
ConvQASARE : End-to-End

Cognitive Conversational

Question Answering using

GraphSAGE and RotatE

Marina Sruthi Maria Michael

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2022



Abstract

Conversational Question Answering (ConvQA) is a critical Natural Language Process-

ing (NLP) problem and a long-standing artificial intelligence milestone. A multi-turn

ConvQA has proven to be more challenging than a regular QA since it requires learn-

ing the history of each conversation. However, the history of the conversation is not

efficiently captured by most of the current approaches, thus failing on questions in-

volving coreferences. Additionally, most of the graph-based approaches fail to capture

rich word attributes and long-range dependency along with the global structure when

reasoning over a context. In this project, we propose a cognitive way of an end-to-end

model (ConvQASARE) for ConvQA that jointly performs Knowledge Graph Comple-

tion (KGC) and Question-Graph reasoning. Our model delivers an end-to-end model

that learns history by completing a knowledge graph using a simple yet effective trans-

lational model proposed in RotatE. We leverage the inductive representation learning

technique proposed in GraphSAGE to model long-range dependency and rich node

attribute information. Our model, ConvQASARE, mimics human cognitive reasoning

which gets reliable performance on a ConvQA benchmark: Question Answering in

Context (QuAC). Additionally, experiments show that ConvQASARE model can offer

good scalability for the reasoning process and efficient history selection.
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Chapter 1

Introduction

Conversational Question Answering (ConvQA) is one of the fundamental problems in

Natural Language Processing (NLP), which involves predicting an answer to a query

in context of previous conversations. When the ConvQA task involves machines to ex-

tract the start and end span from the context passage as an answer to the question, the

ConvQA follows the conversational machine reading comprehension (CMRC) frame-

work [26]. Each conversation consists of multiple questions, thus making it a multi-

turn conversational QA [26].

One of the primary challenges of multi-turn ConvQA which makes it more chal-

lenging than a regular QA is learning the history of each conversation. Each question

lacks the context that is important to understand them completely and are referenced

from any of the previous question-answer pair (history) from the conversation [44].

For example, in Figure 1.1, the “there” in the sample question “What languages are

spoken there”, is referenced from the previous answer “Kerala”. Another important

challenge is that questions can be unanswerable due to ambiguity or insufficient con-

text [60]. Due to these challenges, many deep learning models fail to achieve human

performance, especially on ConvQA benchmark datasets for English like Question An-

swering in Context (QuAC) [10] which is a 6.7 F1 score behind human performance.

Thus it is a widely researched field in NLP currently.

Many recent models targeting ConvQA are mostly pre-trained language models

(PLM) and very rarely graph-based models. The standard state-of-the-art model is a

transformer-based PLM using BERT [13] and RoBERTa [61] which understand con-

versation context better. These models combine history, current context, and query as

an input sequence. As these models are limited to only 512 sequences, [44], [54] show

that combining questions with previous conversation history and context becomes very
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Chapter 1. Introduction 2

Figure 1.1: Sample question-answer pair from a ConvQA benchmark (QuAC [10]) along

with its coreferences.

long and difficult to maintain. For example, the RoBERTa-based model ( 125M param-

eters with 768 embedding size) on QuAC needs 40 hours of training on 8 Nvidia V100

32GB GPUs.

These issues lead to inefficient training on ConvQA tasks and promote more re-

search on graph-based models which use Graph Neural Networks (GNN). It is easy to

maintain previous conversation context and history in Knowledge Graphs (KGs) [24].

Graph-based models like [8], [27], and [14] use Gated Graph Neural Network (GGN)

[32], Graph Attention Network (GAT) [48], and Graph Convolution Network (GCN)

[28] to achieve considerable performance on ConvQA tasks. However, they commonly

suffer from the following issues:

i) Most of the KG-based QA systems are attempted on publicly available KG

(triplets or graph) datasets rather than free-form text datasets. That is because manually

constructing a KG can accumulate errors and be carried forward from the construction

stage to the learning stage [40]. Also, the primary reason for the accumulation of er-

rors while constructing KG is that it suffers from a poor understanding of an entity in a

context as they are co-referenced from previous sentences (Figure 1.2). For example,

constructing a KG from the context in Figure 1.2 results in (“They”, ”identified”,

”speakers”) which makes the error to accumulate, resulting in difficulty in reasoning

for any GNN.

ii)As mentioned previously, the main issue with PLM in ConvQA is that it com-

bines previous questions and answers to the current question as history. This history,
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Figure 1.2: Sample context from a ConvQA benchmark (QuAC [10]) along with its coref-

erences.

can extend very long, more than 512 sequences. Even most graph-based models like

[14] and [27] follow the same methods to handle history. For example, for a question in

a conversation that has 10 previous visited questions, GraphFlow [8] combines all the

10 previous questions and answers to the current question as history therefore resulting

in inefficient training.

iii)In NLP, the representation of words as entities results in long and complex KGs.

This can increase exponentially and is referred to as the Combinatorial explosion of

knowledge [7]. Graph Neural Networks (GNN) such as GAT [48] and GGN [32] con-

structs an adjacency matrix and holds them completely in memory during training.

Thus when the KGs become long and complex, these models fail to capture the global

semantic structure of a graph. These models also requires several linguistic features

like Parts of Speech (POS) tags and Named Entity Recognition (NER) to capture better

word order and long-range dependency effectively.

Despite efficient training compared to PLM’s, these issues restrict graph-based

models from achieving state-of-the-art performance in multi-turn ConvQA, especially

in the QuAC dataset. Therefore, to fill the gaps above, this work proposed a cogni-

tive way of an end-to-end model for ConvQA that jointly learns Knowledge Graph

Completion (KGC) and question-graph reasoning. This work leverages inductive rep-

resentation learning proposed in GraphSAGE [20] and Knowledge Graph Embedding

(KGE) proposed in RotatE [45]. The above architecture follows dual process theory

[4] to mimic the human way of reasoning. Taking after the architecture, the solution is

constructed in two phases. The first phase is the dynamic node embedding construction

phase using GraphSAGE while the second phase is a joint reasoning phase where KGC

is used as history and reasoned jointly with question and graph embedding. The main

aim of this project is to implement the above model to fill the gap and investigate if

the proposed architecture increases the performance of ConvQA task compared to the

best graph-based model in the QuAC dataset. The experiments show that the proposed

method overcomes all challenges while achieving better performance in ConvQA task.
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The major results and contributions of this research will be to:

• Propose an end-to-end architecture with knowledge graph completion and question-

graph reasoning in a cognitive way that is scalable and captures better global

semantics, rich node attributes while at the same time inductive i.e., generalizes

better for unseen nodes.

• Construct a baseline model that creates a base framework for our proposal using

an unscalable, less efficient GNN and without a knowledge graph based history

selection module.

• Construct an end-to-end model with scalable, inductive GNN GraphSAGE and

KGC as history in advance of the baseline model, which follows the proposed

architecture to overcome the issues mentioned above.

• Experiment with the proposed architecture on conversational question answering

benchmark, and get good performance in F1 metrics.

• Investigate the proposed architecture with the best Graph-based model in the

QuAC benchmark dataset.

The remainder of this dissertation is organised as follows. Chapter 2 briefly

introduces the background and related works concerning this thesis. Chapter 3 de-

scribes the basic modules used, the baseline model, and the ConvQASARE models,

in detail. Chapter 4 reports the results of the baseline and ConvQASARE on various

experiments including the analysis of these results. Chapter 5 discusses some com-

mon findings in the experiment part, which is the extended analysis part for Chapter
4. Chapter 6 reports the conclusion of this work, including limitation of this work,

and future works related to the limitation.



