
Agile and Versatile Robotic Locomotion via

Kernel-based Residual Learning

Milo Carroll

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2022

Abstract

This work develops a robotic locomotion framework for quadrupedal robots using

kernel-based residual learning. Initially, learning a kernel that replicates an MPC

controller to produce trajectories, which a reinforcement learning agent then adapts. We

show that with relatively little training, the robot can traverse a range of unseen terrains,

which the MPC controller can not, and demonstrate symmetry in the locomotion without

additional reward function engineering. Furthermore, the kernel learned can produce a

range of functional locomotion behaviors and has the potential to generalize to unseen

gaits.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy.

It did not involve any aspects that required approval from the Informatics Research

Ethics committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Milo Carroll)

ii

Acknowledgements

First and foremost i would like to thank my supervisors, Mohammad Kasaei, Zhaocheng

Liu, and Zhibin Li, for the insightful conversations, guidance, and support through the

challenging aspects of this project.

A special thanks goes out to the BB’s, for the great times, high spirits, and for

providing me with memories for life.

Finally, and most importantly, i would like to thank my family, without you, this

year could not have happened, and what an amazing year it has been.

iii

Table of Contents

1 Introduction 1
1.1 Project Motivations . 1

1.2 Project Objectives . 2

1.3 Document Structure . 2

2 Background 3
2.1 Robotic Locomotion Control . 3

2.2 Kinematics . 3

2.3 Model Predictive Control . 4

2.4 Proportional Derivative Control . 4

2.5 Reinforcement Learning . 4

2.6 Proximal Policy Optimization . 5

3 Related Work 7
3.1 Learning Trajectory-based Controllers 7

3.2 Locomotion via Reinforcement Learning 9

3.3 Locomotion via Residual Learning 10

4 Methodology 12
4.1 Problem Formulation . 12

4.2 Proposed Architecture . 12

4.2.1 Environment . 13

4.2.2 Command Generator . 14

4.2.3 Gait Generator . 14

4.2.4 PD controller . 15

4.2.5 Low Pass Filter . 16

4.2.6 Kernel . 17

4.2.7 Kernel Results . 25

iv

4.2.8 RL Agent . 27

4.2.9 Training The Final Agent . 33

5 Evaluations 35
5.1 Evaluation Environments and Metrics 35

5.2 Results . 36

5.3 Evaluating Perturbation Robustness 37

6 Conclusions 38

Bibliography 40

A Appendix 49
A.1 Notation . 49

A.2 Optimizations and Search Spaces . 50

A.3 Additional Figures . 51

A.4 Algorithms . 53

v

Chapter 1

Introduction

1.1 Project Motivations

Challenging terrains come in many forms, yet quadrupedal animals can traverse almost

any, even those not previously experienced, allowing them to access the most remote

locations [27]. For this reason, researchers have paved the way in developing controllers

for legged robots. Their versatility far exceeds that of other forms of locomotion, such

as wheeled locomotion, which requires continuous ground support and cannot feasibly

adapt to challenging terrains [4, 49].

Quadrupedal robotic locomotion is a highly complex control problem that requires

optimizing a non-linear dynamical system. Nevertheless, researchers have demonstrated

the ability to create highly effective controllers [7, 22, 23]. Challenges still pertain,

with researchers actively tackling locomotion over slippery, obstructed, irregular, and

deformable terrains. Conventional controllers struggle to maintain stable balance of

the robot in such challenging situations. Furthermore, they have become increasingly

complex, requiring bolt-on packages to handle issues such as irregular ground contact

and foot slippage [13]. These methods increase the computational cost and become

unreliable in field tests where conditions are uncertain [27].

Deep reinforcement learning (RL) has become an increasingly popular method for

robotic locomotion due to removing much of the engineering effort [13, 27]. RL has

been highly successful in many cases and can learn more robust locomotion control

[13, 33, 62]. At the same time, It can be challenging to produce desirable locomotion

strategies, often we see asymmetric gait patterns [1] and lazy limbs, where one limb is

under utilized and the motion appears unnatural [67]. Furthermore, the learned policies

do not necessarily generalize to unseen terrains, and require many millions of training

1

Chapter 1. Introduction 2

times-steps which is both costly and prevents us from learning on physical systems,

forcing us to learn in simulation, which results in a performance gap on physical systems

(the reality-gap) [55].

RL is inspired by biological systems’ ability to learn [60]. Research in robotic loco-

motion again looks to nature, finding that numerous mammalian species demonstrate the

ability to walk and even trot within minutes of birth [12]. Their nervous systems have

pre-developed neural circuits that are rapidly refined and used to learn additional skills.

Researchers aim to replicate this characteristic with RL control methods, introducing

motion priors that and enhancing the skills with RL [8, 61]. Thus, reducing the sample

efficiency issue and promoting desirable locomotion characteristics such as symmetry.

1.2 Project Objectives

This project seeks to develop a robust and controllable omnidirectional robotic loco-

motion framework; It aims to traverse challenging terrains and recover the robot’s

balance after large perturbations. Leveraging conventional control methods to learn

practical and controllable motion priors using neural network (kernel). We adapt the

motion priors to achieve the framework’s described characteristics using RL for residual

learning (Section 3.3). Below lists the core objectives of this work:

• Learn a trajectory based locomotion controller (kernel) from expert data.

• Use RL to enhance the abilities of the kernel via residual learning.

• Demonstrate traversing unseen and challenging terrains.

• Demonstrate robustness against large perturbations.

• Demonstrate the frameworks superior performance over baselines.

1.3 Document Structure

• Background: Core technical concepts required for understanding the paper.

• Related Works: Papers inspiring this work, and advances within the domain.

• Methodology: The proposed framework, experimental results and analysis.

• Evaluation: Analysis of the frameworks performance compared to baselines.

• Conclusion: Core findings, highlighting strengths, weaknesses and future research

directions.

Chapter 2

Background

2.1 Robotic Locomotion Control

Controllers are responsible for producing the locomotion behavior by actuating the

robot’s joints. There are four core controller categories; model-based, model-free,

Central-Pattern-Generators (CPG), and hybrids [21]. Conventional model-based con-

trollers require a dynamics model of the robot, using model predictive control (Section

2.3) to generate motor commands for optimal control. Typically, the model is a reduced

order (simplified) template [10] model that captures the system’s essential dynamics.

This increases computational efficiency, although it introduces inaccuracies. Conversely,

model-free controllers, that are typically learned via reinforcement learning (Section

2.5), do not require a dynamics model of the system [27]; Rather control is achieved

by a learned mapping between sensory input to control values. CPG-based controllers

simulate biological neuronal groups that produce rhythmic activity to produce rhythmic

locomotion strategies [59]. They are feed-forward, efficient, adaptable, and allow for

online gait generation; however, they are difficult to parameterize and to incorporate

sensory information [21]. Hybrid controllers utilize aspects multiple control categories,

leveraging advantages of one to overcome challenges of another [21, 25, 65]. Typically

we see the combination of model-free methods with either model-based or CPG-based

methods.

2.2 Kinematics

A kinematics structure contains a tree of links and joints, which can rotate about an axis

and connect two links. A kinematic tree is described by its configuration denoting the

3

Chapter 2. Background 4

angle of each joint’s rotation. With this knowledge we can determine the position of the

last link in the kinematic tree (end-effector) using forward kinematics. Conversely, if we

know the end-effector’s current or target position, we can calculate the configurations

that achieve this position with inverse-kinematics.

2.3 Model Predictive Control

Model predictive control (MPC) is an iterative optimization technique that requires

a system dynamics model [7]. Given the current control inputs, trajectory, and cost

function, it finds the optimal sequence of control outputs and the corresponding trajec-

tory over a finite-time horizon. The first control outputs of the computed sequence are

executed. At the next time-step, the optimization is run again given the new state of the

robot. MPC is computationally expensive, hence the use of reduced order dynamics

models.

2.4 Proportional Derivative Control

Proportional derivative (PD) control is a subset of the proportional integral derivative

(PID) controller, which is an open-loop feedback controller. The PID controller produces

control outputs ut to apply to a system to reach some target position qtarget . The control

outputs are responsive to the current position qt by way of the error qe = qtarget −qt .

The controller is parameterized by the variables Kp, Ki, Kd , as in Equation 2.1. Note

that a PD controller simply assigns Ki = 0.

ut = Kp ∗qe +Ki ∗
∫

qe dt +Kd ∗ q̇e (2.1)

2.5 Reinforcement Learning

Reinforcement Learning (RL) is a paradigm of machine learning, that through trial and

error, learns to make sequential decisions. RL algorithms learn to maximize the total

expected reward collected by taking actions according to its policy [2]. RL is modeled

as a Markov Decision Process (MDP) [40] described as the tuple.⟨S,A,R,T,ρ(s0)⟩;
Where ρ(s0) is the set starting states [2], S is All possible states and A are actions.

Actions at taken in a state st produce rewards rt depending on the next state st+1 as

defined by the reward function R(st ,at ,st+1). The next state is determined according to

Chapter 2. Background 5

the transition dynamics T(st+1|st ,at), which may be non-deterministic. RL algorithms

aim to learn the optimal policy π∗ (at |st)) [2] that maximises the expected sum of dis-

counted rewards π∗ = argmaxπE[∑∞
t=0 γtrt+1|π], where γ is the discount factor ∈ [0,1].

2.6 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is considered to be easy to implement and stable

compared to alternative algorithms. It is On-policy, meaning the experiences used to

update πθ are generated by the policy πθ [46, 54]. The algorithm learns a policy π(at |st)

and a value function V(st). The policy learns via policy gradients, learning it directly by

estimating the gradient (Equation 2.2) using the generalized advantage estimator [45]

(Equation 2.3), which values the actions taken against the expected return of a specific

state; The advantage estimate is positive when the policy is improving and negative

otherwise.

E[
∞

∑
t=0

∇θlog πθ(at |st) Ât] (2.2)

Ât =−V(st)+ rt + γrt+1 + ...+ γ
T−t+1rT−1 + γ

T−tV(sT) (2.3)

Schulman et al. [46] innovated by removing the optimization constraints of TRPO[44]

while preventing the policy update being to large. Achieved using a loss function that

clips the ratio r of the change in the policy (Equations 2.4, 2.5) if it exceeds a threshold.

LCLIP
t (θ) = Êt [min(rt(θ)Ât , clip(rt(θ),1− ε,1+ ε)Ât] (2.4)

where rt(θ) =
π(at |st ;θ)

π(at |st ;θold)
(2.5)

Note, we can share parameters between the value function and the policy. Doing

so introduces additional terms for the value function error, and an entropy bonus to

promote policy exploration (Equation 2.6).

Clipping forces the ratio r in the range [1− ε,1+ ε] and thus preventing large

deviations between the old and the new policy, by limiting the estimated gradient.

As the loss function takes the minimum, it produces a lower bound of the unclipped

objective function. Figure 2.1 shows the effect of the clipping function.

Chapter 2. Background 6

LCLIP+V F+S
t (θ) = Êt [LCLIP

t (θ)− c1LV F
t (θ)+ c2S[πθ(st)] (2.6)

2.6: where c1 and c2 are coefficients, S is an entropy bonus, and

LV F
t = (Vθ(st)−V

target
t)

Figure 2.1: ”Plots showing one term (i.e., a single timestep) of the surrogate function

LCLIP as a function of the probability ratio r, for positive advantages (left) and negative

advantages (right). The red circle on each plot shows the starting point for the

optimization, i.e., r = 1. Note that LCLIP sums many of these terms” [46]

As shown in Algorithm 1, PPO computes multiple updates of the policy πθ with

experiences collected using πθold . This highlights the necessity for clipping, as large

changes will break the requirements of an on-policy algorithm, which causes the

instability found without clipping. PPO is equally stable and reliable compared to

TRPO, while showing improved results, exhibiting better sample efficiency, achieving

greater total cumulative reward, and is more broadly applicable.

