
Bayesian Networks for Clinical Risk Prediction

Oisı́n Nolan
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2022



Abstract

Risk prediction is essential in clinical practice to optimise patient outcomes. Automated

risk prediction models using machine learning are becoming more popular, but the

clinical domain imposes specific modelling constraints which must be satisfied in

order to make safe, reliable predictions. Two challenges of particular importance are

interpretability and the ability to handle missing data. Bayesian network models have

been proposed as a good candidate for clinical risk prediction due to their inherent

interpretability, and inference algorithms that account for missing data. This project

evaluates these abilities during learning and inference in Bayesian networks. An initial

set of experiments focuses on structure learning, in which the network structure is

inferred from data. Further experiments evaluate inference in Bayesian networks, and

compare their predictive performance to that of logistic regression, currently a popular

choice for clinical risk prediction.

The structure learning experiments reveal that incorporating prior expert knowledge

into the learning procedure results in more reliable, interpretable, network structures,

and can increase predictive accuracy. Experiments in inference show that while Bayesian

networks can handle missing data just as well as a logistic regression model using MICE

imputation, the typical predictive performance is slightly lower than that of logistic

regression (AUROC for LR: 0.77, versus for BN: 0.76). Another experiment uses a

fitted Bayesian model to perform causal inference, estimating the causal effect of being

vaccinated on in-hospital mortality, finding that vaccinated patients are ∼ 4.5% less

likely to die in hospital if they are vaccinated. Finally, the project proposes a workflow

for producing causal Bayesian network models, guided by the experimental results

discussed until that point, and uses this workflow to create a finalised clinical risk

prediction model.
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Chapter 1

Introduction

Risk prediction is an important challenge in healthcare, and can be used to gain insight

on patient risk factors and assist in deciding on treatments to optimise patient outcomes

[52]. Applying machine learning in healthcare brings interesting challenges which

constrain the kinds of model that can be used. One such challenge is that the model

must be interpretable – that humans must be able to understand the reasoning process

that led the model to make a given decision, or prediction [21]. Interpretability is

considered a priority by clinicians [1], and is required of machine learning systems

under the European Union’s right to an explanation provision [62, 21]. Another

important challenge associated with healthcare is that of missing data [4], where values

for certain samples in the dataset haven’t been observed, and are unknown. This is a

common problem in healthcare data [15], and can be a source of bias in models of the

data unless handled appropriately [11]. Bayesian networks (BNs) have been presented

as a promising tool for clinical risk prediction due to their interpretable modelling and

inference, and intrinsic handling of missing data [7]. The potential for BNs to solve

these two key issues in clinical risk prediction is the primary motivator for this project,

and will be explored via the following research questions:

(i) How well can BN structure learning algorithms learn models of the domain from

observational data? What kinds of structures are produced, and how are they

affected by the incorporation of prior expert knowledge about the domain?

(ii) How do BNs compare to logistic regression in terms of predictive performance

and interpretability? And how well do these models handle missing values in the

data during inference?

The project has been structured according to these research questions. An initial

1



Chapter 1. Introduction 2

Background chapter provides information on the theory surrounding BN modelling and

logistic regression, which is essential in understanding the experiments that follow, and

in evaluating the models’ interpretability from a theoretical perspective. The Methodol-

ogy and Results & Discussion chapters discuss a set of experiments that were carried out

to evaluate the models empirically. Both of these chapters are split into the same two

primary sections: Structure Learning, exploring research question (i), and Inference,

exploring research question (ii). The final chapter, Conclusion, provides reflections

on the research questions informed by experimental results, discusses limitations of

the project, and proposes some directions for future work on this topic. The dataset

used in this project consists of records for patients admitted to hospital with COVID-19,

containing information on demographics, observed symptoms, outcomes, and more.

Details about the dataset are provided in Section 3.1.

The main contributions of this project are the following: the proposal of a set of

desiderata for structure learning algorithms and corresponding metrics to evaluate the

degree to which they are satisfied; experimental results characterising three popular

structure learning algorithms, which can serve to guide their application in future;

experimental results comparing predictive performance of BNs and logistic regression,

highlighting the strengths and weaknesses of each, and indicating which model may be

a better choice for various use-cases; estimates for the causal effect of being vaccinated

against COVID-19 on various health outcomes; the proposal of a workflow for producing

accurate, interpretable BN models.

1.1 Related Work

Risk prediction models have been developed to help manage many health conditions,

for example, heart failure [52] and chronic kidney disease [71]. More recently, the

emergence of COVID-19 has spurred the development of many more risk prediction

models, such as the 4C Mortality Score [37], which this project builds upon. It is

common in these works to use some method for feature selection, for example, LASSO

[23, 26], to identify salient explanatory variables for COVID-19 outcomes. Machine

learning models have been employed extensively for this task due to their ability to

model complex functions, achieving high predictive accuracy [2]. A key factor deter-

mining the suitability of machine learning models for this task is their interpretability, as

is reflected by the choice of model in many of the approaches to this task. In particular,

interpretable models such as Cox proportional hazards regression [31, 34], decision-tree-
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based models (XGBoost) [26, 34, 3], and logistic regression [37, 80, 3] have commonly

been used. BNs also fit the model requirements for clinical risk prediction very well,

but as of yet have been used less commonly.

More generally, however, BNs have received some attention in recent years, with

multiple surveys on structure learning [35, 58, 79] being published as new methods

emerge. Some work empirical work evaluating and comparing structure learning algo-

rithms has also been carried out [68, 60], typically using simulated data to determine the

structural accuracy of a given method. Note, however, that evaluation using simulated

data has been subject to some criticism, claiming that these benchmarks are “easy to

game”, leading to overly optimistic results [54]. This project thus focuses on evaluation

metrics that make less strong assumptions about the data generation process. BNs

have also found application in a variety of domains, such as environmental modelling

[74], and risk assessment of various kinds [43, 70], typically chosen due to their inter-

pretability, modelling of indirect associations, and ability to predict multiple variables

with a single model. Many applications of BNs in healthcare also exist, although they

typically focus on a narrow range of medical conditions, including cardiac conditions

and cancers [46]. Despite the many papers published on this topic, BNs have rarely

been deployed in the real world, which has been attributed to a lack of development

processes [41]. This project addresses this problem in Section 4.3, where a simple

workflow for developing accurate and interpretable BNs is proposed.

Some work modelling COVID-19 data with BNs has also been published recently,

with focus on quantifying vaccination risk [42], contact tracing [22], and feature selec-

tion [76]. A couple of papers also use BNs to predict the probability of health outcomes

in COVID-19 patients. One work manually specifies the network structure based on

expert knowledge from the COVID-19 literature [66]. It finds that the BN outperforms

a Support Vector Machine model in terms of classification accuracy, but uses very

small training and test sets, containing 250 and 50 samples, respectively. Furthermore,

the accuracy contribution per is weighted according to the label, using unexplained

weights. These results should thus be met with some degree of skepticism, and motivate

further evaluation with a larger dataset. Another paper [76] learns the network structure

with the hill-climb algorithm [57], and finds that the model achieves good predictive

performance, however it doesn’t compare the BN to any baselines or other models.
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Background

2.1 Bayesian Networks

2.1.1 Model Definition

BNs model a joint probability distribution as a product of conditional probability

distributions (CPDs), leveraging a set of conditional independence assumptions to make

learning and inference computationally feasible [10]. This product of CPDs can be

derived by applying the chain rule to factorise the joint distribution, and then applying

simplifications of the form p(x | y,z) = p(x | y) according to conditional independence

assumptions x⊥⊥ z | y. This results in a simplified factorisation of the joint, as shown in

equation 2.1, where pa(xi) is the set of variables in the conditioning set for xi, known as

its parents.

p(x1,x2, ...,xd) =
d

∏
i=1

p(xi | pa(xi)) (2.1)

This notion of parent variables may be used to visualise the factorisation as a

directed acyclic graph (DAG) in which each variable is a node, and directed edges

point to each variable from its parents. Figure 2.1 shows a simple example of this DAG

visualisation.

A graphical criterion called d-separation [49] can be used to read conditional

independencies directly from a given DAG. Two sets of nodes XXX and YYY are d-separated

by some set of observed nodes SSS if all trails between any nodes in XXX and YYY are blocked

by SSS. Whether a trail is active or blocked can be deduced by examining the various

kinds of edge configuration that compose the trail [38]:

• Causal trail, X → Z→ Y : blocked iff Z ∈ SSS

4
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A

B C

Figure 2.1: A DAG visualising the factorisation p(A,B,C) = p(A)p(B | A)p(C | A).

• Evidential trail, X ← Z← Y : blocked iff Z ∈ SSS

• Common cause, X ← Z→ Y : blocked iff Z ∈ SSS

• Common effect, X → Z← Y : blocked iff Z /∈ SSS, and none of Z’s descendents

∈ SSS.

If XXX and YYY are d-separated by SSS, then XXX⊥⊥YYY | SSS. This provides a means of defining

the set of independencies asserted by any DAG G , denoted I(G) [38]:

I (G) = {(XXX⊥⊥YYY | SSS) : d-sepG(XXX ;YYY | SSS)} (2.2)

Because conditional independence is a symmetric relation between variables, i.e.

X⊥⊥Y | Z ⇐⇒ Y ⊥⊥X | Z, it is possible that the same set of independence assumptions

can correspond with multiple DAGs. The set of independencies specified by a DAG G ,

may thus be equal to those of another DAG G ′, yielding I(G) = I(G ′), in which case G
and G ′ are said to be I-equivalent [38]. This equivalence relation partitions the set of all

DAGs into Markov equivalence classes (MECs) – sets of DAGs which share the same

independence assumptions [10]. A MEC can be conveniently represented by another

graphical structure called a completed partially directed acyclic graph (CPDAG) [5].