Chapter 2

Related Works

2.1 Knowledge Graphs

Knowledge Graphs (KGs) are knowledge representations of data inspired by how hu-

mans solve their problems. They consist of nodes and edges in which nodes are con-

nected together to form an edge. When the nodes and edges are represented in the

form of (Subject, Relation, Object) triplet, KGs are also referred to as Knowledge Base

(KBs), where Subject and Object are nodes and Relation is an edge between subject

and object. In NLP, entities of a given text are represented as nodes and the seman-

tic relationship between them are represented as edges. For example, from Figure 1.1

“Malayali People”, “Indian ethnic group” and “Kerala” are all entities/nodes, and

the semantic relationship/edges between the entities “Malayali people” and “Kerala”

is “originating from”. This is represented as triplets (“Malayali people”, “originat-

ing from”, “Kerala”). Few models [35], [50] also treat every word as a node with

‘neighbors’ as its edge. The construction of a knowledge graph happens in two ways:

i)Manual and ii)Dynamic. Manual construction of KG is carried out by a professional

annotator which is a time-consuming process [58]. While dynamically constructing

KGs from the text data is achieved by extracting relations between entities in text and

forming triplets. Extraction of relations and resolving entities is easily achieved with

many open-source libraries like nltk [36] and spacy [11] which in turn use varying neu-

ral network methods. This can also be achieved by using more advanced deep learning

methods.
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2.2 Embedding

Representing words as low-dimensional vector spaces that reflect their syntactic and

semantic information is an important part of NLP research. In the early stage of NLP

research, these representations were static i.e., a single vector for a word ignoring the

meaning of words in different contexts. Word2Vec [37] or Glove [39] are some ex-

ample methods for obtaining static word embedding. As these ignore the variability

of word meaning in different linguistic contexts, vectors injected with varying con-

text information was required [23]. Therefore contextualised word embeddings were

introduced. Transformer [47] based PLM like BERT [13], RoBERTa [61] produces

contextualised word embedding which has become a commonly used embedding in

most NLP-related areas.

Similar to contextualized word embedding, several approaches have proposed the

projection of knowledge graphs (KGs) into lower embedding vector space while pre-

serving the semantic information of KG. The primary challenge in projecting the KGs

into embedding space, is to encode a node’s global information and its neighbor’s in-

formation. To achieve this, in the early stages of research, various statistics like node

degrees, clustering coefficients, kernel functions, or hand-engineered features were

used [29]. However, an end-end learning method cannot be applied to these statistics

resulting in graph representational learning. The main idea behind graph representa-

tion learning is to map semantic information of KGs to low-dimensional vector space.

These representations make the numerical computation of KG easier, while preserv-

ing and encoding the geometric and global information of the knowledge graph [49].

Models like TransE [5], DistMult [53], and RotatE [45] achieve these representations

by defining different score functions. These score functions measure the distance be-

tween two entities relative to their relation in a low-dimensional vector space, thus

forming knowledge graph embeddings (KGE). The TransE model aims to achieve in-

version and composition patterns while DistMult achieves a symmetry pattern. But

all these older models are incapable of inferring all three patterns together. On the

other hand, RotatE [45] maps each relation as a rotation from source to target entity

achieving all three patterns together. These representations are used in a wide range of

downstream tasks like Link Prediction [33], [46], Relation extraction [19], [36], and

knowledge graph completion [41]. Knowledge Graph Completion (KGC) is a graph-

based task that automatically finds the missing subject or object entity in a given triplet.

For example, consider the triplet (“Malayali People”, “originating from ”, “?”), this
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can be completed by filling the missing object entity as “Kerala”, where “?” is the

missing entity. In this work, the representations generated using RotatE are used in a

KGC task which acts as a history to the ConvQA task and BERT [13] based contextual

word embedding are used as the question and context features.

2.3 Dual Process Theory

Researchers found that humans use a dual process approach when they reason over

large-capacity memory for a given question about a context already present in their

memory. Derived from cognitive science, a dual process theory [4] assumes that

decision-making is achieved in a two-stage processes in humans. The unconscious

system 1 that eliminates irrelevant information and provides a highly contextualized

representation of the problem. The conscious system 2 decides or provides an answer

by extreme analysis on the obtained representation. Researchers used this theory in

various AI tasks like question answering [16], [15], and pattern recognition [30]. In

our work, the entire system is built to mimic the dual process theory, thus achieving a

cognitive way of answering questions.

2.4 Knowledge Graph Question Answering System

In the early stages, traditional approaches of graph-based QA translate a natural lan-

guage question into structured queries such as SPARQL and return entities from KGs

as answers [21]. [25], [21] finds the answer entity by finding the closest subject and

relation to a simple NLP question using GNN like GCN [28], GAT [28]. Then the

corresponding object entity is returned as the answer. The above approach is applied

to problems when the dataset is structured or if the required answer is a single entity

from the triplet. However, the above framework could not be directly used in ConvQA

when the required answer is to be extracted from the context [18]. Therefore a graph-

based CMRC task framework was introduced to predict answer spans based on natural

language questions and KG . [18]defines this framework into four main modules:

History Selection Module: This module selects the history of a conversation.

Some models like GraphFlow [8], [43] concatenate previous questions and answers

to the current question as a history. Some models like [10] also concatenates the turn

number of each question and location of the answer as history features.
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Encoding: In this module, the Context passage C(i), History H(i) and Question

Q(i) are encoded into input embedding based on various approaches defined in section

2.2. Some models like [52], [24] use lexical embedding and question aware and intra

sequence contextual embedding. Some methods like GraphFlow [8] uses nine types

of features like Parts of Speech (POS), Named Entity Recognition (NER), Glove and

BERT Embedding, Question Aligned Context embedding, Question marker, Answer

marker, number of question words matching with context words, and context word fre-

quency. All this embeddings are concatenated to get encoded features.

Reasoning: This module involves the combined reasoning of questions and graphs.

There are two layers involved in this module. The first layer is the question understand-

ing layer which is usually carried out using an encoder-decoder architecture similar to

[54] or [38], which skips the encoding module for questions and directly uses PLM

models like BERT [13] and RoBERTa [61]. In both types, the hidden states of the en-

coder or the PLM models are used as output to jointly reason with graphs for predicting

answers.

The second layer is the Graph Reasoning layer, which involves graph learning and

reasoning over the generated knowledge graph using Graph Neural Network (GNN).

GNN has become an important research field in AI. Recently, GNNs are applied to

various question answering tasks like MRC [16], [30] and knowledge base question

answering (KBQA) [25] and have achieved better performances than traditional ap-

proaches. GNN learns individual node embedding that is fed into downstream tasks as

node features. Network like GCN [28], GGN [32], GAT [45] distills high-dimensional

information about a node and its neighborhood thus forming node embedding. Graph-

Flow [8] first constructs a adjacency matrix treating every word as node and performs

knn-style graph sparsification to get a normalised adjacency matrix. It applies Gated

Graph Neural Network (GGN) to aggregate plenty of information from its surround-

ings on the weighted normalized adjacency matrix. And then on the output of the

GNN cell applies Recurrent Graph Neural Network to get sequential output. Cogni-

tive Graph QA [16] extracts possible answers and next-hop entities as clues and passes

question-clue-context as input to the BERT system. The output of BERT system is

passed as latent representations to a GAT layer which fetches node embedding. But

these models cannot scale when the size of the KG increases, thus failing to capture

global semantics, long-range dependencies and rich node attribute information. There-

fore, models like GraphSAGE [20] and GIN [51] were introduced. They use inductive
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learning to generate low-dimensional vector representations for graph nodes and highly

scalable. GraphSAGE [20] uses an aggregator function that helps in better capturing

rich node attribute information while scaling for larger contexts. [49]uses GraphSAGE

to overcome the above challenge in a question correction and generation task. In this

work, GraphSAGE is used as the GNN reasoning layer with single and multiple hops.

