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Abstract

Stable biochar enables the effective removal of carbon from the atmosphere. Biochar

is produced through pyrolysis of biomass. It then stores carbon for long periods and

mitigates climate change. But to date, there is no universally accepted way of predicting

biochar carbon stability. In this thesis, we used machine learning techniques to predict

biochar carbon stability from biomass characteristics and pyrolysis conditions. This

has never been attempted in previous studies. The dataset included biomass proper-

ties, pyrolysis conditions and biochar carbon stability measurements. Biochar carbon

stability methods included Proximate analysis, Chemical oxidation and H: C molar

ratios. We have implemented and evaluated the following models: Linear Regression,

Random Forests, Support Vector Regression and Gaussian Processes. Consequently,

we performed feature importance analysis and partial dependence analysis.

Our findings show that predicting biochar carbon stability is possible with the best

mean absolute percentage error (MAPE) of 13.6%± 4.9% achieved with Gaussian

Processes when predicting all carbon stability methods together. Support Vector Regres-

sion model achieved MAPE = 15.6%±5% for Chemical oxidation method. Random

forests proved the best for modelling Proximate analysis (MAPE = 16.4%±3.4%) and

H:C molar ratio (MAPE = 19.8%± 4.3%). The developed models can help domain

experts to guide laboratory experiments and better understand the underlying pyrolysis

processes. We believe the errors could be reduced with a more comprehensive dataset,

including a wider variety of feedstock types and pyrolysis conditions such as residence

time and heating rate. Residence time with contents of nitrogen and carbon were

the most important features for Proximate analysis, with pyrolysis temperature being

dominant for other stability methods.
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Chapter 1

Introduction

1.1 Motivation

With an increasing amount of carbon dioxide in the atmosphere, carbon sequestration

helps to reduce global climate change by capturing and storing atmospheric carbon

dioxide. One of the possible carbon storages is biochar. Biochar is a solid product

of the thermochemical conversion of biomass called pyrolysis. The biomass contains

atmosphere-derived carbon, which is stored stably in biochar after pyrolysis. Through

pyrolysis the unstable carbon in biomass is converted into stable carbon [1]. For biochar

to deliver on its potential, producing highly stable biochar is necessary. Stable biochar

contains carbon that does not decompose and releases carbon back into the atmosphere

for centuries and millennia [2]. Biochar has other positive usages, such as soil fertilizer.

Therefore, biochar production reduces atmospheric greenhouse gas concentration and

also improves soil or marine environment.

1.2 Problem statement

As we can’t wait hundreds of years to measure carbon decomposition, we need to use

other metrics to act as carbon stability proxies. Many experiments were conducted on

the aspect of biochar stability, yet to date, there is no universally accepted way of carbon

stability prediction [3]. In this work, we test machine learning methods for predicting

biochar carbon stability for the first time. As numerous studies showed [4, 5, 6], it is

possible to apply machine learning methods to model complex processes happening

during pyrolysis. Nevertheless, results varied, and as suggested by [7], more in-depth

work should be carried out investigating machine learning methods to predict biochar
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Chapter 1. Introduction 2

properties. Predicting biochar’s long-term stability is challenging due to many chemical

factors affecting it.

1.3 Contributions

In this project, we have developed machine learning models for predicting biochar

carbon stability. We have tested Linear regression, Support Vector Regression, Random

Forests and Gaussian processes. We have compared results across various models

and performed feature importance and dependence analysis. Three biochar carbon

stability measures were modelled: Chemical oxidation [8], Proximate analysis [9],

and H: C molar ratios [10]. The inputs to our models were data from experimental

observations gathered by the UK Biochar Research Centre. These included biomass

characteristics (e.g. contents of carbon, hydrogen etc.) and pyrolysis conditions (e.g.

pyrolysis temperature or residence time).

1.4 Thesis structure

This thesis is structured as follows: Chapter 2 introduces the background and related

work relevant to our problem. We introduce biochar, carbon stability methods and

studies using machine learning for biochar properties prediction. Chapter 3 describes

our dataset. Chapter 4 covers the methodology defining our evaluation metrics, machine

learning methods and feature importance methods. We show and discuss our results in

Chapter 5. We conclude and suggest future directions in Chapter 6.



Chapter 2

Background

The ultimate goal is to create stable biochar. This work contributes to this goal by

creating biochar carbon stability prediction models. If we manage to predict biochar

stability, there will not be a need to conduct as many physical experiments in the

laboratory as we will only conduct experiments with promising parameters validated

by the model. We first need to understand what biochar is, how it is created and how

its carbon stability can help with climate change. We introduce and define the most

important concepts in this chapter. We also present the most recent papers that used

machine learning to predict biochar properties. Parts of Sections 2.1, 2.2 and 2.3 are

based on my IPP report.

2.1 Biochar and Pyrolysis

Biochar is a charcoal-like substance rich in carbon that is created from biomass (organic

material) by a process called pyrolysis [11]. Figure 2.1 shows a picture of biochar.

Most of the biochar composition is carbon (usually more than 70%). The rest is

made of nitrogen, hydrogen and oxygen, among other elements [12]. Various types of

biomass can be used to produce biochar, such as waste feedstock, agricultural waste, or

municipal sewage sludge [11]. Pyrolysis transforms the biomass into biochar through a

thermochemical process that undergoes either in the complete absence of oxygen or in

limited supply [1]. Usually, the operating temperature of pyrolysis is in the range of

600–900°C. The other important parameters of pyrolysis are heating rate and residence

time [1]. The output of the pyrolysis process includes the biochar, pyrolysis oil and

synthesis gas [13].

3



Chapter 2. Background 4

Biochar has many applications. It has been produced and utilized for several thou-

sand years [12]. Apart from our main interest in sequestrating carbon, biochar is also

used for soil fertilization, gas and water purification, or metallurgical applications [12].

Burning biomass through pyrolysis also generates heat and power. Recently, biochar

has gained popularity for its potential to reduce greenhouse gas emissions by replacing

fossil carbon carriers [12]. The Figure 2.2 indicates the biochar carbon cycle. Carbon

dioxide is captured from the air and bound in biomass through photosynthesis [14].

The biomass is then processed through pyrolysis, which produces biochar and other by-

products. Biochar is subsequently disseminated into the ground, where it permanently

stores carbon.

Figure 2.1: Biochar [15]

Figure 2.2: The biochar carbon cycle [16].

2.2 Biochar stability assesment methods

Stable biochar does not decompose and releases carbon back into the atmosphere

for centuries and millennia. But waiting centuries to test the stability is not feasible.

Therefore, we use approximate methods to estimate carbon stability. This text will

sometimes refer to them as biochar carbon stability proxies.

The most common methods of stability determination were reviewed by [3]. These

are Proximate analysis, Chemical Oxidation and Elemental molar ratios (also called

Ultimate analysis). All methods are correlated, and we will use the same methods in

this study. As found by [3], a strong correlation (R>0.79) is between the Chemical

oxidation and Proximate analysis. A slightly weaker correlation is between the Chemical

oxidation and H:C ratio (R=0.65).
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We briefly introduce the measurement procedures here. To measure the Proximate

analysis the sample is first heated. The air is then added to the system, and the sample is

combusted. Finally, the fixed carbon that approximates the carbon stability is calculated

by subtracting moisture, volatile and ash values from the original mass [3]. To calculate

the elemental ratios, we can determine the quantity of each element using an elemental

analyser. With the Chemical oxidation method, the milled sample is treated with H2O2

initially at room temperature and then at 80°C for 48 h. Stable C is then expressed as

the percentage of the carbon that remains after oxidation [8].