The edge semantics for CPDAGs are as follows: an undirected edge X −Y indicates

that there is some DAG containing edge X → Y and another containing X ← Y in the

equivalence class, a directed edge X → Y means that every DAG in the equivalence

class contains edge X → Y , and the absence of an edge means that it is absent in every

DAG in the equivalence class [30]. It is also possible that I(G)⊆ I(G ′), in which case

G is said to be an independence map, or I-map of G ′.
In general, there are no restrictions on how the factors p(xi | pa(xi)) are defined,

beyond them being valid conditional probability distributions. In the case of this project,

in order to maintain model interpretability, discrete conditional probability tables were

used, as described in Section 2.1.4.



Chapter 2. Background 6

2.1.2 Causal Interpretation

BNs, as described thus far, make claims about statistical dependencies between variables.

However, a natural interpretation of such DAGs is causal: one in which each directed

edge (X ,Y ) indicates that X has a causal effect on Y . The DAG can then be seen as

a theory of the data generation process underlying the observed data. Reichenbach,

in his common cause principle [53], made a connection between statistical and causal

dependence, stating that if two variables X and Y are observed to be statistically

dependent, then there must exist some variable Z that causally influences both X and

Y , and that explains their dependence insofar as X and Y would become independent

conditioned on Z [59]. Note that Z may be either of X or Y in this case, accounting for

the simpler X → Y and X ← Y cases.

In order to draw conclusions about causal relationships from observational data, a

number of assumptions are typically necessary [30, 17]:

• Causal sufficiency. Reichenbach’s common cause principle implies that if X

and Y are statistically independent conditional on some Z ̸= X or Y , then neither

causes the other, and we could be sure that no edge X → Y or X ← Y should

appear in the DAG. However, in order to be sure about such a conclusion, one

would need to assume that they have accounted for all the possible confounders

of X and Y , i.e. that there are no hidden confounding Z variables [17]. This

assumption is known as causal sufficiency [69].

• Causal representation. This assumption states that there exists some DAG

that is a causal representation of the underlying system that has generated the

observed data [17]. Note the acyclicity constraint imposed by the fact the system

is modelled as a DAG, preventing feedback loops [30].

• Causal Markov condition. The causal DAG, via d-separation, specifies the same

set of probabilistic independencies as the underlying system [17].

• Causal faithfulness. This assumption states the inverse of the causal Markov

condition, namely that any conditional independence property that holds of the

underlying system is specified by the causal DAG [30].

Taken together, these assumptions state that some causal DAG must exist, that

there must be a one-to-one correspondence between those independencies given by

d-separation in the DAG and the independencies that hold of the underlying system,

and that there are no hidden confounders.
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2.1.3 Structure Learning

If the dependence structure of the variables is known a priori by a domain expert, the

BN structure can be manually specified. However, this may be infeasible for a number of

reasons; for example, the number of possible DAGs increases super-exponentially with

the number of variables [55]. An alternative is to infer automatically the dependence

structure of the BN DAG from data. This task is known as structure learning [58, 35], or

causal discovery [25]. An idealistic goal for structure learning would be to recover the

DAG corresponding to the true underlying process that generated the observed data, G∗.
However, the true distribution of the observed data, P∗, shares the same independencies

as any DAG that in the same MEC as G∗ [38]. Hence, even in the limit of data samples,

the best structure learning algorithm will only be able to find the equivalence class of

the true DAG, G∗. Under the assumptions stated in Section 2.1.2, this equivalence class

should contain the true causal DAG [17]. Once an equivalence class has been identified

by a structure learning algorithm, domain expertise or further assumptions could be

used to narrow the set down to a final candidate for G∗. Additionally, some methods

in inference which consider an equivalence class of DAGs, rather than a single DAG,

have been developed, for example, intervention-calculus when the DAG is absent (IDA)

[45]. While the primary usage of structure learning in this project is to produce models

of a joint distribution which can be used to make predictions, a secondary use-case is

that of knowledge discovery [38]. Structure learning algorithms can be used to surface

relationships between variables in the data, and in particular, distinguish between direct

dependencies, X → Y , and indirect dependencies, X →M→ Y , which could not be

distinguished by simple pairwise correlation tests [38].

Many structure learning algorithms have been developed over the past couple of

decades. They are typically classified as either constraint-based, score-based, or hybrid.

Constraint-based algorithms employ conditional independence tests to determine which

independencies hold in the data. The identified independencies are then used to construct

an equivalence class of DAGs [35]. Score-based algorithms approach the problem from

a more traditional machine learning perspective, by optimising an objective function that

evaluates the suitability of a given DAG or equivalence class [35]. Hybrid algorithms

aim to combine techniques from both constraint-based and score-based approaches. In

this project, we have considered one constraint-based algorithm, PC [69], and two score-

based algorithms, greedy equivalence search [14] and NOTEARS [81]. The following

subsections will describe these algorithms in detail.
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2.1.3.1 PC Algorithm

The PC algorithm [69] is a popular and well-established structure learning algorithm,

named after its creators Peter Spirtes and Clark Glymour. It is a constraint-based

algorithm, and employs conditional independence tests and logical rules to identify the

causal DAG up to its MEC, represented as a CPDAG, under the causal assumptions

discussed in Section 2.1.2. The PC algorithm consists of two steps: first, determine

the undirected skeleton for the CPDAG is produced, and then orient as many edges as

possible. The first step makes use of the following theorem [69] in determining whether

edges should be present or absent in the output CPDAG:

Theorem 1 for all vertices X, Y of a DAG G , X and Y are adjacent if and only if X

and Y are dependent conditioned on every set of vertices of G that does not include X

or Y .

Taking the contrapositive of Theorem 1, we see that if X and Y can be made

independent by conditioning on some subset SSS of the vertices, then X and Y are not

adjacent.

The algorithm begins with a fully-connected undirected graph, and for each pair of

nodes X ,Y , iterates through each subset SSS⊆ Adj(X)\Y , where Adj(X) gives the set of

nodes adjacent to X . For each of these subsets SSS we run a conditional independence

test to determine if X ⊥⊥Y | SSS holds. If any of these tests are positive, at a specified

confidence level α, then the edge between X and Y is removed [30]. If conditioning

on SSS is found to make X and Y independent, then SSS is recorded in Sepset({X ,Y}) [69].

In order to test whether X ⊥⊥Y | Z holds, one may compute the conditional mutual

information I(X ;Y | Z) as defined in Equation 2.3, where DKL(P||Q) gives the Kullback-

Leibler divergence between two probability distributions P and Q. The KL-divergence

can be seen as a measure of difference between two probability distributions, and thus

the conditional mutual information measures the expected difference between PX ,Y |Z

and PX |Z×PX |Z , which is equal to zero if and only if X⊥⊥Y | Z.

I(X ;Y | Z) = EZ[DKL(PX ,Y |Z)||PX |Z×PY |Z)] (2.3)

Once the above procedure has run all the necessary conditional independence tests,

we are left with the undirected skeleton of the output CPDAG. Directionality may be

inferred in a number of edges using a number of rules [69]. First, for any three nodes

X ,Y,Z in which X ,Y are adjacent and Y,Z are adjacent but X ,Z are not adjacent, we can
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orient the structure X −Y −Z as X → Y ← Z if Y is not contained in Sepset({X ,Z}).
The reason we may do this is because X and Z would independent conditional on Y if

X−Y −Z were to have any structure other than X → Y ← Z, known as common effect
or v-structure, and described in Section 2.1.1. Once the initial common effects have

been identified, the following two rules are repeatedly applied until no more edges can

be directed:

• If a structure X → Y −Z exists, and X ,Z are not adjacent, then orient Y −Z as

Y → Z.

• If there is a directed path X → ...→ Y and an undirected edge X−Y , then orient

X−Y as X → Y .

Having applied these rules, what remains is a CPDAG defining the equivalence class

containing G∗, the true underlying DAG, assuming that the conditional independence

tests were correct. This CPDAG is then returned by the algorithm.

2.1.3.2 Greedy Equivalence Search

Greedy equivalence search (GES) [14] is a score-based algorithm that can identify the

true DAG up to its MEC in the limit of the data, assuming faithfulness, sufficiency,

and acyclicity [30]. This algorithm uses the Bayesian information criterion (BIC) as a

scoring function, to choose between candidate CPDAG structures. The BIC is defined

in Equation 2.4 [14], where DDD is the observed data set, θ̂θθ are the maximum-likelihood

values for the network parameters, d is the number of parameters in the network, and m

is the number of observed samples in DDD.

SBIC(G ,DDD) = log p(DDD | θ̂θθ,G)− d
2

logm (2.4)

The BIC thus aims to balance the likelihood that a model assigns to the observed

data with the number of parameters in the model, such that if two models M and M′

have equal likelihood but M has fewer parameters, then SBIC(M)> SBIC(M′). The BIC

is a locally consistent scoring function [14], which means that in the limit of m, if

adding an edge to G removes an independence assertion X⊥⊥Y | Z, then the score will

increase if X⊥⊥p∗ Y | Z, and it will decrease if X ⊥̸⊥p∗ Y | Z, where ⊥⊥p∗ denotes that the

independence holds in the underlying generative distribution p∗, and ⊥̸⊥p∗ that it does

not hold in p∗.
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GES consists of two main phases. In the first phase, we begin with an empty graph

and greedily add the edge which maximises the BIC until we reach a local maximum.