Prediction: This module is used to predict answers using the reasoning layer out-

put. A major challenge of this module is to handle abstractive answers rather than to

predict the most relevant entity candidate from the graph. [31] proposes extracting

answers from the encodings using augmented text generators. [8] reasons the question

using an encoder and self-attention module and then predicts an answer by combining

the question reasoning output and graph node embedding. [16] finds the probability of

a Yes/No question and extracts answers only if Yes/No was not selected.

In our work, the above framework was adopted with different variations in
each module which will be explained in detail in the next chapter.



Chapter 3

Methodology

In this chapter, the basic modules that are necessary to our proposal, such as Spacy

Neural Co-Reference, Recurrent Neural Network, Attention Mechanism and Graph

Neural Networks are introduced. The baseline model, the proposed (ConvQASARE)

model and its overall architecture are also explained in detail.

3.1 Notations

This section briefs out the various notations used as part of this thesis. In a conver-

sational question answering system, the number of turns in a conversation is given as

i with jth context word as C j and kth question word as Qk with history as H(i)
k . xt

and ht at timestamp t represents the input and hidden state to recurrent models (e.g.

Bi-Directional Long Short Memory (BiLSTM)). ht serves as an input and ct as an out-

put to attention mechanism. Concatenation of two vectors a and b are indicated by

[a, b]. A knowledge graph G is represented as {v,e} where v is the node and e is the

relation/edge between two nodes. A knowledge base is given in the form of a triplet

T which is represented as (s,e,o) where s refers to the subject entity and o refers to

an object entity. Node v can also be understood as a list of unique subject and object

entities in a given context. The input to any GNN model is the knowledge graph G

and a feature vector W i
x , where x represents the input for which the feature vectors are

generated. For example, a feature vector of subject and object entity is represented as

W i
s and W i

o, whereas the feature vector of context and question is represented as W i
c j

and W i
qk respectively. The output of a GNN network at kth layer is represented as hk

v

where the final node embedding is given as zv. The aggregator function used in the

GraphSAGE model is given by agg and feature dropout is given by f eatdrpt.

10
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3.2 Basic Modules

In this section, the five basic modules related to this work- Spacy Neural Co-Reference,

Recurrent Neural Networks like Bi-Directional Long-Short Term Memory and Gated

Recurrent Unit, Attention Mechanism, RotatE and GraphSAGE network that served as

primary models are introduced.

3.2.1 Spacy Neural Co-Reference

Co-Reference Resolution aims to find all the text that refers to the same mentions in

a given context. For example, consider “The Malayali people are originated from

Kerala, and they speak Malayalam”, a co-reference resolution model that aims to find

all the reference for the mention “they”. This is achieved by learning a scoring function

for each span of the given context. The scoring function computes the probability of

the given span referring to a particular mention of the text [57]. In specific, Spacy

neural coref API1 uses a two neural network approach to resolve co-references. The

first net calculates the score for the mention having an antecedent in a text and the

second net calculates the score for the mention having no antecedent. The highest

of these gives the resolved text for the mention. For example, consider the above,

the first neural net calculates the score of “Malayali people” being an antecedent of

“they” and the second neural net calculates the score of “they” having no antecedent.

“Malayali people” gets the highest score and the mention “they” is resolved for its

co-reference text “Malayali people”. This method provides easy integration with any

NLP processing pipeline. In this work, spacy neural coref resolution is used to achieve

better contextual construction of knowledge graphs.

3.2.2 Recurrent Neural Network

A Recurrent Neural Network (RNN) [17] is a type of Artificial Neural Network, intro-

duced primarily because a feed-forward neural network cannot handle sequential data

and considers only current input without memorizing previous input. In NLP, text data

are sequential and to understand the context of a sentence better, learning the sequence

of word is very important. To achieve this, RNN was introduced as an added recurrent

connection. This connection makes the information flow from one step to another, thus

handling sequential data. A sequential input data, denoted as xT , is passed to an RNN

1https://github.com/huggingface/neuralcoref
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with initial hidden states h0. The hidden state ht for a given timestamp t is updated by

the input xt and previous hidden state ht−1 which is given by Equation 3.1 .

h(t) = (Wxxt +Whht−1 +bh) (3.1)

where Wx, Wh and bh are learned parameters. This type of RNN is also referred to as

vanilla RNN and is trained through backpropagation [43]. However, as RNN processes

multiple previous steps, it begins to lose previous information. This phenomenon is

referred to as the gradient vanishing problem [3]. Long-Short Term Memory (LSTM)

[22] was introduced to overcome the weakness of vanilla RNN. LSTM addresses this

vanishing gradient problem by using a cell state ct and gates. Gates are nothing but

neural net layers that control the hidden state by deciding which information should

flow through the cell. There are three types of gates used in LSTM. Cell state outputs

hidden state by taking updates from input.

This can be mathematically explained as, for a given input xt and previous hidden

state ht−1, the forget gate f (t),(Equation 3.2), decides which information needs atten-

tion and which can be ignored by outputting values between 0 and 1. 0 represents

completely getting rid of information and 1 represents complete flow. Next, the input

gate i(t) (Equation 3.3) decides which information to be updated. Both of these gates

are combined together along with previous cell state ct−1 and new candidate values

c̃(t) to update the current cell state c(t). This is portrayed in (Equation 3.5) which

decides which information from the past to be included and which values from the

current state is important. The final hidden state ht (Equation 3.7) is obtained from the

new cell state which is controlled by an output gate o(t) (Equation 3.6). The complete

flow of this process is given below:

f (t) = sigmoid(Wf [ht−1,xt ]+b f ) (3.2)

i(t) = sigmoid(Wi[ht−1,xt ]+bi) (3.3)

c̃(t) = tanh(Wc[ht−1,xt ]+bc) (3.4)

c(t) = f (t)ct−1 + i(t)∗ c̃(t) (3.5)

o(t) = sigmoid(Wo[ht−1,x(t)]+bo) (3.6)

LST M(xt ,h0) = ht = o(t)tanh(c(t)) (3.7)

The final hidden state ht summarises the whole input sequence which acts as an

input to either attention mechanism or any downstream tasks. There are variations to
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this LSTM. When the input sequence flows in two directions then the LSTM is referred

to as Bi-Directional LSTM(BiLSTM) [12]. In this case there are two hidden states

fetched: one for past and one for future. Both are concatenated to get the final hidden

state ht (Equation 3.8). This helps in maintaining both past and future information.

BiLST M(xt ,h0) = [
−→
ht ,
←−
ht ] (3.8)

Similar to LSTM, Gated Recurrent Unit (GRU) [9] is also a type of RNN which

solves vanishing gradients by just using two gates: update and reset gate. In this work,

the BiLSTM is used for reasoning questions and GRU is used for predicting answers.