2.3 Machine learning for biochar properties prediction

To our knowledge, no previous study has attempted to use machine learning techniques

to predict biochar stability. Some studies have used machine learning methods on

similar problems. We summarize the most similar studies with the input and predicted

features in Table 2.1. The prediction of the chemical properties was usually defined as

a regression task. Three methods have been most widely used: Random Forests (RF),

Support Vector Regression (SVR) or Support Vector Machines (SVM), and Artificial

neural networks (ANN). Random Forests and Support Vector Regression generally

proved superior to Artificial neural networks [5, 17, 18]. Data for these tasks were

usually acquired by costly and time-consuming laboratory experiments. Therefore, the

sizes of these datasets were fairly small. ANNs usually failed as they are more suitable

for tasks with more data.

Studies [4] and [5] predicted biochar yield from biomass characteristics and py-

rolysis conditions, where [4] also predicted the carbon contents of biochar. Using

Random forests, the authors achieved R2 = 0.85 on both tasks. Both R2 and MAPE

was used to evaluate models in [5]. Least-squares SVR (LS-SVR) achieved R2 of 0.96

and MAPE = 4.9% on the test set. ANN showed worse results on the test set with R2 of

0.80 and MAPE = 9.6%. Both studies [5, 17] achieved good performance, proving that

machine learning methods can effectively perform predictions for similar tasks. Feature

importance analysis was also performed on the Random forest approach taken by [4]. It

was shown that pyrolysis conditions were more important than biomass characteristics.

The most influential pyrolysis conditions to predict the biochar yield from the cattle

manure in [5] were pyrolysis temperature and moisture content, especially sample mass.
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Methods Input features Predicted feature(s) Publication

RF
Biomass characteristics,

Pyrolysis conditions

Biochar yield,

Carbon contents
[4]

ANN, SVR
Cattle manure characteristics,

Pyrolysis conditions
Biochar yield [5]

RF, ANN Biochar characteristics Metal sorption onto biochars [17]

RF, SVM

Temperature,

Equivalence ratio,

Fuel flow rate

Syngas composition [19]

RF Oxidation experiment data Coal spontaneous combustion [20]

RF, SVR Biomass characteristics
Fuel properties of hydrochar

and pyrochar
[21]

RF, ANN, SVR
Proximate analysis,

Ultimate analysis contents
Biomass higher heating value [18]

ANN Biomass characteristics
Kinetic parameters of

biomass pyrolysis
[6]

Table 2.1: Related works

Another similar problem investigated by [19] is a prediction of syngas composition

for downdraft biomass gasification. Even though the model’s output is continuous, the

authors considered a different approach, transforming the regression problem into a

classification problem. The output concentration values were quantized to the nearest

integers before the classification. Random Forests and LS-SVMs achieved 89% and

96% classification accuracy scores, which both outperformed the stoichiometric and

non-stoichiometric models previously used for the gasification product estimation [19].



Chapter 3

Dataset

In this chapter, we introduce our dataset. Section 3.1 describes model inputs that consist

of pyrolysis parameters and feedstock properties, while Section 3.2 describes model

outputs which are biochar carbon stability metrics. We show how the dataset was

created, the data distribution and the correlations.

The data for this project were provided by Dr Ondrej Masek from the UK Biochar

Research Centre. There were two types of measurements conducted in the laboratory.

First, the feedstock properties were measured for different biomass types, sometimes

repeatedly for the same sample. Then the feedstock sample was processed using

pyrolysis under measured conditions, and the newly created biochar was analyzed with

biochar stability methods. In some cases, multiple experiments were conducted with

identical pyrolysis parameters and on the same feedstock. Therefore, we have two

major groups of input features - Pyrolysis parameters and Feedstock properties. The

outputs of our models are the biochar carbon stability measurements.

3.1 Pyrolysis parameters and Feedstock properties (model

inputs)

Input to our models are Pyrolysis and Feedstock properties listed in Table 3.1. We

have 13 input features for Proximate analysis and 10 for other methods. Table 3.1 also

indicates how much data are missing for each input feature and method. As mentioned

later, because of the amount of missing data, we do not always use all the features in

our models.

7



Chapter 3. Dataset 8

Input feature
Chemical
oxidation

Proximate
analysis

H: C
molar ratio

All
methods

Pyrolysis temperature (°C) 0% 0% 0% 0%

Residence time (min) - 0% - 0%

Volatiles (%, daf)-Feedstock 13.4% 55.3% 11.3% 8.90%

Fixed C (%, daf)-Feedstock 13.4% 55.3% 11.3% 8.90%

% C, ave-Feedstock 13.4% 35.6% 11.3% 8.90%

% H, ave-Feedstock 13.4% 35.6% 11.3% 8.90%

% N, ave-Feedstock 13.4% 35.6% 11.3% 8.90%

Remainder (%)-Feedstock 13.4% 35.6% 11.3% 8.90%

O:C mol/mol-Feedstock 13.4% 35.6% 11.3% 8.90%

H:C mol/mol-Feedstock 13.4% 35.6% 11.3% 8.90%

Biochar C stability (%)-Feedstock 13.4% 68.1% 11.3% 8.90%

Heating rate (°C/min) - 44.9% - -

Volatile content (db%) - 80.4% - -

Table 3.1: Dataset features with a proportion of missing values indicated (0% meaning

no data missing)

Figure 3.1 shows the Pearson correlation matrix. It shows the pairwise correlation

between the input variables. Volatiles (%, daf) and Fixed C (%, daf) are perfectly

negatively correlated. This is not surprising as one is calcuated from the other, and

their relationship is inversely proportional: Volatiles ∝
1

Fixed C . Other highly correlated

features are O:C mol/mol with % C, ave (-0.99), and O:C mol/mol with Remainder (%)

(0.99). We omit Volatiles (%, daf) and O:C mol/mol further in our models.
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Figure 3.1: Pearson correlation coefficient - Pyrolysis and Feedstock properties

3.2 Biochar carbon stability methods (model outputs)

We can’t measure biochar carbon stability directly, and there is not yet a universally

accepted method for biochar carbon stability determination. We use proxies to estimate

the biochar carbon stability. In this work, we use three methods to compare the relative

stability of different biochar materials. These proxies are: Chemical oxidation [8],

Proximate analysis [9], and H: C molar ratios [10]. We show the Pearson correlation

coefficients for these methods in Table 3.2 . It is visible that the proxies are highly

positively or negatively correlated. Still, since they are not perfectly correlated, each

proxy might possess different predictive information. In Figure 3.2, we show the data

distribution histograms. We see that for Proximate analysis measurements, we have two

areas with samples. H:C molar ratio and Chemical oxidation data are distributed more

uniformly with exception of a few outlier areas.
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Proximate analysis Chemical oxidation H:C molar ratio

Proximate analysis 1 0.80 -0.77

Chemical oxidation 0.80 1 -0.91

H:C molar ratio -0.77 -0.91 1

Table 3.2: Biochar stabilitiy proxies - Pearson correlation coefficients

Figure 3.2: Biochar proxies - Data distribution histogram
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For each method, we have a different amount of data, different sample distribution

and slightly varying input features. Some input features contain missing values, as

some experiments did not measure every property of the biomass or did not track some

pyrolysis process conditions.