This can be thought of as a discrete traversal of CPDAG space, in which adding a new

edge reaches a new CPDAG state. It has been shown [14] that the equivalence class

reached at this local maximum must be an I-map for p∗. This is because the BIC would

have decreased if we removed any independencies in p∗, in accordance with BIC’s local

consistency. In the second phase, edges are greedily removed until a local maximum has

been reached, at which point the current CPDAG is I-equivalent to the true underlying

DAG generating p∗. This I-equivalence follows from a proof of Meek’s conjecture [14],

which shows that for any pair of DAGs G and H such that H is an I-map of G , there

exists a sequence of edge removals and reversals that can be applied to H such that

G = H .

GES has been shown to be optimal in the limit of data samples, however, because

this may not be feasible in real-world scenarios, it was found that repeating these

two phases iteratively, along with an additional turning phase in which edges may be

re-oriented, can yield better results [29].

2.1.3.3 NOTEARS

The NOTEARS [81] algorithm takes an alternative approach to score-based structure

learning, opting to use continuous optimisation on the adjacency weight matrix of the

DAG rather than a discrete search-based optimisation, as in GES. This is achieved

by formulating the network as a linear structural equation model (SEM), in which

each variable Xi is a linear function of the other variables with some added noise, i.e.

Xi = www⊤i XXX + zzzi, where wwwi is a column from the weights matrix W , and zzzi is random

noise. In order to enforce acyclicity in the model structure, the function h(W ) was

introduced. It is defined in Equation 2.5, where tr(.) gives the trace of a matrix, and d is

the number of variables.

h(W ) = tr(eW◦W )−d (2.5)

It has been shown [81] that h(W ) = 0 ⇐⇒ W is a DAG. This means that h(W ) = 0

can be used as an equality constraint while minimising the loss of the SEM to ensure

that it remains acyclic, as desired. Thus, the problem of structure learning becomes the

following equality-constrained program:
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min
W∈Rd×d

F(W )

subject to: h(W ) = 0
(2.6)

Where F(W ) is a score function, and in the case of a linear SEM, is defined as in

Equation 2.7, using least squares loss with an ℓ1 regularisation term weighted by λ,

where n is the number of samples.

F(W ) =
1

2n
||XXX−XXXW ||2 +λ||W ||1 (2.7)

Note that, in general, Xi can be modelled as a generalised linear model of the other

variables, and need not necessarily be a linear SEM [81]. NOTEARS has recently been

criticised as a causal discovery method [32, 63], and so in this project is only used to

learn associational models, with PC being the preferred choice for causal discovery.

2.1.4 Parameter Estimation

Maximum likelihood estimation (MLE) is a method for fitting model parameters in

which the parameters that maximise the likelihood of the observed data under this model

are chosen. This is summarised by Equation 2.8, in which θ̂θθ are the optimal parameters,

D is the observed data, and L is the likelihood function [38].

θ̂θθ = argmax
θθθ∈Θ

L(θθθ;D) (2.8)

In the case of BNs, the likelihood of some parameters θθθ can be formulated as in

Equation 2.9, where Xi[m] denotes the value of Xi in the mth sample, and paXi
[m] denotes

the values of Xi’s parameters in the mth sample [38].

L(θθθ;D) = ∏
m

∏
i

P(Xi[m] | paXi
[m];θθθ) (2.9)

The two products in Equation 2.9 can be swapped such that the likelihood becomes

a product of likelihoods for each CPD P(Xi | paXi
). In this sense, the global likelihood

function can be decomposed into local likelihood functions, the parameters of which

may be optimised independently in order to reach a global optimum [38]. In the case of

discrete BNs, as used in this project, each of the CPDs is a multinomial distribution.

Fortunately, there is a simple method for calculating maximum likelihood parameters

for multinomial distributions, given in Equation 2.10, where #D[paXi
,Xi] is the number



Chapter 2. Background 12

of observed occurrences of a given value of Xi along with a given set of values for Xi’s

parents, and #D[paXi
] is the number of occurrences of those values of Xi’s parents.

P(Xi | paXi
; θ̂θθ) = θ̂θθXi|paXi

=
#D[paXi

,Xi]

#D[paXi
]

(2.10)

These parameters are easily interpretable to non-experts, assigning a specific proba-

bility to each possible event, with a direct translation to natural language. For example:

“ The probability of admittance to ICU given that the patient is above 80 years of age is

0.14 ”. These CPDs can be visualised as in Appendix F.

2.1.5 Inference

Inference in BNs, as in many statistical and machine learning models, aims to estimate

the distribution p(Y | E = e), where Y is some outcome variable of interest and e is

some instance of a evidence variables E which should be used to predict Y . Many

algorithms for performing inference in BNs exist. In this section, we will describe two

such algorithms, one that performs exact inference in which we calculate the exact

values for P(Y | E = e), and one that performs approximate inference, in which we

approximate the probabilities. We also discuss causal inference, in which we can infer

estimates of causal effects of X on Y , under the assumptions discussed in Section 2.1.2.

2.1.5.1 Variable Elimination

The variable elimination algorithm [38] is used to compute marginal distributions

from BNs, exploiting the network factorisation in order to make the computation more

efficient. The efficiency comes from formulating a sum over all the variables in the joint

distribution to a product of local sums over the variables relevant smaller products of

relevant factors. See Equation 2.11 for a toy example of this sum of products to product

of sums trick [38]:

P(D) = ∑
C

∑
B

∑
A

P(A)P(B | A)P(C | B)P(D |C)

= ∑
C

P(D |C)∑
B

P(C | B)∑
A

P(A)P(B | A)
(2.11)

This trick helps in reducing the exponential blowup caused by summing over all

combinations of values for each variable in the distribution, but is still exponential in

the local factor sums. Marginal inference is the key operation necessary to compute
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the conditional P(Y | E = e) because it is defined as P(Y,e)
P(e) , two marginal distributions.

Variable elimination is employed in this way to compute both P(Y,e) and P(e), and

hence P(Y | E = e). This method thus inherently handles missing data by summing out

variables with missing values, i.e. variables not in the evidence set E.

2.1.5.2 Likelihood Weighting

The likelihood weighting algorithm [38] uses importance-sampling to approximate

P(Y | E = e), rather than compute it exactly as in variable elimination. The benefit of

this approach is that it scales better with the density of the graph. This algorithm works

by forward sampling from the BN, and calculating a weighting for the sample, w, as a

product of the probabilities of the weighted samples given the observed evidence e. For

example, if we have a network P(A)P(B | A), and evidence that B = b0, we can sample

a0 ∼ P(A) and then calculate our sample weight as the probability that we could have

observed B = b0 given a0, w = P(B = b0 | A = a0). We continue forward sampling in

this way, updating the weight for each factor with observed evidence. This process

is repeated M times, generating M samples with corresponding weights. P(Y | E = e)

can then be computed as in Equation 2.12, where w[m] is the weight assigned to the

mth sample, 111(.) is the indicator function, and y∗ is the value of Y whose conditional

probability we want to compute.

P̂D(y∗ | e) =
∑m w[m]111{y[m] = y∗}

∑m w[m]
(2.12)

2.1.5.3 Causal Inference

Under the causal assumptions defined in Section 2.1.2, BNs can be used to simulate

interventions on variables of interest. Interventional queries of this form involve setting

some variable X to a specific value x0 to estimate the effect that would have on some

other variable Y . For example, this could be used to estimate the causal effect of

being vaccinated against COVID-19 on various health outcomes. The do-operation is a

piece of notation introduced by Pearl [50] to denote interventions, where p(Y | do(X =

x0)) gives a probability distribution over Y given that X has been set to x0. Given

some DAG D for an observational distribution p(X ,Z1, ...,ZK,Y ), applying do(X =

x0) has the effect of removing X’s parent connections, resulting in a new DAG D ′

corresponding to the interventional distribution p(Z1, ...,ZK,Y | do(X = x0). Removing

X’s parent connections in D corresponds with removing the factors p(X | pa(X)) in the
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factorisation specified by D , as X’s value becomes deterministic, resulting in a truncated

factorisation [51] corresponding to D ′. Fortunately, the truncated factorisation is defined

in terms of factors that can be estimated from observational data, providing a way to

compute P(Y | do(X = x0) from observational data. A toy example [51] is given in

Equation 2.13.

P(X ,Z,Y ) = p(Z)p(X | Z)p(Y | Z,X) (chain rule factorisation)

p(Z,Y | do(X = x0)) = p(Z)p(Y | Z,x0) (truncated factorisation)

p(Y | do(X = x0)) = ∑
Z

p(Z)p(Y | Z,x0) (desired distribution)

(2.13)

Removing the parent connections means that no information can flow from X to Y

other than via causal pathways, thus isolating the causal effect. Similarly, conditioning

on a set of variables that d-separates X and Y only along non-causal paths can be used

to isolate the causal effect – a technique known as backdoor adjustment [47]. Once

these interventional distributions have been calculated, they can be used to compute

statistics useful for understanding the causal effects of X on Y , such as the average

treatment effect (ATE) on Y of X being equal to x0 as opposed to x1 [47]:

E[Y (x1)−Y (x0)] = ∑
y

y ·P(y | do(X = x1))−∑
y

y ·P(y | do(X = x0)) (2.14)

2.2 Logistic Regression

Logistic regression is a kind of generalised linear model which can be used to model

binary outcome variables. A generalised linear model can be specified via two compo-

nents [19]: (i) a probability distribution for the outcome variable, Y , and (ii) an equation

linking the expected value of Y to a linear combination of the dependent variables, of

the form in Equation 2.15:

g[E(Y )] = β0 +β1X1 + ...+βmXm (2.15)

In the case that Y is binary, it can be modelled as a Bernoulli distribution, Y ∼ Bern(p),

where p is the probability of success. E(Y ) = p, in this case, and so the model applies

the sigmoid function, σ(x) = 1
1+e−x , to the linear combination of input variables in order

to ensure that E(Y ) is a valid probability in [0,1]. Hence, when written in the form of

Equation 2.15, the linking function g(.) becomes the logit function, log( p
1−p), which
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can be interpreted as the log-odds of a success event in Y . MLE is typically used to

optimise the parameters βββ by maximising the log-likelihood function given in Equation

2.16 [64], where Y [m] is the mth sample in our dataset, XXX [m] is a vector of the input

variables in the mth sample, and βββ is the parameter vector.