3.2.3 Attention Mechanism

As mentioned in the previous section, the final hidden state ht of any LSTM sum-

marises the whole input sequence. One of the main drawbacks of these models are,

when the sequence is too long, it cannot extract strong contextual relations [1]. For ex-

ample, if a long text has some context within its substring, models like LSTM cannot

identify those substring’s context. To overcome this, an attention mechanism was in-

troduced to learn a dynamic context vector ct . An attention mechanism compares each

word in a sentence with one another to find the word to be most attended. Based on this

comparison it reweighs the input word embedding, thus forming more contextualised

vector [34]. A self-attention mechanism [1] is an attention mechanism that compares

every word in the sentence with every other word and with itself. The main reason

behind comparing every word to itself is that a word can incur two different meanings

based on the context.

Mathematically, a self attention mechanism involves three inputs: query q, key kt

and value vt . The basic working of a self attention mechanism is given as, for a given

encoded input ht also referred to as keys kt , and previous decoder state st ,also referred

to as the query q, the model calculates an alignment score uqt . The alignment score uqt

for a word is a vector of values which indicates the similarity between the given word

and every other word in a sentence and also with itself. The similarity between them

is calculated by fscore which is a feed forward neural network or dot product (Equation

3.9). The alignment scores are then normalised by a softmax function (Equation 3.10).

uqt = fscore(q,kt) (3.9)

αqt = so f tmax(uqt) (3.10)
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Then for a given word, its complete alignment score is multiplied with the origi-

nal value vt . The final context vector ct (Equation 3.11) for a word is calculated by

summing the multiplied values which gives the weighted sum of vectors.

attention(q,k,v) = ct = ∑αqtvt (3.11)

3.2.4 RotatE

As described in Section 2.2, most of the KGE models fail to capture relational patterns

like symmetry, inversion and composition altogether. But, all the above patterns are

required for a model to generate better KGE as they explain the structure and properties

of a graph better. RotatE [45] can infer all three relational patterns by defining each

relation as a rotational model in the complex vector space [45]. RotatE maps subject

and object entities with the relation as a rotation. It is one of the few techniques which

provide, negative sampling technique to efficiently and effectively train the nodes and

edges. It maps each relation e as an element-wise rotation from the subject entity s to

object entity o which is given in Equation 3.12.

o = s · e s,o ∈Ck (3.12)

Here · is the Elementwise product. The basic working of RotatE is as follows. For a

given triplet (s,e,o) , RotatE yields the object entity as element-wise product of subject

and relation. This method constrains the modulus of each element of e, to be |ei| =
1.The rotation function is the main method that differentiates it from the rest of the

models, which is given by the form riθei. This form corresponds to counterclockwise

rotation by θ and affects only the phases of the entity embedding in the complex vector

space, thus defining the rotation function. This is nothing but the scoring function

which is defined in Equation 3.13.

r(h, t) = RotatE =| h · r− t | (3.13)

3.2.5 Graph Neural Network

Neural Networks for graph data are handled by Graph Neural networks. They repre-

sent nodes in lower vector space by using message passing, aggregation, and updating

techniques. Each GNN model is different in the way they handle these three functions.

Message passing function fmp sends message from node v to u which is nothing but a

Multi-Layer Perceptron (MLP) and aggregate function fagg specifies how to aggregate
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these messages across nodes and their neighbors. Update function fupdate updates the

node representations based on these aggregates. When a GNN stacks multiple layers

to aggregate information from higher-order neighbors it is referred to as k-hop, where

k is the number of layers stacked up. Mathematically GNN is represented as shown in

(Equation 3.14).

hk
v = fupdate(hk−1

v , fagg( fmp(hk−1
v ,hk−1

u ,hk−1
uv ))) (3.14)

Graph Attention Network [48] is an attention based GNN which aggregates the

nodes and its neighbours by passing the nodes through an attention mechanism. The

aggregated node values are updated based on the attention score and initial values h0
v .

The GAT model from the Deep Graph Library (DGL)2 is used as the GNN cell in

the baseline model of our work (Equation 3.15). DGL is an open source library that

carefully handles sparse, irregular, big, and small graphs. It takes advantage of modern

hardware with arbitrary message handling and flexible propagation rules.

hk
v = GAT (G,h0

v) (3.15)

The above network is a very simple GNN which fails to capture global semantics, long-

range dependency especially, when the KGs are long and complex. In order to over-

come that, GraphSAGE was introduced, which is an inductive deep learning method

developed by Hamilton, Ying, and Leskovec (2017) [20]. GraphSAGE generates low-

dimensional vector representations for nodes. The primary goal of GraphSAGE is to

learn node embedding using only a subset of neighboring node features instead of the

whole graph. The main idea is to select a few nodes at random from the K-hop neigh-

bors’ rather than the entire K-hop neighbor of a target node. This way scalability of

the GNN model is ensured. Instead of learning embedding for each node, it learns an

aggregate function which includes information about its local neighborhoods [20]. In

this way, the global semantics and long-range dependency is maintained. The entire

sequence of operations in GraphSAGE 2-hop is given as:

h0
v = SageCONV (G,Wv,agg, f eatdrpt) (3.16)

h0
v = dropout(ReLU(h0

v)) (3.17)

zv = SageCONV (G,h0
v ,agg, f eatdrpt) (3.18)

Here zv is the final node embedding after k hops. The basic working of SageConv in

the DGL library for a given graph G is that it initially initializes G to its original feature
2https://www.dgl.ai/
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vectors Wv. Then at k hop for target node v, it aggregates its k hop neighboring node

features into a single vector. An LSTM aggregator would perform an LSTM model

on the nodes and their neighbor’s hidden state. This process is repeated iteratively for

k hops to get zv and at the end, a nonlinear activation function is applied making it

capable to learn and perform more complex tasks.

3.3 Baseline Model

To evaluate the work in this thesis, a baseline model is constructed. The first step in

the baseline model is to choose a history selection module. The most common history

selection method mentioned in Section 2.4 is to concatenate the previous question-

answer pair to the current question. This method is adopted here for the history module.

Next, a simple GNN network, Graph Attention Network (GAT) with minimal context

features is used as the GNN layer. The primary purpose of creating such a minimal

model as a baseline is to evaluate how GNN networks like GAT require more features

to capture better word ordering and long-range dependency. And also, the baseline

model does not fully follow our proposed-ConvQASARE architecture, whereas it uses

a less scalable GNN model with an history selection module which is less efficient. It

also does not mimic human cognitive ways of QA. The overall structure of the baseline

model is given in Figure 3.1. Each module of baseline model is explained below:

History Selection Module: History in conversational question answering plays

an important role. In the baseline model, previous question-answer pairs are joined

together. This is used as history H(i)
k in the baseline model (Refer Equation 3.19). This

history component is concatenated to the current question (Refer Equation 3.20). As

previous question and answers are embedded to a current question, a marker f (i)kqmarker

is also created to indicate which turn each question belongs to after concatenation of

history (Refer Equation 3.21).

H(i)
k =< q > Q1 < /q >< a > A1 < /a > ..... < q > Qi−1 < /q >< a > Ai−1 < /a > (3.19)

Q(i) = [H(i)
k ,Q(i)] (3.20)

f (i)kqmarker =< q > 1,1, ...1 < /q >< a > 1,1, ...1 < /a > ....... < q > i, , ..i < /q > (3.21)

where Qi and Ai are the questions and answers at ith turn in a conversation.
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GAT

Q1 A1 , Q2 A2 ..................Qk Ak

Encoder

Self Attention

Context

Prediction

Node
Embeddings

Start span logits , End Span logits

Word KG
BERT Embeddings

Bert PLM

Context FeaturesDGL MultiDiGraph

Encoder

BERT Embeddings

Question Features

Question Marker

Figure 3.1: Overall structure of the baseline model, with GAT as the GNN layer.