The amount of data and proportion of missing values for all Biochar carbon stability

methods are summarized in Table 3.3. The column Distinct samples shows the number

of pyrolysis experiments, each with unique pyrolysis parameters. As sometimes the

experiments were repeated with the same parameters for the same sample, the next

column shows the total number of measurements for multiple runs. The column Samples

multiple runs with Feedstock shows the number of samples after we perform the left join

of the Feedstock table on the Pyrolysis properties table. We have more samples than in

the previous column, as for each feedstock type, we might also have multiple feedstock

measurements. This left join then increases the final table size with many values

repeated. This is important to keep in mind when performing the cross-validation split.

We will split the data grouped by the Pyrolysis parameters. This prevents information

leakage to the test set.

We also combine all stability methods together as a three-dimensional output (All

proxies row in Table 3.3). We merge the tables for all three proxies and only keep

samples where we have data for all of them. The last two columns in Table 3.3 show

that we miss values for all methods, most notably 39% for Proximate analysis. Most of

these data are missing from the Feedstock properties. From Table 3.3, it is visible that

our dataset is really small, with only dozens to hundreds of samples. We have most data

for Proximate analysis, but with many missing values. Proximate analysis is followed

by Chemical oxidation, and we have the least data for the Molar ratio method.

Biochar carbon
stability method

Distinct
samples

Samples
multiple runs

Samples
multiple runs
with Feedstock

Missing
values
overall

Missing values
on Feedstock

Chemical oxidation 41 123 312 10% 10%

Proximate analysis 291 596 1007 39% 31%

H: C molar ratio 39 39 102 8% 8%

All proxies 39 359 1007 6% 6%

Table 3.3: Dataset size



Chapter 4

Methodology

This chapter outlines methods and evaluation. We start with introducing necessary data

preprocessing in Section 4.1. Evaluation metrics are described in Section 4.2 and cross

validation procedure in Section 4.3. Section 4.4 outlines machine learning methods

that we used for modelling biochar stability. Feature importance methods are shown in

Section 4.5.

We implemented the described methods and evaluation in Python. Linear regres-

sion, Support Vector Regression and Random forests were modelled using scikit-

learn [22] and Gaussian processes with GPyTorch [23]. To track our experiments we

used Weights & Biases [24].

4.1 Data prepossessing

Before feeding the data into our models, we perform data preprocessing which includes

Data imputation to account for the missing values and Data scaling to account for

different scales of the features.

4.1.1 Data imputation

As mentioned in previous chapter, we have a considerable amount of missing values in

our inputs. We can either remove the samples that include at least one missing feature

or impute the data. We only impute data for our models’ inputs, not the outputs.

12
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4.1.1.1 Removing data

Removing the samples results in even smaller datasets. For Chemical oxidation, Proxi-

mate analysis, H:C molar ratio outputs, removing missing values decrease the number

of samples by 40 %, 36%, and 29% respectively. For proximate analysis, we slightly

changed the procedure. If we removed all samples with at least one missing value,

we would end up with zero samples, as every sample has at least one missing value.

Hence for proximate analysis, we use a combined approach, where we drop features

with the most missing values: Volatile content, Biochar C stability, and Heating rate.

We also remove each datapoint, where more than 3 out of 9 features are missing. For

the remaining data points, we use kNN imputation.

4.1.1.2 kNN imputation

kNN imputation has been found to perform well in practice [25, 26], where [25] com-

pared kNN to six other imputation methods on five different numeric datasets with kNN

resulting in the best approach.

K-Nearest Neighbors method finds k most similar neighbours that don’t have the

particular feature value missing. The similarity is measured as an Eucledian distance

between the non-missing features of both samples. All our features are numeric, hence

calculating similarity as Euclidean distance is possible. The imputed value is a mean of

the k neighbour’s values. We assume that our data are missing at random and can be

explained by other variables. For example, if we miss one of the Feedstock features, we

know that this value will be similar to another datapoint with the remaining Feedstock

features the same as for the similar biomass.

kNN Imputation is a Single Imputation Method because it produces a point estimate.

There are also Multiple Imputatnions Methods such as MICE [27] that can produce

multiple estimates with uncertainty information. While multiple estimates might be

useful, integrating multiple estimates with uncertainty into our consequent models is

more complicated than point estimates, and hence we will not consider these methods

in this work.

4.1.2 Scaling

Before we input our data into the models, we perform data scaling. This is necessary as

our input features have different scales. Some methods, such as SVR, rely on calculating

distances between observations. The distance between two observations differs for
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non-scaled and scaled cases. We test two types of scaling for our models: Standard

scaling and Min-Max scaling. Standard scaling scales the values to have a zero mean

and a standard deviation of 1:

z =
x−µ

σ
(4.1)

where µ is the mean of the data and σ is the standard deviation. Min-max scaling maps

the samples into the [0, 1] interval:

z =
x−min(x)

max(x)−min(x)
(4.2)

4.2 Evaluation Metrics

To evaluate our models, we used the mean absolute percentage error (MAPE) and

coefficient of determination (R2). Mean absolute percentage error is calculated as:

MAPE =
100%

n

n

∑
i=1

|yi − ŷi|
max(ε, |yi|)

(4.3)

where n is the number of data points, yi are observed values, ŷi are predicted values, and

ε is an arbitrary small yet strictly positive number to avoid undefined results when yi is

zero [22]. MAPE has an intuitive interpretation as a relative error, which is very useful

for our prediction problem. We express MAPE as a percentage. It is also not influenced

by a global scaling of the target variable.

Coefficient of determination is calculated as:

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − y)2 (4.4)

where y is the mean of the observed data. R2 measures how changes in the dependant

variable can be explained by the change in the independent variable(s). It assesses

how strong the linear relationship is between the two variables [28]. It ranges from

negative values to 1, where 1 corresponds to a perfect fit and 0 to just predicting the

mean. Negative values mean that predicting the mean of the observed data would give a

better fit than the fitted function values.

We measure R2 as it was used by previous literature, and it allows us to partially

compare our models with similar papers. Unfortunately, there are issues with R2 as it

can be misleading. As R2 scales the error with y in the denominator, it punishes fewer

errors that are further from the mean. Also, as the variance is dataset dependent, R2 may

not be meaningfully comparable across different datasets [22]. Therefore, we should

interpret R2 results mainly across different methods and in combination with MAPE.
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4.3 Cross validation

Cross-validation estimates how accurately our predictive model will perform in practice

and if it can generalize on unseen data. Unfortunately, our dataset is relatively small.