ℓ(βββ) = ∑
m

Y [m] log p[m]+ (1−Y [m]) log(1− p[m]) (2.16)

p[m] = σ(XXX [m]⊤βββ) (2.17)

When the input variables are categorical, they can be modelled using dummy vari-

ables, where each input variable Xi is split up into K new binary variables, X1
i , ...,X

K
i ,

one for each of the K values that Xi can take on. Now Xk
i = 1 if Xi = k, and 0 otherwise.

This enables an interpretation of the parameter βk
i as the increase in the log-odds of

observing a success in Y due to observing that Xi = k [27].

2.3 Data Imputation

Missing data is an important problem in health data science which must be handled

appropriately in order to minimise bias in data analyses and predictive models [27]. If

there is no pattern to the missingness in the observed data, then those missing values

are said to be missing completely at random (MCAR) [27], in which case the samples

with missing values may simply be ignored, as if we had observed fewer samples in the

first place. However, it is often the case that there is some pattern to the missingness, in

which case the missing values are considered missing at random (MAR). In this case,

if one were to remove samples with missing values, the apparent distribution of the

observations would change, causing bias in subsequent analyses [27]. Data imputation

such as Multivariate imputation by chained equations (MICE) have been designed to

alleviate this problem. This algorithm consists of a few simple steps [8]: First fill in

missing values for each variable with its mean value, known as mean imputation. For a

particular variable Xi, set the mean imputations back to missing. Then, fit a regression

model (or classification model if the data are discrete) to the observed samples for Xi,

using the other variables X1, ...,Xi−1,Xi+1, ...,Xd to predict the missing values for Xi.

Continue this process for each variable, using the other variables to impute its missing

values. This may be repeated iteratively to improve imputations.



Chapter 3

Methodology

This chapter focuses on sets of experiments that were carried out to shed light on the

primary research questions of this paper, detailed in Chapter 1. The chapter begins

with a description of the dataset in Section 3.1. Following this, a set of experiments

described in Section 3.2 aims to provide an answer to the first primary research question,

characterising and comparing the kinds of structures produced by the PC, GES, and

NOTEARS algorithms, and exploring how they are affected by the incorporation of prior

knowledge. Insights from these experiments should serve as a guide to the application

of these algorithms in risk prediction, with particular relevance to the interpretability of

the learned structure. Section 3.3 will then focus on experiments related to inference,

exploring the effects of missing data on classification performance, and comparing BNs

to logistic regression via a number of standard evaluation procedures. This section will

also demonstrate the ability to perform causal inference with BNs, an important feature

which distinguishes BNs from standard machine learning models. Causal inference is of

particular significance in risk prediction, where clinicians may want to take real-world

actions based on relations identified by the model. In particular, this experiment uses

interventional queries to estimate the causal effect of being vaccinated on various health

outcomes, such as death, requiring oxygen, or being admitted to ICU. The results to

the experiments in Section 3.3 should answer the second primary research question,

highlighting the conditions under which one might prefer to use BNs over logistic

regression or similar. The results to these experiments, along with corresponding

analyses, are presented in Chapter 4.

16
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3.1 Dataset

The data used for the experiments in this project were collected as part of a the In-

ternational Severe Acute Respiratory and Emerging Infections Consortium (ISARIC)

World Health Organization (WHO) Clinical Characterisation Protocol UK (CCP-UK)

prospective cohort study [20]. The dataset includes information on: patient demograph-

ics, such as age and sex; relevant clinical details, such as pre-existing comorbities and

current symptoms; and outcomes, such as mortality or admittance to ICU [37]. Some

statistics summarising the dataset are available in a paper by Docherty et al. [20] and its

supplementary material. For example, it was found that 26% of patients in the study

died in hospital, and some associated risk factors identified include increased age, male

sex, and comorbidities such as cardiac disease [20].

This dataset was used in the development of the 4C Mortality Score [37], which

is used to predict risk of in-hospital mortality in patients admitted to hospital with

COVID-19 from a small set of easily-measurable features. Features included in the final

score are the following: age, sex, number of comorbidities, respiratory rate, peripheral

oxygen saturation, level of consciousness, urea level, and C-reative protein [37]. Some

initial pre-processing was performed on these variables in developing the 4C score 1.

For example, the numerical variables have been discretized into factors, with levels

corresponding to intervals in the original variable. These have been kept simple, with

two or three levels per variable, except for age, which is partitioned into five intervals.

Some samples with extreme values were also removed.

Three datasets, small (9 variables), medium (30 variables), and large (78 variables),

were created using subsets of the variables from the ISARIC WHO CCP-UK set. The

small dataset contains the same variables used for the 4C score, with the same dis-

cretization. The medium set expands the variable counting the number of comorbidities

into individual comorbidities. The large dataset then adds additional information on

patient symptoms, such as chest pain and cough. In this sense, each dataset is a subset

of the next: small ⊂medium⊂ large. Full lists of the variables included in each set are

specified in Appendix D. For the medium and large datasets, numeric variables were

turned into factors using a discretization algorithm that automatically determines which

intervals should become levels in the resulting factors. The Hartemink discretization

algorithm [28], as implemented in the bnlearn R package [61] was used to this end. A

1https://github.com/SurgicalInformatics/4C_mortality_score/blob/master/01_
data_prep.R

https://github.com/SurgicalInformatics/4C_mortality_score/blob/master/01_data_prep.R
https://github.com/SurgicalInformatics/4C_mortality_score/blob/master/01_data_prep.R


Chapter 3. Methodology 18

completed version of the small dataset was created using multiple imputation with the

mice R package [75], as NOTEARS and GES require fully-observed data for structure

learning.

3.2 Structure Learning

A key goal of this project is to explore the feasibility of automatically learning BN

structures from observational data. Accordingly, a set of desiderata for structure learning

algorithms has been proposed: a good structure learning algorithm should be scalable,

it should produce sparse DAGs, and it should be reliable in discovering the underlying

causal structure, as opposed to fitting patterns of noise in the data (i.e. overfitting). A

number of experiments have been devised to evaluate the degree to which the PC, GES,

and NOTEARS algorithms satisfy these desiderata. The following sections describe

the setup for each of those experiments. Section 3.2.3 discusses further experiments

designed to explore the effects of specifying prior structural constraints on the DAGs

produced by these algorithms.

Many implementations exist for popular structure learning algorithms such as PC.

Here, bnlearn’s pc.stable implementation was used. PC stable [16] iterates on the

original PC algorithm, making it independent of the input variable ordering, and more

conservative in the edge-orientation phase. For GES, an implementation from the pcalg

[33] R package was used. Finally, for NOTEARS, the causalnex python implementation

[12] was used, with the reticulate2 R package serving as an interface between R and

python.

3.2.1 Scalability

It is important that structure learning algorithms scale well both in the number of

variables (horizontally) and the number of samples (vertically). Horizontal scalability

facilitates the automatic learning of large, complex DAGs, which would be very labour-

intensive for domain experts to produce by hand. Vertical scalability offers statistical

gains, enabling the algorithms to make use of large datasets, leading to more confident

statistical estimates. Both horizontal and vertical scalability were evaluated in terms of

algorithm runtime on a number of datasets of increasing sizes. For horizontal scalability,

the small, medium, and large datasets were used, and for vertical scalability, subsets of

2https://cran.r-project.org/web/packages/reticulate/index.html

https://cran.r-project.org/web/packages/reticulate/index.html
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the small dataset with increasing numbers of samples (103, 104, 105) were used. See

Section 4.1 for the results of this experiment.

3.2.2 Edge Statistics

In order to characterise the typical sparsity and reliability of the DAGs produced by the

structure learning algorithms, we ran them on 100 subsets of size 10,000, randomly

sampled from the small set, and took statistics on the edges of the produced CPDAGs.

In order to measure the typical sparsity of DAGs produced by a given algorithm, we

simply measure the mean number of edges present in the set of 100 CPDAGs. We

propose average edge variance as an indicator of algorithm reliability. This statistic

may be calculated as follows: first, we model edge presence as a Bernoulli variable,

Ei, j ∼ Bern(pi, j), where Ei, j = 1 if there is the edge Xi→ X j is present in the graph,

and Ei, j = 0 if that edge is not present. We can estimate p̂i, j using MLE as in Equation

3.1 , where #Ei, j is the number of times that Xi→ X j was present in n CPDAGs fit on

sets of data sampled from the same distribution.

p̂i, j =
#Ei, j

n
(3.1)

Once p̂i, j has been estimated for each possible edge location, we compute its

variance [13]: V(Ei, j) = p̂i, j · (1− p̂i, j). This variance will be high if the presence of

Ei, j is inconsistent throughout the trials, i.e. if p̂i, j is near 0.5, and the variance will be

low if Ei, j is more consistently either present or absent in the trials, i.e. if p̂i, j is near

0 or 1. Finally, the average edge variance for the CPDAG is computed by taking the

mean of V(Ei, j) for each pair of variable indices i, j. The intuition for this metric is

that a structure learning algorithm that reliably discovers a similar underlying DAG in

datasets sampled from the same distribution will produce CPDAGs with low average

edge variance. Conversely, an algorithm that overfits, i.e. finds spurious edges due to

noise in the data, will have high average edge variance, and might thus be considered

less reliable.