Encoding: The context passage C j , History Hk and Question Qk are encoded

into input embedding. As mentioned in Section 2.3, the various embedding available

were experimented with in this model. The preliminary results showed that BERT per-

formed better than RoBERTa embedding, thus pre-trained word embedding generated

using BERT [13] are utilized for both context BC
j and question BQ

k . The sliding win-

dow approach is used for generating the token’s input id from text because BERT base

model has a maximum sequence limit of 512. The sliding window approach extracts

chunks of 512 lengths from the entire text and yields each chunk to get the input ids

and attention mask. These values are passed as an input to the BERT pre-trained model

inherited from “BERT-large-uncased”. BERT Model is a 1024 embedding model with

24 hidden layers [61]. The layers are averaged to fetch word embedding. One main

challenge in using BERT-based embedding is they use byte-level Byte Pair Encoding

tokenization [6]. This method splits rarely occurring vocabulary into sub words. For

example, “tokenization” is split into “token” and “##ization” tokens. To map the split

tokens to original words, the offset mapping of the tokenizer adds the split hidden layer

into one.

Along with BERT Question embedding BQ
k , f (i)kqmarker which was generated in the

history selection module is passed to an Embedding layer to generate question marker
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embedding Q(i)
kqmark which is done as:

Q(i)
kqmark = Embedding( f (i)kqmarker) (3.22)

Therefore, at the ith turn in a conversation, for each context word C j, BERT context em-

bedding BC
j is encoded as context features W (i)

c j which is given in Equation 3.23. And

for each question word Qk concatenation of BERT question embedding BQ
k and ques-

tion marker embedding Q(i)
kqmark is encoded as question features W (i)

qk which is given in

Equation 3.24.

W (i)
c j = BC

j (3.23)

W (i)
qk = [BQ

k ,Q
(i)
kqmark] (3.24)

Reasoning: There are two layers involved in this module- The Question Under-

standing layer and the Graph Reasoning Layer. In the question understanding layer, a

BiLSTM layer is used on question features W (i)
qk to get more contextualized question

embedding Q(i)
k . Then a self-attention mechanism is applied to Q(i)

k to get weighted

sum of question word vectors ck. Finally, an LSTM layer is performed on ck to capture

the dependency among question history. From Equation 3.27, h(i) is the final hid-

den state, the output of question understanding layer which is used along with graph

reasoning output for predicting answers. The entire reasoning process is given as:

Q(i)
k = BiLST M(W (i)

qk ,h
0) (3.25)

ck = attention(Q(i)
k ) (3.26)

h(i) = LST M(ck) (3.27)

The next layer is the Graph Reasoning Layer. The first step in this layer is the KG

construction. As the ConvQA task is treated as a CMRC task, using entity and its re-

lationship as KG results in single entity answers, thus ignoring sequential dependency

of words. Therefore to capture the sequential dependency of words, every word in the

context is considered as a subject entity while its corresponding neighbor is consid-

ered as an object entity. With ”neighbors” being the relation between them. This KG

is referred to as Word KG. Sample example of the WordKG construction from QuAC

dataset is given in Figure 3.2. The resulting triplets are transferred into the DGL Multi

directional graph (Multi-DiGraph) to be used as an input to the GNN module.

The next step here is the GNN reasoning on the dgl graph. Graph Attention Net-

work (GAT) is the GNN layer used in this model. This network passes messages and
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The Malayali people originating from Kerala They. are identified as Malayalamofspeakersnative

["the", "neighbours", "malayali"]
["malayali", "neighbours ",

"the"]
["malayali", "neighbours",

"people"]
Word KG ["people", "neighbours",

"malayali"]
["people", "neighbours",

"originating"]

Figure 3.2: Sample example of the Word Knowledge Graph construction from QuAC.

aggregates the nodes and their neighbors on the dgl graph to generate node embed-

ding (Refer Equation 3.28). The context features W (i)
c j fetched from Equation 3.23 are

passed as node features. The output from GNN reasoning and the question understand-

ing layer is combined to predict answers.

zv = GAT (G,W (i)
c j ) (3.28)

Prediction: The output from the question understanding layer h(i) and graph rea-

soning layer zv from the previous module is used together for predicting answers. For

jth context word in tth turn in a conversation, the probability of the context word C j be-

ing the start is calculated by matrix multiplying the question output h(i) with transposed

graph node embedding zv. The start probability start j is given by,

start j = exp(zT
v Wsh(i)) (3.29)

where Ws is a d * d trainable weight and h(i) is the question representation obtained in

(Equation 3.27). Next, end probability is obtained in similar way, the start probability

was calculated. The only difference is that the question outputs h(i) are passed to a

Gated Recurrent Unit cell before matrix multiplication. Then, the end probability endi

is calculated by matrix multiplying the GRU output and the node embedding. This is

given by,

end j = exp(zT
v WeGRU(h(i))) (3.30)

With the start and end probabilities of a context C j, start and end index of an answer in

a context for a given question is calculated by finding the argmax of the probabilities.

3.4 ConvQASARE

3.4.1 Overall Architecture

The proposed baseline model is a simple model that does not fill the gaps mentioned

in Chapter 1. The first issue comes from the construction of knowledge graphs. The
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errors while constructing KGs accumulate in the later stages resulting in inefficient

modeling. This is overcome in our proposal by combining two types of knowledge

graphs, Word KG and Entity KG. And also while constructing Entity KG, it is resolved

for co-references. The second issue comes from the history component which is not

efficient as the conversation increases. This history can extend to a very long sequence

resulting in in-efficient training. Therefore, a knowledge graph-based solution using

a translational model like RotatE is used due to its simplicity and effectiveness. The

third issue directly comes from the GNN layer, GAT, which requires a lot of features

to achieve a minimal result and is also inefficient as the size of the graph increases. It

does not better capture the long-range dependencies, rich node attributes, and global

structure of the graph. At the same time, it is also not scalable and inductive. So

the first very straightforward idea comes out, to use GNN methods with an inductive

and better scalable approach like GraphSAGE. Meanwhile, the solution should pro-

vide end-to-end learning and at the same time should mimic dual process theory. So,

the overall structure of the proposed methods, an end-to-end cognitive conversational

question answering system using GraphSAGE and RotatE (ConvQASARE) is intro-

duced. The overall architecture is given in Figure 3.3.

Unconscious
phase

GraphSage

Conscious
phase

Current Question: What was the single they
released?

RotatE Encoder

Self Attention

Context

Context

Prediction

Node
Embeddings

Start span logits , End Span logits

Question Aligned
Context Embeddings

Self Attention

Current Question: What
was the single they

released?

Word KG Entity KG

BERT Embeddings

BERT PLM

Context FeaturesDGL MultiDiGraph

Entity KG

Encoder

BERT Embeddings

History KGE

Entity KG
Features

Figure 3.3: Overall Architecture of the proposed ConvQASARE model.

As described in Section 2.6, the architecture also follows a CMRC framework and is

resolved mimicking dual process theory in two phases; Unconscious phase and Con-

scious phase. Both the phases are explained in detail in the upcoming sections.
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3.4.2 Unconscious phase

This phase involves dynamic construction of question and conversation history aware

node embedding using GraphSAGE. Unlike the baseline model that uses unscalable

and less efficient GNN, our model uses GraphSAGE which is inductive and scalable.

