
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Figure A.2: DeepTrash Equal loss and mAP vs learning rate
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Figure A.3: DeepTrash Equal2 loss and mAP vs learning rate



Appendix A. Additonal data from Experiments 48

0 500 1000 1500
Interations

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

 

loss_cls loss lr

0.000

0.002

0.004

0.006

0.008

0.010

le
ar

ni
ng

 ra
te

 

Loss vs learning rate

0 5 10 15 20 25
Epochs

0.1

0.2

0.3

0.4

0.5

m
AP

 

bbox_mAP
bbox_mAP_50

bbox_mAP_75
bbox_mAP_l

lr

0.000

0.002

0.004

0.006

0.008

0.010

le
ar

ni
ng

 ra
te

 

mAP vs learning rate

Figure A.4: Datamix loss and mAP vs learning rate
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(b)

Figure A.5: Pre-Trained DeepTrash loss and mAP vs learning rate
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Figure A.6: Pre-Trained DeepTrash Equal2 and mAP vs learning rate
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Figure A.7: Loss Hyperparameter loss and mAP vs learning rate



Appendix B

Baseline Visual Inference
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Figure B.1: Example 3 of comparing the ground truth to inference
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Figure B.2: Example 4 of comparing the ground truth to inference
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Figure B.3: Example 5 of comparing the ground truth to inference
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Figure B.4: Example 6 of comparing the ground truth to inference
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Figure B.5: Example 7 of comparing the ground truth to inference
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Figure B.6: Example 8 of comparing the ground truth to inference
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Figure B.7: Example 9 of comparing the ground truth to inference
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Figure B.8: Example 10 of comparing the ground truth to inference
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Figure B.9: Example 11 of comparing the ground truth to inference
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Figure B.10: Example 12 of comparing the ground truth to inference
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Figure B.11: Example 13 of comparing the ground truth to inference
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Figure B.12: Example 14 of comparing the ground truth to inference
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Figure B.13: Example 15 of comparing the ground truth to inference
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Figure B.14: Example 16 of comparing the ground truth to inference
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Figure B.15: Example 17 of comparing the ground truth to inference
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Figure B.16: Example 18 of comparing the ground truth to inference

0 250 500 750 1000 1250 1500 1750

0

200

400

600

800

1000

(a) Ground Truth (b) Predicted Output

Figure B.17: Example 19 of comparing the ground truth to inference
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Figure B.18: Example 20 of comparing the ground truth to inference
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Varifocal Loss Hyperparameter Visual

Inference
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Figure C.1: Example 1 of comparing the ground truth to inference
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Figure C.2: Example 2 of comparing the ground truth to inference
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Figure C.3: Example 3 of comparing the ground truth to inference
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Figure C.4: Example 4 of comparing the ground truth to inference
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Figure C.5: Example 5 of comparing the ground truth to inference
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Figure C.6: Example 6 of comparing the ground truth to inference
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Figure C.7: Example 7 of comparing the ground truth to inference
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Figure C.8: Example 8 of comparing the ground truth to inference
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Figure C.9: Example 9 of comparing the ground truth to inference
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Figure C.10: Example 10 of comparing the ground truth to inference
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Figure C.11: Example 11 of comparing the ground truth to inference
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Figure C.12: Example 12 of comparing the ground truth to inference

0 250 500 750 1000 1250 1500 1750

0

200

400

600

800

1000

(a) Ground Truth (b) Predicted Output

Figure C.13: Example 13 of comparing the ground truth to inference
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Figure C.14: Example 14 of comparing the ground truth to inference
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Figure C.15: Example 15 of comparing the ground truth to inference
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Figure C.16: Example 16 of comparing the ground truth to inference
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Figure C.17: Example 17 of comparing the ground truth to inference
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Figure C.18: Example 18 of comparing the ground truth to inference
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Figure C.19: Example 19 of comparing the ground truth to inference
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Figure C.20: Example 20 of comparing the ground truth to inference
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