3.2.3 Prior Knowledge Constraints

While structure learning algorithms aspire to learn DAGs from data alone, it is also

typically possible to incorporate existing expert knowledge into the learning process,

in the form of edge constraints. In fact, this ability to encode prior knowledge in this

way is a key advantage of BNs [7]. In addition to narrowing the search space of DAGs
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and thus making the algorithms more efficient, these constraints can help ensure that

the learned DAGs abide by common sense, and are more causally plausible [35]. For

example, temporal knowledge can be encoded by prohibiting the existence of an edge

X → Y if Y precedes X temporally, as causality is typically understood only to operate

in the direction of time [40]. Edge constraints are typically specified in the form of

whitelisted or blacklisted edges, where if an edge is in the whitelist then it must be

present in the learned DAG, and if it is in the blacklist then it must not be present in

the learned DAG. It should be noted that while blacklist and whitelist constraints are

symmetrical in some sense, there is a subtle asymmetry which is worth highlighting.

Consider the possible relationships that may hold between X and Y in a CPDAG: either

(1) X Y (X and Y are not directly related); (2) X → Y ; (3) X ← Y ; or (4) X −Y

(bidirected). Blacklisting X → Y prohibits (1) and (4), but permits (2) and (3), thus

leaving some option for the algorithm to decide whether or not X and Y should have

some relationship (e.g. if X → Y is blacklisted, but the conditional independence tests

find that in fact X and Y are dependent, then there is still the option to set X ← Y ).

However, when X → Y is whitelisted, there is no option but for X and Y to be related in

some way, be it X → Y or X−Y , even if the conditional independence tests show that

X and Y should be independent. This asymmetry is summarised by Table 3.1.

Table 3.1: An asymmetry between blacklisting and whitelisting.

Relationship Edge type Blacklist X → Y Whitelist X → Y

Related X → Y ✗ ✓

Related X ← Y ✓ ✗

Not related X Y ✓ ✗

Related X−Y ✗ ✓

A number of experiments were developed to explore the effects of specifying such

prior knowledge on learned structures, using a blacklist and whitelist for the small

dataset that were specified by a domain expert for the purposes of this project, and are

provided in Table 3.2. The PC algorithm was used for these experiments. One set of

these experiments measures edge statistics (mean number of edges, mean edge variance)

as increasing amounts of prior knowledge are provided to the learning algorithm. For

each set of prior knowledge constraints, edge statistics are calculated on CPDAGs

learned from 100 samples of size 10,000 from the small dataset. Results are provided
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in Section 4.1.3.

Another experiment aims to determine whether adding some prior knowledge in-

creases the likelihood that the learned structure will satisfy other edge constraints

hitherto unseen by the algorithm. This was evaluated by running PC with increasing

amounts of blacklist constraints, and measuring the number of blacklist constraints

that are satisfied by the learned CPDAGs. The degree to which the learned CPDAGs

match the constraints is measured using the F1-score metric, which balances precision

and recall on the constraints. A blacklist constraint X ̸→ Y is deemed satisfied by a

CPDAG D if X → Y is not present in the D. For each set of blacklist constraints used

during learning, the resulting CPDAG will not contain at least those edges, so the

F1-score will monotonically increase as more constraints are provided. As a baseline

for comparison, we compare to the F1-score of a CPDAG that has increasing amounts

of constraints imposed after the learning procedure, i.e. the CPDAG learned without

blacklist constraints, and then a set of edges are removed. By comparing the F1-scores

for CPDAGs learned by including constraints before versus after learning, we can see

whether learning with prior knowledge constraints makes the algorithm more likely

to satisfy other unseen constraints. For example, if learning with the constraint that

death ̸→ sex makes the algorithm less likely satisfy death ̸→ age. The results for this

experiment are presented and discussed in Section 4.1.3.

3.2.4 Selecting DAGs for Inference

While it was possible to perform many of the experiments previously discussed on

CPDAGs, it is necessary to refine these structures down to individual DAGs in order to

perform standard BN parameter estimation and inference. It is possible to narrow down

the set of DAGs implied by a CPDAG by manually orienting bidirected edges, however

there may be so many bidirected edges in the CPDAG that the domain expert is required

to specify almost as many edges as if they had just manually specified the DAG from in

the first place, defeating the original purpose of the structure learning algorithm. One

approach to reducing the number of bidirected edges a given CPDAG is to use bootstrap

sampling to get confidence measures for the presence of each edge, and then filter out

edges which have less than some confidence threshold α. This approach has been taken

in a number of previous works applying BNs [9, 67]. In this case, 100 subsets of size

10,000 were randomly sampled from the small data set, and a CPDAG was learned

from each one. The confidence for a given edge Xi→ X j was then computed as the
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Table 3.2: Edge blacklist and whitelist for the small dataset.

Blacklist
From To

death no comorbid

death sex

death age

death rr vsorres

death oxy vsorres

death daily gcs vsorres

death daily bun lborres

death daily crp lborres

age sex

rr vsorres sex

rr vsorres no comorbid

rr vsorres age

oxy vsorres sex

oxy vsorres no comorbid

oxy vsorres age

daily gcs vsorres sex

daily gcs vsorres no comorbid

daily gcs vsorres age

daily bun lborres sex

daily bun lborres no comorbid

daily bun lborres age

daily crp lborres sex

daily crp lborres no comorbid

daily crp lborres age

Whitelist
From To

no comorbid death

age death

age no comorbid

sex death

sex no comorbid

MLE estimate for the probability of that edge being present, p̂i, j, which edge presence

modelled as a Bernoulli variable, as in Section 3.2.2. an R ShinyApp3 was developed to

determine a suitable threshold α which could be used to reduce density and bidirected

edges in the CPDAGs without extensive manual labour. The app used the networkD3

R package to create interactive visualisations of the CPDAGs with edge confidence p̂i, j

being indicated by opacity. Sliders were used to change the value for α, which would

update the DAG visualisation live. A screenshot of the app interface is provided in the

Appendix A Figure A.1.

A desirable value for α is one that makes the DAGs sparse and removes bidirected

3https://shiny.rstudio.com/

https://shiny.rstudio.com/
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edges while retaining useful information, making them more interpretable and efficient

while maximally accurate. α = 0.5 was chosen as a threshold for all graphs, maintaining

some of their individual characteristics, e.g. NOTEARS creating a slightly denser graph,

while making them usable for inference and interpretation. Some minor changes were

still necessary in order to remove remaining bidirected edges, but it was possible to

resolve most of these with common sense, e.g. C-reactive protein ̸→ sex, and the rest

with relative edge confidence. Detailed diagrams for each selected DAG are given in

Appendix B. Note that prior knowledge constraints have not been applied to these DAGs

other than to orient bidirected edges, and so the DAGs are likely to be causally infeasible

– they are thus only used in experiments missing data and predictive performance where

causal assumptions need not be made, and the model can be considered a purely

associational BN.

3.2.5 DAG Comparison

One way to understand the differences between structure learning algorithms is to

compare the DAGs they produce. Structural Hamming Distance [73] (SHD) is a

distance metric for DAGs [18] that is calculated between two DAGs D and D ′ as the

number of structural operations required to transform D into D ′. These structural

operations are: (1) adding an edge; (2) removing an edge; and (3) reversing an edge

orientation. The SHD between each pair of DAGs produced via the method described

in Section 3.2.4 was computed, and is reported and discussed in Section 4.1.4.

3.3 Inference

3.3.1 Prior Knowledge Constraints

Some experiments on prior knowledge constraints were discussed in Section 3.2, but

these mostly focused on the effects on structural properties. Further experiments were

designed to evaluate the effect of adding prior knowledge constraints on prediction

accuracy. The experimental setup is similar to those described in Section 3.2.3: sets

of increasing amounts of prior knowledge constraints are created, and a CPDAG is fit

to the small data set for each set of constraints. Then, for each DAG specified by a

given CPDAG, parameters are estimated on the entire small data training set, and the

death variable is predicted for a held-out validation set of size 1000 using likelihood

weighting. Finally, the mean and standard deviation deviation of the accuracy of those
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predictions are recorded for each CPDAG. The results to this experiment are presented

and discussed in Section 4.2.1.

3.3.2 Missing Data

As mentioned in Chapter 1, the ability to handle missing data during inference without

using external imputation models is a key advantage of BNs. In order to quantify how

well these models can handle missing data, the following experiment was designed.

First, the small dataset was split into a 75 : 25 train : validation split. Missing values in

the train set were imputed using MICE, so that differences in model performance could

arise only from inference. Parameters were estimated on this imputed train set using

MLE for each of the BN structures selected in Section 3.2.4 and a logistic regression

model. Then, a number of copies of the validation set were created, and increasing

amounts of values were randomly removed to create artificial missing data, MCAR. For

example, the validation set with 50% missing data had a 0.5 probability of replacing

any given cell in the dataset with NA. Each model then made predictions on the death

variable for each of these missing-data validation sets. The logistic regression model

expects each feature to be observed during inference, so the MICE model fit to the

training set was reused to impute the missing values during inference. This was done

using the mice.reuse R function4. Because the death variable is imbalanced (75%

no, 25% yes), we report balanced accuracy, which takes the mean of the individual

class-level accuracies. Results provided in Section 4.2.2.