Knowledge Graph Construction: The first primary issue overcome by our pro-

posal is the error accumulation due to KG construction. This is overcome in two meth-

ods. One, the Word KG created in the baseline is used along with another KG referred

to as Entity KG. Entity KG captures the relational facts in a context. In this way, both

the relational and sequential dependencies of words are captured. This reduces the

error in the construction phase to a limited extent. Second, prior to construction of

the Entity KG, context involving co-references are resolved by applying Spacy Neu-

ral Co-reference Resolution. This reduces the error accumulation further. The overall

structure of Entity KG construction is given in Figure 3.4. Initially, the context words

are resolved for its coreferences. The resolved context words are solved for its depen-

dency label using the Spacy dependency parse tree API3 and the context words with

dependency label “subj” are resolved as subject entities and “obj” are resolved as ob-

ject entities. Relation objects are obtained based on the root’s head of the sentence.

Multi relation triplets are generated for a single sentence as each subject can have mul-

tiple objects in an English sentence. This type of KG is referred as Entity KG and helps

in achieving more contextual KGs. The entity KG is used as an input in a knowledge

graph completion task for RotatE and both Word KG and Entity KG are used as an

input to the GraphSAGE model. To the best of my knowledge this thesis is the first

model which uses both the Word KG and Entity KG in a Conversational QA task.

Context Encoding: Following the baseline model, in addition to the context BERT

[13] word embedding BC
j soft alignment between context words and question words

is learnt using attention mechanism. This is referred to as question aligned context

embedding. The attention score between context and question word is calculated as :

s j,k = exp(ReLU(WBC
j )

T ReLU(WBQ
k )) (3.31)

where s j,k is the attention score and BC
j and BQ

k are BERT embedding of context word

C j and question word Qk. W is a d * 1024 trainable weight with d being hidden state

3https://spacy.io/usage/linguistic-featuresdependency-parse
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The Malayali people originating from Kerala They. are identified as speakersnative

Spacy Neural Coref Resolution

Spacy Dependency Tree

["malayali People", "originating", "kerala"] ["malayali People", "identified ", "native speakers"] ["malayali people", "of", "malayalam"]

The Malayali people originating from Kerala . are identified as speakersnativeMalayali people

Entity KG

Figure 3.4: Sample example and structure of the Entity Knowledge Graph construction

from QuAC.

size. Finally the attention score is multiplied with the BERT question embedding BQ
k

to get the question aligned context embedding (Equation 3.32).

Falign = ∑s j,kBQ
k (3.32)

Therefore, at the ith turn in a conversation, for each context word C j both BERT context

embedding BC
j , and question aligned context embedding Falign are concatenated to get

context features W (i)
c j is given by:

W (i)
c j = [BC

j ,Falign] (3.33)

Dynamic Node Embedding generation: The baseline model uses a GNN layer

which is unscalable and less efficient. This kind of GNN layer fails to capture rich

node attributes, long-range depdendency and the overall graph structure. It also re-

quires large number of features to learn them. Thus a better scalable, inductive, and

efficient GNN-GraphSAGE is used as our GNN reasoning layer. Entity KG and Word

KG are converted into a sequence of context graphs using DGL MultiDiGraph. The

DGL graph along with context features W (i)
c j fetched above is used as an input to the

GraphSAGE module with ‘lstm’ aggregator and dropout of 0.3 (Equation 3.34).

zv = GraphSAGE(G,W (i)
c j ,
′ lstm′,0.3) (3.34)

Each context graph is processed using single and multi-hop with hops 1, 2, and 3. The

GraphSAGE model passes the message to k-hop neighbors in every hop and aggregates

the vector as a weighted neural net of all its neighboring node embedding. Later these
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node vectors are updated for every node by incorporating the aggregation vectors. The

updated node embedding are passed through a ReLU layer to get the final node em-

bedding. This final node embedding is used in predicting answers in the conscious

phase.

3.4.3 Conscious phase

This phase aims to jointly reason the contextualized graph node embedding generated

in the previous phase along with question and history features. This phase uses the

graph-based CMRC task framework to predict the answers.

History Selection Module: The second challenge mentioned in Chapter 1 is that

concatenating previous question-answer pairs as history results in in-efficient training.

In order to overcome this, a knowledge graph-based solution is used to resolve history.

The basic idea is to concatenate the embedding of all the possible entities in a question

instead of concatenating the entire previous question-answer pairs. But this process

involves identifying the direct mentions of an entity because most of the question in-

volves co references. For better understanding, consider an example, “What languages

are spoken there?”. The possible entities of this question are ”languages” , ”there”.

But “there” is not the direct entity but referenced based on any previous mention in

the context. Therefore appending an embedding of an indirect entity like ”there” will

result in poor performance of the model. Thus, the primary goal of this KG-based so-

lution is to find the best subject and object entity for a given question Q(i) by utilising

knowledge graph completion task. Therefore, at the ith turn in a conversation, for a

given question Q(i), a likelihood score for each triplet in Entity KG is calculated using

RotatE is given by:

kge(i) = RotatE(W (i)
s ,W (i)

e ,W (i)
o ) (3.35)

where W (i)
s ,W (i)

o andW (i)
e are subject, object and relational embedding from Equation

3.33 and kge is the knowledge graph embedding, the score of all triplets. The maxi-

mum score gives the best triplet match for the given question. Thus the index Hindex

of the triplet with the maximum score is fetched and the subject and object embedding

corresponding to the index are fetched and used as history Hk. The complete process

is given as:

Hindex = INDEX(argmax(kge(i))) (3.36)

Hk = [W (Hindex)
s ,W (Hindex)

e ] (3.37)
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To the best of my knowledge, this is the first model to use the KGE as history in a

ConvQA task.

Question Encoding: The History Hk and question Qk are transformed into input

embedding. The history Hk generated in the previous section is concatenated with the

BERT question embedding BQ
k to get question features which is given in Equation 3.38.

This feature is used as an input for the question inference module.

W (i)
qk = [BQ

k ,Hk] (3.38)

Reasoning: As discussed in the baseline model, reasoning involves two layers-

Question Understanding and Graph Reasoning. For question understanding layer, the

same approach used in the baseline model is used here. The only difference between

our model and the baseline model in this layer is that the question word features are

changed due to the proposed history selection module. The question h(i) is generated

based on the Equation 3.27. Next, the graph reasoning layer is performed in the un-

conscious phase. The inductive graph node embedding zv (Equation 3.34) generated

in the unconscious phase and the question understanding layer output h(i) are jointly

used as input to the next (prediction) module.

Prediction: This module is same as the baseline model’s prediction layer without

any changes to its formula and mathematical calculations. The input to this module are

from the unconscious phase graph node embedding zv and question output h(i). Two

probabilities: start and end are calculated to extract answers from the context words.

Table 3.1 shows the comparison between Baseline and ConvQASARE model. This

table shows the equations used in every module of the baseline and ConvQASARE.
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Comparison Baseline ConvQASARE

History Selection

H(i)
k =<q>Q1</q><a>A1</a>.....