Algorithm 1 PPO, Actor-Critic style [46]
1: for Iteration: 1,2,...,N do
2: for actor=1.2,...,N do
3: Run policy πθold in environment for T timesteps

4: Compute advantage estimates Â1, ..., ÂT

5: end for
6: Optimize surrogate L w.r.t θ, with K epochs and minibatch size M ≤ NT

7: θold ← θ

8: end for

Chapter 3

Related Work

3.1 Learning Trajectory-based Controllers

Primitives frequently appear in the literature as a method to learn trajectory-based

locomotion controllers from expert data. Neural networks are applied in recent works,

with more effort towards generative instead of discriminative models.

Primitives: Kinematic Motion Primitives (kMPs) [35, 52] produce static controllers,

showing the ability to execute stable gaits on physical robots [36, 50]. kMPs are derived

using Principal Component Analysis (PCA [19]) for dimensionality reduction. The

method extracts eigenvalues corresponding to each motor-controlled joint. Typically a

subset of the eigenvalues can reconstruct joint angle trajectories with a high degree of

accuracy. Singla et al. [50] show that a single set of kMPs learned from one gait (trot) is

sufficient to generate multiple gaits (walk, bound, gallop) through time-shifting. Moro

et al. [36] create several kMP controllers for different gait speeds, demonstrating gait

synthesis through a linear combination of the kMPs.

Periodic Dynamic Movement Primitives [16, 17, 43] (dMPs) also produce static

controllers. They are modeled as a dynamical system using a linear second-order

differential equation τÿ = α[β(g− y)− ẏ] + f (φ) where τ is a time constant, α and

β > 0 are tuned and fixed constants, y is the trajectory to fit, and f (φ) (Equation 3.1)

is a forcing function given the phase φ that creates oscillations around the goal g = 0.

Given a single demonstration, the weights ωi can be trained using locally weighted

regression to fit ftarget (Equation 3.2), reproducing the trajectories ydemo.

Rosado et al. [42] and Liu et al. [32] show the adaptability of this formulation.

Specifically, [42] shows that modifying the parameters r, ω, and g can alter the am-

plitude, frequency, and offset of the trajectories, which can enable adaptive control.

7

Chapter 3. Related Work 8

f (φ) =
∑

n
i=1 ψi(φ)ωi

∑
n
i=1 ψi

r ψi(φ) = exp(hi(cos(φ− ci)−1) (3.1)

3.1: r characterises the amplitude of the oscillations, ψi are Mises basis function, and

N,hi,ci are selected hyper-parameters.

ftarget = τ
2ÿφ,demo−α[β(g− yφ,demo)− τẏφ,demo (3.2)

FastMimic [30] utilizes this attribute, optimizing the parameters r and g to transform

dMPs fitted to motion capture data re-targeted [37] to the A1 robot. They demonstrate

rapid imitation learning and impressive transferability to physical systems.

Both kMPs and dMPs provide limited control, only producing static controllers (e.g.

a single gait). Furthermore, dMPs require a unique dMP for each degree of freedom

of a trajectory. For example, FastMimic [30] requires 24 unique dMPs per gait, 12 to

model the foot position trajectories. However, dMPs can be task-parameterized [38, 39];

therefore, it may be possible to create a dynamic controller, although this has not been

applied to rhythmic dMPs, which are required for locomotion.

Discriminative Neural Networks (NN) are used frequently for trajectory prediction

tasks. Nevertheless, we seldom see them applied for locomotion control, but typically

as a component within a larger system [24, 57].To our knowledge, there are only two

examples of discriminative neural networks being used directly for trajectory prediction

in robot locomotion[28, 63].

Yamamoto et al. [63] use auto-encoders to reconstruct the robot’s state from a

three-dimensional latent encoding. They found that the latent variables periodically

oscillated between zero and one during locomotion. Furthermore, they generate gait

patterns outside of the training distribution by injecting oscillations into the decoder.

However, the additional gaits could not be used to control the physical robot effectively.

Li et al. [28] use a fully connected neural network for trajectory prediction. Despite

achieving a low validation loss, the model could not generate functional locomotion

behavior in simulation. This is likely because the inputs to the network did not include

a concept of time, unlike [63], which used time-dependent oscillatory latents. Therefore

similar network inputs could have very different labels confusing the model. It is worth

noting that this model was trained to seed the neural network of an RL agent. Therefore,

the controllers’ functionality was not of primary concern.

Chapter 3. Related Work 9

Generative Models enable plausible motion synthesis, for example, by creating

realistic motion between two gaits provided during training. Surovik et al. [53] use

conditional variational auto-encoders (cVAE [51]) to learn a generative model for

quadrupedal locomotion in a receding-horizon fashion. The model can navigate ob-

stacles, gaps, and other challenging terrains. The cVAE reconstructs a sequence of

trajectories τ conditioned on a sequence of sensory observations and task parameters

x. During the roll-out the encoder is not used, therefore, latent variables z are deter-

mined using a nearest-neighbors look-up between x and x′ ∈D, such that g(x)→ x′

and f (x′)→ z. This limits the potential of the cVAE by restricting the latent space,

and assumes that there exists an x′ sufficiently similar to x such that the latent z are

appropriate.

VAE-Loco [34] uses disentangled variational autoencoder (VAE) for trajectory

prediction. Given a sequence of previous robot states, the VAE reconstructs the current

state and predicts the following k states. They observe that the latents move in a cyclic

pattern during locomotion. Furthermore, they found that injecting a drive signal into

the latent space with the least variance can control the locomotion gait. The signal is

parameterized by Ak,εk,Tk, determining the step height, frequency, and stance duration,

respectively. Impressively, this method can generate continuous variations of the trot

gait (given a single style of the trot gait as a demonstration); However, it was not shown

to produce multiple gaits.

3.2 Locomotion via Reinforcement Learning

As our framework does not rely soley on RL techniques we briefly discuss some of

the advanced approaches applying RL for robotic locomotion. The field is rich with

successful implementations [13, 15, 26, 58, 62], most notably, Lee et al. [27] train a

policy that effectively transfers to a physical system, traversing unseen muddy and

rocky terrains without any visual system. This is achieved by gradually increasing the

terrain difficulty during training, teacher guiding via a privileged learner[5], and many

millions of training time-steps.

Efforts to reduce the sample efficiency bottleneck have been primarily focused

around Imitation learning, and residual learning (Section 3.3). Imitation learning tech-

niques typically try to replicate reference motions, for example motion capture data that

has been retargeted to the robot [37] or trajectories provided by an expert controller

Chapter 3. Related Work 10

[47]. Alternatively, Escontrela et al. [9] and Li et al. [29] aim to produce trajectories of

the same distribution through adversarial rewards, training a discriminator to determine

if the trajectory was produced by the agent or a reference. Yang et al. [64] made a

significant contribution with MELA, a hierarchical system capable of generating diverse

motions including fall recovery. The agent synthesises a policy from several expert

policies trained for specific skills through imitation, demonstrating rapid learning of a

multi-skilled system.

3.3 Locomotion via Residual Learning

Residual Learning [18, 68] methods train an RL agent to produce target trajectory

deltas and sum this with a base trajectory (reference) typically generated from an expert

controller. We see this applied to control both bipedal [8, 20, 21, 61] and quadrupedal

robots [11, 48] to improve the sample efficiency and robustness.

Xie et al. [61] implemented an early residual learning framework on Cassie1, a

bipedal robot. Using a looped, two-step reference trajectory and a residual agent, they

demonstrate traversing over challenging terrains, recovering balance from significant

perturbation, and correcting infeasible reference trajectories. The agent receives the

reference motion and the robot’s state, outputting the residual trajectories in the joint

angle space. However, walking at a range of speeds required training multiple agents

and longer training times as the target velocity increased.

Duan et al. [8] improve upon the work from Xie et al. [61] by providing a greater

variety of reference trajectories; however, similarly , they are not dynamic. Trajectories

are queried from a library by the desired velocity. They display the significant sim-to-

real capabilities of residual learning, and that residuals in the joint space perform poorly

compared to positional residuals; Which requires less training and achieves greater

asymptotic cumulative rewards. Both works [8, 61] are significantly limited by lacking

the ability to turn due to not including any rotational reference trajectories.

Overcoming the inability to turn, Kasaei et al. [21] use a CPG controller to generate

the reference motions enabling omnidirectional and continuous velocity control. The

agent is unaware of the reference trajectory but, in addition to residuals, produces the

CPG control variables; step lengths, rotation, target CoM, step duration, and PD gains,

1https://github.com/agilityrobotics/cassie-doc

Chapter 3. Related Work 11

while demonstrating impressive robustness with the more complex COMAN2 robot.

Similarly, Gangapurwala et al. [11] use a model-based controller to generate dy-

namic omnidirectional reference trajectories with the ANYmal3 robot without passing

reference trajectories to the agent. However, they pass information about the terrain.

Using a convolutional auto-encoder, the latent space, which represents the input depth

map, is included in the agents’ state space.

Recent works learn to generate reference trajectories. Shi et al. [48] produce

reference trajectories using a CPG-RBF [56] with an additional linear network optimized

via evolutionary strategies[3] for reference trajectory exploration. The linear network

and residual agent are optimized interchangeably. The trained linear network modifies

the CPG-RBF trajectories in a way best suited for the task, producing more effective

reference trajectories.

Yu and Rosendo [66] develop a multi-modal locomotion framework that can control

a quadrupedal robot to walk on two legs via residual learning. They provide four

primitive reference trajectories parameterized by πθ′ , which are optimized in parrallel

with the residual agent using various non-gradient optimization methods, achieving the

best results using CMA-ES [14].

Most impressively, Jungdam et al. [20] train a kernel using a cVAE to produce a

range of locomotion strategies for a humanoid. The kernel behavior alone is somewhat

random. The residual agent retargets the trajectories enabling omnidirectional control.

However, this controls a physically-simulated character, simplifying the challenges

faced when dealing with robots.

In an alternative to learning residuals, Li et al. [31] train the policy to directly output

the target trajectories, arguing that residual learning limits the controller’s capability.

The policy receives a reference trajectory from a gait library, consisting of predeter-

mined trajectories that can be selected according to the target frontal, lateral, and angular

velocity commands. This method shows slightly improved performance compared to

residual baselines. However, it is less capable of handling large perturbations.

2https://robots.ieee.org/robots/coman/
3https://robots.ieee.org/robots/anymal/

Chapter 4

Methodology

4.1 Problem Formulation

This project aims to create a robust locomotion framework with omnidirectional control.

Agility and versatility being at the core of the project, we aim to produce a controller

that can navigate across a broad range of unseen terrains quickly. As such, the core

behavioural characteristics of concern are the robots falling frequency (robustness), and

the number of targets the robot can reach within a time limit. Given a target location

postarget the controller must autonomously navigate a robot across the terrain, such

that the distance Dtarget between the robots position posbase and postarget is less than a

minimum threshold Dmin.

4.2 Proposed Architecture

The proposed locomotion framework consists of three core components (Figure 4.1);

A kernel, an RL agent, and a low-level PD controller. The kernel is an MLP trained

to replicate the trajectories produced by a model-based MPC controller. Given a set

of velocity commands, it outputs foot target positions in cartesian space relative to the

robot’s base.