3.3.3 Classification Performance

A primary objective in risk stratification is accurately predicting the probability of

various health outcomes for a given patient. In order to assess the predictive power of

BNs, we consider a number of standard procedures for evaluating classification models.

These procedures were computed using the small dataset train/validation split with each

of the BNs selected in Section 3.2.4, as well as a logistic regression model, as was used

in the 4C-score model. The evaluation methods computed are the following:

• Receiver operating characteristic (ROC) curve: this method plots the model’s

sensitivity and specificity for each possible decision boundary. This curve provides

a means of visually evaluating a model’s ability to discriminate between the two

4https://www.rdocumentation.org/packages/NADIA/versions/0.4.1/topics/mice.
reuse

https://www.rdocumentation.org/packages/NADIA/versions/0.4.1/topics/mice.reuse
https://www.rdocumentation.org/packages/NADIA/versions/0.4.1/topics/mice.reuse
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classes in the variable being predicted, where a model is a better discriminator if

it has a larger area under the curve (AUC) [39].

• Calibration curve: this plot gives an indication of the reliability of the probabili-

ties output by a model [48]. This method asks the question ”In what proportion of

the samples for which Y was predicted to be 1 with probability p was Y actually

equal to 1?” If that proportion is always equal to p, then the calibration curve is a

straight line, and the output probabilities can be considered to reliably indicate

the probability that Y = 1.

• Decision curve analysis: this method indicates the net benefit resulting from

the decision to administer some treatment for each output probability decision

threshold [77]. In the health context, one could imagine a model which predicts

the probability p of some disease being present, that could be cured with a certain

treatment T . The decision threshold, pd , is the value of p at which T would be

administered. If T is likely to cause adverse effects, then pd will be high, because

we will only want to administer T if we are very certain that the disease is present

[78]. Net benefit is then calculated as in Equation 3.2 using pd to weight the

negative effect of false positives, where high pd indicates a large negative effect

of false positive. T PR is the true positive rate, and FPR is the false positive

rate. A line showing the net benefit if all patients are treated is also plotted as a

baseline.

Net benefit = T PR−FPR
(

pd

1− pd

)
(3.2)

3.3.4 Causal Inference

A causal DAG was manually specified by a domain expert in order to make a causal

query about vaccination effectiveness using the do-operator, as described in Section

2.1.5.3. The variables included are those from the small set, along with a variable indi-

cating patient vaccination status, whether they were admitted to ICU, and whether they

required oxygen. The specified DAG is illustrated in Figure 3.1, with severity of illness

on admission abstracting the variables indicating respirator rate, oxygen saturation, Glas-

gow coma score, urea, and C-reactive protein. Parameters for this model were estimated

using the expectation maximisation algorithm, which can estimate parameters for both

the observed variables and an unobserved variable representing mediators from COVID-
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19 to outcomes. Note that unobserved confounders of vaccination→ outcome could not

be accounted for in the causal effect estimation, leaving potentially unobserved backdoor

paths between vaccination and outcomes. The pgmpy [6] python library was used to

specify this model, estimate parameters, and run the interventional query. This gave es-

timates for interventional distributions of the form P(outcome | do(vaccinated = yes))

and P(outcome | do(vaccinated = no)), for each outcome: death, any icu, any oxy.

These estimates were then used to compute the ATE of the vaccine on the outcomes, as

defined in Section 2.1.5.3. For comparative purposes, a naı̈ve estimation of the ATE

was computed as follows, without using causal inference:

Naı̈ve ATE = E[P(outcome | vaccinated = yes)]−E[P(outcome | vaccinated = no)]

The results to this experiment have not been validated by domain experts, and should

thus be considered demonstrative. The unobserved confounders, marked in yellow in

Figure 3.1, introduce further bias to the estimates.

Exposure:mediator: 
outcome baseline 
confouders

Mediator:outcome 
confounders

Vaccination

O2
ICU/HDU

IMV
Mortality

Comorbids 

COVID-19 
in given 
period

Age, sex 
IMD

Other YM 
confounders

Unmeasured 
mediators

Other YXM 
confounders

Severity 
illness on 
admission

Admission 
to 

hospital

Healthcare 
strain

Exposure

Mediator

Outcome

Observed confounder

Unobserved confounder

Mediator

Figure 3.1: A causal DAG modelling the mechanism by which vaccination mediates

the effect of COVID-19 on various health outcomes. The dashed boxes contain both

observed and unobserved confounders.
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Results & Discussion

4.1 Structure Learning

4.1.1 Scalability

Results for the experiments described in Section 3.2.1 are given in Table 4.1, and plotted

in Figures 4.1 and 4.2. It is clear from these plots that NOTEARS is signficantly slower

than GES or PC for any of the dataset sizes considered. As the number of samples in-

creases, runtime for GES and PC increases approximately linearly, whereas NOTEARS’

runtime increases approximately exponentially. Conversely, as the number of variables

increases, PC and GES become exponentially slower, whereas NOTEARS slows down

approximately linearly. This asymmetry might lead one to prefer NOTEARS for very

large datasets, however its absolute runtime is so long that will quickly become pro-

hibitively expensive to use – note that the horizontal scaling experiments use a dataset

with 1000 samples here; we can estimate that a dataset with 80 variables and 100,000

samples would take approximately 2 days to fit. GES is the fastest algorithm overall,

scaling very well in the number of samples, and similarly to PC with the number of

variables. PC scales slightly worse with the number of samples, likely due to the

conditional independence test subroutine.

4.1.2 Edge Statistics

It is clear from the results in Table 4.2 that PC produces that sparsest DAGs, GES

slightly less sparse, and NOTEARS produces that least sparse DAGs. Thus, under an

associational (non-causal) interpretation, PC is producing DAGs with the most assump-

tions about the data, and NOTEARS is producing those with the least assumptions.

27
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Table 4.1: Runtimes for each structure learning algorithm both as the number of samples

increases (vertical scalability) and as the number of variables increases (horizontal

scalability).

Vertical Scalability Horizontal Scalability

1000 10000 100000 9 30 78

PC 0.019 0.177 3.349 0.019 0.135 2.56

GES 0.017 0.027 0.081 0.017 0.181 2.117

NOTEARS 7.12 9.233 53.907 7.12 537.379 4847.333
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Figure 4.1: Runtimes for each structure learning algorithm as the number of variables

increases.

Generally speaking, however, it is desirable that the learning algorithm produces sparse

DAGs, both for improved computational efficiency and interpretability.

The average edge variance in the DAGs produced by these algorithms exhibit a

much wider relative range in values, with PC and GES having an order of magnitude

higher variance than NOTEARS. Overall, however, the average variances are quite low,

corresponding to average probability of around 0.9 or 0.1 in PC and GES, and 0.99 or

0.01 in NOTEARS. This result is interesting because both PC and GES have statistical

consistency guarantees [69, 14], meaning that they should find the true underlying DAG

up to its MEC in the limit of data samples. These trials exhibit relatively low variance,

and hence some level of convergence on an individual level, even at datasets with 10,000
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Figure 4.2: Runtimes for each structure learning algorithm as the number of samples

increases.

samples, however the PC and GES don’t tend to converge any more to one another than

to NOTEARS, as discussed in Section 4.1.4.

Table 4.2: Edge statistics from CPDAGs fit to 100 randomly sampled subsets of the

small dataset.

Avg. No. Edges Avg. Edge Variance

PC 18.14 0.086

GES 20.59 0.12

NOTEARS 26.04 0.0087

4.1.3 Prior Knowledge Constraints

Figure 4.3 shows the effect of adding blacklisted edges on mean number of edges and

mean edge variance of CPDAGs produced by PC, as described in Section 3.2.3. Figure

4.3 (a) shows that increasing the number of blacklisted edges has a small effect on

sparsity, decreasing the average sparsity from ∼ 16.6 to ∼ 15.6 by adding 24 blacklist

constraints. This effect is perhaps smaller than one might expect, indicating the PC tends

to compensate for removed edges by adding new edges that would not otherwise have
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been present. In fact, what is happening in this case is that if there is some association

X−Y , but the blacklist contains X → Y , then PC is simply orienting X−Y as X ← Y .

This is a desirable behaviour as it will enhance model interpretability, ensuring that

the orientation of associational relationships X −Y identified by PC are more likely

to accord with common sense. Figure 4.3 (b) shows that blacklisting edges results in

a significant decrease in mean edge variance in the resulting CPDAGs. This result

indicates that blacklisting certain edges does not increase the variance of the remaining

non-blacklisted edges, but rather causes a stable decrease in variance as more and more

edges are added to the blacklist. A decrease in variance is desirable as it corresponds to

more reliable DAGs that are robust to noise in the input. When examining the results

on the effects of whitelisting in Figure 4.4, it is harder to observe clear trends as the

whitelist was quite small, containing only 5 constraints. We can observe a slight trend

towards an increased mean number of edges in Figure 4.4 (a), however, moving from an

average of 17 edges with 0 constraints to an average of 19 with 5 whitelist constraints.

This is expected, as whitelisting an edge X → Y ensures its presence whether or not PC

finds that there should be some association between X and Y (see Table 3.1).

Figure 4.5 shows the effects on blacklist F1-score of providing PC with the con-

straints before learning versus imposing them on the resulting CPDAG afterwards. No

clear difference between the two is evident in the plot, indicating that, beyond increased

computational efficiency, there may not be significant benefits to providing the algorithm

with these constraints before learning, at least in constraint-based algorithms.
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Figure 4.3: The effects of increasingly large blacklists on edge statistics.
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Figure 4.4: The effects of increasingly large whitelists on edge statistics.
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Figure 4.5: The F1-score on the remaining edge blacklist when priors are included before

versus after structure learning.

