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Abstract

The main goal of this project is to prove verifiability properties of E-cclesia, a self-tally

scheme (STE) electronic voting (e-voting) protocol. We develop a verification proce-

dure for E-cclesia. To formally capture the four verifiability properties (individual

verifiability, universal verifiability, eligibility verifiability and end-to-end verifiabil-

ity), we exploit universal composition (UC) framework and cast those properties into

the STE functionality. Taking advantage of the modular design in the UC framework,

we construct a hybrid protocol that formally proved to be verifiable with existing ideal

functionalities.
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Chapter 1

Introduction

Electronic voting (e-voting) is fully or partially performing voting in a digital way.

In contrast to traditional voting systems, it is faster, cheaper, more reliable, and more

mobile. As a voting system, we expect it to be (a) fair: no one is able to learn or

partially learn the election result in advance, (b) privacy-preserving: ballots are not

traceable back to voters, (c) correct: honest voters should receive the same true result,

(d) eligibility-checking: only eligible voters can cast ballots, (e) incoercible: voters

cast in their free will, (f) equality: all parties have equal access to the voting process, (f)

verifiable: it meets certain verifiability properties, and (g) accountable: every operation

in the system is logged and monitored.

In principle, the design of e-voting protocol can be divided into three major cate-

gories: (a) centralized systems, but is often vulnerable to privacy or robustness attacks

[11][22][23][21], and (b) have a small group of trusted parties, like Helios [1], and (c)

no trusted party required where voters finish all tasks by themselves, including ballot

collection, tally, result announcement, etc. The third one is a complete distributing

trust assumption. In many cases decentralized scheme, which is having no central

authority, is desirable. The public may have trust issues on tally authorization and

candidates could also worry about the collusion of tally authorization with opponents

for vote-rigging. Take the presidential election, for example, over one-third of Ameri-

cans distrust the 2020 election result, and the defeated Kenyan presidential candidate,

Raila Odinga, just declared the result null and void recently. The root of the contro-

versial result is the trust in designated committees, which could have been avoided in

decentralized settings.

The self-tally scheme (STE), as its name suggests, has no tally authorization and any
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Chapter 1. Introduction 2

interested party can fulfill the tally duty. It is decentralized for post-casting processes.

Since proposed in [13], STE has been a research focus for its born feature of decentral-

ization. A number of voting designs based on blockchain or via broadcasting have been

proposed [9][10][16][17][25]. Some challenges are in STE designs, like susceptible to

abort, leaking intermediate result or introducing another trusted party to provide fair-

ness. E-cclesia [2] is a STE protocol that successfully tackles those common obstacles.

It is provable secure on a list of desirable properties of e-voting (fairness, vote privacy,

correctness, eligibility). Of all those properties, E-cclesia left verifiability untouched.

Verifiability guarantees awareness of honest voters when bad things happen. It is still

necessary even voters meant to compute results themselves. Honest voters could be un-

der attack unconsciously. There is more trust required in e-voting systems: trust on the

system provider, trust on the device provider, trust on information transferring, etc, and

verifiability contributes to the trust. There are many types of verifiability for e-voting

protocols. Individual verifiability is for each voter to check her ballot is included and

counted, whereas universal verifiability focuses on the correctness of the entire tally.

Eligibility verifiability is checking if the protocol is diligent to eligibility-checking.

End-to-end verifiability guarantees that in cast, record, and tally, every endpoint is

verifiable (cast as intended, record as cast, tally as recorded). Each of these verifia-

bility property has been formalized and defined in a game-based format [20][14][15].

Those models or definitions provide standalone security. The other way of modeling is

through the universal composability (UC) [6] framework. It preserves security under

concurrent execution.

Models and proofs are cornerstones for cryptographic designs. As a variety of real-

world attacks, we cannot passively design for known attacks. Many systems, even

deployed [11][23], have been exposed to be vulnerable to newly-emerged attacks later

on. We need a stronger guarantee that does not merely rely on the inability to find

attacks for now, but on the possession of certain properties regardless of real-world

situations.

The purpose of this work is to extend E-cclesia, a state-of-art STE e-voting protocol,

with verification. For the purpose of continuity and achieving provable security, the

presentation and proof for verification are done under the UC framework.
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1.1 Contributions

The main contributions of this work are designing a verification for E-cclesia, model-

ing verifiability properties in the UC framework, and formally proving that E-cclesia

satisfies these verifiability properties. In details, we

1. Extend E-cclesia with a verification process.

2. Model five verifiability properties in the UC framework, more specifically, by en-

riching the current STE functionality (FST E) to simultaneously capture universal

verifiability, individual verifiability, eligibility verifiability, and end-to-end veri-

fiability.

3. Re-build the hybrid model of E-cclesia. We construct a setup functionality

(FV SD) for voting support devices (VSD) to emulate the interaction between

users and VSD. FV SD along with other existing functionalities (FNIC, FBC, Felig,

Fvm, Gclock) is used as a subroutine in the E-cclesia hybrid protocol.

4. Formally prove that E-cclesia with verification is a UC realization of enriched

FST E

1.2 Outline of the report

Chapter 2 prepares the basic knowledge for the cryptographic framework and gives a

briefing on protocol E-cclesia.

Chapter 3 describes the verification procedure in an informal language, defines setup

assumptions of VSD and extends FST E to capture verifiability properties.

Chapter 4 design a hybrid model for E-cclesia and formally proves that this hybrid

model is a UC realization of FST E .

Chapter 5 concludes what has been done and discusses limitations of the current so-

lution and potential directions for improvement.



Chapter 2

Background

2.1 Universal Composability (UC) framework

One of the important parts of cryptographic protocol designs is to rigorously reason

that the protocol has some desirable security properties. Moreover, those security

properties should still hold in composition designs, namely the protocol runs as a sub-

routine in or along other protocols. The Universal Composability (UC) framework,

first proposed in [6], is a framework that formulates a methodology for expressing

composable security properties in cryptographic protocols. The general idea is that it

compares a real-world protocol to an ideal program that runs locally. The ideal pro-

gram captures secure properties in syntax and via arguing the execution of protocol and

local program is nearly the same, the same security properties apply to the protocol as

well.

Real World Scenario

Interactive Turing Machines (ITM) are Turing machines with an extended mechanism

that allows multiple machines to communicate internally (through ”shared tapes”) and

each ITM has an identity. In the UC framework, the real-world protocol (Π) is treated

as a set of unique ITM. Each party engages with one main machine labeled with session

identity (sid) in the protocol. For m-party protocol, it is formalised to Π with m main

machines. ITM in the protocol that are not main machines are called internal machines

(or seen as sub-routines).

The execution of protocol contains Π and two more ITM, the environment Z and the

adversary A. Z is the first machine to start and it provides inputs to parties and A. A
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Chapter 2. Background 5

talks to parties and Z . Parties in Π can output back to Z , invoke sub-routines, and talk

to A. What they cannot do is talking to each other directly.

Ideal World Scenario

There are also three roles in the ideal world execution: an ideal functionality F , the

environment Z , and the simulator S . Here, parties in the protocol do not take any

other operations rather than forwarding messages or commands from Z to F . F is a

trusted back-end program that mimics tasks of the protocol in a semantic way. It could

emulate the ideal information leakage by talking to S . S is a conceptual adversary who

can talk to Z at any point through the whole execution lifetime.

One major difference between the real-world execution and the ideal-world execution

is that though incidents could happen concurrently in reality, it is always a single-thread

execution that only one machine could be active at a time in idealization. The current

active machine has the duty of activating the next active machine, so the abstraction

of F should be carefully cautious in capturing concurrent executions. Additionally,

because F is a trusted back-end local program without talking to Z directly, security

properties could be caught in syntax.

UC realization

Before introducing the formal definition of emulations, some premises should be stated.

All ITM run in polynomial time (PPT) and steps taken by ITM are bounded by a secu-

rity parameter λ.

From above, we can see that both real-world and ideal-world execution have a Z who

plays the role of interactive distinguisher in the emulation. Z runs one of the executions

and selects inputs to it. If Z is unable to tell which execution it is interacting with, we

say the real world UC realizes the ideal world. The formal definition is as follows,

where EXECΠ

Z,A denotes the execution of Π organised by Z with A launching attacks

and EXECF
Z,S denotes the execution of F organised by Z with S launching attacks.

Definition 2.1.1 (UC realization) The protocol Π is said to UC-realize the

ideal functionality F if for any PPT adversaryA, there exists a PPT simulator

S such that for any PPT environment Z , the random variables EXECΠ

Z,A and

EXECΠ

Z,S are computationally indistinguishable. More formally:

∣Pr[EXECΠ

Z,A(λ) = 1]−Pr[EXECF
Z,S(λ) = 1]∣ = negl(λ)

To successfully fool Z , we need to construct a S that turns every real-world attack into
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Figure 2.1: Models of UC realization

an attack on F , which is done by the proof for UC realization.

Universal Composition

One of the most outstanding theorems in the UC framework is universal composi-

tion. As we illustrated before, Π itself is an ITM and it is composed of a set of ITM.

Intuitively, as long as there is another machine that behaves like the current internal

machine, the current one is substitutable. Before demonstrating the universal composi-

tion theorem, let’s give a formalised definition for subroutines and identity-compatible.

Definition 2.1.2 (Subroutine protocols) Let ρ be a protocol, and let Φ ⊂ ρ,

namely Φ is a subset of the machines in ρ. We say that Φ is a subroutine

protocol of ρ if Φ is in itself a valid protocol.

Definition 2.1.3 (Identity-compatible) We say that protocol π is identity-

compatible with protocols ρ and φ if no other machine in π has the same

identity as a machine in ρ/φ.

Theorem 1 (Universal Composition) Let ρ, φ, π be protocols such that φ is a sub-

routine of ρ, π UC realizes φ, and π is identity-compatible with ρ and φ, then protocol

ρπ→φ UC realizes ρ.

This theorem guarantees that security properties of one cryptographic protocol are

preserved when it is a sub-routine of a larger protocol Π̃. It means a protocol Π can be

replaced by a functionality F that it UC realizes when it is in a composition of another

protocol. When comes to a complicated high-level protocol, designers don’t have to

construct it from the ground but make full use of existing functionalities with desirable
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properties. This also simplifies the cryptographic analysis. New protocols just need

to prove the UC realization of the ”top layer” protocol to ideal functionality without

re-doing proof for all internal modular designs. For example, a new protocol Π may

be built from a set of functionalities {F1,F2, . . . ,Fn} to realize the target functionality

FΠ. Analysis of Π focuses only on Π ≈FΠ without considering the detailed realization

of {F1,F2, . . . ,Fn}.

2.2 Self-tally scheme

Self-tally scheme (STE) is one type of e-voting scheme where no tally authority is

involved. Every voter performs a tally herself and obtains the result. It was first in-

troduced in [13] and as the development of decentralized systems, more and more

self-tally e-voting models are proposed. There are several desirable properties for an

STE e-voting protocol (all properties apply for honest voters only):

1. Voter privacy: voted ballots cannot be traced back to their voters.

2. Correctness: every honest voter’s ballot will be included in the tally result. The

tally result of each honest voter is not necessarily the same due to adversarial

actions, but at least the result of honest voters which is a subset of the tally result

is the same for all of them.

3. Eligibility: only ballots of eligible voters can be included in the tally result and

no one can cast beyond their legal upper bound.

4. Fairness: not any party can learn partial or all election result before tallying.

5. Verifiability: auditor can check whether the tally goes on as expected.

2.2.1 Verifiability

Verifiability though could not make a protocol more secure, ensures the awareness of

verifiers when bad things happen. Many types of verifiability are proposed and in the

field of e-voting, four verifiability notations are most commonly used.