We still need to test our models on unseen data to validate our models. We split our

dataset into training (85% of our data) and testing (15%) sets. We split the data carefully

to be able to test the generalization performance of our models properly. It is essential

to split the data based on groups of pyrolysis parameters. As mentioned in Chapter 3,

we merged biochar stability proxies and pyrolysis conditions with feedstock properties

when creating the dataset. By doing this, we increased the dataset size and duplicated

some of the output features. Before we split the data, we group the data by pyrolysis

parameters and then perform the split. If we performed the splitting without grouping,

it would constitute training example leakage. We would be testing on almost identical

data to the training set and achieve artificially good results. We also split the data so

that all splits have the same amount of missing data proportionally.

k-fold cross validation
To find optimal hyperparameters, we perform a 5-fold cross-validation on the training

set (85% of data) with different hyperparameter configurations. With k-fold cross-

validation, the training set is split into k smaller same-sized folds. The model is trained

using each combination of k−1 folds as training data. The resulting model is validated

on the remaining part of the data. The final performance is then the average of the values

computed for each k [29]. K-fold cross-validation is more computationally expensive

but does not waste too much data. This is a significant advantage for our small dataset.

For the k-fold split, we also perform the splitting on the grouped dataset. To search

through the hyperparameters options, we use random search as it was shown to find

good results and be more efficient [30]. For each method, we test our best scoring

model from validation data on testing data to see the generalization performance. To

choose the best-performing model, we use MAPE. We also refit the best-performing

model on the entire training dataset before testing on the test set.

As our dataset is very small, the results can highly oscillate depending on the data

split. The test set doesn’t have to be a representative sample of the original distribution.

To account for this randomness in data splitting, we test the final models 5-times each

time with different random seeds used for data splitting. We report the mean with the

standard error of MAPE and R2. Standard error is calculated as σe =
σ√
n , where σ is
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the standard deviation and n is the number of samples.

4.4 Methods

This section introduces regression methods that we used to predict biochar carbon

stability. These methods include Linear regression, Support Vector Regression, Random

forests and Gaussian processes. We predicted a single proxy or all proxies at once.

Therefore, the output’s dimensions were either one-dimensional or multi-dimensional.

Description of the methods is for the multi-output case, as it is the generalization of the

single-output case.

4.4.1 Linear regression with L2 regularization

As a simple baseline, we use multi-variate linear least squares with L2 regularization.

The objective is to minimize the following objective function:

min
W

||Y −XW ||22 +α||W ||22 (4.5)

where Y is the output matrix, X is the input matrix, W are learned weights, and α is

the regularization parameter. The objective function represents the linear least squares

function with regularization given by the L2 norm. α controls how big a penalty the

model imposes on the size of the coefficients. Smaller coefficients mean less complex

models. To perform well, linear regression assumes a linear relationship between the

input and output variables.

4.4.2 Support Vector Regression

Support Vector Regression (SVR) is a regression counterpart of the more often used

Support Vector Machines classification method. SVR fits a hyperplane to the data

within a threshold value, the distance between the hyperplane and a boundary line. The

Boundary line is formed from Support Vectors, which are data points on either side

of the hyperplane that is closest to the hyperplane. The best fit line is the hyperplane

with the maximum number of points. The hyperplane is a subspace whose dimension is

one less than the original space. To be able to solve non-linear regression, the kernel

function transforms the data to a higher dimension before performing the linear fit [31].
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The SVR has three primary hyperparameters: kernel, gamma and C. The kernel

transforms the data from the original dimension to a dimension where it is easier to

fit the data with a hyperplane. Using a kernel trick, we can even go up to an infinite

number of dimensions using kernels. This is because kernel functions return the inner

product between two points in a suitable feature space [31]. By using the dot product,

kernels measure similarity between two points with a little computational cost, even in

high-dimensional spaces. The most widely used kernel is Radial Basis Function (RBF).

RBF values can be interpreted as a similarity measure as they decrease with squared

Euclidean distance between the two feature vectors. The values range between zero (in

the limit) and one (when x = x’). RBF kernel:

K(x,x’) = exp(−||x-x’||2

2σ2 ) (4.6)

Other popular kernels are linear, polynomial or sigmoid kernels.

To control the influence distance of each training example, the SVR uses the gamma

parameter. High values represent the close influence, and low values far influence. For

the mentioned RBF kernel, gamma parameter is: γ = 1
2σ2 [22].

C is a regularization parameter. It controls the effect of the squared L2 penalty. The

effect of the regularization is inversely proportional to C [22].

4.4.3 Random forests

Random forests (RF) are an ensemble method that constructs a multitude of decision

trees and returns the average prediction of the individual trees. The most crucial idea

is that many relatively uncorrelated trees should outperform any of the individual

trees [32].

To create uncorrelated trees, RFs employ two techniques: Bagging (Bootstrap
Aggregation) and Feature Randomness. Bagging is a technique of randomly sampling

the dataset with replacement when creating each individual tree. As each tree is built

with a different subset of data, the tree structures will be different. A tree is built from

the tree’s root by splitting the training data with learned rules that produce the most

separation between the data points in the children’s nodes. To force more variation

among the trees, each tree can select only from a random subset of features (Feature

Randomness).
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Hyperparameters that we consider for Random forests are [22]:

• Number of estimators - The number of trees in the forest.

• Maximum depth - The maximum depth of the tree.

• Minimum samples split - The minimum number of samples required to split an

internal node.

• Minimum samples leaf - The minimum number of samples required to be at a

leaf node.

• Maximum features - The maximum number of features to consider when looking

for the best split.

• Maximum samples - The maximum number of samples to draw from input to

train each base estimator.

4.4.4 Gaussian processes

With Gaussian processes, we can take a more Bayesian approach to regression. A

Gaussian process is a collection of random variables, any finite number of which

have a joint Gaussian distribution [33]. Gaussian processes can be seen as an infinite-

dimensional generalization of multivariate normal distributions. They are completely

specified by their mean function and covariance function. We can write the Gaussian

process as:

f (x)∼ GP(m(x),k(x,x’)) (4.7)

where m(x)is the mean function, k(x,x’) is the covariance function and f (x) is the func-

tion we are approximating. We select the mean function and especially the covariance

function based on our prior beliefs about the target distribution. It is usual to set the

mean of the Gaussian process to be zero. This doesn’t mean that the posterior of GP

will have a zero mean. We will use a constant mean in our implementation.

Kernels
Most of the behaviour of the function specified by the Gaussian process is defined by

the covariance function, which describes how variables affect each other. For example,

data points closer to each other should have higher covariance. Covariance between two

function values is defined using a kernel function k(x,x’). The kernel function needs
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to be positive definite, meaning that it would produce a positive definite matrix K if

each element is set using the kernel function: Ki j = k(xi,x j). One kernel that is positive

definite and proportional to a Gaussian is an RBF, also called the Gaussian kernel,

which is in Equation (4.6). This kernel is parameterized by a length scale describing

the function’s smoothness. Small lengthscale means frequent changes, and large length-

scale characterizes functions that change slowly [34]. Another group of kernels are

Matern kernels that generalize the RBF kernel. They have an additional parameter ν

that controls the smoothness of the function. Larger ν increases the smoothness [33].

Kernels can be scaled by more parameters and combined. The shape of the modelled

function greatly depends on the choice of the hyperparameters.