4.1.4 DAG Comparison

Table 4.3 shows the structural Hamming distance between each pair of the DAGs created

for the experiments on inference. It is interesting to note that each of these DAGs differ

significantly from one another, with approximately 20 edge operations to convert any

one DAG into any other. This suggests that learned structure can be quite sensitive to

the algorithm chosen, a result which is corroborated by previous work in this area [36].

It is perhaps surprising that PC and GES have produced such different DAGs, when

they should find the same MEC in the limit of data samples due to their consistency

[25] – perhaps the assumptions necessary for this guarantee (e.g. sufficiency) have not

been met, or there are simply too few samples.
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Table 4.3: Structural Hamming distance between DAGs learned by each algorithm.

PC GES NOTEARS

PC 0

GES 22 0

NOTEARS 21 23 0

4.2 Inference

4.2.1 Prior Knowledge Constraints

The results to the experiment described in 3.3.1 are plotted in Figure 4.6. In Figure 4.6

(a) we can see an increase in mean accuracy when the blacklist increases from 4 to 7

constraints. By examining the blacklist in Table 3.2 it is clear that the first 8 constraints

relate to the death variable, which is the variable being predicted in this case. These

constraints prevent death from being the parent to any other variable (in accordance with

temporality) and hence any relationship X−death identified by PC must be oriented as

X → death, giving death more parents as more constraints are added. It is this increase

in size of the parent set that is likely responsible for the increase in accuracy. No clear

pattern emerges in Figure 4.6 (b) as edges are whitelisted, although this may be due

to the small size of the whitelist: one could infer that whitelisting edges of the form

X → death that increase the size of the parent set of death would increase accuracy.

Number of edges blacklisted

M
ea

n 
va

lid
at

io
n 

ac
cu

ra
cy

0.760

0.765

0.770

0.775

0.780

5 10 15 20

(a)

Number of edges whitelisted

M
ea

n 
va

lid
at

io
n 

ac
cu

ra
cy

0.760

0.765

0.770

0.775

0.780

1 2 3 4 5

(b)

Figure 4.6: Validation accuracy mean and standard deviation for CPDAGs fit with an

increasing number of blacklisted edges.



Chapter 4. Results & Discussion 33

4.2.2 Missing Data

Figure 4.7 shows the results to the experiment described in Section 3.3.2. The naive

baseline plots the accuracy achieved by a model that predicts a single class for any input,

receiving 100% accuracy on one class and 0% on the other, resulting in a 50% balanced

accuracy. In examining the plot in Figure 4.7 it appears that each of the models, BNs

and logistic regression alike, behave similarly in the face of missing data, the accuracy

for each model decaying linearly towards the baseline as additional missing data is

added. Of note in these results is that the BN models handle the missing data just as

well as logistic regression without using any external imputation models, confirming

that this is a strong point for BNs.
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Figure 4.7: The effect of increasing amounts of missing data on validation accuracy for

each of the selected DAGs (Section 3.2.4) and logistic regression.

4.2.3 Classification Performance

This section will present results to an evaluation of classification performance in BNs

and logistic regression as described in Section 3.3.3. ROC curves for each BN model

and the logistic regression are plotted in Figure 4.8. It is clear in examining this plot

that logistic regression consistently outperforms the BNs, all of which have an almost

identical ROC curve. The AUC for each model is provided in Table 4.4. Calibration

curves are plotted in Figure 4.9. Again, the BNs’ curves are almost identical, and
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overlap with one another. The curves for both Logistic Regression and the BNs are

almost perfectly straight, apart from a slight deviation between 0.2 and 0.4, where

logistic regression overestimates the probability and the BNs underestimate it. Overall,

this result indicates that the output probabilities in both kinds of model are reliable. The

output probability distributions for logistic regression and the PC BN are plotted as

histograms in Figure 4.10. Note that the distribution produced by the Bayesian net is

somewhat inconsistent, as compared with that of the logistic regression, which shows a

smooth monotonic decrease in frequency as the probability increases, in line with the

imbalance of positive samples for the dependent variable. Figure 4.11 plots a decision

curve for each model. In general, logistic regression is provides as much or more net

benefit than the BNs for any given risk threshold, with the two being similar at very high

or low risk thresholds, and around 0.4. In aggregate, these results indicate that while

the classification performance of logistic regression and discrete BNs is similar, logistic

regression consistently shows a small improvement on standard metrics, corroborating

findings from similar experiments in previous works [24, 18]. This result is not hugely

surprising, as logistic regression is fit specifically to perform this classification task,

whereas BNs are fit to model the entire joint distribution. In fact, it has been shown that,

as discriminative classifiers, BNs constitute a subset of logistic regression models [56].

Figure 4.8: ROC curves for each BN and logistic regression.
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Table 4.4: Area under ROC curves in Figure 4.8.

AUC

LR 0.7746

PC 0.7603

GES 0.7604

NOTEARS 0.7602

Figure 4.9: Calibration curve

(a) (b)

Figure 4.10: Histograms showing distribution of probabilities predicted by the PC fitted

BN (a) and logistic regression (b).

4.2.4 Causal Inference

The ATE was calculated for each health outcome using both the causal BN and a naı̈ve

observational approach, as described in Section 3.3.4. The resulting ATE estimates are

presented in Table 4.5, where if outcome death has an ATE of 0.0457, then it is expected
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Figure 4.11: Decision curve for each BN and logistic regression.

that, on average, taking the vaccine will decrease probability of death by 0.0457. It

is noteworthy that the naı̈ve ATE estimate systematically overestimates the effect of

the treatment, likely due to vaccine→ outcome confounders. If, for example, older

people are both more likely to receive the vaccine, and it is more effective for them

at preventing negative health outcomes, then the conditional probability distribution

P(death | vaccine = yes) will be disproportionately represented by older people, and

the effectiveness of the vaccine will appear greater. The expected values for each

interventional and conditional distribution used to compute the ATE estimates are

provided in Appendix C.

Table 4.5: Average treatment effects computed both naı̈vely and using a causal BN. The

statistics indicate the expected decrease in probability of the associated health outcome

caused by taking the vaccine.

Outcome Causal BN ATE Naı̈ve ATE

death 0.0457 0.0556

any icu 0.1277 0.1645

any oxy 0.1445 0.177
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4.3 A Finalised DAG

The following is an example of a general workflow for BN modelling, guided by the

project’s experimental results, that should produce interpretable and accurate DAGs

(illustrated in Appendix E). Subject to validation by clinicians, the resulting DAG could

be deployed for COVID-19 mortality risk prediction.

• The PC algorithm was chosen to learn the structure, because of its efficiency,

transparent learning process and causal interpretation, and tendency to produce

sparse DAGs.

• All available prior knowledge (in this case, specified in Section 3.2.3) was pro-

vided to the algorithm. This ensures that each DAG in the learned CPDAG is

causally plausible1. Including prior knowledge about the variable to be predicted

(death) that will increase the size of its parent set will help achieve high accuracy.

• Edge bootstrapping with α = 0.7, as described in Section 3.2.4, was used to cut

the CPDAG down to contain only the strongest edges.

• Finally, relative edge strength was used to orient two remaining bidirected edges,

setting oxy vsorres. f actor→ rr vsorres. f actor and daily crp lborres. f actor→
oxy vsorres. f actor.

The final DAG is plotted in Figure 4.12. In analysing the DAG structure, we

see that sex and age are found to play a key role in mortality risk prediction, having

both direct effects on mortality as well as through mediating factors including the

number of comorbidities and blood urea nitrogen, aligning with the salient features

identified by previous works [23, 34, 26]. C-reactive protein is also found to indirectly

affect mortality through oxygen saturation. Interestingly, Glasgow Coma Score (GCS),

measuring degree of consciousness, is not connected to any other variable, which

contradicts findings by Gao et al. [23]. In this case it was found that the edge strength

for each potential connection to or from GCS was approximately 0.2, and was thus cut

from the CPDAG – this ‘cutting’ is analogous to feature selection via, e.g., LASSO.

1If the CPDAG implies a DAG that is not causally plausible, then this implies that there is some prior
knowledge that hasn’t been included.
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Figure 4.12: Plot of finalised DAG learned using PC stable, with all available prior

knowledge and edge bootstrapping.
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Conclusion

In conclusion, this project has demonstrated that BN models are a viable alternative

to standard methods of risk prediction, with some interesting properties that make

them particularly suitable to the clinical domain. We showed that interpretable models

of the domain can automatically be learned from data via structure learning, with

prior expert knowledge being used to ensure that the learned model remains causally

plausible. Three popular structure learning algorithms – PC, GES, and NOTEARS –

were evaluated in terms of computational efficiency, and the properties of the structures

they produced. These experiments identified the PC algorithm as a well-balanced

choice, producing reliable, sparse DAG structures, and scaling well in the size of

the dataset. In examining the effects of constraining the learning process with prior

expert knowledge, it was found that edge blacklisting helps to produce more reliable,

interpretable structures. The predictive performance of these models was also evaluated

in a number of ways. One experiment found that BNs, without any external data

imputation models, performed similarly to a logistic regression model using MICE

imputation, even with large amounts (up to 70%) of the data missing. Using standard

evaluation procedures for classification, such as computing AUROC, calibration curves,

and decision curves, it was found that BNs are generally outperformed by logistic

regression for classification, but only by a small amount (typically around 1%). A

further experiment explored using a BN for performing causal inference, manually

specifying a causal DAG with domain knowledge and then using interventional queries

to compute average treatment effects of being vaccinated on various health outcomes.