First are individual verifiability and universal verifiability. They are two complemen-

tary concepts. Individual verifiability cares about if the verifier’s ballot is included in

the result, whereas universal verifiability is to check if the announcing result agrees

with the outcome directly tallied from the bulletin board. Smyth et al. [20] formally
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defined individual verifiability and universal verifiability via two game-based experi-

ments. From an individual level, the game that two honest voters have the same ballot

should have a negligible chance of winning. From a universal level, any PPT attacker

is unable to get the theoretically incorrect result to pass the verification algorithm.

Kremer et al. [15] combined these two verifiability definitions into one with three

dimensions: (a) no clashes in ballots, (b) ballots set and the result are at one-to-one

correspondence, and (c) the result should agree with voters’ true intentions.

Next is eligibility verifiability. It checks if votes in the result are all from eligible voters

and no eligible voters have voted beyond her legal casting times. Kremer et al. [15]

defined it via credentials. He assumed two types of credentials: public credentials and

ballot credentials. Each ballot set uniquely matches one public credential and ballot

credential is a permutation of public credential. Eligibility verifiability means only one

set of ballot credentials should be accepted by the bulletin board.

Finally is end-to-end verifiability. As its name suggests, it checks the process from

one endpoint to another endpoint. More specifically, it covers three procedures: cast,

record, and tally and requires cast as expected, record as cast, and tally as recorded.

Kiayias et al.[14] provided a game-based definition. His definition needs an algorithm

Extr that assigns an option to each active voter trying to deviate from the election result

or abort the election. For any PPT attacker, he should win the game with a probability

less than a parameter δ, where he wins when algorithm Extr exists.

2.2.2 E-cclesia

E-cclesia[2] is an STE e-voting protocol that captures five properties (Voter privacy,

Correctness, Eligibility, One voter-one vote, and Fairness) in a formal way using the

UC framework. Overall, it has four phases: Setup, Credential Generation, Cast, and

Tally. There is no other third-party engaged in the protocol except for Setup Authority

(SA) who is only active prior to voting.

In Setup phase, SA generates election parameters and receives a list of eligible voters.

In Credential Generation phase, each voter generates a pair of credentials (public cre-

dentials for registration and private credentials for verification). Its underlying technol-

ogy is non-interactive commitment (NIC) [5] where the private credential is a secrete

selected by voters and the public credential is a commitment of that secrete. Note that

NIC is verifiable, namely given a pair of credentials, it can verify whether the public
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credential is truly the commitment of the private credential. If the voter is eligible,

SA will register voter’s identity alongside her public credential by broadcasting them.

In E-cclesia, the concept of bulletin board is replaced by a broadcast channel. This is

because a centralized bulletin is inappropriate in STE. A broadcast channel, exploiting

the decentralization feature of blockchain is an adequate substitution.

In Cast phase, voters generate ballots, create a signature for the ballot and cast a bun-

dle of ballot, secrete credential and signature. Ballots are the ciphertext of options

using time-lock encryption (TLE) [3]. Only a certain time has passed can the ballot

be opened, guaranteeing fairness. The utilization of signature of knowledge (SoK) [7]

and the secure accumulator [19] together guard the eligibility of voters without reveal-

ing their identities. SoK allows anyone who knows a witness ω under a statement x to

generate a signature σ for message m that passes the verification and the secure accu-

mulator can add an item and produce a witness a that verifies correctly without leaking

which item it is proving for. Here also casting to the bulletin board is equivalent to

broadcasting to other voters.

In Tally phase, voters open the time-lock encrypted ballots they received during Cast

phase and obtain the tally result.

Thanks to the underlying broadcast channel, E-cclesia naturally satisfies one require-

ment of end-to-end verifiability: record as cast. The broadcast channel will convey

messages to other parties without losing any integrity, therefore what it records is what

voter casts.



Chapter 3

E-cclesia with Verification

In this chapter, I will present a real-world verification protocol for E-cclesia and adjust

the formalized STE functionality FST E described in [2] accordingly. The original STE

functionality FST E has four phases, namely Setup, Credential Generation, Cast, and

Tally. I extend FST E with a fifth part: verification, which captures five notations of

verifiability: individual verifiability, universal verifiability, end-to-end verifiabil-
ity, and eligibility verifiability.

3.1 Informal overview of protocol ΠE−cclesia with verifi-

cation

Currently, E-cclesia is not possible to be end-to-end verifiable, because it ignores the

existence of a malicious voting support device (VSD). VSD is used by voters for cast-

ing, and it does not always behave honestly. One of the criteria in end-to-end ver-

ifiability is cast as intended, which is specifically for verifying VSD. In order to be

end-to-end verifiable, E-cclesia has to specify the trust assumption of VSD that each

phase runs on. We assume two types of VSD, trust and untrusted.

1. For trusted VSD, it is believed to behave honestly, following rules without break-

ing any.

2. For untrusted VSD, the general conception is that they could leak some internal

secrets to adversaries, take some actions based on adversaries’ orders or stay

uncompromised.

10
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The formal and detailed assumptions refer to section 3.2.

E-cclesia requires a Setup phase where a setup authority (SA) runs some algorithms

to generate election parameters for voting. What voters do in this phase is store pa-

rameters received from SA. We hold assumptions that every honest voter receives and

stores the same parameters as what SA creates no matter of trust assumptions of VSD.

It is not a very strong assumption. Election parameters are public, therefore voters

can access correct parameters in the real world in many reliable ways, for example,

through physical approaches.

For the rest three phases, Credential Generation, Cast, and Tally, the real-world proto-

col execution remains the same. However, we assume they run on untrusted VSD that

have a risk of running on compromised VSD. The reason for untrusted VSD for these

three phases given trusted VSD can be provided is two. On one hand, trusted VSD,

like a trustworthy chip on a whole device, could be really expensive and only be used

when it is necessary. On the other hand, trusted and untrusted VSD could only be two

opposing conceptual devices. In the real world, they could be two independent devices

both with a low but not zero risk of being compromised, and the chance that they both

are compromised is negligible.

The Verification protocol executes on trusted VSD by assumption, otherwise, the result

would have a risk of being tampered and we have no other ways to tell. Before digging

into verification, one basic question needs to be answered first: who verifies the result

coming from where. One feature of STE is that no tally authorization is required.

Voters obtain the tally result themselves. Things get interesting when it comes to

verification. It would be voters verify the result they computed, which is not sensible.

Our solution is to make some space for verification by receiving a result from the

environment. The general idea is that: honest and eligible voters will receive a result

as the subject to be verified, and she runs verification to check the received result.

Though verification is a new procedure, there isn’t a new phase for verification. In-

stead, it will share with Tally. That is because Tally is also a part of verifying when

voters verify the received result with their own tally outcome. The informal description

of verification in E-cclesia is:

∎ Upon receiving a message (sid, VERIFY, ˆres) from Z , each voter reads the time

Cl from the global clock and checks that the Tally phase is running. If so, she runs

verification on trusted VSD by executing the following steps:
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1. She verifies the registered commitment of credential ĉr by doing followings:

(a) She accesses her credential registration tuple (V , ĉr
′

) via the trusted VSD.

(b) She verifies NIC of ĉr
′

for cr. (cr is what she remembers by heart). If the

verification fails, it means the untrusted VSD has tampered commitment

of credential before broadcasting. She returns fail with a reason of dirty

credential registration. Otherwise, she proceeds 2.

2. She checks whether there exists a tuple (o∗, v∗, cr∗, σ∗) in ˆres such that cr∗ = cr

where cr is the secret only she knows. If such tuple does not exist, she returns

fail with a reason of individual verifiability. Otherwise, she proceeds 3.

3. She finds the tuple (o∗, v∗, cr∗, σ∗) in ˆres such that cr∗ = cr. If o∗ ≠ o where o

is her intended option, she returns fail with a reason of end-to-end verifiability

(cast not intended). Otherwise, she proceeds 4.

4. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, she verifies the SoK of σ∗ for v∗ under

the statement (cr∗, St f in). If the verification fails, she returns fail with a reason

of eligibility. Otherwise, she proceeds 5.

5. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, she checks if there exists another tuple

(o∗∗, v∗∗, cr∗∗, σ∗∗) such that cr∗ = cr∗∗. If such tuple exists, she returns fail

with a reason of duo-voting. Otherwise, she proceeds 6.

6. She checks universal verifiability by redo tally on trusted VSD and get verifi-

cation result resvr f y. If resvr f y ≠ ˆres, she returns fail with a reason of universal

verifiability. Otherwise, she returns true back to Z .

3.2 Setup functionality for untrusted VSD FV SD

To introduce VSD into the UC framework, I idealize untrusted VSD to a functionality

FV SD which formally depicts trust assumptions. It is a setup functionality, so it is not

realized by a protocol but hard-coded on hardware.

3.2.1 On compromised VSD with full abilities

The first kind of assumption is to assume untrusted VSD has full abilities. The general

idea is that whatever it learns from voters, it leaks to adversaries, and all the infor-
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mation or result it presents to voters is followed by the command from adversaries.

It is noticeable that the untrusted VSD is not necessarily compromised, and even the

compromised VSD could behave honestly abiding by adversaries’ orders. The formal

functionality FV SD is as follows:

∎ Upon receiving (sid, CORRUPT, Vcorr) from S ,

if Vcorr ⊆ V, if fixes Vcorr as the set of voters who

are corrupted.

∎ Upon receiving (sid, COMPROMISE VSD,

VcV SD) from S , if VcV SD ⊆ V/Vcorr, if fixes VcV SD

as the set of honest voters who uses compromised

untrusted VSD.

∎ Upon receiving (sid, TAMPER CRED, cr, ĉr)

from V , it reads the time Cl from Gclock. If Sta-

tus(Cl, Ð→t , Cred) = ⊺ and V ∈ VcV SD, it sends the

message (sid, TAMPER CRED, V , cr) to S . Upon

receiving (sid, TAMPER CRED, V , cr
′

, ĉr
′

) from

S , it returns (sid, TAMPER CRED, cr
′

, ĉr
′

) back to

V . Otherwise, it directly returns the same message

that it received from V back to V .

Compromised VSD leak

the identity and voter’s true

credential to attackers and

presents the voter with what

attackers would like her to

see. Uncompromised VSD

leaks and tampers nothing.

∎ Upon receiving (sid, TAMPER CASTING, V , o,

v, cr, σ) from V , it reads the time Cl from Gclock. If

Status(Cl, Ð→t , Cast) = ⊺ and V ∈VcV SD, it sends the

message (sid, TAMPER CASTING, V , o, v, cr, σ)

to S . Upon receiving (sid, TAMPER CASTING,

V , ⋅, v
′

, cr
′

, σ
′

) from S , it returns (sid, TAM-

PER CASTING, V , v
′

, cr
′

, σ
′

) back to V . Oth-

erwise, it directly returns original received casting

bundle (sid, TAMPER CASTING, V , v, cr, σ) back

to V .

Compromised VSD leaks the

real intended option of the

voter to adversaries and re-

turns a fake casting bundle

(ballot, credential, and signa-

ture). Note that it currently

does not know about the cor-

responding option of the fake

casting bundle.
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∎ Upon receiving (sid,

OPEN TAMPERED CASTING, v, cr, σ) from

V , it reads the time Cl from Gclock. If Sta-

tus(Cl, Ð→t , Tally) = ⊺ and V ∈ VcV SD, it sends the

message (sid, OPEN TAMPERED BALLOT,

V , v, cr, σ) to S . Upon receiving

(sid, OPEN TAMPERED CASTING, V ,

o, v, cr, σ) from S , it returns (sid,

OPEN TAMPERED CASTING, o, v, cr,

σ) back to V . Otherwise, it returns (sid,

OPEN TAMPERED CASTING, ⊥, v, cr, σ)

back to V

Compromised VSD revealed

the option of tampered casting

bundle based on adversaries’

commands when it is time to

tally. If the ballot is not from

compromised VSD, then it re-

turns ⊥ as it does not know

about the answer.