<q>Qi−1</q><a>Ai−1</a>

kge(i)=RotatE(W (i)
s ,W (i)

e ,W (i)
o )

Hindex=INDEX(argmax(kge(i)))

Hk=[W (Hindex)
s ,W (Hindex)

e ]

Question Q(i)=[H(i)
k ,Q(i)] Q(i)

Question Encoding
W (i)

qk =[BQ
k ,Q

(i)
kqmark] W (i)

qk =[BQ
k ,Hk]

Context Encoding
W (i)

c j =BC
j W (i)

c j =[BC
j ,Falign]

Question Reasoning

Q(i)
k =BiLST M(W (i)

qk ,h
0)

ck=attention(Q(i)
k )

h(i)=LST M(ck)

Q(i)
k =BiLST M(W (i)

qk ,h
0)

ck=attention(Q(i)
k )

h(i)=LST M(ck)

Graph Reasoning GAT (G,W (i)
c j ) GraphSAGE(G,W (i)

c j ,
′lstm′,0.3)

Prediction

start j=exp(zT
v Wsh(i))

end j=exp(zT
v WeGRUh(i))

start j=exp(zT
v Wsh(i))

end j=exp(zT
v WeGRUh(i))

Table 3.1: Comparison between equations of Baseline and ConvQASARE used in each

module of our thesis
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Experiment

In this chapter, experiments which are designed to evaluate the proposed model is

explained in detailed. There are two types of experiments here; conversational question

answering task on the QuAC benchmark dataset and investigating our model with the

best performing graph-based model on the QuAC benchmark.

4.1 Dataset

The main experiment of this thesis is a Conversational Question Answering task. There

are two main benchmark datasets for this purpose : Conversational QA (CoQA) [42]

and Question Answering in Context (QuAC) [10]. QuAC is chosen as the bench-

mark dataset primarily because it has 100K questions from 14K information-seeking

dialogs making it more conversational. The main interaction in this dataset is driven

by students, where a student asks a question based on the given Wikipedia section

and background while the teacher provides a short evidence text as answers from the

referenced Wikipedia passage [10].

The entire QuAC dataset is fetched from the hugging face library1. A pre-processing

step similar to GraphFlow [8] was adopted and applied in this work as the dataset pro-

vides only the start character index of the answer feature. But the start and end token

index are required to calculate the loss function and evaluate the model. This start and

end token index is referred to as the target value in this thesis which is fetched using

the offset generated using the StandfordCoreNLP API2 annotator.

1https://huggingface.co/
2https://stanfordnlp.github.io/CoreNLP

26
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Table 4.1 shows the data split of QuAC. To evaluate any model, QuAC uses macro

averaged F1 score which is the arithmetic mean of all per class F1 scores [55]. There

are also two other metrics QuAC uses for evaluation, as there can be multiple answers

for a single question [10]. This includes human equivalence score (HEQ) in two vari-

ants. When the model exceeds or matches the F1 score, the percentage of questions

that achieved this is HEQ-Q and percentage of dialogues that achieved this is HEQ-D.

But to get the test metrics, the implemented system is submitted to CodaLab3 which

will evaluate the model on the test set, because the test set is not made available to the

public to maintain integrity.

Features Train Validation Test

Dialog 11567 1000 1002

Question 83568 7354 7353

% unanswerable 20.2 20.1 20.1

Table 4.1: Statistics of QuAC dataset for Conversational Question Answering.

4.2 Hyperparameters

For all experiments in this section, the model is trained for 100 epochs with a batch

size of 10. The training of the model stops if it does not see any improvement in

the validation F1 for more than 10 epochs. Adam optimizer [51] with a learning rate

of 0.0001 is used. The learning rate is decreased when the model does not improve

its validation performance for 2 epochs. In the question understanding part, 2048

(1024 BERT and 1024 for question aligned context) dimensional word embedding is

used for the BiLSTM model. A 2-layer bidirectional LSTM with 1024 hidden units

with 0.3 words and RNN dropout is used to avoid overfitting. A two-layer MLP with

1024 hidden units is used as the score function for all attention modules. For the

GraphSAGE model, up to 3 layers with 2048-dimensional node embedding are used

and 1024-dimensional knowledge graph embedding are generated. The Aggregator

function for the GraphSAGE model is “LSTM”. Cross Entropy Loss is used as the

loss function between the target’s start, and end values, and the model’s start, and end

values. The complete setup can be found in the configuration file of our codebase.

3https://worksheets.codalab.org/
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4.3 ConvQA Task

This section describes the Conversation Question Answering experiment performed

on the QuAC benchmark dataset. Two models - the baseline model, and the Con-

vQASARE model -proposed in this thesis are used in this experiment. To understand

how our proposed GNN and history component affect the performance on the Con-

vQA task, we unplug our proposed history component from ConvQASARE and use

the baseline model’s history selection while the GNN layer and the rest of its compo-

nents remain the same. This is referred to as “Our Model” in this thesis. This model

is experimented in multiple hops. Next, the best performing model from the above

mentioned models is plugged with our KG-based proposed history component. This

is the proposed end-to-end ConvQASARE model. Therefore, in this way, three types

of model were developed: The Baseline Model, Our Model, and the ConvQASARE

model. All the above models were experimented on a 100% QuAC dataset. Each ex-

periment takes up to 15 epochs. Along with these models, GraphFlow [8] model is

included as part of the evaluation metric as it is the only graph-based model which

exceeds the QuAC benchmark performance. QuAC does not provide the test set to

the user to maintain integrity constraints on the test set. In order to get test metrics,

the predicted answers are converted to JSON format and is uploaded to a submission

portal4 provided by QuAC, where live test scores were obtained5. Table 4.2 reports the

train and test set metrics of the models.

Model Train F1 Test F1 Test HEQ Test DHEQ

Human - 81.1 100 100

GraphFlow - 64.9 60.3 5.1

Baseline 66.98 62.4 54.6 5.8

Our Model

1 Hop 82.51 66.87 60.11 7.70

2 Hop 77.83 66.11 58.85 6.30

3 Hop 74.46 66.07 59.12 7.20

ConvQASARE 75.89 67.01 59.3 8.30

Table 4.2: Train-Test metrics of models on 100% QuAC,bold numeric means best result.

4https://worksheets.codalab.org/worksheets/0x06cbafcd9414478b8987955a6b94b2ee
5Refer Appendix for the screenshot of live metrics.
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On experimenting with the baseline model, the results were up to expectations. It

resulted in an F1 score of 62.4 on the test set, the lowest performance of all our mod-

els. This clearly shows how few GNN models like GAT, GGN fail to understand better

long-range dependency and node attribute information when trained with minimal fea-

tures. The lower performance shows that the baseline model fails to scale efficiently,

thus proving our third hypothesis. As a solution to overcome this, our second model

was implemented and evaluated. This model is experimented with single and multiple

hops and the single hop model shows 7% increase in F1 compared to the baseline.

From Figure 4.1, the results show that the train F1 score does not change much be-

tween different hops in every epoch. The model with 2-hop shows better test F1 than

the 3-hop model whereas 3-hop shows better test HEQ and DHEQ than 2-hop. How-

ever, the single hop model performs slightly better in all the metrics with test F1 score

of 66.87. While many researchers adopt multi-hop for graph reasoning, our results

were slightly unexpected. A detailed discussion of this phenomenon is discussed in

Chapter 5.
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Figure 4.1: Train F1 metrics of all the experiments on behalf of epochs

Even though the history module used so far is effective, they are not efficient.

Therefore an end-to-end model with knowledge graph-based history selection was con-

structed. Previously, the single-hop model performed better with an F1 score of 66.87.

Therefore, the selection of history was changed from question-answer pair to a KGC
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task on the single-hop model. Based on the results, our ConvQASARE model per-

formed better than the previous models with a test F1 score of 67.01, a 0.2% increase

in F1. This shows the efficiency and effectiveness of our history selection method.