The treatment effects computed via this method were observed to be smaller than those

seen using correlation, due to the interventional queries accounting for confounding

bias. Finally, a generic workflow for BN modelling was proposed and employed in

39
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making a finalised model of the small dataset, which could potentially be deployed for

real-world risk prediction, subject to further validation.

While the aforementioned experiments reveal some interesting results, they are

not without limitation. In the experiment with prior knowledge specification before

versus after the learning process, we only considered PC, a constraint-based algorithm.

It would have been instructive also to try this with a score-based algorithm, which

would likely behave differently. In general, the experiments with prior knowledge

constraints were somewhat limited by the small size of the whitelist, making it hard to

observe general patterns. It would also have been useful to conduct some experiments

with larger graphs, in particular the missing data experiments, looking at the effect on

accuracy of data missingness, although this was limited by compute time.

Many interesting research directions remain to be explored on this topic. For ex-

ample, it would be interesting to explore ways of parameterising a BN model that can

handle both discrete and continuous (mixed) data, and the impact that this can have on

interpretability and predictive power. While discretising variables can approximate com-

plex distributions well if the number of levels is high, this comes with a computational

trade-off in discrete BNs. Opting instead for continuous distributions can drastically

reduce the number of parameters necessary, and creates a new way to encode prior

knowledge in the model. Some work has been done in this area, e.g. [72], and could be

integrated with existing R code from this project. Further, it could be interesting to study

the effects on predictive performance of modelling non-linear relationships between

variables and their parents using more complex but nonetheless interpretable methods

such as splines (e.g. [65]). It could also be interesting to develop parameter estimation

and inference algorithms which operate on CPDAGs rather than DAGs. More work

could be done in using BNs for causal inference. One experiment, for example, could

involve a domain expert specifying as much causal domain knowledge as they can, and

using the PC algorithm to learn an equivalence class in which each DAG could plausibly

be the correct causal DAG (each should plausible because if it were not, then there

would be some prior knowledge not encoded in the structure learning process). Then,

intervention-calculus when the DAG is absent [45] could be used to estimate bounds

on the causal effect of one variable on another. One could also move beyond BNs

to make more complex causal queries, such as counterfactual queries with structural

equation models [51]. Recently, causal machine learning methods such as the causal

effect variational auto-encoder [44] have been developed, and claim to significantly

improve in accuracy of estimating treatment effects.
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On discriminative bayesian network classifiers and logistic regression. Machine

Learning, 59(3):267–296, 2005.

[57] J Russell Stuart and Peter Norvig. Artificial intelligence: a modern approach.

Prentice Hall, 2009.

[58] Mauro Scanagatta, Antonio Salmerón, and Fabio Stella. A survey on bayesian

network structure learning from data. Progress in Artificial Intelligence, 8(4):425–

439, 2019.



Bibliography 47

[59] Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal

Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. Toward causal representation

learning. Proceedings of the IEEE, 109(5):612–634, 2021.

[60] Marco Scutari, Catharina Elisabeth Graafland, and José Manuel Gutiérrez. Who
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Appendix A

ShinyApp for edge bootstrapping

See Figure A.1 on the next page.
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Figure A.1: The effect of increasing amounts of missing data on validation accuracy.

This screenshot is for illustrative purposes, not to present the DAGs. For more readable

DAG plots see Appendix B.



Appendix B

DAGs selected for inference

experiments

death

sex

no_comorbid.factor

age.factor

rr_vsorres.factor

oxy_vsorres.factor

daily_gcs_vsorres.factor

daily_bun_lborres.factor

daily_crp_lborres.factor

Figure B.1: Plot of selected DAG learned by PC.
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death
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daily_bun_lborres.factor

daily_crp_lborres.factor

Figure B.2: Plot of selected DAG learned by NOTEARS.
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daily_bun_lborres.factor

daily_crp_lborres.factor

Figure B.3: Plot of selected DAG learned by GES.



Appendix C

Interventional and conditional

expectations on health outcomes

Table C.1: Interventional and conditional expectations on the death (death) variable for

various settings of the vaccination at admission (vac) variable.

death E[death | do(vac = yes)] E[death | do(vac = no)] E(death | vac = yes) E(death | vac = no)

yes 0.1585 0.2042 0.1452 0.2008

no 0.8415 0.7958 0.8548 0.7992

Table C.2: Interventional and conditional expectations on the any icu (ICU) variable for

various settings of the vaccination at admission (vac) variable.

ICU E[ICU | do(vac = yes)] E[ICU | do(vac = no)] E(ICU | vac = yes) E(ICU | vac = no)

yes 0.1049 0.2326 0.0745 0.2391

no 0.8951 0.7674 0.9255 0.7609

Table C.3: Interventional and conditional expectations on the any oxy (oxy) variable for

various settings of the vaccination at admission (vac) variable.

oxy E[oxy | do(vac = yes)] E[oxy | do(vac = no)] E(oxy | vac = yes) E(oxy | vac = no)

yes 0.5761 0.7206 0.5525 0.7295

no 0.4239 0.2794 4475 0.2705
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Appendix D

Datasets

Table D.1: Generated by Spread-LaTeX

Small dataset Note

4C
Sc

or
e

death -

no comorbid Number of comorbidities

age -

rr vsorres Respiratory rate

oxy vsorres Oxygen saturation

daily gcs vsorres Glasgow Coma Score

daily bun lborres Urea

daily crp lborres C-reactive protein

sex -
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Table D.2: Variables used in the medium dataset.

Medium dataset

4C
Sc

or
e

death

no comorbid

age

rr vsorres

oxy vsorres

daily gcs vsorres

daily bun lborres

daily crp lborres

sex

Fu
rt

he
r

m
ea

su
re

so
fg

en
er

al
he

al
th

sysbp vsorres

admission diabp vsorres

temp vsorres

hr vsorres

daily hb lborres

daily wbc lborres

daily neutro lborres

daily plt lborres

daily sodium lborres

daily bil lborres

daily creat lborres

vac at admission

C
om

or
bi

di
tie

s

chrincard

asthma mhyn

modliv

malignanteo mhyn

chronichaemo mhyn

aidshiv mhyn

obesity mhyn

diabetes type mhyn

smoking mhyn
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Table D.3: Variables used in the large dataset.

Large dataset

4C
Sc

or
e

death

no comorbid

age

rr vsorres

oxy vsorres

daily gcs vsorres

daily bun lborres

daily crp lborres

sex

Fu
rt

he
r

ge
ne

ra
lm

ea
su

re
so

fh
ea

lth

sysbp vsorres

admission diabp vsorres

temp vsorres

hr vsorres

daily hb lborres

daily wbc lborres

daily neutro lborres

daily plt lborres

daily sodium lborres

daily bil lborres

daily creat lborres

vac at admission

C
om

or
bi

di
tie

s

chrincard

asthma mhyn

renal mhyn

modliv

malignanteo mhyn

chronichaemo mhyn

aidshiv mhyn

obesity mhyn

diabetes type mhyn

smoking mhyn

Fu
rt

he
r

co
m

or
bi

di
tie

s

chronicpul mhyn

mildliver

chronicneu mhyn

rheumatologic mhyn

dementia mhyn

malnutrition mhyn

vulnerable no nk

vulnerable transplant

vulnerable cancers

vulnerable copd

vulnerable scid

vulnerable immuno

vulnerable preg

Sy
m

pt
om

s

dehydration vsorres

daily plt lborres

adm no sypm

fever ceoccur v2

cough ceoccur v2

coughsput ceoccur v2

coughhb ceoccur v2

sorethroat ceoccur v2

runnynose ceoccur v2

earpain ceoccur v2

wheeze ceoccur v2

chestpain ceoccur v2

myalgia ceoccur v2

jointpain ceoccur v2

fatigue ceoccur v2

shortbreath ceoccur v2

aguesia ceoccur v2

lowerchest ceoccur v2

headache ceoccur v2

confusion ceoccur v2

seizures ceoccur v2

abdopain ceoccur v2

vomit ceoccur v2

diarrhoe ceoccur v2

conjunct ceoccur v2

rash ceoccur v2

skinulcers ceoccur v2

lymp ceoccur v2

bleed ceoccur v2

bleed ceterm v2

anosmia ceoccur v2

O
ut

co
m

es

any trach

any icu

any oxygen

any noninvasive

any invasive



Appendix E

Modelling Workflow

Figure E.1: Illustration of Bayesian network modelling workflow. PC algorithm is run 100

times on randomly sampled subsets of the dataset to produce a weighted CPDAG, in

which each edge is weighted by the proportion of the 100 fitted CPDAGs it occurs in.

Then edge weight thresholding is used to narrow the CPDAG down, with a final edge

orientation phase to direct any remaining bidirected edges according to relative edge

strength, producing a final DAG.
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Appendix F

Visualising Conditional Probability

Tables

Figure F.1: In discrete BNs, each factor P(X | pa(X)) is a conditional probability table,

each can be visualised using intuitive plots, such as bar charts. See, for example, Figure

F.1. The visualisation shows a probability for each level of the death node, yes and no,

for each combination of values of the parent nodes. For example, we can see on the

bottom left panel of Figure F.1 that if a patient is young, has high oxygen saturation and a

normal range of urea, they have a very low probability of in-hospital mortality. Note that

as the size of the set of possible parent configurations grows, be that through increasing

the number of parents or the number of levels in the parent factors, such diagrams

become impractically large, further motivating DAG sparsity. The table depicted here

comes from the death node for the DAG plotted in Figure B.1

.
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