∎ Upon receiving (sid, TALLY, res) from V , it reads

the time Cl from Gclock. If Status(Cl, Ð→t , Tally) = ⊺

and V ∈VcV SD, it sends (sid, TALLY, V ) to S . Upon

receiving (sid, TALLY, V , res
′

) from S , it sends (sid,

TALLY, res
′

) back to V . Otherwise, it directly re-

turns the same message that it received from V back

to V .

Compromised VSD blocks

the voter from seeing her

real tally result, rather shows

her the result that adversaries

would like her to see.

Table 3.1: FV SD for full-ability compromised VSD

3.2.2 On compromised VSD with half abilities

The fact is that compromised VSD is not always so powerful to learn full informa-

tion, block and tamper everything. Therefore, we formed another model for VSD to

emulate the functionality of VSD with limited capability. In this assumption, it can

only (a) tamper with a credential’s commitment without learning the original creden-

tial and voter’s identity, (b) learn the original casting bundle and change it. The formal

functionality FV SD is as follows:

∎ Upon receiving (sid, CORRUPT, Vcorr) from S ,

if Vcorr ⊆ V, if fixes Vcorr as the set of voters who

are corrupted.
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∎ Upon receiving (sid, COMPROMISE VSD,

VcV SD) from S , if VcV SD ⊆ V/Vcorr, if fixes VcV SD

as the set of honest voters who uses compromised

untrusted VSD.

∎ Upon receiving (sid, TAMPER CRED, cr, ĉr)

from V , it reads the time Cl from Gclock. If Sta-

tus(Cl, Ð→t , Cred) = ⊺ and V ∈ VcV SD, it sends the

message (sid, TAMPER CRED) to S . Upon receiv-

ing (sid, TAMPER CRED, cr
′

, ĉr
′

) from S , it re-

turns the same message back to V . Otherwise, it

directly returns the same message that it received

from V back to V .

Compromised VSD only tam-

pers the commitment of cre-

dential without leaking any in-

formation on the identity and

the original credential.

∎ Upon receiving (sid, TAMPER CASTING, V , o,

v, cr, σ) from V , it reads the time Cl from Gclock. If

Status(Cl, Ð→t , Cast) = ⊺ and V ∈VcV SD, it sends the

message (sid, TAMPER CASTING, v, cr, σ) to S .

Upon receiving (sid, TAMPER CASTING, v
′

, cr
′

,

σ
′

) from S , it returns (sid, TAMPER CASTING,

V , v
′

, cr
′

, σ
′

) back to V . Otherwise, it directly re-

turns original received casting bundle (sid, TAM-

PER CASTING, V , v, cr, σ) back to V .

No additional information

is provided to adversaries.

It casts as what adversaries

want.

∎ Upon receiving (sid,

OPEN TAMPERED CASTING, v, cr, σ) from

V , it reads the time Cl from Gclock. If Sta-

tus(Cl, Ð→t , Tally) = ⊺ and V ∈ VcV SD, it sends the

message (sid, OPEN TAMPERED BALLOT,

V , v, cr, σ) to S . Upon receiving

(sid, OPEN TAMPERED CASTING, V ,

o, v, cr, σ) from S , it returns (sid,

OPEN TAMPERED CASTING, o, v, cr,

σ) back to V . Otherwise, it returns (sid,

OPEN TAMPERED CASTING, ⊥, v, cr, σ)

back to V

Compromised VSD revealed

the option of tampered cast-

ing bundle when it is time

to tally based on adversaries’

command. If the ballot is not

from compromised VSD, then

it returns ⊥ as it does not know

about the answer.

Table 3.2: FV SD for half-ability compromised VSD
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3.3 The STE functionality FST E

To make a formal proof for E-cclesia with such newly introduced VSD, we first rewrite

four phases (setup, credential generation, cast, and tally) in FST E to add the impact of

compromised VSD. Next, we demonstrate the verification phase in FST E which cap-

tures four verifiable properties (individual verifiability, universal verifiability, eligibil-

ity verifiability, and end-to-end verifiability).

3.3.1 FST E under full-ability compromised VSD

The functionality FST E interacts with SA, a set of voters V = {V1, . . . ,Vn} and a simu-

lator S . Velig is the set of eligible voters. Vcorr is the set of corrupted voters who are

completely manipulated by S . VcV SD is the set of honest voters who unfortunately use

corrupted VSD. O is the set of valid election options. tcast and topen are two time points

that define when to cast ballot and when to tally (open ballots). The functionality ini-

tializes as empty the following lists:

● Lcr: Eligible and honest voters’ real credentials and its corresponding credential com-

mitments.

● Lelig: The registered commitments and its corresponding credentials for eligible vot-

ers. Credentials and commitments do not necessarily match, and they do not nec-

essarily agrees with Lcr (voters’ real credential) either, due to the potential effect of

compromised VSD.

● Lgball: Voters’ intentional options and generated ballots.

● Lcast : Cast ballots, credentials and ballots’ corresponding signatures. For each voter,

ballot voted is not necessarily ballot generated.

● Ltally: Local ballot tally set.

● Lvr f y: Local ballot set for universal verifying.

Function define time is to derive internal trivial other time points given tcast and topen

as input. Algorithm GenCred generates credential and its corresponding commitment

using algorithms from the functionality of NIC FNIC [5]. Algorithm UpState is to up-

date the casting state for the functionality of secure accumulator Facc [19]. Algorithm

AuthBallot is to make a signature of ballot under the credential and VrfyBallot is to

verify the signature of ballot. They both use algorithms from FSoK [7]. Function Status

returns ⊺ or �, where ⊺ means it is legal to run the given phase at this time point and �

means it is not legal.
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Setup: It needs to additionally register the set of voters whose VSD is compromised.

∎ Upon receiving (sid, CORRUPT, Vcorr) from S , if Vcorr ⊆V, it fixes Vcorr as

corrupted voters.

∎ Upon receiving (sid, COMPROMISE VSD, VcV SD) from S , if VcV SD ⊆

V/Vcorr, if fixes VcV SD as the set of voters who uses compromised malicious

VSD.

Register for voters with compromised VSD.

∎ Upon receiving (sid, SETUP INFO, Velig, O, tcast , topen) from SA the first

time, if Velig ⊆V and tcast < topen, it forwards message (sid, SETUP INFO, Velig,

O, tcast , topen) to S . Upon receiving (sid, SETUP OK, Velig, O, tcast , topen) from

S , it sets Ð→t ← define time( tcast , topen) and vote.par := (Velig, O, Ð→t ).

∎ Upon receiving (sid, ELIGIBLE) from SA, it informs S , which replies with

eligibility algorithms GenCred, VrfyBallot, AuthBallot, UpState and initial

accumulator state Stgen.It sets reg.par := (Velig, O, Ð→t , Stgen).

Credential Generation: It generates credentials and commitments for honest voters,

and presents voters with true commitments. However, for users with compromised

VSD, it leaks credential information and registers another credential followed by ad-

versaries’ orders. For corrupted voters, S takes the full control.

∎ Upon receiving (sid, GEN CRED) from V ∈Veligfor the first time, it reads the

time Cl from Gclock.

1. If Status(Cl, Ð→t , Cred) = ⊺ and V ∈V/Vcorr, it does the following:

(a) If there is no tuple (V , cr, ĉr) in Lcr, it runs (cr, ĉr)→ GenCred (1λ,

reg.par). If there are tuples (⋅, cr, ⋅) or (⋅, ⋅, ĉr) in Lcr or (cr, ĉr) = ⊥,

it sends (sid, GEN CRED, ⊥) to V hand halts. Else, it adds (V , cr,

ĉr) to Lcr.

(b) If tuple (V , cr, ĉr) is successfully added to Lcr and V ∈ VmV SD,

it sends (sid, TAMPER CRED, V , cr) to S . Upon receiving (sid,

TAMPER CRED, V , cr
′

, ĉr
′

) from S , it adds (V , cr
′

, ĉr
′

, 1) to Lelig

after permission of S via public delay output with (V , ĉr
′

) as infor-

mation leakage.
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Compromised VSD leaks voter’s identity and real credential. It

could tamper the commitment.

Else if V ∈V/VmV SD, it directly add (V , cr, ĉr, 1) to Lelig after public

delay output.

(c) It sends (sid, GEN CRED, V , ĉr, sender) to V and (sid, GEN CRED,

V , ĉr
′

) to all other voters in V/{V} and S .

Present real commitments but broadcast tampered credentials

received obtained adversaries for registration.

2. Else if Status(Cl,Ð→t , Cred) = ⊺ but V ∈Vcorr, it forwards the message (sid,

GEN CRED, V ) to S . Upon receiving (sid, GEN CRED, V , cr, ĉr) from

S , if there are no tuples (V , cr∗, ĉr∗, 0), (⋅, ⋅, ĉr, 1) or (⋅, cr, ⋅, 1), it adds

(V , cr, ĉr, 0) to Lelig. Then it sends (sid, GEN CRED, V , ĉr) to all voters

in V/V and S .

Cast: It generates ballots and authenticates ballots for honest voters. For honest voters

with compromised VSD, every casting information is leaked. Also, compromised VSD

would cast what adversary would like to vote.

∎ Upon receiving (sid, CAST, o) from V ∈Velig/Vcorr for the first time such that

(V, cr, ĉr, 1) ∈ Lelig and o ∈O, it reads the time Cl from Gclock. If Status(Cl, Ð→t ,

Cast) = ⊺, it does:

1. It picks tag
$
←Ð TAG and it inserts the tuple (V , NULL, o, tag, 1) → Lgball .

2. It sends (sid, GEN BALLOT, tag, 0∣o∣) to S . Upon receiving (sid,

GEN BALLOT, tag, 0∣o∣, v) from S , it updates (V , NULL, o, tag, 1) in

Lgball to (V , v, o, tag, 1).

Ballots are always generated by adversaries. However, it won’t

learn anything about the real option in this step because it is

replaced by dummy information (0∣o∣).

3. It computes the final accumulator state St f in ←UpState(Stgen, ĉr) for the

purpose of signature generation. Then it generates the signature σ of ballot

v: σ← AuthBallot (v, cr, ĉr, St f in). If VrfyBallot (v, σ, reg.par) = 0, it

sends (sid, AUTH BALLOT, ⊥) to V and halts.
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4. If V ∈VcV SD, it sends (sid, TAMPER CASTING, V , o, v, cr, σ) to S . Upon

receiving (sid, TAMPER CASTING, V , ⋅, v
′

, cr
′

, σ
′

) from S , it adds (V ,

v
′

, ⋅, cr
′

, σ
′

, 2) to Lcast after public delay output.

Compromised VSD leaks all the information it knows to adver-

saries, include identity, intended option, ballots, credential and

signature of ballots. The bundle it casts is fabricated by adver-

saries.

Else, it directly adds (V , v, o, cr, σ, 1) to Lcast after public delay output.

∎ Upon receiving (sid, CAST) from V ∈Vcorr, it informs S . Upon (sid, CAST,

v, σ, V ) from S for the first time, it reads the time Cl from Gclock. If Status(Cl,
Ð→t , Cast) = ⊺ and there is a tuple (V, cr, ĉr, 0) ∈ Lelig, it adds (V , v, ⋅, cr, σ, 0) to

Lcast .

Tally: It performs tally operation by first filtering cast ballots by eligibility and duo-

voting and then opening filtered ballots. For voters with compromised VSD, it does

not present her with the real tally result but rather a result that adversaries would like

her to see.