Gaussian process conditional distribution
The measured data usually include noise. We can model this noise directly with a noise

term added to our kernel function. In particular, our dataset has multiple runs with

different results for the same parameter configuration. Hence, we can estimate the

noise by the standard deviation across the multiple runs. In our models, we will use

additive independent identically distributed Gaussian noise with variance σ2. For the

new covariance matrix, we can write:

cov(y) = K(X ,X)+σ
2I (4.8)

As said before, the Gaussian process is just a high-dimensional multivariate Gaussian

distribution which we define for both known target values y and function values at test

locations f∗ This joint distribution under the prior can be written as [33]:[
y
f∗

]
= N

(
0,

[
K(X ,X)+σ2I K(X ,X∗)

K(X∗,X) K(X∗,X∗)

])
(4.9)

Finally, we just need to express the conditional distribution from the joint. Using the

properties of Gaussian distribution, the conditional distribution then becomes:

f∗|X , y, X∗ ∼ N (f∗, cov(f∗)), where (4.10)

f∗ = K(X∗,X)[K(X ,X)+σ
2I]−1y (4.11)

cov(f∗) = K(X∗,X∗)−K(X∗,X)[K(X ,X)+σ
2I]−1K(X ,X∗) (4.12)

Equations 4.10, 4.11 and 4.12 give us the final prediction equations. We can see that

the Gaussian process is a parameter-free model. The only parameters to learn are the
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hyperparameters (denoted by θ), which mostly include the kernel parameters and noise

variance σ2. We set the hyperparameters by using maximum likelihood, which means

finding values that make the observations seem probable. The marginal log-likelihood

of the standard multivariate Gaussian pdf can be evaluated as [33]:

log p(y|X ,θ) =−1
2

yT M−1y− 1
2

log |M|− N
2

log2π (4.13)

where M = K + σ2I is the kernel matrix evaluated at the training inputs plus the

variance of the observation noise. We will use gradient-based optimizers to find

optimal hyperparameters as the marginal likelihood is easy to differentiate. To prevent

overfitting, we will regularize the model by enforcing noise variance and lengthscale

constraints. We use the GPytorch library to implement our models [23].

To summarize, we predict a Gaussian distribution for every point with Gaussian

processes. The Gaussian mean can be used as a point estimate and standard deviation

as an uncertainty estimate. We can find some predictions to be more confident as

there might be very similar datapoint present in the train set. On the contrary, the

predictions will have higher uncertainty for areas where we did not have enough

training points. To define the Gaussian process, we need to specify prior on the

mean and covariance function. Gaussian processes scale poorly with the amount of data

(O(N3) computational cost). This isn’t an issue for us as our dataset is relatively modest;

hence, Gaussian Processes can be evaluated explicitly without needing approximation

methods.

4.5 Feature importance

One of the most significant drawbacks of machine learning techniques is their black-box

nature and the lack of interpretability. We can get some insight into the models and

dataset using feature importance. Feature importance is a class of techniques that

calculate scores for input features to a predictive model. This score indicates the relative

importance of each feature. A higher score indicates a more significant effect on the

model’s predictive ability.
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4.5.1 Permutation feature importance

Model-agnostic approach to determine which features are most predictive is permutation

feature importance. The permutation feature importance is defined as the decrease in

a model score when we randomly shuffle a single feature [32]. The decreased score

indicates that the feature is important, and the model makes more errors when the

feature is shuffled. This technique can be used for any model, as we just permute the

input data. It can also be calculated separately for training and testing data. We can then

inspect which features are important for the model to generalize. Important features on

the training set but not on the testing set might cause the model to overfit. Permutation

feature importance can even be negative. This indicates that predictions on the shuffled

data are more accurate than on the actual data [32].

4.5.2 Mean Decrease in Impurity

Another option to calculate importance is Mean Decrease in Impurity (MDI). MDI can

only be applied to trees. We will apply this technique to the Random Forests. Sometimes

also called Gini importance, this technique calculates each feature’s importance as the

sum over the number of splits (across all tress) that include the feature, proportionally to

the number of samples it splits [35]. As described in [36], the importance of a variable

is equal to zero if and only if the variable is irrelevant to the predictive model. Also, the

non-zero MDI importance of a relevant variable is invariant with respect to the removal

or the addition of other irrelevant variables.
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Results and Discussion

In this chapter, we present and discuss the results of our experiments. In Section 5.1,

we show and interpret the results on the validation and test sets for each biochar carbon

stability proxy and each machine learning method. We compare to the literature and

discuss modelling limitations. Each subsection gives details about optimal settings

and results for individual machine learning methods. The Section 5.2 analyzes feature

importance and Section 5.3 feature dependence.

5.1 Machine learning methods evaluation

We summarize the main results in Table 5.1. For each biochar stability method and

every regression method, we report the validation and test mean with standard error

of MAPE and R2. As explained in Chapter 4 about methodology, we mainly focus on

the more intuitive and robust MAPE metric. We highlight the best test result for each

biochar stability proxy. We achieved the best overall result using Gaussian processes

for all stability methods combined with test MAPE = 13.6% ± 4.9%. This result

can be interpreted that the average difference between the forecasted values and the

actual values is 13.6%, which we find to be a good result. Support Vector Regression

proved to be the best for predicting stability using Chemical oxidation (MAPE =

15.6%± 5.0%). Random forests achieved the best result for the Proximate analysis

(MAPE = 16.4%±3.4%), and also for H:C molar ratio, with MAPE = 19.8±4.3. All

of the results have a relatively high standard error suggesting that models’ performances

can vary depending on the train-test split. This makes it more difficult to say which

machine learning method is the best conclusively. Even though SVR was best for

Chemical oxidation, other methods achieved similar results. The same applies to

22
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Gaussian processes with All proxies. Random forests had similar performance to

Gaussian processes for H:C molar ratio but significantly outperformed other methods

for Proximate analysis.

Biochar
stability
method

Method
Val

MAPE (%)
Test

MAPE (%)
Val
R2

Test
R2

Chemical
Oxidation

LR 20.8±0.9 18.6±3.1 -4.961±2.921 0.051±0.26

SVR 19.7±3.6 15.6±5.0 -2.025±1.038 -0.611±0.584

RF 21.3±1.7 17.5±4.1 -1.196±0.291 -0.307±0.313

GP 10.8±0.6 16.7±7.6 0.485±0.017 -1.57±1.60

Proximate
analysis

LR 264.1±3.9 223.2±15.3 -0.107±0.068 0.287±0.022

SVR 47.3±0.7 35.3±1.7 0.791±0.023 0.92±0.026

RF 23.1±0.6 16.4±3.4 0.916±0.003 0.978±0.005

GP 27.3±2.5 28.8±5.7 0.822±0.141 0.888±0.038

H:C molar ratio

LR 43.7±2.7 25.1±2.4 -0.457±0.115 -6.0±5.138

SVR 36.0±4.3 32.6±8.0 -0.374±0.302 -1.241±0.951

RF 42.9±3.0 19.8±4.3 -0.634±0.553 0.114±0.344

GP 23.6±12.3 21.3±8.6 0.198±0.552 0.192±0.328

All proxies

LR 25.8±2.8 15.4±3.5 -1.017±0.341 0.098±0.101

SVR 25.2±1.4 14.4±1.4 -1.78±0.475 0.254±0.169

RF 24.8±0.7 18.6±2.7 -3.021±1.479 0.08±0.056

GP 20.3±13.2 13.6±4.9 -0.487±0.416 0.084±0.396

Table 5.1: MAPE and R2 results

Literature comparison
It is hard to compare results with previous studies, as no study predicted biochar carbon

stability, and similar studies usually used R2 (which is dataset dependent) or RMSE

(scale dependent) for evaluation. An exception is [5], where authors also used MAPE

for evaluation. Their task was a prediction of biochar yield, which is by domain

experts considered to be an easier task than the prediction of biochar stability. The best

achievement was MAPE = 4.9% using LS-SVM [5]. This is considerably better than

our best MAPE of 13.6%, showing that carbon stability prediction is a more challenging

task. Another similar study to compare to is [4], where authors predicted biochar yield

and c-content of biochar. The dataset was relatively similar, with input features also
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mainly being biomass feedstock and pyrolysis conditions. The best achievement was R2

of nearly 0.85 on both regression tasks [4]. Hence our best R2 result of 0.978±0.005

for Proximate analysis using Random forests would appear to be an outstanding result.