The role of the RL agent is to make the locomotion strategy both agile and versatile

to the environment via residual learning, modifying the trajectories produced by the

kernel. Specifically, it produces foot target deltas in cartesian space that are summed

with the kernel output, as shown to be most effective by Duan et al. [8]. As such, it

learns the robot’s dynamics, and skills such as balance recovery.

Given the aggregated foot target positions, we convert these into target joint angles

12

Chapter 4. Methodology 13

using inverse-kinematics and pass this to the low-level PD controller. The low-level

PD controller is responsible for optimizing the torque values applied to each joint that

realizes the desired behavior of the robot.

Figure 4.1: Overview of the multi-stage robot locomotion framework , where the red

components represent trainable modules, and blue components represent fixed

modules.

4.2.1 Environment

We simulate the A1 uni-tree quadruped1 (Figure 4.2a) in the PyBullet2 physics simulator

for all the work carried out in this project. In addition, we wrap the PyBullet simulation

in an Open-Ai Gym3 environment for all RL experiments.

Several environments are used for different aspects of the training and optimization

process. For training the kernel, data is collected from an expert controller navigating

over a flat terrain (Figure 4.2a). Optimization of the RL agent is carried out using a

moderately difficult height-field terrain with perturbations 0.35cm (Figure 4.2b), which

1https://www.unitree.com/products/a1/
2https://pybullet.org/wordpress/
3https://www.gymlibrary.ml/

Chapter 4. Methodology 14

is easy for the agent to learn on without requiring long training times. The final RL

agent is trained on a variety of terrains, including height-fields with more significant

perturbations (Figure 4.2c) and terrains simulating hills and mounds (Figure 4.2d); For

all experiments the lateral friction of the ground is set to 1, and the navigation precision

is set as Dmin = 0.5m. Furthermore, through out all experiments we use the same four

seeds ({150,215,345,556}), which will be referenced throughout this paper.

(a) A1 PyBullet (b) Height-field (3.5cm) (c) Height-field (6cm) (d) Perlin

Figure 4.2: Training terrains in the PyBullet simulation.

4.2.2 Command Generator

The command generator is responsible for generating target frontal, lateral, and yaw

velocity commands. Given the target location postarget , the robot’s current location

posbase, and orientation ornbase, we can determine the desired velocity commands that

will direct the robot to the target (Algorithm 2). It gradually increments the velocity

commands at a frequency of 20htz, with a maximum change of±0.005 to ensure smooth

transitions in the velocity commands after a change in the postarget . This benefits the

controllers’ performance, forcing it to execute a series of trajectories given a constant

set of commands, which helps to prevent foot slippage.

4.2.3 Gait Generator

The gait generator developed is a modification of that from the work of Peng et al. [37],

inspired by the simplicity and versatility Yang et al. [65] introduced. It is responsible

for producing desired locomotion gait patterns in the form of a contact schedule (Figure

4.3b) according to its internal parameters: leg phases φ1:4 ∈ (0,1], initial phases θ1:4 ∈
(0,1], swing ratio rswing ∈ (0,1], and stance duration τstance. .

Leg phase variables define the completion of a full step cycle for each leg; they are

updated at each time-step (200htz). Step cycles consist of two states: stance (φi > rswing),

Chapter 4. Methodology 15

where the feet are in contact with the ground, and swing (φi ≤ rswing) when not (Figure

4.3a). The parameter stance duration determines the amount of time the leg remains in

the stance state. Thus we can determine the swing duration τswing (Equation 4.1) and

the step cycle duration τstep (Equation 4.2). Given the initial phases and the current

time, we calculate the current phases using Equation 4.3.

τswing = τstance/(1− rswing)∗ rswing (4.1)

τstep = τstance + τswing (4.2)

φi = θi +(τ/τstep) mod 1 (4.3)

The initial phase variables are primarily responsible for coordinating each leg to

produce the desired gait patterns (Table 4.1). While the parameters τstance and rswing are

most responsible for the feasibility of the gait pattern, for example, an excessively long

stance duration can cause the robot to fall.

Gaits θ1 θ2 θ3 θ4 τstance rswing

walk 0. 0.5 0.75 0.25 0.3 0.25

trot 0.9 0.4 0.4 0.9 0.3 0.4

bound 0.4 0.4 0.9 0.9 0.1 0.3

Table 4.1: Gait generator parameters for different gaits.

(a) Illustration of foot trajectory over step cycle

phases.

(b) Illustration of common quadrupedal

walking gaits, as a contact schedule [63].

Figure 4.3: Illustrations of gaits schedules and state characteristics.

4.2.4 PD controller

Given the foot positional target pre f , we generate joint angle targets as inputs for the

PD controller via inverse kinematics. We apply the torque values produced by the

Chapter 4. Methodology 16

PD controller to each corresponding joint motor at a rate of 1000htz, as shown to be

effective in MELA [64]. Figure 4.4 demonstrates the effect of implementing PD control

at different rates, given a fixed target generation rate of 200htz using the Kp and Kd

parameters displayed in Table 4.2. We observe a significant error at a control rate of

1000htz, which increases as the control rate decreases. Note that implementing a higher

control rate requires considerably more compute.

Gains abductor hip knee

Kp 100 100 100

Kd 1 2 2

Table 4.2: Parameters of the PD controller.

Figure 4.4: Demonstration of the foot position error in the z axis at different PD control

rates. The blue line shows the target position, while the others show the true foot

position after each control step.

4.2.5 Low Pass Filter

The role of the low pass filter (LPF) is to smooth noisy trajectories, which would

otherwise result in poor performing and jittery locomotion strategies that are likely to

be infeasible. The Kernel replicates the MPC controllers’ trajectories, which are known

to be feasible. Therefore, we do not smooth the trajectories produced by the kernel,

only the residual outputs of the agent (Equation 4.4), as shown to be effective by Kasaei

et al. [21].

δA
l p f
t = α∗δAt +(1−α)∗δA

l p f
t−1 (4.4)

Equation 2.6: Where δA
l p f
t is the residual after passing through the LPF, δAt is the

residual produced at the current time-step, and α is the smoothing factor.

Chapter 4. Methodology 17

Figure 4.5: Illustration of the effect of the LPF on the residual outputs. The blue line

showing the kernel trajectory, the orange showing unpassed residual outputs summed

with the kernel trajectories, the green and red show passed residual outputs.

We set the smoothing factor to 0.1 for all experiments; this sufficiently removes

most of the noise (Figure 4.5A). Note that leaving some noise can be beneficial for

policy exploration. Furthermore, it can improve responsiveness especially during highly

noisy instances where over smoothing can introduce bias (Figure 4.5B).

4.2.6 Kernel

4.2.6.1 Expert MPC Controller

We use the MPC controller from [37, 65] as our teacher model to train the kernel, the

code for which is openly available4. To collect the expert data, we use the command

generator (Section 4.2.2), gait generator (Section 4.2.3), and PD controller (Section

4.2.4) with the MPC controller described in this section.

(a) Stance controller, optimizing the ground

reaction forces [65]

(b) Swing controller, producing parabolic foot

position trajectories [65]

Figure 4.6: Illustration of the MPC controller functions during the swing and stance

states, using a different controller for each state.

While in the swing state, as determined by the gait generator, we use Raibert

Heuristics [41] to create positional foot target trajectories and the PD controller for

4https://github.com/google-research/motion imitation

Chapter 4. Methodology 18

actuating the joints. Raibert Heuristics generates a trajectory following a parabola fitted

to the points (Figure 4.6b): lift-off position pli f to f f , landing position pland , and the

mid-point. pli f to f f is the foot’s position at the point of entering the swing state. pland is

determined by the target velocity commands and current velocities (Equation 4.5) and

is calculated in an open-loop fashion. The mid-point is at the height of pair above pre f ,

which is the default foot position; pair is a controllable parameter that determines the

step height. We execute 80% of the trajectory during the first 50% of the swing phase.

As such, we have more time to execute the remaining swing trajectories resulting in

more accurate landing positions and preventing early touchdowns.

pland = pre f + vhip ∗ (vcmd,hip− vhip)∗ τstance/2 (4.5)

During the stance state we use short-horizon MPC control to optimize the ground

reaction forces of the feet in contact with the ground (Figure 4.6a). The MPC ensures

the robot base tracks a given reference trajectory, which is determined by the velocity

commands. We use the template, Central Dynamics Model [6] to simplify the complex-

ity of the optimization, where the robot is considered as a rigid-body with massless

legs.

4.2.6.2 Data Collection Process

Using the MPC controller (Section 4.2.6.1) described above, we collect a data set to

train the kernel. We run the controller to implement the trot gait, navigating the robot to

500 consecutive target locations at a minimum distance of 2.5m in a random direction.

During this, we collect the data {vbase, abase, vcmd, acmd, q, q̇, φ1:4, p1:4, CoM}
before actions are taken, {pre f

1:4 , p′1:4} and after each time-step(200htz); See Table A.1

for definitions of the variables.

4.2.6.3 Training and Analysis

Yamamoto et al. [63] achieved successful locomotion using time-dependant oscillatory

inputs to the decoder. As such, we hypothesised that the locomotion phases φ1:4, which

are time-dependant, and velocity commands vcmd and acmd , would be an adequate

signal for an MLP to reproduce functional locomotion trajectories. With the velocity

commands allowing us to improve upon the work of Yamamoto et al. [63], enabling

omni-directional and continuous velocity control. Furthermore, we could improve the

kernel performance by giving additional inputs such as the center of mass and joint

Chapter 4. Methodology 19

level information as Mitchell et al. [34] and Surovik et al. [53] showed to be effective

with their generative models.

Training Labels: The kernel aims to replicate the realized foot trajectories of the

robot. Therefore, when the MPC controller uses PD control (swing states), we use the

generated target trajectories pre f
swing as labels. Otherwise, the realized kernel trajectories

would exhibit additional error from the targets due to the lag of the PD controller

(Figure 4.4). As we do not have target trajectories for the stance legs, we instead use

the resulting foot positions after taking actions p′stance for stance trajectory labels.

Phase Representation: Passing raw leg phases to the network would prevent it

from being able to generalize to gaits with a different rswing (Figure 4.7a). The network

would associate specific phase values with either swing or stance trajectories. Therefore,

we use a transformed normalized phase |φi| (Equation 4.6), where the phase is greater

than one during the state swing (Figure 4.7b), irrespective of gait parameters. We cannot

simply use the normalized phase, which defines the completion of a step cycle state

(∈ (0,1]), as there would be no differentiation between the swing and stance states.

|φi|=

1+(φi/rswing), if φi <= rswing

(φi− rswing)/(1− rswing), otherwise
(4.6)

Alternatively, we could represent the phase as a wave by applying a sin function

to the phase (sin(|φi| ∗ π)). This removes the sudden drop in the phase as the state

transitions from swing to stance, and transitions between states occurs at zero. However,

this introduces issues; each point in the phase, for both swing and stance, correspond to

two trajectories (Figure 4.7c). Therefore, this would be most appropriate with a time

series model.

(a) Global phase (b) Normalized phase (c) Normalized sin phase

Figure 4.7: Visualisation of phase representation options, where the shaded blue region

corresponds to a swing state.

Initial experiments When training the kernel with expert trot data, as in Table 4.1.

Chapter 4. Methodology 20

The network learns, however, overfits with a high validation loss (Table 4.3), resulting

in a dysfunctional locomotion controller. Analyzing the behavior of the MPC controller,

it is clear that there is instability in its motion, which can be seen in the robot rocking

as it works to maintain balance. Reducing the stance duration prevents this behavior,

shown by the reduction in the variance of it’s center of mass (Figure 4.8). Long stance

durations cause longer swing durations. Therefore, the robot must maintain a stance

with only two grounded feet for longer, where the support polygon is small, making it

easy to lose balance. As the robot works to maintain balance, the relationship between

φ1:4, vcmd , acmd and the trajectories becomes weak. As such, multiple distinct labels

exist for given inputs in the dataset, causing model confusion. For this reason we learn

a better kernel with data collected using a lower stance duration, as shown in Table 4.3.