∎ Upon receiving (sid, TALLY) from a voter V ∈ V, it reads the time Cl from

Gclock. If Status(Cl, Ð→t , Tally) = ⊺, it does:

1. If res = φ, it does the following:

(a) For every (V∗, v∗, o∗, cr∗, σ∗, ⋅) in Lcast , it runs the ballot verification

algorithm x←VrfBallot (v∗, σ∗, St f in). If x = 1, then FST E performs

the following security checks:

i. If there is no tuple (V∗, cr∗, ĉr∗, ⋅) in Lelig, it sets res to ⊥.

ii. If there is a tuple (V∗, cr∗, ĉr∗, 1) in Lelig and there is a tuple (⋅,

v∗∗, o∗∗, cr∗∗, σ∗∗, 1) in Lcast such that (cr∗ = cr∗∗) ∧ (v∗ ≠ v∗∗),

it sets res to ⊥.

iii. Otherwise, it adds (V∗, v∗, o∗, cr∗, σ∗, ⋅) to Ltally.

(b) For every tuple (V∗, cr∗, ĉr∗, ⋅) in Lelig such that there are multiple

tuples (V , v1, o1, cr1, σ1, ⋅),...,(V , vn, on, crn, σn, ⋅) in Ltally, it re-

moves all multiple tuples from Ltally except the first one it recorded.
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(c) For every tuple (V∗, v∗, ⋅, cr∗, σ∗, 2) in Ltally, it sends (sid,

OPEN TAMPERED BALLOT, V∗, v∗, cr∗, σ∗) to S . Upon receiv-

ing (sid, OPEN TAMPERED BALLOT, V∗, o∗, v∗, cr∗, σ∗) from

S , if o∗ ∈O then it updates the tuple to (V∗, v∗, o∗, cr∗, σ∗, 2) in

Ltally.

Compromised VSD reveals the corresponding option of tam-

pered casting bundle.

(d) For every tuple (V∗, v∗, ⋅, cr∗, σ∗, 0) in Ltally, it sends (sid, OPEN-

ING, V∗, v∗) to S . Upon receiving (sid, OPENING, V∗, v∗, o∗)

from S , if o∗ ∈O then it updates the tuple to (V∗, v∗, o∗, cr∗, σ∗, 0)

in Ltally.

Corrupted voters reveals the corresponding option of voted bal-

lot.

(e) If there are two tuples (V∗, v∗, o∗, cr∗, σ∗, 1), (V∗
′

, v∗
′

, o∗
′

, cr∗
′

,

σ∗
′

, 1) such that v∗ = v∗
′

∧o∗ ≠ o∗
′

, it sets res to ⊥.

Honest voters with uncompromised VSD could also encounter a

failure of opening a ballot.

(f) If V ∈ VcV SD, it sends (sid, TALLY, V ) to S . Upon receiving (sid,

TALLY, V , res
′

) from S , it sets res = res
′

. Otherwise, it sets tally

result res as the multiset { (o∗, v∗, cr∗, σ∗) ∣ (V , v∗, o∗, cr∗, σ∗, ⋅)

∈ Ltally}.

Compromised VSD shows the voter with a result from adver-

saries.

2. It returns (sid, TALLY, res) to V .

∎ Upon receiving (sid,LEAKAGE) from S , it reads the time Cl from Gclock. If

Status(Cl, Ð→t , Tally) = Status(Cl, Ð→t , Cred) = Status(Cl, Ð→t , Cast) = ⊥, it returns

to S all the tuples (v, o, 1) such that (V∗, v, o, tag∗, 1) ∈ Lgball∧ (V∗, v, o, cr∗,

σ∗, 1) ∈ Lcast .

Verification: The Verification is run on a trusted VSD which means there is no effect of

malicious VSD. The captured four verifiability properties will be specifically pointed

out in this part of FST E . As stated in the overview of verification protocol, not only

a single binary result but also a reason for failing the verification are returned. The
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verification returning format is (sid, VERIFY, ˆres, true/false, code of reason). Table

3.3 lists possible number for code of reason (CoR) and meanings.

Code Meaning

0 Verification passes.

1 Dirty credential commitment.

2 Individual verifiability is violated.

3 End-to-End verifiablity: cast is not as intended.

4 Eligibility verifiablity: not eligible voters.

5 Eligibility verifiablity: duo-voting.

6 Universal verifiability & End-to-end verifiability: tally is not as recorded

Table 3.3: CoR and its corresponding meaning

∎ Upon receiving (sid, VERIFY, ˆres) from a voter V ∈V/Vcorr, it reads Cl from

Gclock. If Status(Cl, Ð→t , Tally) = ⊺, it does:

1. It finds the tuple (V, cr, ĉr) in Lcr and (V, cr
′

, ĉr
′

, 1) in Lelig. If ĉr ≠ ĉr
′

or

cr ≠ cr
′

, it returns (sid, VERIFY, ˆres, 0, 1).

It checks if the registered credential agrees with the real creden-

tial. This step lays a groundwork for individual and end-to-end

verifiability.

2. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, it checks if there exists one tuple

such that cr∗ = cr where cr is from the tuple (V , cr, ĉr, 1) in Lelig. If such

tuple does not exist, it returns (sid, VERIFY, ˆres, 0, 2).

It checks if there is one ballot that is cast using voter’s creden-

tial. If such ballot does not exist, it means the result set does not

contain V ’s ballot. Individual verifiability is violated.

Else, it finds the tuple (o∗, v∗, cr, σ∗) in ˆres. If o∗ ≠ o where o is from the

tuple (V , v, o, tag, 1) in Lgball , it returns (sid, VERIFY, ˆres, 0, 3).

The option in the ballot of V does not match with her real option.

It means ballot has been tampered before casting. This is one

aspect of end-to-end verifiablity: cast as intended.
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Note that both individual and end-to-end verifiability needs to pin point

the verifier’s ballot in the set using credential. It is built on the condition

that the credential is not tampered which is the first step used for.

3. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, it runs the ballot verification algo-

rithm x→V r f yBallot(v∗,σ∗,St f in). If x = 0, x =⊥ or there is no tuple (⋅,

cr∗, ⋅, ⋅) in Lelig, it returns (sid, VERIFY, ˆres, 0, 4). Otherwise,

It verifies the signature of each ballot to check if they are all

from eligible voters. This step ensures eligibility.

4. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, it checks if there exists another

tuple (o∗∗, v∗∗, cr∗∗, σ∗∗) such that cr∗ = cr∗∗. If exists, it returns (sid,

VERIFY, ˆres, 0, 5).

It checks if there are two ballots casting with the same creden-

tial. This could happen because of either double voting from

corrupted voters or forgeries of honest voters.

5. It does the following to check universal verifiability and end-to-end veri-

fiability (tally as recorded):

(a) For every (V∗, v∗, o∗, cr∗, σ∗, ⋅) in Lcast , it runs the ballot verification

algorithm x←VrfBallot (v∗, σ∗, St f in). If x = 1, then FST E performs

the following security checks:

i. If there is no tuple (V∗, cr∗, ĉr∗, ⋅) in Lelig, it sets resvr f y to ⊥.

ii. If there is a tuple (V∗, cr∗, ĉr∗, 1) in Lelig and there is a tuple (⋅,

v∗∗, o∗∗, cr∗∗, σ∗∗, 1) in Lcast such that (cr∗ = cr∗∗) ∧ (v∗ ≠ v∗∗),

it sets resvr f y to ⊥.

iii. Otherwise, it adds (V∗, v∗, o∗, cr∗, σ∗, ⋅) to Lvr f y.

(b) For every tuple (V∗, cr∗, ĉr∗, ⋅) in Lelig such that there are multiple

tuples (V , v1, o1, cr1, σ1, ⋅),...,(V , vn, on, crn, σn, ⋅) in Lvr f y, it re-

moves all multiple tuples from Lvr f y except the first one it recorded.

(c) For every tuple (V∗, v∗, ⋅, cr∗, σ∗, 2) in Lvr f y, it sends (sid,

OPEN TAMPERED BALLOT, V , v∗, cr∗, σ∗) to S . Upon receiving

(sid, OPEN TAMPERED BALLOT, V , o∗, v∗, cr∗, σ∗) from S , if

o∗ ∈O then it updates the tuple to (V∗, v∗, o∗, cr∗, σ∗, 2) in Lvr f y.
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(d) For every tuple (V∗, v∗, ⋅, cr∗, σ∗, 0) in Lvr f y, it sends (sid, OPEN-

ING, V∗, v∗) to S . Upon receiving (sid, OPENING, V∗, v∗, o∗)

from S , if o∗ ∈O then it updates the tuple to (V∗, v∗, o∗, cr∗, σ∗, 0)

in Lvr f y.

(e) It checks the correctness of ballot generated from honest voters with

uncompromised VSD as followings: if there are two tuples (V∗, v∗,

o∗, cr∗, σ∗, 1), (V∗
′

, v∗
′

, o∗
′

, cr∗
′

, σ∗
′

, 1) in Lvr f y such that (v∗ = v∗
′

)

∧ (o∗ ≠ o∗
′

), then it sets resvr f y to ⊥. Else, it sets verify result resvr f y

as the multiset { (o∗, v∗, cr∗, σ∗) ∣ (V , v∗, o∗, cr∗, σ∗, ⋅) ∈ Lvr f y}.

(f) If ˆres= resvr f y, it returns (sid, VERIFY, ˆres, 1, 0) to V . Else, it returns

(sid, VERIFY, ˆres, 0, 6) to V .

Perform tally on Lcast which is the cast set recorded via the

broadcast channel. Compare this result with the verification

result. This step captures universal verifiability and the other

aspect of end-to-end verifiability which is tally as recorded.

The verification in this functionality captures two aspects of end-to-end

verifiability: cast as intended and record as tally. Plus the utilization of

the broadcast channel, record-as-cast is a born feature. Three aspects of

end-to-end verifiability are all satisfied, therefore end-to-end verifiable.

∎ Upon receiving (sid, VERIFY, ˆres) from a voter V ∈Vcorr, it sends (sid, VER-

IFY, ˆres) to S , and replies to V whatever it receives from S .

The verification result of a corrupted voter is out of the concern,

therefore fully decided by S .

3.3.2 FST E under half-ability compromised VSD

From above FST E , we can see that all the security properties (correctness, eligibility,

fairness, voter privacy, one voter-one vote) that E-cclesia used to possess are gone due

to the existence of compromised VSD.

We argue that with the half-ability VSD assumption (formally presented in Table 3.2),

the original five security properties, namely correctness, eligibility, fairness, voter pri-
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vacy, and one voter-one vote, are preserved. Additionally, four verifiability properties

guaranteed in the verification still holds.

To reduce redundancy, I won’t repeat the unchanged part of FST E , but rather illus-

trate the different part that makes influences to the preservation of security properties.

The complete description of FST E under setup functionality showed in Table 3.2 is in

Appendix A.1.

In Credential Generation phase, when FST E receives a command from an eligible and

honest voter, after generating a credential pair, it allows S to tamper credential and

its corresponding commitment without revealing the identity of voter and the original

credential. This means adversaries do not know about links among voter identities,

credentials and credential commitments any more.

Half-ability VSD: Full-ability VSD:
If tuple (V , cr, ĉr) is successfully

added to Lcr and V ∈ VmV SD, it sends

(sid, TAMPER CRED) to S . Upon

receiving (sid, TAMPER CRED, cr
′

,

ĉr
′

) from S , it adds (V , cr
′

, ĉr
′

, 1) to

Lelig after permission of S via public

delay output with (V , ĉr
′

) as informa-

tion leakage.

If tuple (V , cr, ĉr) is successfully

added to Lcr and V ∈ VmV SD, it

sends (sid, TAMPER CRED, V , cr)

to S . Upon receiving (sid, TAM-

PER CRED, V , cr
′

, ĉr
′

) from S , it

adds (V , cr
′

, ĉr
′

, 1) to Lelig after per-

mission of S via public delay output

with (V , ĉr
′

) as information leakage.