But it contrasts with quite high MAPE loss, highlighting the possible inadequacies

of R2. Also, apart from Proximate analysis, other methods haven’t achieved as high

R2 results. We believe that too optimistic R2 for Proximate analysis is caused by the

underlying high variance data distribution. From the samples distribution histogram in

Figure 3.2, we see no samples are centred around the mean (µ = 30). But we have two

areas further from the mean on both sides. Errors for these samples will be considered

smaller, resulting in higher and possibly too optimistic R2.

The main result is that we can predict any biochar carbon stability method with an

average absolute percentage error of approximately 13-19%, depending on the method.

Cross plots
To see the relationship between the test predictions and true targets, we show cross

plots for the best performing models for each proxy in Figure 5.1. The cross plots

show predictions against the true targets. Ideally, all points should be on the diagonal

line representing a perfect fit. As stability measurements have different ranges, we

scale them to the [0,1] range for all proxies plot. For Gaussian processes, we plot both

the mean and standard deviation of the predicted Gaussian distribution. One standard

deviation indicates that the prediction should lie within that range with approximately

68% probability.

For all plots, we see that the models sometimes struggle even with predicting the

training data (e.g. triangles in the top two plots 5.1a and 5.1b). This suggests that either

our models’ capacity is low or our data aren’t predictive enough. To test this, we tried

to overfit our training data by increasing the models’ complexity. For example, by

increasing the number of trees, depth etc. for RFs or decreasing regularization for SVR.

When trying to overfit, the best train MAPE for Proximate analysis was 11.4% and R2

of 0.986. For H:C molar ratio, MAPE was 13.2% and R2 of 0.75. We can consider

these values to be a lower bound on the achievable error of our models on the testing

data. With a quite high train MAPE values, this indicates that our data doesn’t include

enough distinctive features so that our models would be able to predict every data point

accurately. A contributing factor is probably that our samples contained multiple runs

with identical parameters, but sometimes the corresponding output values were quite

different. No deterministic function can predict all samples correctly with identical
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inputs but varying outputs. Therefore, we believe that more complex models would

not help. Gaussian processes can at least assign higher variance for the corresponding

predictions. Aware of this limitation, we still try to find the best model possible.
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Figure 5.1: Cross plots for best models on the training and test data

Looking at the cross plots in Figure 5.1, Random forests in plot 5.1c predicting

Proximate analysis appear to model the samples well. We have considerably more data

points for Proximate analysis than for other methods. When investigating wrongly

predicted outliers visible in Chemical oxidation and H:C molar ratio plots, we found

that these samples had a type of feedstock not present in training data. Feedstock types

are summarized in A.1. Proximate analysis data contain the widest variety of feedstock.

This suggests that many types of feedstock are important for training the models.

In the All - GP subplot, we show all predicted proxies separately. With standard

deviation indicating the model’s confidence in the prediction, we can see that predictions

closer to the true predictions usually have lower deviations indicating higher confidence.

This agrees with our previous hypothesis that Gaussian processes can give us a con-
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fidence estimate. Standard deviation does not affect MAPE as it is measured from

the mean. Depending on our application, we could select a threshold for the standard

deviation and discard predictions that exceed the chosen threshold, only keeping the

most confident predictions.

5.1.1 Linear regression

We first tried Linear regression without regularization, which resulted in extreme

coefficients and deficient performance of the models. High coefficients for some

variables were caused by some highly negatively correlated features, where coefficients

for these features grew together and cancelled each other out. To account for the problem,

we added L2 regularization, which improved the models. We also tested models on just

subsets of features. The results are in Table 5.1 and the optimal hyperparameters used

are in Table 5.2.

Using a subset of input variables did not improve the performance. Linear regression

achieved results close to but slightly worse than other methods. The exception is

Proximate analysis, where Linear regression performed considerably worse. This might

suggest that Proximate analysis is a more non-linear process. Linear regression, in some

cases, achieved even slightly better results than SVR or RF. Noticing not negligible

linear relationship, we explored combinations of linear and other kernels for GPs and a

linear kernel for SVR.

Biochar stability proxy All proxies
Chemical
Oxidation

Proximate
analysis

H:C ratio

Input subset - - - -

α 1.15 2.2 0.1 1.15

Scaler MinMax Standard MinMax Standard

Imputation drop drop drop kNN

Table 5.2: Linear regression best hyperparameters

5.1.2 Support Vector Regression

Support Vector Regression performed better than other methods for Chemical Oxi-

dation (MAPE=15.6± 5) and almost as good as Gaussian Processes for All proxies

(MAPE=14.4±1.4).
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We performed hyperparameter optimisation for C, Gamma and kernel. We tested

RBF, Sigmoid, Linear and Polynomials kernels. As expected, the best kernel for all

methods was RBF. For C and Gamma, we first performed grid search with exponential

factors 100, 10, 1,0.1, 0.01, 0.001 as suggested in [37]. We then narrowed the search

to more promising areas using random search. For SVR, it was essential to scale the

input features first as SVR calculates the distance between the observations. Best

configurations found are summarized in Table 5.3.

Biochar stability proxy All proxies
Chemical
Oxidation

Proximate
analysis

H:C ratio

Kernel RBF RBF RBF RBF

C 0.1 50 25 50

Gamma 0.05 0.05 2 0.005

Scaler Standard MinMax MinMax MinMax

Imputation drop drop drop drop

Table 5.3: SVR best hyperparameters

5.1.3 Random forests

Random forests were the best method both for H:C molar ratio (MAPE=19.8± 4.3)

and Proximate analysis (MAPE=16.4±3.4), for which it considerably outperformed

second best gaussian processes (MAPE=28.8). We can probably attribute the success

of random forests to their ability to handle linear and non-linear relationships well and

not being susceptible to outliers.