X

−0.050−0.0250.0000.025
Y−0.1

0.0

−1.0000
−0.9975
−0.9950
−0.9925

A

−0.050−0.0250.0000.025 −0.1
0.0

−1.0000
−0.9975
−0.9950
−0.9925

B

−0.050−0.0250.0000.025 −0.1
0.0

Z

−1.0000
−0.9975
−0.9950
−0.9925

C

Figure 4.8: Center of Mass of the robot using the MPC controller varying the stance

duration: A) τstance = 0.3, B) τstance = 0.25, C) τstance = 0.2

Optimization (Kernel-base): With the data collected using a stance duration of 0.2,

we use Bayesian Optimization via Optuna5 for hyperparameter tuning, training for ten

epochs, and minimizing the final validation loss. The search space and results for this

optimization are shown in Table A.2. The optimized model achieves an extremely low

validation loss (L1=6.2e−4, Table 4.4), demonstrated by the closely aligned predicted

trajectories in Figure 4.9. The trained kernel produces a high-performing locomotion

controller in simulation (video available), validating our initial hypothesis.

Data dependency: The results discussed above were achieved training on 80% of

the data, corresponding to walking to 400 target locations and 2.1hrs of locomotion data.

5https://optuna.org/

https://youtu.be/izq5_HTxzWc

Chapter 4. Methodology 21

0 200 400 600 800 1000

0.125

0.150

0.175

Tr
aj
ec
to
ry
 X

0 200 400 600 800 1000

−0.14

−0.12

Tr
aj
ec
to
ry
 Y

0 200 400 600 800 1000

−0.25

−0.20

−0.15
Tr
aj
ec
to
ry
 Z

−0.25

0.00

−0.25

0.00

Co
m
m
an
d
m
/s

−0.25

0.00

Predicted Trajectory
MPC Trajectory
Rotation s eed command
Forward s eed command
Lateral s eed command

Figure 4.9: Front right foot trajectories produced by the MPC control compared to the

kernel-base as the input velocity commands change given a stance duration of 0.2

Collecting this amount of data may not be possible; Ideally, we can learn a controller

with relatively little expert data. Table 4.5 shows the results of training with less data,

with each experiment using the same validation set. We observe a deterioration in the

validation performance as the number of targets decreases. However, training with only

ten target locations (3.1 minutes), the kernel achieves a validation loss of 1e−3, which

results in a functional controller in simulation.

4.2.6.4 Kernel Trajectory Analysis

Dynamic Control: The kernel demonstrates the ability to act as a dynamic controller

by producing trajectories that vary depending on the commands we pass (Figure 4.10).

We observe that the trajectories produced on the z-axis appear independent of all of the

velocity commands, as expected.

Increasing the frontal velocity commands produces trajectories with greater step

length, as shown by the increasing magnitude of the oscillation in the x-dimension

(Figure 4.10a). Also, the trajectories move closer to the body, as shown by the range

of the oscillations in the y-dimension reducing. Lateral velocity commands also affect

both x and y-dimension trajectories. Contrary, lower lateral commands result in greater

step lengths (Figure 4.10b). Additionally, lateral commands of greater magnitude cause

the oscillations in the y-dimension trajectories to increase symmetrically. We see little

change in the x-dimension trajectories by changing the angular velocity commands;

However, we note that the effect in the y-dimension also appears symmetric (Figure

Chapter 4. Methodology 22

4.10c).

0.15

0.20

Tr
aj
ec

to
ry
 X

Time

−0.14

−0.13

Tr
aj
ec

to
ry
 Y

−1

0

1
Frontal speed command Frontal command min/max

−1

0

1

Fr
on

ta
l c

om
m
an

d
m
/s

(a) Frontal Velocity (0 to 1m/s)

0.125
0.150
0.175

Tr
aj
ec

to
ry
 X

Time

−0.14

−0.12

Tr
aj
ec

to
ry
 Y

−0.5

0.0

0.5
Lateral speed command Lateral command min/max

−0.5

0.0

0.5

La
te
ra
l c

om
m
an

d
m
/s

(b) Lateral velocity (-0.5 to 0.5m/s)

0.14

0.16

Tr
aj
ec

to
ry
 X

Time

−0.14

−0.13

Tr
aj
ec

to
ry
 Y

−1

0

1
Yaw speed command Yaw command min/max

−1

0

1

Ya
w
co

m
m
an

d
m
/s

(c) Yaw velocity (-1 to 1m/s)

Figure 4.10: Kernel-base front right foot trajectories with varying velocity commands. All

commands fixed to zero other than the command being varied. The grey lines indicate

the min and max values passed in training. The red line shows the velocity command

input.

The observed trends in the trajectories deteriorate when the commands move outside

the observed limits during training (grey lines Figure 4.10). This suggests that the

model cannot generalize effectively to such commands. Therefore, we would not be

able to produce a gait that moves at significantly greater velocities than provided during

training without speeding up the step cycle rate.

Chapter 4. Methodology 23

Symmetry in legged locomotion is expected, considered good, and often targeted as

a behavioral feature from RL-controlled robots [1, 67]. The gait generator enforces some

degree of symmetry in the trajectories shown by the alignment in the x and z-dimension.

However, true symmetry would imply that the front-right and rear-left y-dimension

trajectories should be the inverse of each other when there are no yaw commands (e.g.

walking straight or in place). This is not observed, therefore, trajectories produced by

the kernel are not perfectly symmetric (Figure 4.11). However, the symmetry improves

as the frontal velocity increases, suggesting the trained kernel has some deficiencies,

these may be inherited from the MPC controller, or a consequence of low data in this

region of input space.

0

1
X

0

1
Z

0

1
Y

Time
0

1
Y (0.3m/s)

Front right foot trajectory
Back left foot trajectory

Figure 4.11: Normalized kernel-base trajectories for the front right and back left legs,

showing asymmetry in the y-dimension at 0m/s velocity commands, with symmetry

becoming apparent at a frontal velocity of 0.3m/s

4.2.6.5 Further Experiments

Gait generalization (Kernel-ind): Yamamoto et al. [63] show the capability to gen-

eralize to unseen gait patterns. This attribute would be beneficial for promoting the

versatility of the framework by enabling multi-modal locomotion. We hypothesized

that the kernel-base would fail to generalize for other gait patterns due to using a fully

connected network, thus modeling the relative phases of the gait. Using other gait

parameters to generate the phases would result in poor predictions due to the unseen

relative phases. We show this to be true in Figure 4.12, where the kernel produces

erratic trajectories in the z-dimension.

Chapter 4. Methodology 24

(a) X-Dimension (b) Y-Dimension (c) Z-Dimension

Figure 4.12: Comparison of the front right foot trajectory predictions between the

kernel-base model and kernel-ind. Showing that the kernel-ind can potentially produce

trajectories for unseen gaits.

Modeling each leg individually significantly reduces the z-dimension errors (Figure

4.12c). This version (kernel-ind) receives velocity commands, a single leg phase, a

one-hot encoding representing the target leg, and only predicts the positional trajectory

for that target leg. As such, the relative phases are ignored. This has a substantial effect

on the z-trajectories, although significant errors in the x and y-trajectory predictions

persist (Figures 4.12a and 4.12b), resulting in weak simulation performance (executing

the walk gait), albeit improved upon kernel-base (video available).

Furthering the Kernel capabilities (Kernel-ext): The MPC controller with a

stance duration of 0.2, shows robust stability when altering step and ride heights,

exhibiting minimal change in the variance in the center of mass (Figures A.2 and

A.3). We collect data, randomly selecting step height (∈[0.05,0.18]) or ride height

(∈[0.18,0.28]) settings before walking to each target location. Training the kernel

on this data (with the settings as additional inputs) causes a minimal increase in the

validation loss (L1=7.1e−4, Table 4.4), while allowing us to control the ride and step

heights when using it as a controller (video available). Figure 4.13 shows how the

z-trajectories change with respect to the step and ride height commands.

(a) Step height commands (b) Ride height commands

Figure 4.13: Kernel-ext front right foot z-trajectories with varying step and ride height

commands, where the grey lines show the min and max values provided during training.

https://youtu.be/PufkDOURvfI
https://youtu.be/Qjd3tMIHl00

Chapter 4. Methodology 25

Addressing dynamic capture: Kernel variants thus far do not capture the robot’s

dynamics but regresses the trajectories produced, limiting the kernels’ versatility. Hence

we cannot learn a kernel of MPC controllers that produce high-variance trajectories.

Conversely, Surovik et al. [53] and Mitchell et al. [34] achieve this while provid-

ing additional features of the robot state. We found including additional variables

{vbase, abase, q, q̇, CoM} (Kernel-dyn1) reduced the validation loss (L1=2.5e− 4,

Table 4.4); however, the kernel does not produce functional locomotion in simulation.

We hypothesised that poor trajectory prediction at the start of locomotion (Figure

4.14a) caused the robot to enter states outside the training distribution resulting in

insufficient control performance. We resolve this (Figure 4.14b) and significantly

reduce the error (L1=3.1e− 4, Table 4.4) by collecting data where the robot is reset

after reaching each target location (Kernel-dyn2). Furthermore, we stack a history of 5

input states and use the normalized sin phase representation as we have a time series

input. Yet, we still do not have a functional controller that captures the robot’s dynamics

(video available).

(a) Kernel-dyn1 predictions (b) Kernel-dyn2 predictions

Figure 4.14: The kernel-dyn1/2 front right foot trajectory predictions at the start of

locomotion compared to the MPC controller targets.

4.2.7 Kernel Results

τstance 0.3 0.25 0.2

mean validation loss 5.9e-3 2e-3 1.6e-3

functional locomotion False False True

Table 4.3: Performance of the kernel given different stance durations used for data

collection, using the manually tuned kernel hyperparameters: LR 0.001, Linear LR

decay 0.8, Dropout 0.2, Batch-normalization True, Batch-size 100, Network (256x3),

Activation Tanh, Loss L1

https://youtu.be/coAuqY1ND4E

Chapter 4. Methodology 26

Kernel-variant Mean Validation Loss Standard Deviation

Kernel-base 6.2e−4 6.9e−6

Kernel-ind 7.2e−4 4.9e−6

Kernel-ext 7.1e−4 1e−5

Kernel-dyn1 3.1e−4 6.1e−6

Kernel-dyn2 2.5e−4 5.6e−6

Table 4.4: Performance of kernel variants, showing the mean minimum achieved

validation loss and the standard deviation. Hyperparameters: LR 0.0024, Linear LR

decay 0.7, Dropout 0.0002, Batch-normalization False, Batch-size 200, Network (256x4),

Activation ReLU, Loss L1

Number of Targets 10 25 50 100 200 400

Mean Validation Loss 1e−3 9.1e−4 8.4e−4 7.7e−4 6.7e−4 6.2e−4

Standard Deviation 3.1e−6 9.8e−6 5.3e−6 6.2e−6 5.5e−6 6.9e−6

Table 4.5: Kernel-base performance as the amount of data increases.

Figure 4.15: The realized velocities of the robot given velocity commands for the MPC

controller and kernel base.

Figure 4.15 shows the performance gap between the kernel-base and the MPC

controller. The kernel cannot move at negative frontal velocities while not being able

to match the maximum positive frontal and all lateral velocities of the MPC controller.