In Cast phase, FST E only sends ballots, credentials, and corresponding signatures to

adversaries. That information is going to be broadcasted later anyway. Therefore,

adversaries learn nothing more and blindly alter them, whereas FST E for full-ability

VSD tells everything. This used to be where fairness and vote privacy broke.

Half-ability VSD: Full-ability VSD:
If V ∈ VcV SD, it sends (sid, TAM-

PER CASTING, v, cr, σ) to S . Upon

receiving (sid, TAMPER CASTING,

v
′

, cr
′

, σ
′

) from S , it adds (V , v
′

, ⋅, cr
′

,

σ
′

, 2) to Lcast after public delay output.

If V ∈ VcV SD, it sends (sid, TAM-

PER CASTING, V , o, v, cr, σ)

to S . Upon receiving (sid, TAM-

PER CASTING, V , ⋅, v
′

, cr
′

, σ
′

) from

S , it adds (V , v
′

, ⋅, cr
′

, σ
′

, 2) to Lcast

after public delay output.

In Tally phase, FST E does not allow adversaries to present tally result. Because of pre-
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vious steps ”filtering” tally set, correctness, eligibility and, one voter-one vote proper-

ties are guaranteed.

Half-ability VSD: Full-ability VSD:
It sets tally result res as the multiset {
(o∗, v∗, cr∗, σ∗) ∣ (V , v∗, o∗, cr∗, σ∗, ⋅)

∈ Ltally}.

If V ∈VcV SD, it sends (sid, TALLY, V )

to S . Upon receiving (sid, TALLY, V ,

res
′

) from S , it sets res = res
′

. Other-

wise, it sets tally result res as the mul-

tiset { (o∗, v∗, cr∗, σ∗) ∣ (V , v∗, o∗, cr∗,

σ∗, ⋅) ∈ Ltally}.



Chapter 4

Design the Hybrid Protocol

In chapter 3, we have given an overview of protocol E-cclesia and formally depicted

the ideal functionality FST E that it aims to UC realize. The composition theorem of

the UC framework guarantees that standalone security properties of a protocol remain

the same as subroutine protocols, so in this chapter, we will construct a hybrid protocol

for E-cclesia using existing ideal functionalities. Additionally, we will formally prove

that the hybrid model UC realizes the FST E . Due to limited space, the hybrid protocol

and its corresponding proof are both under full-ability compromised VSD. For a half-

ability compromised VSD scenario, please refer to Appendix A.2.1 and A.2.2.

4.1 Primitive ideal functionalities

In line along the original design of E-cclesia, we will re-build the hybrid protocol with

four ideal functionalities FNIC, FBC, Felig, Fvm, FV SD and Gclock. This could help to,

on one hand, specify the protocol from general to details, on the other hand, maintain

security guarantees in the case underlying cryptographic primitives change.

The voting support device functionality FV SD defined in 3.2 mimics the action of real-

world devices.

The global clock functionality [4] Gclock allows any party to read synchronized time at

any moment.

The non-interactive commitment functionality [5] FNIC handles the credential com-

mitment generation and the verification of the commitment. The related commands

and messages are:

26
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● (sid, COM COMMIT INI, cr): It creates a commitment ĉr for cr and returns

ĉr in a form of message (sid, COM COMMIT END, ĉr).

● (sid, COM VERIFY INI, ĉr, cr): It verifies that if ĉr is a commitment of cr.

It returns in a form of message (sid, COM VERIFY END, y) where y could

be 0, 1 or ⊥. 0 means the verification fails. 1 means the verification passes and

⊥ is for illegal or dirty input.

The broadcast channel functionality [8] FBC is to broadcast the received message to all

parties. The related commands and messages are:

● (sidall , BROADCAST, ĉr
′

): It sends message (sidall , BROADCAST, (V ,

ĉr
′

)) to all parties where V indicates the source of broadcasting.

The eligibility functionality [2] Felig is for ballot authentication, ballot verification,

and ballot linking. The related commands and messages are:

● (sid, AUTH BALLOT, v): It creates a signature for ballot and returns (sid,

AUTH BALLOT, v, σ) to eligible voters and (sid, AUTH BALLOT, v, ⊥) to

non-eligible voters.

● (sid, VER BALLOT, v, σ): It verifies the signature of ballot and checks if

it is a valid signature signed from an eligible voter. It return the message in a

form of (sid, VER BALLOT, v, σ, x) where x could be 0, 1 or ⊥. ⊥ means the

signature is invalid. 0 means the signature is signed by an non-eligible voter.

1 stands for passing the verification.

● (sid, LINK BALLOTS, (v, σ), (v′, σ′)): It checks if the given two ballot

pairs are voted using the same credential. It returns (sid, LINK BALLOTS,

(v, σ), (v′, σ′), 1) for reusing and (sid, LINK BALLOTS, (v, σ), (v′, σ′), 0) for

not.

The vote management functionality [2] Fvm is for ballot generation and ballot opening.

The related commands and messages are:
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● (sid, GEN BALLOT, o): It allows adversaries to generate a ballot using

dummy information as options. In this way, adversaries could learn nothing

about voters’ true options. It returns (sid, GEN BALLOT, o, v) if it is the first

time the voter request for. Otherwise, it returns (sid, GEN BALLOT, o, ⊥).

● (sid, OPEN, v): If the command comes from corrupted voter, it let ad-

versaries open the ballot and returns the result in a form of (sid, OPEN, v,

o). Otherwise, it checks whether the ballot is valid. If it is not, it returns

(sid, OPEN, v, ⊥). Else, it returns the voter’s option that she sent before (via

GEN BALLOT command) in a form of (sid, OPEN, v, o).

4.2 Hybrid Protocol Π
FNIC,FBC,Felig,Fvm,FV SD,Gclock
E−cclesia

Taking the advantage of composition and modularity of the UC framework, if a proto-

col UC realizes a functionality, the protocol as a subroutine of another protocol can be

replace by the functionality. We design the hybrid protocol Π
FNIC,FBC,Felig,Fvm,FV SD,Gclock
E−cclesia

as follows:

Setup:
∎ Upon receiving (sid, SETUP INFO, Velig, O, tcast , topen) from Z , if Velig ⊆ V and

tcast < topen, SA sends (sid, SETUP INFO, Velig, O, tcast , topen) to Fvm.

∎ Upon receiving (sid, ELIGIBLE) from Z , if SA has received (Velig, O, Ð→t ) from

Fvm, it sends (sid, ELIGIBLE, Velig, O, Ð→t ) to Felig which sends reg.par := (Velig, O,
Ð→t , Stgen) to <Vi >i∈[n]. Upon receiving reg.par from Felig, each V ∈V stores it as the

election parameters reg.par.

Credential Generation:
∎ Upon receiving (sid, GEN CRED) from Z , for the first time, V reads Cl from Gclock.

If Status(Cl, Ð→t , Cred) = ⊺, she does:

1. She picks a random cr from the message spaceM and sends (sid, COM COMMI

T INI, cr) to FNIC. Upon receiving (sid, COM COMMIT END, ĉr) from FNIC,

if ĉr ∉D, she repeats this step until it does.

2. She sends (sid, TAMPER CRED, cr, ĉr) to FV SD. Upon receiving (sid, TAM-

PER CRED, cr
′

, ĉr
′

) from FV SD, she stores (cr, ĉr
′

).

3. She sends (sidall , BROADCAST, ĉr
′

) to FBC. Upon receiving (sidall , BROAD-
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CAST, (V ,ĉr
′

)) from FBC, she appends the pair (V ,ĉr
′

) to Lcred .

Cast:
∎ Upon receiving (sid, CAST, o) from Z , V executes the following steps:

1. She sends (sid, GEN BALLOT, o) to Fvm which replies with the generated ballot

as (sid, GEN BALLOT, o, v) (or sends (sid, GEN BALLOT, o, ⊥) and halts).

2. She sends (sid, AUTH BALLOT, v) toFelig which replies with the authentication

receipt for v (sid, AUTH BALLOT, v, σ) (or sends (sid, AUTH BALLOT, v, ⊥)

and halts).

3. She sends (sid, TAMPER CASTING, V , o, v, cr, σ) to FV SD. Upon receiving

(sid, TAMPER CASTING, V , v
′

, cr
′

, σ
′

) from FV SD, she sends (sid, CAST, v
′

,

cr
′

, σ
′

) to Fvm which broadcasts the message to <Vj > j∈[n]. In turn, voters store

the received bundle (v, cr, σ).

Tally
∎ Upon receiving a message (sid, TALLY) from Z , V reads Cl from Gclock. If Sta-

tus(Cl, Ð→t , Tally) = ⊥, she ignores the message. Otherwise, if res = φ, she executes the

following steps:

1. For every tuple (sid, Cast, v, cr, σ) she has obtained from Fvm, she sends (sid,

VER BALLOT, v, σ) to Felig which replies with (sid, VER BALLOT, v, σ, x),

where x ∈ {0,1,⊥}. If there is any ballot verification request such that Felig

replied with x =⊥, then she discards the ballot. Otherwise, she includes in her

tally set all tuples (v, cr, σ) such that Felig replied with x = 1.

2. She discards multiple ballots by sending (sid, LINK BALLOTS, (v, σ), (v′,

σ′)) to Felig for every pair (v, σ), (v′, σ′) in her tally set. If she gets a (sid,

LINK BALLOTS, (v, σ), (v′, σ′), 1) respond, then she discards the ballot she

received the last out of those two.

3. For every tuple (v, cr, σ) in the tally set, she sends (sid, OPEN TAMPERED CA

STING, v) toFV SD, which could reply with (sid, OPEN TAMPERED CASTING,

v, o) or (sid, OPEN TAMPERED CASTING, v, ⊥). If the opening is ⊥, then she

sends (sid, OPEN, v) to Fvm to try to open again. It replies with the opening (sid,

OPEN, v, o). If at any time Fvm replies with (sid, OPEN, v, ⊥), then she sets res

to ⊥.
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4. V sends (sid, TALLY, res) to FV SD. Upon receiving (sid, TALLY res
′

) from

FV SD, she updates res to res
′

.

Verification:
∎ Upon receiving (sid, VERIFY, res) from Z , V reads Cl from Gclock. If Status(Cl, Ð→t ,

Tally) = ⊺, she does:

1. She accesses her registered credential (V , ĉr
′

) on a trusted VSD. Then she veri-

fies if her credential has been tampered by sending (sid, COM VERIFY INI, ĉr
′

,

cr) toFNIC where cr is what she remembers. Upon receiving (sid, COM VERIFY END,

y) from FNIC, if y = 0 or y =⊥, she returns false with a reason of dirty credential

registration. Otherwise, she proceeds 2.

2. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, she checks if there exists a tuple such

that cr∗ = cr where cr is the credential she memorise by heart. If such tuple does

not exist, she returns false with a reason of individual verifiability. Otherwise,

she proceeds 3.

3. She finds the tuple (o∗, v∗, cr∗, σ∗) in ˆres such that cr∗ = cr. If o∗ ≠ o where o

is her intended option, she returns fail with a reason of end-to-end verifiability:

cast is not as intended. Otherwise, she proceeds 4.

4. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, she sends (sid, VER BALLOT, v∗, σ∗)

to Felig which replies with (sid, VER BALLOT, v∗, σ∗, x), where x ∈ {0,1,⊥}.

If there is any ballot verification request such that Felig replied with x =⊥ or 0,

then she returns fail with a reason of eligibility verifiability: not eligible voters.

Otherwise, she proceeds 5.

5. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, she sends (sid, LINK BALLOTS, (v∗,

σ∗), (v∗
′

, σ∗
′

)) to Felig for every pair (v∗, σ∗), (v∗
′

, σ∗
′

) in her tally set. If she

gets a (sid, LINK BALLOTS, (v∗, σ∗), (v∗
′

, σ∗
′

), 1) respond, she returns fail

with a reason of eligibility verifiability: duo-voting. Otherwise, she proceeds 6.

6. She re-do tally on a trusted VSD to verify universal verifiability and end-to-end

verifiablity (tally as recorded). Specifically,

(a) For every tuple (sid, Cast, v, cr, σ) she has obtained from Fvm accessing via

a trusted VSD, she sends (sid, VER BALLOT, v, σ) to Felig which replies

with (sid, VER BALLOT, v, σ, x), where x ∈ {0,1,⊥}. If there is any ballot
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verification request such that Felig replied with x =⊥, then she discards the

ballot. Otherwise, she includes in her verification set all tuples (v, cr, σ)

where Felig replied with x = 1.

(b) She discards multiple ballots by sending (sid, LINK BALLOTS, (v, σ), (v′,

σ′)) to Felig for every pair (v, σ), (v
′

, σ
′

) in her verification set. If she gets

a (sid, LINK BALLOTS, (v, σ), (v
′

, σ
′

), 1) respond, then she discards the

ballot she received the last out of those two.

(c) For every tuple (v, cr, σ) in the verification set, she sends (sid, OPEN TAMP

ERED CASTING, v) toFV SD, which could reply with (sid, OPEN TAMPE

RED CASTING, v, o) where she would add (o, v, cr, σ) to resvr f y or (sid,

OPEN TAMPERED CASTING, v, ⊥). If the opening is ⊥, she sends (sid,

OPEN, v) to Fvm to try to open again. Upon receiving the opening (sid,

OPEN, v, o) from Fvm, V adds (o, v, cr, σ) to resvr f y. If at any time Fvm

replies with (sid, OPEN, v, ⊥), then she sets resvr f y to ⊥.

(d) She compares resvr f y with ˆres. If resvr f y ≠ ˆres, she returns fail with reason

of universal verifiability. Otherwise, she returns true back to Z

We also design a hybrid protocol in Appendix A.2.1 that UC realizesFST E in Appendix

A.1 and provide a formal proof in Appendix A.2.2.

4.3 Proof for UC realization

Theorem 2 The hybrid protocol Π
FNIC,FBC,Felig,Fvm,FV SD,Gclock
E−cclesia in section 4.2 UC-realizes

the FST E functionality in 3.3.1.

PROOF. A simulator S who executes as follows to be indistinguishable to any adver-

sary A from any PPT environment.

To make the proof more concise, I will only present in details what S would operates

when receiving messages or commands from un-corrupted parties. For messages from

corrupted parties, S will forward whatever it receives from FST E to A as if it was that

party and returns whatever message it receives from A to FST E . Also, as for public

delay output, what S does is merely conveying messages to A as if it was Fvm or Felig

and returning the permission back to FST E . The detailed execution is as follows:
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Setup:
∎ Upon receiving (sid, CORRUPT, Vcorr), S forwards the message to A as if it was Z .

Upon receiving (sid, CORRUPT, Vcorr) from A as if it was Felig, S forwards the same

message as if it was from Z to A. Upon receiving (sid, CORRUPT, Vcorr) from A as

if it was Fvm, S forwards the message to FST E .

∎ Upon receiving (sid, COMPROMISE VSD, VcV SD), S forwards the message to A

as if it was Z . Upon receiving (sid, COMPROMISE VSD, VcV SD) from A as if it was

FV SD, it forwards the message to FST E .

∎ Upon receiving (sid, SETUP INFO, Velig, O, tcast , topen) from FST E , it sets Ð→t ←

define time(tcast ,topen) and vote.par := (Velig, O, Ð→t ). Then it sends (sid, SETUP OK,

vote.par) to A as if it was from Fvm. Upon receiving the permission from A, S sends

(sid, SETUP OK, Velig, O, tcast , topen) back to FST E .

∎ Upon receiving (sid, ELIGIBLE) from FST E , S sends (sid, SETUP ELIG) to A

as if it was from Felig. Upon receiving (sid, SETUP ELIG, GenCred, VrfyBallot,
AuthBallot, UpState, Stgen) fromA, S sends (sid, ELIGIBLE, GenCred, VrfyBallot,
AuthBallot, UpState, Stgen) back to FST E .

Credential Generation:
∎ Upon receiving (sid, TAMPER CRED, V , cr) from FST E , S forwards the same

message to A as if it was FV SD. Upon receiving (sid, TAMPER CRED, V , cr
′

, ĉr
′

)

from A, S sends (sid, TAMPER CRED, V , cr
′

, ĉr
′

) back to FST E .

∎ Upon receiving (sid, GEN CRED, V , ĉr) from FST E , S sends (sid, BRAODCAST,

(V , ĉr)) to A as if it was FBC. Upon receiving the token back from A, S sends (sid,

GEN CRED, V , ĉr) to FST E .

Cast:
∎Upon receiving (sid, GEN BALLOT, tag, 0∣o∣) fromFST E , S sends (sid, GEN BALLOT,

tag, 0∣o∣) to A as if it was Fvm. Upon receiving (sid, GEN BALLOT, tag, 0∣o∣, v) from

A, S forwards the same message (sid, GEN BALLOT, tag, 0∣o∣, v) back to FST E .

∎ Upon receiving (sid, TAMPER CASTING, V , o, v, cr, σ) from FST E , it forwards the

message to S as if it was FV SD and returns whatever it receives from S back to FST E .

∎ Upon receiving (sid, CAST, v, cr, σ) from FST E , S sends (sid, ALLOW CAST, v,

σ) to A as if it was Fvm. Upon receiving (sid, CAST ALLOWED) from A, S returns

the same message back to FST E .

Tally:
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∎Upon receiving (sid, OPEN TAMPERED BALLOT, V , v, cr, σ) fromFST E , S sends

(sid, OPEN TAMPERED BALLOT, V , v, cr, σ) to A as if it was FV SD. Upon re-

ceiving (sid, OPEN TAMPERED BALLOT, V , o, v, cr, σ) from A, S returns (sid,

OPEN TAMPERED BALLOT, V , o, v, cr, σ).

∎ Upon receiving (sid, OPENING, V , v) from FST E for an alternative ballot opening

for a corrupted voter V , S sends (sid, OPEN, v) to A as if it was Fvm. Upon receiving

(sid, OPEN, v, o) from A, S returns (sid, OPENING, V , v, o) back to FST E .

∎ Upon receiving (sid, TALLY, V ) from FST E , S forwards (sid, TALLY, V ) toA as if it

was FV SD. Upon receiving (sid, TALLY, V , res
′

) from A, S returns the same message

(sid, TALLY, V , res
′

) back to FST E .

Verification:
∎Upon receiving (sid, OPEN TAMPERED BALLOT, V , v, cr, σ) fromFST E , S sends

(sid, OPEN TAMPERED BALLOT, V , v, cr, σ) to A as if it was FV SD. Upon re-

ceiving (sid, OPEN TAMPERED BALLOT, V , o, v, cr, σ) from A, S returns (sid,

OPEN TAMPERED BALLOT, V , o, v, cr, σ).

∎ Upon receiving (sid, OPENING, V , v) from FST E for an alternative ballot opening

for a corrupted voter V , S sends (sid, OPEN, v) to A as if it was Fvm. Upon receiving

(sid, OPEN, v, o) from A, S returns (sid, OPENING, V , v, o) back to FST E .



Chapter 5

Conclusions and Future Work

5.1 Summary and Discussion

The main objective of this work is to prove that E-cclesia satisfies verifiability proper-

ties. We begin by giving a high-level description of E-cclesia with verification. Next,

we construct a new setup functionality FV SD to introduce the concept of VSD into the

UC framework and formally depict trust assumptions. Based on the capability of com-

promised VSD, we propose two different FV SD: full-ability where it leaks information

out and receives adversarial commands, and half-ability where it only follows orders

from adversaries. The next contribution of this work is to model five verifiability prop-

erties, which are individual verifiability, universal verifiability, eligibility verifiability,

and end-to-end verifiability in the UC framework. We model them in the ideal STE

functionally FST E . Then, we formally design a hybrid protocol for E-cclesia with ver-

ification using existing ideal functionalities and FV SD we built. Finally, we prove that

the hybrid protocol is a UC realization of FST E . Since FST E captures five verifiability

properties, we argue that E-cclesia holds the same properties.

However, there are limitations of the current solution:

1. Efficiency. One of the verifiability properties is universal variability. Voters need

to redo the tally on received ballots set to verify it which is very computation-

ally expensive. That is because the underlying technology that supports fairness

is time-lock encryption (TLE). It allows you to decrypt ciphertext only after a

certain time has passed. The high-level logic behind it is to hide the decryption

key into a puzzle and that puzzle requires a lot of computation. Due to the fact

34
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that access to computation sources is limited, time-lock is guaranteed. If voters

perform the tally again for verifying, they all have to do computations and solve

the puzzle.

2. Coercion. Coercion is when adversaries force voters to leak secrecy. In our

solution, we do not consider the existence of a coercer, so the verification phase

cannot give an alert when it happens.

5.2 Future work

Regarding previous limitations, here are some directions for future work.

The first one is solving the efficiency problem through zero-knowledge proof. In-

formally, zero-knowledge proof is to convince the verifier that the prover knows some

information without leaking any extra (zero-knowledge). Voters receive a result as well

as evidence. With the evidence, voters can verify whether this result comes from solv-

ing the puzzle without personally solving the puzzle. There have been some studies on

verifiable time-lock encryption [18]. The next step could begin with the optimization

of current TLE functionality. We can model a verifiable TLE so that it can provide an

API for more efficient universal verifiability.

The other one is capturing coercion in verification. Some work has designed a coercion-

resistant system, like [12] by generating information that is indistinguishable from

adversaries but distinguishable from tally authority and [24] by employing a receiver-

deniable encryption scheme. Future work could start by realizing coercion-resistance,

and then achieve coercion verifiable.
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Appendix A

Under Half-ability Compromised VSD

A.1 FST E under half-ability compromised VSD

Setup
∎ Upon receiving (sid, CORRUPT, Vcorr) from S , if Vcorr ⊆V, it fixes Vcorr as

corrupted voters who are manipulated by S .

∎ Upon receiving (sid, COMPROMISE VSD, VcV SD) from S , if VcV SD ⊆V, if

fixes VcV SD as the set of voters who uses compromised malicious VSD.

∎ Upon receiving (sid, SETUP INFO, Velig, O, tcast , topen) from SA the first

time, if Velig ⊆V and tcast < topen, it forwards message (sid, SETUP INFO, Velig,

O, tcast , topen) to S . Upon receiving (sid, SETUP OK, Velig, O, tcast , topen) from

S , it sets Ð→t ← define time( tcast , topen) and vote.par := (Velig, O, Ð→t ).

∎ Upon receiving (sid, ELIGIBLE) from SA, it informs S , which replies with

eligibility algorithms GenCred, VrfyBallot, AuthBallot, UpState and initial

accumulator state Stgen.It sets reg.par := (Velig, O, Ð→t , Stgen).

Credential Generation
∎ Upon receiving (sid, GEN CRED) from V ∈Veligfor the first time, it reads the

time Cl from Gclock.

1. If Status(Cl, Ð→t , Cred) = ⊺ and V ∈V/Vcorr, it does the following:

(a) If there is no tuple (V , cr, ĉr) in Lcr, it runs (cr, ĉr)→ GenCred (1λ,

reg.par). If there are tuples (⋅, cr, ⋅) or (⋅, ⋅, ĉr) in Lcr or (cr, ĉr) = ⊥,

39
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it sends (sid, GEN CRED, ⊥) to V hand halts. Else, it adds (V , cr,

ĉr) to Lcr.