Random forests have many hyperparameters to optimize. Fortunately, they are fast

to train with our small dataset, and we can explore many configurations. We used a

random search with 800 iterations. Optimal hyperparameters found on the validation

set are in Table 5.4. RFs achieved the best results for Proximate analysis with only 9

trees but a maximum depth of 40, deeper than for any other proxy.
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Biochar stability proxy All proxies
Chemical
Oxidation

Proximate
analysis

H:C ratio

Estimators 8 8 9 11

Maximum depth 20 15 40 15

Minimum samples split 7 9 8 9

Minimum samples leaf 2 3 1 2

Maximum features 7 auto 6 auto

Maximum samples 0.8 0.8 0.9 0.9

Scaler Standard MinMax Standard Standard

Imputation drop kNN drop kNN

Table 5.4: Random forest best hyperparameters

5.1.4 Gaussian processes

Gaussian processes performed best on All proxies with MAPE of 13.6±4.9, indicating

that Gaussian processes might better learn the relationships between the stability meth-

ods. Gaussian processes predict Gaussian distribution for each output. We calculate

MAPE and R2 from the mean. As Gaussian processes are non-parametric models,

the training includes finding the optimal hyperparameters. Those are mainly kernels

with their parameters, noise and lengthscale priors. As with other methods, we first

tested various configurations of hyperparameters on the validation set and then tested

the best on the hold-out set. Optimal Gaussian process hyperparameters are in Table 5.5.

Kernels
We tested various configurations of RBF, Matern and Linear kernels. Using Linear

regression, we found that some linear relationship exists between the inputs and targets.

This made us more focused on testing Linear and RBF or Matern kernel combinations.

Matern and RBF kernels define more complex covariance functions that are able to

capture non-linear relationships, while the linear kernel can easily learn the linear

patterns. Matern kernel (ν = 2.5) combined with Linear kernel proved to model best

the Chemical oxidation and H:C ratio. ν indicates the complexity of the covariance

function with ν = 2.5 corresponding to a twice differentiable function and ν = 1.5 to a

less smooth once differentiable function. Matern kernel (ν = 1.5) combined with Linear

kernel performed best for Proximate analysis, indicating that the underlying chemical
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process is more complex and hence Matern kernel with ν = 1.5 is needed. On the other

hand, a sum of RBF and Linear kernel was better for All proxies combined, showing

that a simpler kernel can perform well when more data are available.

Noise and lengthscale constraints
Because Gaussian processes would quickly overfit our small dataset, we used noise

and lengthscale constraints to regularize the model. With no constraint on the noise,

the gradient-based optimizer would set the noise to zero, and the model would overfit.

We measured the noise on our output data and set the noise constraint near this value.

As mentioned in the Data Chapter 3, we have multiple measurements for the same

configuration parameters. Therefore, we measured the variance across these runs for

training data. After scaling, these values are 0.002, both for Chemical oxidation and

Proximate analysis. We don’t have multiple runs for the H:C molar ratio, so we set the

noise constraint to a smaller value of 0.0001. We test values for the constraint close

to the measured noise. We know that the Gaussian process noise values should not be

considerably smaller than the measured noise. The possibility of including noise prior

in the model is another advantage of GPs. For the lengthscale, we experimented with

values in the range of [0,1] to limit the influence of each data point. The best values

are in Table 5.5, but we found that lengthscale constraints usually didn’t significantly

influence the model’s performance.

We also experimented with modelling the uncertainty of our training data. This is

possible as we also have multiple measurements for the feedstock properties. If we

explicitly know the type of uncertainty in our inputs, we can pass that into our ker-

nel [38] using GPyTorch [23]. But initial runs did not show performance improvement.

Nevertheless, we find modelling uncertainty of inputs as a possible direction for future

investigation.
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Biochar stability proxy All proxies
Chemical
Oxidation

Proximate
analysis

H:C ratio

Kernel
RBF +

Linear

MK(2.5) +

Linear

MK(1.5) +

Linear

MK(2.5) +

Linear

Noise constraint >0.05 >0.002 >0.003 >0.0001

Lengthscale constraint >0.3 >0.7 >0.7 >0.3

Learning rate 0.1 0.1 0.15 0.1

Scaler MinMax Standard Standard Standard

Imputation drop kNN drop drop

Table 5.5: Gaussian process parameters

5.2 Feature importance

We have performed permutation importance analysis on all features for SVR, RF and

GP models, both for training and testing sets. The results are in Figure 5.3. For Random

forest models, we have also calculated the Mean Decrease in Impurity with MDI results

in Figure 5.2. For each biochar carbon stability proxy, we focus on describing the test

importance for the method that achieved the best result, as shown in Table 5.1

Pyrolysis temperature is dominantly the most important feature for All proxies,

Chemical oxidation and H:C molar ratio. This is expected as the importance of pyrolysis

conditions, especially of Pyrolysis temperature, has been shown in [4, 5]. Fixed C is

the only other feature at least partially significant for All proxies. As we are predicting

carbon stability, the original amount of Fixed C is naturally an important factor. For

Chemical oxidation, SVR also focuses on C. Fixed C and N importance values are

actually negative. This indicates that shuffled data are more accurate than the real data

meaning the feature does not contribute to predictions.

Interestingly, all methods attend to the features more uniformly for Proximate

analysis than for other biochar proxies. For other proxies, most of their predictive power

is based on just a few most important features. For random forests modelling Proximate

analysis, the most important features were Residence time, N %, C % and Remainder %.

This agrees both for the permutation importance in Figure 5.3 and MDI importance in

Figure 5.2. Residence time data were available only for Proximate analysis. But other

methods focused on different features than random forests and, on the contrary, did not

give any importance to Residence time. Their performance was lower possibly because
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they failed to model the Residence time. Gaussian processes weighted other features

similarly, putting most importance on Fixed C. Fixed C (measured before pyrolysis)

was expected to be important as Proximate analysis estimates carbon stability by the

proportion of Fixed C in the biochar (after pyrolysis). The order of importance for C, H,

N, and Remainder, which varies among the methods, isn’t vital as these features are

highly correlated ( 0.8). Overall, as for Proximate analysis, we have a wider variety

of feedstock data, models were perhaps forced to learn more patterns because the

temperature or residence time wouldn’t be sufficient indicators. The models then may

generalize better to new feedstock data.

0.0 0.2 0.4 0.6

Residence time
Remainder (%)

Biochar C stability (%)
% N, ave
% C, ave
% H, ave

Fixed C (%, daf)
H:C mol/mol

Pyrolysis temperature

Random Forest - MDI

All
Chemical oxidation
Proximate analysis
H:C molar ratio

Figure 5.2: Mean Decrease in Impurity of Random forests for every biochar stability

method
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Figure 5.3: Permutation importance for each machine learning method and biochar

stability method (left column on training data and right column on the testing data
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5.3 Feature dependence

In this section, we plot Partial dependence plots (PDP) for some of the most indicative

methods and features to learn their effect on biochar stability. We focus on methods

that achieved good results as summarized in Table 5.1.

Partial dependence plots show the dependence between biochar stability proxy and

a set of input features. They marginalize over the values of all other input features. We

plot multiple PDPs for different pairs of input features in Figure 5.4. For every biochar

stability method, we plot a partial dependence plot of the two most important features

for the best model. We only plot Proximate analysis in subfigure 5.4a for all stability

methods combined.