This verifies that the kernel cannot generalize to velocities greater than experienced in

training. Furthermore, the kernel experiences extremely high variance when turning,

Chapter 4. Methodology 27

showing a significant performance gap in the realized yaw velocities compared to the

MPC controller.

4.2.8 RL Agent

We chose an initial architecture, reward function and state feature set to be improved,

using kernel-base to provide the reference trajectories. Each aspect is optimized indi-

vidually for efficiency, starting with the PPO hyper-parameters, reward function, and

finally the state features.

Initial state features: The initial state feature set consists of core attributes used

throughout all the experiments and optional attributes. The core attributes are selected

as they appear frequently in the literature, or are required for our formulation.

• Core attributes: {vbase, abase, vcmd, acmd, q, q̇, CoM, pitchbase, rollbase}.
• Optional attributes: {φ1:4, f ootcontacts1:4}

We choose to use the phase variables φ1:4 rather then the reference trajectories

typical used in residual methods [8, 20, 61]. This provides consistency between the

kernel and agent inputs. Furthermore, as the kernel is deterministic, and the agent

receives all other kernel inputs, the kernel trajectories (reference motions) are fully

described.

Reward Function Formulation: Reward functions have a large impact on the

performance of reinforcement learning systems. We use radial basis functions (RBF

4.16a) to define each feature of the reward function as they have shown effectiveness in

other works [30, 64]. They limit the maximum reward to one (by default), allowing us

to determine the maximum reward per episode. They provide a smooth reward curve

for the algorithm to follow, and can prevent unwanted penalties which may occur using

nominal rewards. Typically we use positive RBFs, but we can also use negative 4.16b,

and mixed 4.16c RBFs. A steeper RBF function (Figure 4.16a) incentivises learning,

and accommodates for attributes with small numeric errors.

Chapter 4. Methodology 28

−2 −1 0 1 2
0.00

0.25

0.50

0.75

1.00 q=2
q=10
q=40

(a) RBF positive rewards:

ri = exp(−(γ′− γ)2 ∗q)

−2 −1 0 1 2
0.00

0.25

0.50

0.75

1.00

q=2

(b) RBF negative rewards:

ri =−exp(−(γ′− γ)2 ∗q)+1

−2 −1 0 1 2
−1.0

−0.5

0.0

0.5

1.0 q=2

(c) RBF mixture of rewards:

ri = 2∗exp(−(γ′−γ)2 ∗q)−1

Figure 4.16: RBF reward functions: γ′ is target value, γ is the measured value, and q is a

parameter to determines the steepness of the reward function.

Initial reward function: The initial reward function consists of four features

(fi ∈ F): the center of mass (CoM), the linear velocity, the angular velocities, and the

distance to the target location. It is worth noting that the CoM and velocity features are

vectors, which can be integrated to the RBF by taking the euclidean distance between

the target and current value. Table 4.6 details the parameters and Equation 4.7 shows

the baseline reward function, where φ represents the radial basis function.

Reward Feature γ′ γ q weight (ω)

Linear velocity vcmd vbase 18.42 0.01

Angular velocity acmd abase 7.47 0.01

Center of mass [0,0,-1] CoM 2.35 0.01

Distance to target 0 Dtarget 0.74 0.01

Table 4.6: Initial reward function and parameters, RBF parameters taken from [64]

Rt = ∑
fi∈F

ωi ∗φ(γ′i,γi,qi) (4.7)

4.2.8.1 hyper-parameter tuning

Given the initial state feature set and reward function, we first optimize the PPO

algorithm’s hyper-parameters to ensure that further optimizations will train effectively.

We identify candidate solutions using a random search of one hundred trials over the

hyper-parameter search space (Table A.3), training for three million time steps. Taking

the top 5 candidates, we train them for five million time-steps with four seeds 4.2.1, as

shown in Figure 4.17. Trail 3 is selected, and used for all remaining experiments due to

achieving on par performance while using the smallest network, with few epochs.

Chapter 4. Methodology 29

Figure 4.17: Mean and standard deviation of the top 5 hyper-parameter candidates.

Selecting Trial 3: learning rate (lr): 0.001 , lr decay: 1e−7 , batch-size: 4000 , number

of epochs: 10, roll-out length: 2e5 , entropy coefficient: 5e−6, network: Feature

extractor (128x2) Actor (128) Critic (64)

4.2.8.2 Reward Function Design

Feature Experiments: Second, we optimize the reward function features as the in-

cluded terms are critical for effective learning, ensuring it promotes learning the correct

behaviors in later optimizations; Table 4.7 lists the experiments conducted. The mean

cumulative reward is a uninformative metric as each experiment affects the available

reward per episode, instead we track the metrics below.

• Target count: This is the primary metric we optimize for, tracking the number of

target locations the robot can navigate to in 60 seconds.

• Success rate: Navigating to at least two target locations and not falling.

Experiment group one validated the importance of the CoM and target distance

features; removing these in trials 1 and 2 reduced the average target count and success

rate. Furthermore, Trial 4 shows that relaxing the velocity constraints in the reward

function improves performance (Figure 4.18a). However, it achieves a lower success

rate (Figure 4.18b); this is not necessarily bad as it may result in greater state space

exploration, and make the model more robust when training for longer. Experiment

group two, which builds on the reward function from trial 4, significantly improves the

success rate and target counts by including the nominal reward features for falling and

reaching targets, with Trial 7 performing best.

Experiment group three aimed to eradicate foot slippage observed in the motion

behavior (learned using Trial 7) to improve the performance. Of these experiments,

foot slippage was reduced by trials 9 and 10, with 10 performing best. We see a minor

reduction in the target count, and the motion displayed unfavorable characteristics, such

Chapter 4. Methodology 30

Trial ID Description

Exp group 1 The following builds upon the initial reward function described in Section 4.2.8

Trial 1 Removes the CoM feature.

Trial 2 Removes the target distance feature.

Trial 3 Introduces additional velocity constraints, tracking the vertical, pitch, and roll

velocities with targets set to zero.

Trial 4 Removes velocity constraints, prevents losing reward for exceeding the velocity

commands.

Exp group 2 The following trials build upon Trial 4 as this achieved the best results.

Trial 5 Includes a penalty of 5 for falling.

Trial 6 Includes a reward of 5 for reaching a target.

Trial 7 Includes both the penalty and reward used in trials 5 and 6.

Exp group 3 The following trials build upon Trial 7 as this achieved the best results.

Trial 8 Foot slippage reward (RBF), tracking the distance between stance leg contact posi-

tions at timestep t and t-1, setting the target to 0.

Trial 9 Foot slippage penalty (RBF), tracking the distance between stance leg contact

positions at timestep t and t-1, setting the target to 0.

Trial 10 Foot slippage penalty (RBF), tracking the distance between stance leg initial contact

positions and at timestep t, setting the target to 0.

Table 4.7: Reward function features experiment list, grouped into batches.

as walking on the two front legs. Therefore for further optimization experiments, we

continue with the reward function from trial 7.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
num steps 1e6

0

1

2

3

m
ea

n
ta
rg
et
 c
ou

nt
 (3

0) trial baseline
trial 1
trial 2
trial 4
trial 7
trial 10

(a) Mean number of targets reached

0.0 0.5 1.0 1.5 2.0 2.5 3.0
num steps 1e6

0.0

0.2

0.4

0.6

0.8

m
ea

n
su

cc
es

s r
at
e
(3
0) trial baseline
trial 1
trial 2
trial 4
trial 7
trial 10

(b) Mean success rates

Figure 4.18: Performance of significant reward function feature experiments.

Reward Function optimization: The RBF parameters and the reward feature

weights of the reward function are optimized individually over two random search

experiments of 100 trials training for three million timesteps. The RBF parameters

search space can be found in Table A.4, while the search space over the weights is

the continuous range [0.001,0.005]. Figures 4.19a and 4.19b shows the mean target

Chapter 4. Methodology 31

counts e of the 5 best candidate trials from the searches, trained using each seed 4.2.1.

The RBF parameter space optimization failed to improve performance. However, we

find the best-performing reward function from the search over the weight space (Figure

4.19b). The final reward function is detailed in Table 4.8 and Equation 4.8.

0 1 2 3 4 5
num steps 1e6

0

1

2

3

4

m
ea

n
ta
rg
et
 c
ou

nt
 (3

0) trial 0
trial 1
trial 2
trial 3
trial 4
initial

(a) Top five RBF parameters

0 1 2 3 4 5
num steps 1e6

0

1

2

3

4

m
ea

n
ta
rg
et
 c
ou

nt
 (3

0) trial 0
trial 1
trial 2
trial 3
trial 4
initial

(b) Top 5 reward feature weights

Figure 4.19: Optimization performance of the top five parameters found in the random

search for the search over the RBF parameters and reward feature weights.

RBF reward features fi ∈ F γ′ γ q weight

Linear velocity vcmd vbase 18.42 0.0076

Angular velocity acmd abase 7.47 0.0264

Center of mass [0,0,-1] CoM 2.35 0.0298

Distance to target 0 Dtarget 0.74 0.0169

Nominal reward features ri ∈ Fnom Reward function weight

Falling penalty r =

−19.8, if the robot fell

0, otherwise
1

Target reached r =

8.75, if Dtarget ≤ Dmin

0, otherwise
1

Table 4.8: The optimized reward function parameters.

Rt = ∑
fi∈F

ωi ∗φ(γ′i,γi,qi)+ ∑
ri∈Fnom

ri (4.8)

4.2.8.3 State Space Search

The optional state features; leg phase and foot contacts are proved beneficial for learning

(Figure 4.20). Additionally the locomotion phase results in improved learning compared

to reference trajectories from the kernel (which are typically used [8, 61]).

As the agent outputs are passed through the LPF, we break the Markov Property

of the MDP. Such that future states and rewards are no longer independent of past

Chapter 4. Methodology 32

actions given the current state [54]; Including the residuals in the state resolves this and

provides a performance boost. Although this is not done in other work, we often see the

actions taken at previous timesteps being passed [26], which is a less elegant approach

to resolve the same issue. Interestingly, once introducing the residual into the state

space, the leg phase is no longer beneficial (Figure 4.20). As such, the best-performing

state space includes only the residual and the foot contact state as the optional features.

0 1 2 3 4 5
num steps 1e6

0

1

2

3

4

m
ea

n
ta
rg
et
 c
ou

nt
 (3

0)
none
phase
contacts

target-contacts
contacts-residuals
phase-contacts-residuals

contact_force-residuals
phase-contacts

Figure 4.20: The performance using alternative state features. Contacts: The foot

contact states of the robot, Targets: The kernel trajectories predicted Are f
t ,

Contact force: The force the foot exerts on the ground, Residuals: δAl p f
t−1, Phase: φ1:4.

4.2.8.4 Alternative architectures

As the agent learns most effectively with the residual and foot contact state as optional

state features, there is potential for a greater degree of flexibility with the architecture of

the framework. Inspired by Kasaei et al. [21], we use the agent to generate the velocity

commands passed to the kernel.

0.0 0.2 0.4 0.6 0.8 1.0
num steps 1e7

0

1

2

3

4

5

m
ea

n
ta
rg
et
 c
ou

nt
 (3

0)

arch-cmd-150
arch-cmd-215
arch-cmd-345
arch-cmd-556

0
100
200
300
400
500
600
700

m
ea

n
re
wa

rd
 c
ou

nt
 (1

00
)

Figure 4.21: Alternative architecture, where the agent generates velocity commands:

showing the training rewards (dashed line) and target counts.