(b) If tuple (V , cr, ĉr) is successfully added to Lcr and V ∈ VmV SD, it

sends (sid, TAMPER CRED) to S . (It allows S to tamper creden-

tial and its corresponding commitment without revealing the identity

of voter and the original credential.) Upon receiving (sid, TAM-

PER CRED, cr
′

, ĉr
′

) from S , it adds (V , cr
′

, ĉr
′

, 1) to Lelig after

permission of S via public delay output with (V , ĉr) as information

leakage.

Else if V ∈V /VmV SD, it directly add (V , cr, ĉr, 1) to Lelig after public

delay output.

(c) It sends (sid, GEN CRED, V , ĉr, sender) to V and (sid, GEN CRED,

V , ĉr) to all other voters in V/V and S .

2. Else if Status(Cl,Ð→t , Cred) = ⊺ but V ∈Vcorr, it forwards the message (sid,

GEN CRED, V ) to S . Upon receiving (sid, GEN CRED, V , cr, ĉr) from

S , if there are no tuples (V , cr∗, ĉr∗, 0), (⋅, ⋅, ĉr, 1) or (⋅, cr, ⋅, 1), it adds

(V , cr, ĉr, 0) to Lelig. Then it sends (sid, GEN CRED, V , ĉr) to all voters

in V/V and S .

Cast
∎ Upon receiving (sid, CAST, o) from V ∈Velig/Vcorr for the first time such that

(V, cr, ĉr, 1) ∈ Lelig and o ∈O, it reads the time Cl from Gclock. If Status(Cl, Ð→t ,

Cast) = ⊺, it does:

1. It picks tag
$
←Ð TAG and it inserts the tuple (V , NULL, o, tag, 1) → Lgball .

2. It sends (sid, GEN BALLOT, tag, 0∣o∣) to S . Upon receiving (sid,

GEN BALLOT, tag, 0∣o∣, v) from S , it updates (V , NULL, o, tag, 1) in

Lgball to (V , v, o, tag, 1).

3. It computes the final accumulator state St f in ←UpState(Stgen, ĉr) for the

purpose of signature generation. Then it generates the signature σ of ballot

v: σ← AuthBallot (v, cr, ĉr, St f in). If VrfyBallot (v, σ, reg.par) = 0, it

sends (sid, AUTH BALLOT, ⊥) to V and halts.
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4. If V ∈ VcV SD, it sends (sid, TAMPER CASTING, v, cr, σ) to S . Upon

receiving (sid, TAMPER CASTING, v
′

, cr
′

, σ
′

) from S , it adds (V , v
′

, ⋅,

cr
′

, σ
′

, 2) to Lcast after public delay output.

∎ Upon receiving receiving (sid, CAST) from V ∈ Vcorr, it informs S . Upon

(sid, CAST, v, σ, V ) from S for the first time, it reads the time Cl from Gclock. If

Status(Cl, Ð→t , Cast) = ⊺ and there is a tuple (V, cr, ĉr, 0) ∈ Lelig, it adds (V , v, ⋅,

cr, σ, 0) to Lcast .

Tally
∎ Upon receiving (sid, TALLY) from a voter V ∈ V, it reads the time Cl from

Gclock. If Status(Cl, Ð→t , Tally) = �, it does:

1. If res = φ, it does the following:

(a) For every (V∗, v∗, o∗, cr∗, σ∗, ⋅) in Lcast , it runs the ballot verification

algorithm x←VrfBallot (v∗, σ∗, St f in). If x = 1, then FST E performs

the following security checks:

i. If there is no tuple (V∗, cr∗, ĉr∗, ⋅) in Lelig, it sets res to ⊥.

ii. If there is a tuple (V∗, cr∗, ĉr∗, 1) in Lelig and there is a tuple (⋅,

v∗∗, o∗∗, cr∗∗, σ∗∗, 1) in Lcast such that (cr∗ = cr∗∗) ∧ (v∗ ≠ v∗∗),

it sets res to ⊥.

iii. Otherwise, it adds (V∗, v∗, o∗, cr∗, σ∗, ⋅) to Ltally.

(b) For every tuple (V∗, cr∗, ĉr∗, ⋅) in Lelig such that there are multiple

tuples (V , v1, o1, cr1, σ1, ⋅),...,(V , vn, on, crn, σn, ⋅) in Ltally, it re-

moves all multiple tuples from Ltally except the first one it recorded.

(c) For every tuple (V∗, v∗, ⋅, cr∗, σ∗, 2) in Ltally, it sends (sid,

OPEN TAMPERED BALLOT, V∗, v∗, cr∗, σ∗) to S . Upon receiv-

ing (sid, OPEN TAMPERED BALLOT, V∗, o∗, v∗, cr∗, σ∗) from

S , if o∗ ∈O then it updates the tuple (V∗, v∗, o∗, cr∗, σ∗, 2) in Ltally.

(d) For every tuple (V∗, v∗, ⋅, cr∗, σ∗, 0) in Ltally, it sends (sid, OPEN-

ING, V∗, v∗) to S . Upon receiving (sid, OPENING, V∗, v∗, o∗) from

S , if o∗ ∈O then it updates the tuple (V∗, v∗, o∗, cr∗, σ∗, 0) in Ltally.

(e) If there are two tuples (V∗, v∗, o∗, cr∗, σ∗, 1), (V∗
′

, v∗
′

, o∗
′

, cr∗
′

,

σ∗
′

, 1) such that v∗ = v∗
′

∧o∗ ≠ o∗
′

, it sets res to ⊥
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(f) It sets tally result res as the multiset { (o∗, v∗, cr∗, σ∗) ∣ (V , v∗, o∗,

cr∗, σ∗, ⋅) ∈ Ltally}.

2. It returns (sid,TALLY, res) to V .

∎ Upon receiving (sid, LEAKAGE) from S , it reads the time Cl from Gclock.

If Status(Cl, Ð→t , Tally) = � or Status(Cl, Ð→t , Cred) = Status(Cl, Ð→t , Cast) =

Status(Cl, Ð→t , Tally) = ⊥, it returns to S all the tuples (v, o, 1) such that (V∗, v,

o, tag∗, 1) ∈ Lgball∧ (V∗, v, o, cr∗, σ∗, 1) ∈ Lcast .

Verification
∎ Upon receiving (sid, VERIFY, ˆres) from a voter V ∈V/Vcorr, it reads Cl from

Gclock. If Status(Cl, Ð→t , Verification) = �, it does:

1. It finds the tuple (V, cr, ĉr) in Lcr and (V, cr
′

, ĉr
′

, 1) in Lelig. If ĉr ≠ ĉr
′

or

cr ≠ cr
′

, it returns (sid, VERIFY, ˆres, 0, 1).

2. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, it checks if there exists one tuple

such that cr∗ = cr where cr is from the tuple (V , cr, ĉr, 1) in Lelig.

If such tuple does not exist, it returns (sid, VERIFY, ˆres, 0, 2).

Else, it finds the tuple (o∗, v∗, cr, σ∗) in ˆres. If o∗ ≠ o where o is from the

tuple (V , v, o, tag, 1) in Lgball , it returns (sid, VERIFY, ˆres, 0, 3).

3. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, it runs the ballot verification algo-

rithm x→V r f yBallot(v∗,σ∗,St f in). If x = 0, x =⊥ or there is no tuple (⋅,

cr∗, ⋅, ⋅) in Lelig, it returns (sid, VERIFY, ˆres, 0, 4). Otherwise,

4. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, it checks if there exists another

tuple (o∗∗, v∗∗, cr∗∗, σ∗∗) such that cr∗ = cr∗∗. If exists, it returns (sid,

VERIFY, ˆres, 0, 5).

5. It does the following to check universal verifiability and ene-to-end veri-

fiability (tally as recorded):

(a) For every (V∗, v∗, o∗, cr∗, σ∗, ⋅) in Lcast , it runs the ballot verification

algorithm x←VrfBallot (v∗, σ∗, St f in). If x = 1, then FST E performs

the following security checks:

i. If there is no tuple (V∗, cr∗, ĉr∗, ⋅) in Lelig, it sets resvr f y to ⊥.
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ii. If there is a tuple (V∗, cr∗, ĉr∗, 1) in Lelig and there is a tuple (⋅,

v∗∗, o∗∗, ĉr∗∗, σ∗∗, 1) in Lcast such that (ĉr∗ = ĉr∗∗) ∧ (v∗ ≠ v∗∗),

it sets resvr f y to ⊥.

iii. Otherwise, it adds (V∗, v∗, o∗, ĉr∗, σ∗, ⋅) to Lvr f y.

(b) For every tuple (V∗, cr∗, ĉr∗, ⋅) in Lelig such that there are multiple

tuples (V , v1, o1, cr1, σ1, ⋅),...,(V , vn, on, crn, σn, ⋅) in Lvr f y, it re-

moves all multiple tuples from Lvr f y except the first one it recorded.

(c) For every tuple (V∗, v∗, ⋅, cr∗, σ∗, 2) in Lvr f y, it sends (sid,

OPEN TAMPERED BALLOT, V , v∗, cr∗, σ∗) to S . Upon receiving

(sid, OPEN TAMPERED BALLOT, V , o∗, v∗, cr∗, σ∗) from S , if

o∗ ∈O then it updates the tuple to (V∗, v∗, o∗, cr∗, σ∗, 2) in Lvr f y.

(d) For every tuple (V∗, v∗, ⋅, cr∗, σ∗, 0) in Lvr f y, it sends (sid, OPEN-

ING, V∗, v∗) to S . Upon receiving (sid, OPENING, V∗, v∗, o∗) from

S , if o∗ ∈O then it updates the tuple (V∗, v∗, o∗, cr∗, σ∗, 0) in Lvr f y.

(e) It checks the correctness of ballot generated from honest voters with

uncompromised VSD as followings: if there are two tuples (V∗, v∗,

o∗, cr∗, σ∗, 1), (V∗
′

, v∗
′

, o∗
′

, cr∗
′

, σ∗
′

, 1) in Lvr f y such that (v∗ = v∗
′

)

∧ (o∗ ≠ o∗
′

), then it sets resvr f y to ⊥. Else, it sets verify result resvr f y

as the multiset { (o∗, v∗, cr∗, σ∗) ∣ (V , v∗, o∗, cr∗, σ∗, ⋅) ∈ Lvr f y}.

(f) If ˆres= resvr f y, it returns (sid, VERIFY, ˆres, 1, 0) to V . Else, it returns

(sid, VERIFY, ˆres, 0, 6) to V .

∎ Upon receiving (sid, VERIFY, ˆres) from a voter V ∈Vcorr, it sends (sid, VER-

IFY, ˆres) to S , and replies to V whatever it receives from S .

A.2 RealizingFST E under half-ability compromised VSD

A.2.1 Hybrid protocol Π
′
FNIC,FBC,Felig,Fvm,FV SD,Gclock

E−cclesia

Setup:
∎ Upon receiving (sid, SETUP INFO, Velig, O, tcast , topen) from Z , if Velig ⊆ V and

tcast < topen, SA sends (sid, SETUP INFO, Velig, O, tcast , topen) to Fvm.
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∎ Upon receiving (sid, ELIGIBLE) from Z , if SA has received (Velig, O, Ð→t ) from

Fvm, it sends (sid, ELIGIBLE, Velig, O, Ð→t ) to Felig which sends reg.par := (Velig, O,
Ð→t , Stgen) to <Vi >i∈[n]. Upon receiving reg.par from Felig, each V ∈V stores it as the

election parameters reg.par.

Credential Generation:
∎ Upon receiving (sid, GEN CRED) from Z , for the first time, V reads Cl from Gclock.