We show effect of Pyrolysis temperature in the subfigures 5.4a, 5.4b, and 5.4d. A

clear linear trend is visible in each plot. Increasing Pyrolysis temperature increases the

biochar stability. In the subplot 5.4a, we also see that higher Fixed C of the feedstock

contributes to higher Fixed C of the biochar. Both of these results agree with results

from [3].
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Figure 5.4: Partial dependence plots of the most important features for the best per-

forming methods for each biochar carbon stability method - z axes show carbon stability

metric, x and y axes show input features: 5.4a Pyrolysis temperature (°C) vs. Fixed C

(%, daf), 5.4b Pyrolysis temperature (°C) vs. C average (%), 5.4c C average (%) vs.

Residence time (min), 5.4d Pyrolysis temperature (min) vs. N average (%)

From the plot 5.4c, it is visible that a short residence time is not enough to create

stable biochar. We see a big transition at residence time of 20 minutes. For extreme

values of 240 and 600 minutes, the stability is similar. This suggests that a minimal

residence time of around 20 minutes is needed, but a considerably longer time does not

help.

Subplots 5.4b and 5.4c show that C content has a small effect with higher val-

ues slightly increasing stability both measured by Chemical oxidation and Proximate

analysis. Higher nitrogen content also appears to increase stability in the plot 5.4d.



Chapter 6

Conclusion

6.1 Main results

This was the first study that used machine learning methods to predict biochar carbon

stability. We conclude that predicting biochar carbon stability is possible but more

challenging than other tasks such as predicting biochar yield. Our best overall result

on the test set was for all biochar carbon stability measures combined with MAPE =

13.6%±4.6% using Gaussian processes. The most similar previous work [5] achieved

MAPE = 4.9% using LS-SVM, but on the biochar yield prediction task. Their result is

considerably better, but yield prediction is considered to be much easier by the domain

experts. We achieved MAPE = 16.4%± 3.4% using random forests for Proximate

analysis (most data with 291 distinct samples, or 1007 samples including multiple runs),

For Chemical oxidation and H:C molar ratio, we achieved MAPE = 15.6± 5.0 and

MAPE = 19.8±4.3, respectively.

Overall, random forests proved to work best on 2 out of 3 individual biochar carbon

stability methods, with Support Vector Regression working the best on the remaining

one. This agrees with findings of [4], where random forest showed good prediction

ability for biochar yield and carbon contents. Gaussian processes were best in modelling

all stability methods combined. Best performing kernels were combinations of RBF

and Matern kernels with Linear kernels. Gaussian processes’ advantage was the ability

to input measurement noise into the models and give a confidence estimate that can

guide future laboratory experiments. Using confidence estimates, researchers can guide

their experiments by deciding when the model is sufficient or when the real experiment

should be conducted.

35
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The most predictive feature for Chemical oxidation, H:C molar ratio and All meth-

ods combined was pyrolysis temperature. Increasing pyrolysis temperature increased

biochar carbon stability. This is supported by previous findings in [3, 4, 5]. For Proxi-

mate analysis, features were more uniformly important, with the most important features

being Residence time, followed by N, C, and Remainder. We saw from the partial

dependence analysis that a minimum residence time of approximately 20 minutes is

needed to achieve higher carbon stability.

6.2 Limitations

The main limitation was the amount and distribution of data available, where for H:C

molar ratio method, we had only 102 samples, 312 samples for Chemical oxidation,

and 1007 samples for Proximate analysis (Figure 3.3). Due to a considerable amount of

missing data (8-39%), we had to remove or impute data. Some important features were

missing completely for some methods, e.g. residence time proving very important for

Proximate analysis but missing for other methods. We saw that even very complex mod-

els couldn’t achieve better MAPE values than 11.4 % on the training data, suggesting

this being a lower bound on the error for our data.

We have also noted the limitations of using R2 metric, widely used by previous

works [4, 5, 17]. We achieved R2 = 0.978±0.005 for Proximate analysis, much higher

R2 than for other methods (e.g. H:C molar ratio R2 = 0.114±0.344), but similar MAPE.

Too optimistic R2 was caused by the high variance of the data (Figure 3.2) as errors

in R2 calculation are scaled by the dataset mean. Therefore, we used Mean absolute

percentage error (MAPE) as the primary metric. We argue that it is more interpretable

as a relative error and comparable across methods and datasets.
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6.3 Future work

For future work, we emphasise the need for a more comprehensive dataset with more

pyrolysis parameters, feedstock types and fewer missing values. From pyrolysis condi-

tions, we had extensive data only for the pyrolysis temperature. We couldn’t properly

evaluate the effect of heating rate and residence time as we didn’t have enough samples

with different values. We also stress the need for a wide variety of Feedstock types. As

found with feature importance analysis, our models could only use feedstock proper-

ties for prediction when many feedstock types were used for training (48 types). The

necessity of having a comprehensive dataset was also highlighted in [4].

We recommend using Random forests or Gaussian processes. Random forests

proved useful in our and previous works [4, 5, 17] and appeared to work well on a wide

range of problems. We have also tested a novel approach using Gaussian processes

that performed well. Employing a probabilistic framework seems sensible due to

many underlying uncertainties resulting from the chemical measurements. Domain

experts can use the Gaussian process model to guide their experiments. As we achieved

reasonably good results with linear regression, Bayesian linear regression might also be

a good baseline to try. Future works can also investigate propagating the uncertainty

through the models, different priors on the input noise or other types of kernels for the

Gaussian processes.
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Appendix A

Data - Feedstock types

Feedstock name
H:C molar ratio

count
Chemical oxidation

count
Proximate analysis

count
Untreated Misconthus 18 54 78
Miscanthus (1% potassium doped) 9 27 36
Miscanthus (2% potassium doped) 9 27 36
Miscanthus (Cs+ doped) 9 27 36
Miscanthus (Na+ doped) 9 27 36
Untreated Willow Chip 9 27 39
Washed Miscanthus 9 27 9
Washed Willow Chip 9 27 9
Willow chip (potassium doped) 9 27 39
Miscanthus Chip 3 9 12
Miscanthus Chip with Spray Quenching 3 9 3
Potassium Doped Miscanthus Chip 3 9 12
Willow Chip with Spray Quenching 3 9 3
Mixed Willow:Bonemeal (4:1) 6 0
Wheat Straw 154
Coffee Grounds MA - I 75
Softwood Pellets 64
Anaerobic Digestate 48
Sewage Sludge 42
Coffee Grounds MA - II 36
Rice Husk 30
Coffee Grounds SC 18
Pure Pine 17
MB 13
SBP 12
Oilseed Rape Straw Pellet (OSR) 12

42
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Mix Straw Pellets 11
Softwood pellets (SWP) 11
Macrocystis Pyrifera-MBL Residues 9
Ascophyllum Nodosum-MBL Residues 9
Laminaria Hyperborea-MBL Residues 9
Slaughterhouse waste 9
Miscanthus Pellets 8
Palm Kernel Meal 6
Scottish Mule Wash Sheep fleece 6
Palm Kernel Shell 6
Empty Fruit Bunch 6
Wood Pellets 6
GS 4
Scottish Black Face Sheep Fleece 3
Texel Wash Sheep fleece 3
Miscanthus (potassium doped) 3
Coffee Grounds 3
Blue Face Sheep Fleece 3
W+B20% 2
Wheat Pellets 2
Bone meal alone 2
Willow alone 2

Table A.1: Dataset - Feedstock count
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