The alternative architecture shows promise with some runs; however, others fail to

produce the desired behavior, as shown by the inability to navigate to target locations

Chapter 4. Methodology 33

(Figure 4.21). Furthermore, the runs that fail to reach targets consistently increase

the accumulated reward, suggesting the reward function is unsuitable. The model is

not analyzed further due to time constraints; however, it is likely that the emphasis

on the CoM in the reward function incentivises the agent to produce zeros as velocity

commands to the kernel, where the robot is most stable.

4.2.9 Training The Final Agent

Terrains: We train the final agent in a randomly selected terrain, with a 75% probabil-

ity of choosing a height-field terrain (Figure 4.2c) and 25% chance of perlin (Figure

4.2d. Height-field terrains are further varied, sampling the height perturbation uni-

formly ([3cm, 4.5cm]). Selected terrains are used for five consecutive episodes before

resampling a new terrain.

Force perturbations are applied to the robot randomly, sampling the interval

between force application (∈ [5,8] seconds), the magnitude of the force applied (∈
[100,350] newtons), the location of the applied force on the robot’s body, and the

direction in which it is applied. The force is applied for 0.3 seconds and directed

slightly upwards to make falling more likely. This aims to ensure thorough state space

exploration during training and allows the agent to learn a more robust policy.

Implementation details: Policy roll-out, is executed over five cpu’s in parallel,

for a total of 2e7 timesteps. We train 4 policies using the four seeds 4.2.1, shown in

Figure 4.23. Furthermore, we stop decaying the learning rate after 3e6 timesteps to

prevent policy stagnation. We observed continued decay resulted in the KL divergence

of the policy to be ∼ 0, therefore nothing is being learned past this point. Stopping the

decay at 3e6 timesteps ensured consistent non-zero KL divergence that resulted in a

reasonable amount of clipping (∼ 10−20%).

Debugging: The reward function developed (agent-base, Table 4.8) does not

maintain a level base when on a slope, causing the robot to lose balance and take

extreme actions to regain its center of mass (Figure 4.22). Adding a roll and pitch

reward term with the target set at zero solved this (agent-rp). Achieving the best

performance using the gravity terms’ weight and the angular velocity terms’ steepness

(Table 4.8).

Additionally, we note that using a large target threshold Dmin during training limits

the precision of the framework’s navigation capability. Attempting to navigate closer

Chapter 4. Methodology 34

(a) agent-base (b) agent-base (c) agent-rp (d) agent-rp

Figure 4.22: A and B show how the agent trained with the initial reward function

(agent-base) failed to maintain a level base on slopes. C and D show the result after

introducing the roll and pitch term to the reward function (agent-rp).

than the training threshold causes the robot’s CoM to move over its front legs (Figure

A.4) and fall over if on a negative slope.

Figure 4.23: Training of agent-base and agent-rp used for evaluation. Showing greater

success rates, with less variance using agent-rp.

Chapter 5

Evaluations

5.1 Evaluation Environments and Metrics

Environments: We evaluate the framework across four environments similar to those

used by Kasaei et al. [21] and Shi et al. [48]; a sinusoidal terrain (Figure 5.1d) with a

maximum incline of 0.2rad, stairs (Figure 5.1c) with a step height of 4cm, a pivoting

table-top (Figure 5.1b) with maximum rotations around the pivot of 0.087rad, and a

seesaw (Figure 5.1a) with an decline/incline of 0.1rad. We predefined a set of way-

points for the robot to follow, such that the robot completes a course planned to test

challenging situations, such as turning on the staircase (video available).

(a) Seesaw (b) Tabletop (c) Stairs (4cm) (d) Sinusoidal

Figure 5.1: The evaluation environments

Metrics: We measure the average reward per time-step, using the final reward

function (Table 4.8) with the additional roll and pitch features; The success rate, defined

as the proportion of complete runs (reaching all the targets), and the fall rate defined as

the proportion of runs where the robot falls.

35

https://youtu.be/-HNhUIIDRc8

Chapter 5. Evaluations 36

5.2 Results

Tables 5.1 to 5.4 show the performance of the MPC controller given different stance

durations, the kernel acting alone, and the two versions of the trained agents in the

evaluation environments. For the trained agents we take the mean and standard deviation

across the policy trained using each seed 4.2.1, for the kernel, we only evaluate the

kernel used to provide the reference motions to the agent. Furthermore, we note that

each environment has 5 target locations to reach, using 4 different starting locations.

As shown, the agents successfully outperform the MPC controllers and kernel in all

evaluation environments. Agent-rp performs best, only falling a single time out of 16

runs in the most challenging environments, stairs, and sin, significantly outperforming

agent-base. We note that it achieves the most reward per timestep and is also the most

versatile, showing locomotion skills that have generalized to the full range of terrains.

Models Reward/steps Num Targets Success Rate Fall Rate

MPC (τstance =0.3) 0.013±0.072 0.25±0.5 0 1

MPC (τstance =0.2) 0.016±0.11 2.5±2.89 0.5 0.5

Kernel 0.065±0.0085 2.25±1.5 0 1

Agent-base 0.091±0.0076 4.5±1.1 0.8125 0.1875

Agent-rp 0.097±0.001 5±0.0 1 0

Table 5.1: Tabletop

Models Reward/steps Num Targets Success Rate Fall Rate

MPC (τstance =0.3) 0.041±0.0722 0.0±0.0 0 1

MPC (τstance =0.2) 0.065±0.018 0.0±0.0 0 1

Kernel 0.043±0.00245 0.0±0.0 0 1

Agent-base 0.087±0.0024 5±0.0 1 0

Agent-rp 0.091±0.0006 5±0.0 1 0

Table 5.2: Seesaw

Chapter 5. Evaluations 37

Models Reward/steps Num Targets Success Rate Fall Rate

MPC (τstance =0.3) 0.067±0.00098 0.0±0.0 0 1

MPC (τstance =0.2) 0.073±0.0022 0.0±0.0 0 1

Kernel 0.047±0.0019 0.0±0.0 0 0

Agent-base 0.078±0.0046 2.25±1.8 0.25 0.75

Agent-rp 0.089±0.0024 4.75±1.0 0.9375 0.0625

Table 5.3: Stairs

Models Reward/steps Num Targets Success Rate Fall Rate

MPC (τstance =0.3) 0.07±0.0078 0.5±1 0 1

MPC (τstance =0.2) 0.082±0.0057 3±1.83 0.25 0.75

Kernel 0.042±0.0021 0±0.0 0 0

Agent-base 0.081±0.006 3.87±1.4 0.5 0.5

Agent-rp 0.089±0.0026 4.75±1.0 0.9375 0.0625

Table 5.4: Sinusoidal

5.3 Evaluating Perturbation Robustness

The agent is tasked with walking to a single target location, during this task, a force is

applied to a random point of the body, in a random direction, at a random point of time,

for a duration of 0.3 seconds. We determine success by the robots ability to reach the

target location. For each magnitude of force applied, we run 10 attempts and record the

percentage of successfully completed tasks, as shown in Table 5.5.

We observe that the MPC controller falls at relatively low force magnitudes (300N),

where even the kernel can recover balance. The MPC controller outperforms the kernel

at higher forces, however agent-rp has shown to be the most robust, regularly being able

to recover its balance after perturbations of 800N where the MPC controller can not.

250 300 350 400 450 500 550 600 650 700 750 800 850 900

MPC 1 0.8 0.9 0.7 0.5 0.3 0.4 0.2 0.4 0.1 0.2 0 0 0

Kernel 1 1 1 0.8 0.5 0.3 0.3 0 0 0 0 0 0 0

Agent-rp 1 1 1 1 0.9 0.8 0.9 0.8 0.7 0.4 0.8 0.6 0.3 0.2

Table 5.5: Robustness against perturbations, using the MPC with (τstance =0.2)

Chapter 6

Conclusions

Core Findings: We have successfully learned a kernel that replicates the trajectories of

an expert MPC controller. We demonstrate that we can produce dynamic trajectories,

making the kernel more controllable and useful than typical methods using kMPs, dMPs,

and other discriminative neural network methods that are not controllable. Furthermore,

we can dynamically change the step and ride height during locomotion and use the

kernel to produce gait patterns not provided during training, albeit poor at producing

locomotion. Most importantly, we find that we only need minimal amounts of expert

data in order to produce a functional kernel controller.

Using the kernel to provide reference motions and a residual agent adapting them,

we successfully demonstrate the ability to navigate a range of highly challenging unseen

terrains without falling, far exceeding the MPC controller used for training the kernel.

Furthermore, our framework demonstrates superior robustness to external perturbations.

All of which, with relatively little training. Of note, we found the agent performs best

without knowledge of the reference motions and with residual feedback.

Limitations: The most notable limitation of the framework is the inability to learn

a kernel that successfully captures the robot’s dynamics. This limits our ability to learn

a kernel when the control of the robot is unstable and produces trajectories with high

variance. Therefore, we can only use the framework given that we have a highly stable

controller. As such, implementation with bipedal locomotion may be more challenging.

The framework is limited by the velocity command caps introduced by the command

generator. Nevertheless, higher velocities are likely unachievable given the framework’s

fixed gait stance duration. To achieve higher velocities, we would typically increase

the stepping frequency. Finally, step height is the primary concern for the framework’s

38

Chapter 6. Conclusions 39

versatility. The agent cannot take steps significantly greater than required in training

and also possesses no capacity to determine when a greater step height may be necessary.

Future Research Directions: Although we do not expect capturing the robot’s

dynamics in the kernel to improve the framework’s performance, it should be addressed

first to ensure broader scope and applicability. We note that Mitchell et al. [34] and

Surovik et al. [53] do this, however their frameworks lacks interpretable control. We

hypothesize that we could expand upon the work from Surovik et al. [53]; Rather, using

the commands from our framework as the conditioning set of the cVAE. This would

also open up a new research question within residual learning; Could a residual agent

interpolate the latent space rather than modifying positional trajectories?

We found that the residual agent could not correct the zero-shot walk gait trajectories

produced by the kernel-ind. Although it could improve the performance, it was still

sub-expert level and fell even on flat terrains. Due to the poor reference trajectories, it

would be valuable to explore zero-shot trajectory prediction further, as this would allow

us to rapidly learn a broader range of expert gaits with very little data.

The trained agent only produces locomotion for a single gait. However, training it on

a more diverse range of gaits may allow it to generalize to unseen gaits. Furthermore, if

this is the case, it may also be effective to allow the agent to choose the gait parameters,

allowing for gait transitioning and the selection of more stable gaits under uncertain

conditions. Finally, we believe the agent could be enhanced with a vision system as

in the work of Gangapurwala et al. [11]. This could present an opportunity to utilize

the kernel’s ability to adjust the step and ride height, where the agent could select

appropriate kernel step heights for traversing stairs with high steps or selecting the ride

height allowing it to traverse low passes. Alternatively, the agent could lower its ride

height after large perturbations to lower its center of mass and regain stability.

Bibliography

[1] Farzad Abdolhosseini, Hung Yu Ling, Zhaoming Xie, Xue Bin Peng, and Michiel

van de Panne. On learning symmetric locomotion. In Motion, Interaction

and Games, MIG ’19, New York, NY, USA, 2019. Association for Comput-

ing Machinery. ISBN 9781450369947. doi: 10.1145/3359566.3360070. URL

https://doi.org/10.1145/3359566.3360070.

[2] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. Deep Reinforcement Learning: A Brief Survey. IEEE Signal Process.

Mag., 34(6):26–38, Nov 2017. doi: 10.1109/MSP.2017.2743240.

[3] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies - a compre-

hensive introduction. Natural Computing, 1:3–52, 03 2002. doi: 10.1023/A:

1015059928466.