If Status(Cl, Ð→t , Cred) = ⊺, she does:

1. She picks a random cr from the message spaceM and sends (sid, COM COMMIT INT,

cr) to FNIC. Upon receiving (sid, COM COMMIT END, ĉr) from FNIC, if

ĉr ∉D, she repeats this step until it does.

2. She sends (sid, TAMPER CRED, cr, ĉr) to FV SD. Upon receiving (sid, TAM-

PER CRED, cr′, ĉr
′

) from FV SD, she stores (cr, ĉr
′

).

3. She sends (sidall , BROADCAST, ˆcr′) to FBC. Upon receiving (sidall , BROAD-

CAST, (V , ˆcr′)) from FBC, she appends the pair (V , ˆcr′) to Lcred .

Cast:
∎ Upon receiving (sid, CAST, o) from Z , V executes the following steps:

1. She sends (sid, GEN BALLOT, o) to Fvm which replies with the generated ballot

as (sid, GEN BALLOT, o, v) (or sends (sid, GEN BALLOT, o, ⊥) and halts).

2. She sends (sid, AUTH BALLOT, v) toFelig which replies with the authentication

receipt for v (sid, AUTH BALLOT, v, σ) (or sends (sid, AUTH BALLOT, v, ⊥)

and halts).

3. She sends (sid, TAMPER CASTING, V , o, v, cr, σ) to FV SD. Upon receiving

(sid, TAMPER CASTING, V , v
′

, cr
′

, σ
′

) from FV SD, she sends (sid, CAST, v
′

,

cr
′

, σ
′

) to Fvm which broadcasts the message to <Vj > j∈[n]. In turn, voters store

the received pair (v, cr, σ).

Tally
∎ Upon receiving a message (sid, TALLY) from Z , V reads Cl from Gclock. If Sta-

tus(Cl, Ð→t , Tally) = ⊥, she ignores the message. Otherwise, if res = φ, she executes the

following steps:
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1. For every tuple (sid, Cast, v, cr, σ) she has obtained from Fvm, she sends (sid,

VER BALLOT, v, σ) to Felig which replies with (sid, VER BALLOT, v, σ, x),

where x ∈ {0,1,⊥}. If there is any ballot verification request such that Felig

replied with x =⊥, then she discards the ballot. Otherwise, she includes in her

tally set all tuples (v, cr, σ) such that Felig replied with x = 1.

2. She discards multiple ballots by sending (sid, LINK BALLOTS, (v, σ), (v′,

σ′)) to Felig for every pair (v, σ), (v′, σ′) in her tally set. If she gets a (sid,

LINK BALLOTS, (v, σ), (v′, σ′), 1) respond, then she discards the ballot she

received the last out of those two.

3. For every tuple (v, cr, σ)in the tally set, she sends (sid, OPEN TAMPERED CASTING,

v) to FV SD, which could reply with (sid, OPEN TAMPERED CASTING, v, o)

or (sid, OPEN TAMPERED CASTING, v, ⊥). If the opening is ⊥, then she

sends (sid, OPEN, v) to Fvm to try to open again. Upon receiving the opening

(sid, OPEN, v, o), she adds (o, v, cr, σ) to res. If at any time Fvm replies with

(sid, OPEN, v, ⊥), she sets res to ⊥.

Verification:
∎ Upon receiving (sid, VERIFY, res) from Z , V reads Cl from Gclock. If Status(Cl, Ð→t ,

Verification) = �, she does:

1. She accesses her registered credential (V , ĉr
′

) on a trusted VSD. Then she veri-

fies if her credential has been tampered by sending (sid, COM VERIFY INI, ĉr
′

,

cr) to FNIC. Upon receiving (sid, COM VERIFY END, y) from FNIC, if y = 0 or

y =⊥, she returns false with a reason of dirty credential registration. Otherwise,

she proceeds 2.

2. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, she checks if there exists a tuple such

that cr∗ = cr where cr is the credential she memorise by heart. If such tuple does

not exist, she returns false with a reason of individual verifiability. Otherwise,

she proceeds 3.

3. She finds the tuple (o∗, v∗, cr∗, σ∗) in ˆres such that cr∗ = cr. If o∗ ≠ o where o is

her intended option, she returns fail with reason of end-to-end verifiability: cast

is not as intended. Otherwise, she proceeds 4.

4. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, she sends (sid, VER BALLOT, v∗, σ∗)

to Felig which replies with (sid, VER BALLOT, v∗, σ∗, x), where x ∈ {0,1,⊥}.
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If there is any ballot verification request such that Felig replied with x =⊥ or 0,

then she returns fail with reason of eligibility verifiablity: not eligible voters.

Otherwise, she proceeds 5.

5. For every tuple (o∗, v∗, cr∗, σ∗) in ˆres, she sends (sid, LINK BALLOTS, (v∗,

σ∗), (v∗
′

, σ∗
′

)) to Felig for every pair (v∗, σ∗), (v∗
′

, σ∗
′

) in her tally set. If she

gets a (sid, LINK BALLOTS, (v∗, σ∗), (v∗
′

, σ∗
′

), 1) respond, she returns fail

with a reason of eligibility verifiability: duo-voting. Otherwise, she proceeds 6.

6. She re-do tally on a trusted VSD to verify universal verifiability and end-to-end

verifiability (tally as recorded). Specifically,

(a) For every tuple (sid, Cast, v, cr, σ) she has obtained from Fvm accessing via

a trusted VSD, she sends (sid, VER BALLOT, v, σ) to Felig which replies

with (sid, VER BALLOT, v, σ, x), where x ∈ {0,1,⊥}. If there is any ballot

verification request such that Felig replied with x =⊥, then she discards the

ballot. Otherwise, she includes in her verification set all tuples (v, cr, σ)

such that Felig replied with x = 1.

(b) She discards multiple ballots by sending (sid, LINK BALLOTS, (v, σ), (v′,

σ′)) to Felig for every pair (v, σ), (v′, σ′) in her verification set. If she gets

a (sid, LINK BALLOTS, (v, σ), (v′, σ′), 1) respond, then she discards the

ballot she received the last out of those two.

(c) For every tuple (v, cr, σ)in the verification set, she sends (sid, OPEN TAMP

ERED CASTING, v) toFV SD, which could reply with (sid, OPEN TAMPE

RED CASTING, v, o) or (sid, OPEN TAMPERED CASTING, v, ⊥). If

the opening is ⊥, then she sends (sid, OPEN, v) to Fvm to try to open again.

Upon receiving the opening (sid, OPEN, v, o), V adds (o, v, cr, σ) to resvr f y.

If at any time Fvm replies with (sid, OPEN, v, ⊥), she sets resvr f y to ⊥.

(d) She compares resvr f y with ˆres. If resvr f y ≠ ˆres, she returns fail with reason

of universal verifiability. Otherwise, she returns true back to Z

A.2.2 Formal proof

Theorem 3 The hybrid protocol Π

′
FNIC,FBC,Felig,Fvm,FV SD,Gclock

E−cclesia in Appendix A.2.1 UC-

realizes the FST E functionality in Appendix A.1.
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PROOF. A simulator S who executes as following to be indistinguishable to any ad-

versary A from any PPT time environment.

To make the proof more concise, I will only present in details what S would operates

when receiving messages or commands from un-corrupted party. For messages from

corrupted party, S will forward whatever it receives from FST E to A as if it was that

party and returns whatever message it receives from A to FST E . Also, as for public

delay output, what S does is merely conveying messages to A as if it was Fvm or Felig

and returning the permission back to FST E . The detailed execution is as following:

Setup:
∎ Upon receiving (sid, CORRUPT, Vcorr), S forwards the message to A as if it was Z .

Upon receiving (sid, CORRUPT, Vcorr) from A as if it was Felig, S forwards the same

message as if it was from Z to A. Upon receiving (sid, CORRUPT, Vcorr) from A as if

it was Fvm, S forwards the message to FST E .

∎ Upon receiving (sid, COMPROMISE VSD, VcV SD), S forwards the message to A

as if it was Z . Upon receiving (sid, COMPROMISE VSD, VcV SD) from A as if it was

FV SD, it forwards the message to FST E .

∎ Upon receiving (sid, SETUP INFO, Velig, O, tcast , topen) from FST E , it sets Ð→t ←

define time(tcast ,topen) and vote.par := (Velig, O, Ð→t ). Then it sends (sid, SETUP OK,

vote.par) to A as if it was from Fvm. Upon receiving the permission from A, S sends

(sid, SETUP OK, Velig, O, tcast , topen) back to FST E .

∎ Upon receiving (sid, ELIGIBLE) from FST E , S sends (sid, SETUP ELIG) to A

as if it was from Felig. Upon receiving (sid, SETUP ELIG, GenCred, VrfyBallot,
AuthBallot, UpState, Stgen) fromA, S sends (sid, ELIGIBLE, GenCred, VrfyBallot,
AuthBallot, UpState, Stgen) back to FST E .

Credential Generation:
∎ Upon receiving (sid, TAMPER CRED) from FST E , S forwards the same message to

A as if it was FV SD. Upon receiving (sid, TAMPER CRED, cr
′

, ĉr
′

) from A, S sends

(sid, TAMPER CRED, cr
′

, ĉr
′

) back to FST E .

∎ Upon receiving (sid, GEN CRED, V , ĉr) from FST E , S sends (sid, BRAODCAST,

(V , ĉr)) to A as if it was FBC. Upon receiving the token back from A, S sends (sid,

GEN CRED, V , ĉr) to FST E .

Cast:
∎Upon receiving (sid, GEN BALLOT, tag, 0∣o∣) fromFST E , S sends (sid, GEN BALLOT,
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tag, 0∣o∣) to A as if it was Fvm. Upon receiving (sid, GEN BALLOT, tag, 0∣o∣, v) from

A, S forwards the same message (sid, GEN BALLOT, tag, 0∣o∣, v) back to FST E .

∎ Upon receiving (sid, TAMPER CASTING, v, cr, σ) from FST E , it forwards the

message to S as if it was FV SD and returns whatever it receives from S back to FST E .

∎ Upon receiving (sid, CAST, v, cr, σ) from FST E , S sends (sid, ALLOW CAST, v,

σ) to A as if it was Fvm. Upon receiving (sid, CAST ALLOWED) from A, S returns

the same message back to FST E .

Tally:
∎Upon receiving (sid, OPEN TAMPERED BALLOT, V , v, cr, σ) fromFST E , S sends

(sid, OPEN TAMPERED BALLOT, V , v, cr, σ) to A as if it was FV SD. Upon re-

ceiving (sid, OPEN TAMPERED BALLOT, V , o, v, cr, σ) from A, S returns (sid,

OPEN TAMPERED BALLOT, V , o, v, cr, σ).

∎ Upon receiving (sid, OPENING, V , v) from FST E for an alternative ballot opening

for a corrupted voter V , S sends (sid, OPEN, v) to A as if it was Fvm. Upon receiving

(sid, OPEN, v, o) from A, S returns (sid, OPENING, V , v, o) back to FST E .

Verification:
∎Upon receiving (sid, OPEN TAMPERED BALLOT, V , v, cr, σ) fromFST E , S sends

(sid, OPEN TAMPERED BALLOT, V , v, cr, σ) to A as if it was FV SD. Upon re-

ceiving (sid, OPEN TAMPERED BALLOT, V , o, v, cr, σ) from A, S returns (sid,

OPEN TAMPERED BALLOT, V , o, v, cr, σ).

∎ Upon receiving (sid, OPENING, V , v) from FST E for an alternative ballot opening

for a corrupted voter V , S sends (sid, OPEN, v) to A as if it was Fvm. Upon receiving

(sid, OPEN, v, o) from A, S returns (sid, OPENING, V , v, o) back to FST E .
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