[4] J. Bhatti, A. R. Plummer, P. Iravani, and B. Ding. A survey of dynamic robot legged

locomotion. In 2015 International Conference on Fluid Power and Mechatronics

(FPM), pages 770–775, 2015. doi: 10.1109/FPM.2015.7337218.

[5] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by

cheating, 2019. URL https://arxiv.org/abs/1912.12294.

[6] Jared Di Carlo, Patrick M Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae

Kim. Dynamic locomotion in the mit cheetah 3 through convex model-predictive

control. In 2018 IEEE/RSJ international conference on intelligent robots and

systems (IROS), pages 1–9. IEEE, 2018.

[7] Jared Di Carlo, Patrick M. Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae

Kim. Dynamic locomotion in the mit cheetah 3 through convex model-predictive

control. In 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 1–9, 2018. doi: 10.1109/IROS.2018.8594448.

40

https://doi.org/10.1145/3359566.3360070
https://arxiv.org/abs/1912.12294

Bibliography 41

[8] Helei Duan, Jeremy Dao, Kevin Green, Taylor Apgar, Alan Fern, and Jonathan

Hurst. Learning task space actions for bipedal locomotion. In 2021 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 1276–1282, 2021.

doi: 10.1109/ICRA48506.2021.9561705.

[9] Alejandro Escontrela, Xue Bin Peng, Wenhao Yu, Tingnan Zhang, Atil Iscen, Ken

Goldberg, and Pieter Abbeel. Adversarial motion priors make good substitutes for

complex reward functions, 2022. URL https://arxiv.org/abs/2203.15103.

[10] Siddhant Gangapurwala, Mathieu Geisert, Romeo Orsolino, Maurice Fallon, and

Ioannis Havoutis. Rloc: Terrain-aware legged locomotion using reinforcement

learning and optimal control, 2020. URL https://arxiv.org/abs/2012.03094.

[11] Siddhant Gangapurwala, Mathieu Geisert, Romeo Orsolino, Maurice Fallon, and

Ioannis Havoutis. Real-time trajectory adaptation for quadrupedal locomotion

using deep reinforcement learning. In 2021 IEEE International Conference on

Robotics and Automation (ICRA), pages 5973–5979, 2021. doi: 10.1109/ICRA48

506.2021.9561639.

[12] Sten Grillner and Peter Wallén. Innate versus learned movements—a false

dichotomy? In Brain Mechanisms for the Integration of Posture and Move-

ment, volume 143 of Progress in Brain Research, pages 1–12. Elsevier, 2004.

doi: https://doi.org/10.1016/S0079-6123(03)43001-X. URL https:

//www.sciencedirect.com/science/article/pii/S007961230343001X.

[13] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey

Levine. Learning to walk via deep reinforcement learning, 2019.

[14] Nikolaus Hansen. The cma evolution strategy: A tutorial, 2016. URL https:

//arxiv.org/abs/1604.00772.

[15] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios

Tsounis, Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor

skills for legged robots. Science Robotics, 4(26), jan 2019. doi: 10.1126/scirobot

ics.aau5872. URL https://doi.org/10.1126%2Fscirobotics.aau5872.

[16] A.J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear

dynamical systems in humanoid robots. In Proceedings 2002 IEEE International

https://arxiv.org/abs/2203.15103
https://arxiv.org/abs/2012.03094
https://www.sciencedirect.com/science/article/pii/S007961230343001X
https://www.sciencedirect.com/science/article/pii/S007961230343001X
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772
https://doi.org/10.1126%2Fscirobotics.aau5872

Bibliography 42

Conference on Robotics and Automation (Cat. No.02CH37292), volume 2, pages

1398–1403 vol.2, 2002. doi: 10.1109/ROBOT.2002.1014739.

[17] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning rhythmic move-

ments by demonstration using nonlinear oscillators. In Proceedings of the ieee/rsj

int. conference on intelligent robots and systems (iros2002), number CONF, pages

958–963, 2002.

[18] Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar,

Matthias Loskyll, Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine.

Residual reinforcement learning for robot control, 2018. URL https://arxiv.org/ab

s/1812.03201.

[19] Ian Jolliffe. Principal Component Analysis, pages 1094–1096. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-04898-2. doi: 10.1007/97

8-3-642-04898-2 455. URL https://doi.org/10.1007/978-3-642-04898-2 455.

[20] Won Jungdam, Gopinath Deepak, and Hodgins Jessica. Physics-based character

controllers using conditional vaes. ACM Transactions on Graphics (SIGGRAPH

2022), 2022.

[21] Mohammadreza Kasaei, Miguel Abreu, Nuno Lau, Artur Pereira, and Luis Paulo

Reis. A cpg-based agile and versatile locomotion framework using proximal

symmetry loss, 2021. URL https://arxiv.org/abs/2103.00928.

[22] Benjamin Katz, Jared Di Carlo, and Sangbae Kim. Mini cheetah: A platform for

pushing the limits of dynamic quadruped control. In 2019 international conference

on robotics and automation (ICRA), pages 6295–6301. IEEE, 2019.

[23] Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo Bledt, and Sangbae

Kim. Highly dynamic quadruped locomotion via whole-body impulse control and

model predictive control. arXiv preprint arXiv:1909.06586, 2019.

[24] Yo Kondo and Yasutake Takahashi. Real-time whole body imitation by humanoic

robot based on particle filter and dimension reduction by autoencoder. In 2017

Joint 17th World Congress of International Fuzzy Systems Association and 9th

International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS),

pages 1–6. IEEE, 2017.

https://arxiv.org/abs/1812.03201
https://arxiv.org/abs/1812.03201
https://doi.org/10.1007/978-3-642-04898-2_455
https://arxiv.org/abs/2103.00928

Bibliography 43

[25] Ivan Koryakovskiy, Manuel Kudruss, Heike Vallery, Robert Babuska, and Wouter

Caarls. Model-plant mismatch compensation using reinforcement learning. IEEE

Robotics and Automation Letters, 3(3):2471 – 2477, 2018. ISSN 2377-3766. doi:

10.1109/LRA.2018.2800106. Accepted Author Manuscript.

[26] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor

adaptation for legged robots, 2021. URL https://arxiv.org/abs/2107.04034.

[27] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco

Hutter. Learning quadrupedal locomotion over challenging terrain. Science

Robotics, 5(47):eabc5986, 2020. doi: 10.1126/scirobotics.abc5986. URL

https://www.science.org/doi/abs/10.1126/scirobotics.abc5986.

[28] Anqiao Li, Zhicheng Wang, Jun Wu, and Qiuguo Zhu. Efficient learning of control

policies for robust quadruped bounding using pretrained neural networks, 2020.

URL https://arxiv.org/abs/2011.00446.

[29] Chenhao Li, Marin Vlastelica, Sebastian Blaes, Jonas Frey, Felix Grimminger,

and Georg Martius. Learning agile skills via adversarial imitation of rough partial

demonstrations, 2022. URL https://arxiv.org/abs/2206.11693.

[30] Tianyu Li, Jungdam Won, Sehoon Ha, and Akshara Rai. Fastmimic: Model-based

motion imitation for agile, diverse and generalizable quadrupedal locomotion,

2021. URL https://arxiv.org/abs/2109.13362.

[31] Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen

Berseth, and Koushil Sreenath. Reinforcement learning for robust parameterized

locomotion control of bipedal robots, 2021.

[32] Chengju Liu, Wandong Geng, Ming Liu, and Qijun Chen. Workspace trajectory

generation method for humanoid adaptive walking with dynamic motion primitives.

IEEE Access, 8:54652–54662, 2020. doi: 10.1109/ACCESS.2020.2976098.

[33] Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal.

Rapid locomotion via reinforcement learning, 2022. URL https://arxiv.org/abs/22

05.02824.

[34] Alexander L. Mitchell, Wolfgang Merkt, Mathieu Geisert, Siddhant Gangapur-

wala, Martin Engelcke, Oiwi Parker Jones, Ioannis Havoutis, and Ingmar Posner.

https://arxiv.org/abs/2107.04034
https://www.science.org/doi/abs/10.1126/scirobotics.abc5986
https://arxiv.org/abs/2011.00446
https://arxiv.org/abs/2206.11693
https://arxiv.org/abs/2109.13362
https://arxiv.org/abs/2205.02824
https://arxiv.org/abs/2205.02824

Bibliography 44

Vae-loco: Versatile quadruped locomotion by learning a disentangled gait repre-

sentation, 2022. URL https://arxiv.org/abs/2205.01179.

[35] Federico Moro, Nikos Tsagarakis, and Darwin Caldwell. On the kinematic

motion primitives (kmps) - theory and application. Frontiers in Neurorobotics,

6, 2012. ISSN 1662-5218. doi: 10.3389/fnbot.2012.00010. URL https:

//www.frontiersin.org/articles/10.3389/fnbot.2012.00010.

[36] Federico L. Moro, Nikos G. Tsagarakis, and Darwin G. Caldwell. A human-

like walking for the compliant humanoid coman based on com trajectory re-

construction from kinematic motion primitives. In 2011 11th IEEE-RAS In-

ternational Conference on Humanoid Robots, pages 364–370, 2011. doi:

10.1109/Humanoids.2011.6100862.

[37] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Edward Lee, Jie Tan,

and Sergey Levine. Learning agile robotic locomotion skills by imitating animals.

In Robotics: Science and Systems, 07 2020. doi: 10.15607/RSS.2020.XVI.064.

[38] Affan Pervez and Dongheui Lee. Learning task-parameterized dynamic movement

primitives using mixture of gmms. Intelligent Service Robotics, 11(1):61–78,

2018.

[39] Affan Pervez, Yuecheng Mao, and Dongheui Lee. Learning deep movement prim-

itives using convolutional neural networks. In 2017 IEEE-RAS 17th International

Conference on Humanoid Robotics (Humanoids), pages 191–197, 2017. doi:

10.1109/HUMANOIDS.2017.8246874.

[40] Martin L. Puterman. Chapter 8 Markov decision processes. In Handbooks

in Operations Research and Management Science, volume 2, pages 331–434.

Elsevier, Walthm, MA, USA, Jan 1990. doi: 10.1016/S0927-0507(05)80172-0.

[41] Marc H Raibert. Legged robots that balance. MIT press, 1986.

[42] José Rosado, Filipe Silva, and Vı́tor Santos. Adaptation of robot locomotion

patterns with dynamic movement primitives. In 2015 IEEE International Confer-

ence on Autonomous Robot Systems and Competitions, pages 23–28, 2015. doi:

10.1109/ICARSC.2015.9.

https://arxiv.org/abs/2205.01179
https://www.frontiersin.org/articles/10.3389/fnbot.2012.00010
https://www.frontiersin.org/articles/10.3389/fnbot.2012.00010

Bibliography 45

[43] Matteo Saveriano, Fares J. Abu-Dakka, Aljaz Kramberger, and Luka Peternel.

Dynamic movement primitives in robotics: A tutorial survey, 2021. URL https:

//arxiv.org/abs/2102.03861.

[44] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter

Abbeel. Trust region policy optimization, 2015. URL https://arxiv.org/abs/1502.0

5477.

[45] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

High-dimensional continuous control using generalized advantage estimation,

2015. URL https://arxiv.org/abs/1506.02438.

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms, 2017. URL https://arxiv.org/abs/1707.0

6347.

[47] Yecheng Shao, Yongbin Jin, Xianwei Liu, Weiyan He, Hongtao Wang, and Wei

Yang. Learning free gait transition for quadruped robots via phase-guided con-

troller. IEEE Robotics and Automation Letters, 7(2):1230–1237, 2022. doi:

10.1109/LRA.2021.3136645.

[48] Haojie Shi, Bo Zhou, Hongsheng Zeng, Fan Wang, Yueqiang Dong, Jiangyong

Li, Kang Wang, Hao Tian, and Max Q. H. Meng. Reinforcement learning with

evolutionary trajectory generator: A general approach for quadrupedal locomotion,

2021. URL https://arxiv.org/abs/2109.06409.

[49] Manuel F. Silva and J.A. Tenreiro Machado. A historical perspective of legged

robots. Journal of Vibration and Control, 13(9-10):1447–1486, 2007. doi: 10.117

7/1077546307078276. URL https://doi.org/10.1177/1077546307078276.

[50] Abhik Singla, Shounak Bhattacharya, Dhaivat Dholakiya, Shalabh Bhatnagar,

Ashitava Ghosal, Bharadwaj Amrutur, and Shishir Kolathaya. Realizing learned

quadruped locomotion behaviors through kinematic motion primitives, 2018. URL

https://arxiv.org/abs/1810.03842.

[51] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output represen-

tation using deep conditional generative models. In C. Cortes, N. Lawrence, D. Lee,

M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing

https://arxiv.org/abs/2102.03861
https://arxiv.org/abs/2102.03861
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2109.06409
https://doi.org/10.1177/1077546307078276
https://arxiv.org/abs/1810.03842

Bibliography 46

Systems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neur

ips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf.

[52] Alexander Sprowitz, Mostafa ajallooeian, Alexandre Tuleu, and Auke Ijspeert.

Kinematic primitives for walking and trotting gaits of a quadruped robot with

compliant legs. Frontiers in Computational Neuroscience, 8, 2014. ISSN 1662-

5188. doi: 10.3389/fncom.2014.00027. URL https://www.frontiersin.org/articles

/10.3389/fncom.2014.00027.

[53] David Surovik, Oliwier Melon, Mathieu Geisert, Maurice Fallon, and Ioannis

Havoutis. Learning an expert skill-space for replanning dynamic quadruped

locomotion over obstacles. In Jens Kober, Fabio Ramos, and Claire Tomlin,

editors, Proceedings of the 2020 Conference on Robot Learning, volume 155 of

Proceedings of Machine Learning Research, pages 1509–1518. PMLR, 16–18

Nov 2021. URL https://proceedings.mlr.press/v155/surovik21a.html.

[54] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[55] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner,

Steven Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion

for quadruped robots, 2018. URL https://arxiv.org/abs/1804.10332.

[56] Mathias Thor, Tomas Kulvicius, and Poramate Manoonpong. Generic neural

locomotion control framework for legged robots. IEEE Transactions on Neural

Networks and Learning Systems, 32(9):4013–4025, 2021. doi: 10.1109/TNNLS.

2020.3016523.

[57] Sashank Tirumala, Sagar Gubbi, Kartik Paigwar, Aditya Sagi, Ashish Joglekar,

Shalabh Bhatnagar, Ashitava Ghosal, Bharadwaj Amrutur, and Shishir Kolathaya.

Learning stable manoeuvres in quadruped robots from expert demonstrations,

2020. URL https://arxiv.org/abs/2007.14290.

[58] Vassilios Tsounis, Mitja Alge, Joonho Lee, Farbod Farshidian, and Marco Hutter.

Deepgait: Planning and control of quadrupedal gaits using deep reinforcement

learning. IEEE Robotics and Automation Letters, 5(2):3699–3706, 2020. doi:

10.1109/LRA.2020.2979660.

https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://www.frontiersin.org/articles/10.3389/fncom.2014.00027
https://www.frontiersin.org/articles/10.3389/fncom.2014.00027
https://proceedings.mlr.press/v155/surovik21a.html
https://arxiv.org/abs/1804.10332
https://arxiv.org/abs/2007.14290

Bibliography 47

[59] Caiwang Wang, Guangming Xie, Xinyan Yin, Liang Li, and Long Wang. Cpg-

based locomotion control of a quadruped amphibious robot. In 2012 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics (AIM), pages 1–6,

2012. doi: 10.1109/AIM.2012.6265897.

[60] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):

279–292, 1992.

[61] Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, and Michiel van de

Panne. Feedback control for cassie with deep reinforcement learning, 2018. URL

https://arxiv.org/abs/1803.05580.

[62] Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonanthan Hurst, and

Michiel van de Panne. Learning locomotion skills for cassie: Iterative design and

sim-to-real. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura, editors,

Proceedings of the Conference on Robot Learning, volume 100 of Proceedings of

Machine Learning Research, pages 317–329. PMLR, 30 Oct–01 Nov 2020. URL

https://proceedings.mlr.press/v100/xie20a.html.

[63] Hiroki Yamamoto, Sungi Kim, Yuichiro Ishii, and Yusuke Ikemoto. Generalization

of movements in quadruped robot locomotion by learning specialized motion data.

ROBOMECH Journal, 7(1):1–14, 2020.

[64] Chuanyu Yang, Kai Yuan, Qiuguo Zhu, Wanming Yu, and Zhibin Li. Multi-expert

learning of adaptive legged locomotion. Science Robotics, 5(49), dec 2020. doi:

10.1126/scirobotics.abb2174. URL https://doi.org/10.1126%2Fscirobotics.abb217

4.

[65] Yuxiang Yang, Tingnan Zhang, Erwin Coumans, Jie Tan, and Byron Boots. Fast

and efficient locomotion via learned gait transitions. In Conference on Robot

Learning, pages 773–783. PMLR, 2022.

[66] Chen Yu and Andre Rosendo. Multi-modal legged locomotion framework with

automated residual reinforcement learning, 2022. URL https://arxiv.org/abs/2202

.12033.

[67] Wenhao Yu, Greg Turk, and C. Karen Liu. Learning symmetric and low-energy

locomotion. ACM Transactions on Graphics, 37(4):1–12, aug 2018. doi: 10.114

5/3197517.3201397. URL https://doi.org/10.1145%2F3197517.3201397.

https://arxiv.org/abs/1803.05580
https://proceedings.mlr.press/v100/xie20a.html
https://doi.org/10.1126%2Fscirobotics.abb2174
https://doi.org/10.1126%2Fscirobotics.abb2174
https://arxiv.org/abs/2202.12033
https://arxiv.org/abs/2202.12033
https://doi.org/10.1145%2F3197517.3201397

Bibliography 48

[68] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas

Funkhouser. Tossingbot: Learning to throw arbitrary objects with residual physics,

2019. URL https://arxiv.org/abs/1903.11239.

https://arxiv.org/abs/1903.11239

Appendix A

Appendix

A.1 Notation

Variable Dimensions Description

vbase 3 Velocity the base of the robot (x,y,z)

abase 3 Angular velocity the base of the robot (roll, pitch, yaw)

vcmd 2 Target velocity of the base of the robot (x,y)

a/cmd 1 Target angular velocity of the base of the robot (yaw)

q 12 Angle of motor joints

q̇ 12 Angular velocity of motor joints

q̈ 12 Angular acceleration of motor joints

φ1:4 4 Phase of each leg (0,1]

CoM 3 The center mass of the robot

p1:4 12 Position of each foot link in the base frame (x,y,z)

pre f
1:4 12 Target position of each foot link in the base frame (x,y,z)

p′1:4 12 Resulting foot link positions after applying the motor torques (x,y,z)

Table A.1: Definitions of the variables collected

49

Appendix A. Appendix 50

A.2 Optimizations and Search Spaces

Hyperparameter Type Values Selected

Learning Rate(α) Range (1e−5,1e−2) 0.0024

αdecay Categorical [0.7, 0.8, 0.9] 0.7

Dropout Range (0,0.3) 0.00022

Batch size Categorical [100,200,500,1000,2000] 200

Activation Categorical [tanh, relu] relu

Batch norm Categorical [True,False] False

Network size Categorical [(2,128),(3,128),(256,3),(256,4)] (256,4)

Optimizer Fixed Adam Adam

Table A.2: Kernel-base hyperparameter optimization values and final selected

hyperparameters

Hyper-parameter Parameter type Parameter Space Selected

learning rate (lr) Categorical [3e−3,1e−3,5e−4,5e−5] 1e−3

entropy coefficient Range [1e−6,1e−3] 5e−6

Network size Categorical [large, medium, small] small

Number of epochs Categorical [5,10,20] 10

Batch size Categorical [500,2000,4000] 4000

Rollout length Fixed 20000 20000

lr decay Fixed 1e−7 1e−7

Table A.3: PPO hyper-parameters search space, and selected parameters

Network sizes: We configure the PPO algorithm to share weight between the actor

and critic as shown in A.1. We define each variant of the network (large, medium and

small) to have a actor with one hidden layers of size 128 with 12 outputs nodes and a

critic with one hidden layers of size 64 with one output node. We adjust the size of the

network of the shared parameters for each variant; The large network has three hidden

layers of size 256, the medium network has two hidden layers of size 256, and the small

network has two hidden layers of size 128.

Appendix A. Appendix 51

Figure A.1

Reward Feature Type Values Selected

Linear velocity range [1,4] 18.42

Angular velocity range [1,4] 7.47

Center of mass range [15,20] 2.35

Distance to target range [5,10] 0.74

Table A.4: Reward function RBF parameter optimization space

A.3 Additional Figures

Figure A.2: Center of Mass of the robot using the MPC controller (τstance = 0.2) varying

the ride height

Appendix A. Appendix 52

Figure A.3: Center of Mass of the robot using the MPC controller (τstance = 0.2) varying

the step height

Figure A.4: Showing the robot leaning over its front legs as it approaches the target

location.

Appendix A. Appendix 53

A.4 Algorithms

Algorithm 2 Command Generator
1: procedure COMMAND GENERATION PROCEDURE

2: Inputs: - Target location postarget - Maximum Velocity Magnitude velmax -

Velocity clip range velrange - Target threshold distmin

3:

4: Initialize a velocity command vector velcmd as all zeros contaning the velocities:

5: • frontal vel f rontal ,

6: • lateral vellateral

7: • yaw velyaw

8:

9: receive the robot location posbase and orientation ornbase

10: while dist(postarget , posbase)< distmin do
11: velcmd = GENERATE COMMANDS(velcmd , velmax, velrange)

12: apply velcmd to the robot

13: receive the robot location posbase and orientation ornbase

14: end while
15: end procedure

16: function GENERATE COMMANDS(postarget ,posbase,ornbase,velcmd ,velmax, velrange)

17: D = dist(postarget ,posbase)

18: θ = DEG(arctan2(postarget ,posbase)-ornbase)

19: cmd = [D*cos(θ), D*sin(θ), 0.3*θ]

20: cmd = velcmd + clip(cmd-velcmd , -0.005, 0.005)

21: if |cmd|> velmax then
22: cmd = norm(cmd)*velmax

23: end if
24: cmd = clip(cmd, velrange)

25: return cmd

26: end function

	Introduction
	Project Motivations
	Project Objectives
	Document Structure

	Background
	Robotic Locomotion Control
	Kinematics
	Model Predictive Control
	Proportional Derivative Control
	Reinforcement Learning
	Proximal Policy Optimization

	Related Work
	Learning Trajectory-based Controllers
	Locomotion via Reinforcement Learning
	Locomotion via Residual Learning

	Methodology
	Problem Formulation
	Proposed Architecture
	Environment
	Command Generator
	Gait Generator
	PD controller
	Low Pass Filter
	Kernel
	Kernel Results
	RL Agent
	Training The Final Agent

	Evaluations
	Evaluation Environments and Metrics
	Results
	Evaluating Perturbation Robustness

	Conclusions
	Bibliography
	Appendix
	Notation
	Optimizations and Search Spaces
	Additional Figures
	Algorithms