Even though the test HEQ was lower than our simple single-hop model, the test DHEQ

is better in ConvQASARE model. This model also shows better performance, 2.1 F1

better than the only graph-based model, GraphFlow. The better performances prove

that ConvQASARE resolves all the gaps discussed in Chapter 1.

Even though our models performs better than GraphFlow, results from Table 4.2

show that there is a huge gap between train and test F1 metrics. This is visualized in

Figure 4.2 a,b,c showing the loss comparison between train and validation of our model

in multihop. This shows that the model overfits badly resulting in better training and

poor validation performance.

Epoch

Lo
ss

0

2

4

6

8

10

12

2 4 6 8 10 12 14

Train Val 

1Hop Loss Comparison

Epoch

Lo
ss

0

5

10

15

2 4 6 8 10 12 14 16

Train Val 

2 Hop Loss Comparison

Epoch

Lo
ss

0

2

4

6

8

10

12

2 4 6 8 10 12 14

Train Val 

3Hop Loss Comparison

Figure 4.2: a)Top: Loss comparison of single-hop b)Bottom Left: Loss comparison of

2-hop c)Bottom Right: Loss comparison of 3-hop on behalf of epochs
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To overcome this overfitting, a small regularisation was applied to the 1-hop model.

A weight decay of 0.01 was applied to the ConvQASARE. Due to time constraint, the

model was regularised only upto 40 epochs. Unfortunately, the result from 40 epochs

showed that this method did not improve the validation performance. Figure 4.3 shows

the regularised loss comparison between train and validation. This resulted in a test

F1 score of 66.81 which is 0.3 lesser than the model before regularisation. As the

regularisation was stopped in 40 epochs, further analysis could not be provided on this

experiment. Therefore this is included as part of the future works in this work.
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Figure 4.3: Loss comparison of Regularised 1 hop model on behalf of epochs

4.3.1 Summary

The ConvQA experiment conducted on our proposed model, the baseline model proves

our third hypothesis, where GNN models like GAT, GGN require large features to

achieve a considerable result. Our proposed ConvQASARE achieves better perfor-

mance of 67.01 test F1 score than any of our other models and GraphFlow. Thus Con-

vQASARE further indicates the effectiveness and efficiency of our newly proposed,

KG-based history selection and GraphSAGE network. Most importantly, better results

were fetched by using a few features, a simple history selection module, and a sin-

gle hop. At the same time, our model also shows the overfitting of the train set. The

regularisation method did not improve the test score from its original test score.



Chapter 4. Experiment 32

4.4 Investigation of ConvQASARE with GraphFlow

The second main experiment in our thesis is to provide an overall comparison between

our end-to-end ConvQASARE model and the best performing graph-based model in

the QuAC benchmark dataset. Based on the published results6 of QuAC benchmark

dataset on leaderboard, GraphFlow was chosen as it is the only graph model which

exceeds the QuAC benchmark performance. Table 4.3 shows various comparisons be-

tween the GraphFlow model and our proposed ConvQASARE model. The results of

Comparison GraphFlow [8] ConvQASARE

GNN Method Recurrent GNN + Gated GNN GraphSAGE

Graph Size n2 2Xn

Knowledge Graph Word KG Word KG and Entity KG

KG Construction
Dynamic GNN based

adjacency matrix
Pattern based DGL

MultiDiGraph

Features

POS tags for every token
NER tags for every token

Glove and BERT Embedding
Answer marker, Question Marker,

Question Aligned Context ,
Document Word Count

BERT Embedding,
Question Aligned

Context ,
KGE

History Selection
Concatenating previous question

and answers KG Completion

Hops Multi Hop Single Hop

F1 64.9 67.01

Table 4.3: Comparison of GraphFlow [8] and our proposed ConvQASARE model.

this comparison show that our model performs better and is more efficient than the

GraphFlow primarily because of three main reasons. Firstly, a better scalable and ef-

ficient inductive learning GraphSAGE performs better in the ConvQA task than the

Recurrent Graph Neural Network along with a Gated Graph Neural network used

in GraphFlow. Moreover, our model achieves it by using few features compared to

GraphFlow. Our assumption is that the inductive nature and better scalability of Graph-

SAGE is the primary reason for better performance. Secondly, GraphFlow dynamically

constructs a context graph with every word as a node with ’neighbours’ as its relation,

referred to as Word KG, here. This ensures maintaining sequential dependency among

6https://quac.ai/
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graph nodes. But it fails to handle relational dependencies among graph nodes. This

was resolved in our model by combining Word KG and Entity KG. Thirdly, Graph-

Flow appends previous questions and answers as a history. However, our model uses

efficient and effective history selection module and achieves 2.1 F1 score higher than

the GraphFlow.

Along with this, GraphFlow constructs a dynamic adjacency matrix in the context

of size n2, where n = the number of word tokens in a given context. It updates the

adjacency matrix on every turn whereas our model construct a dynamic MultiDiGraph

of size 2Xn. This results in efficient training of the model. Therefore this overall

comparison experiment shows how our proposed architecture is efficient and results in

better performance in the ConvQA tasks, especially on the QuAC benchmark.

4.4.1 Summary

On investigating ConvQASARE with GraphFlow, the third hypothesis where GNN

models like GGN require large features to achieve a considerable result is again proved

and overcome by our proposal. Our proposed model is efficient in three ways i)Highly

scalable and efficient GNN layer ii)Knowledge Graph based history selection is very

efficient and easy iii) Our model uses both Word KG and Entity KG as DGL MultiDi-

Graph of size just 2Xn.
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Discussions

While researchers claim multi hop to give the best result in a ConvQA task, our exper-

iments resulted in an unexpected outcome where single hop model performed better

than any other proposed model. This chapter will discuss this phenomenon in detailed.

Furthermore, all our models are said to mimic the human way of question answering.

Additionally, a detailed discussion about the cognitive solution is also discussed here.

5.1 Best Single Hop Result

As shown in Chapter 4, single hop model has a good train and test F1 metrics on

the dataset. Besides this, the model also beats every other model in all evaluation

metrics. However, studies [56], [15] show that QA tasks involving graph reasoning

perform better in a multi-hop approach than in a single hop. Generally, 3 hop models

yield better results because understanding the long-range dependency and entire global

structure of the graph is efficient when the GNN aggregates higher neighbours. This

is also proven in CMRC-based QA tasks. Models like [8] and [14] show the best

performance only on multi hops. Thus multi-hop is proven to fetch better results. But

in our case, this is different. The single hop good performance comes from one very

important source, which is the GNN layer GraphSAGE.

Apart from the several mentioned reasons on why our GNN reasoning performs

better in this thesis, the single-hop result mainly comes from the GraphSAGE’s ag-

gregate function. The aggregate function includes deep neural network methods like

”LSTM” while most other networks add or average the neighbor information. Another

important reason is that the GraphSAGE is said to be permutation invariant to graph

isomorphism. Graph isomorphism means that two graph structures are preserved even

34
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after reversing them by an inverse mapping. This feature is very important when it

comes to NLP. In NLP, extracting the answers from a long sentence involves under-

standing the important facts irrespective of sentence order while also capturing the

word order within the sentence. As GraphSAGE’s aggregate functions are invariant

to long graph structures, the permutation invariant training largely improves the per-

formance compared to other properties of the graph. While this assumption validates

our single hop results, this does not quantify on multi-hop showing less performance.

On further analysis, the aggregate function of GraphSAGE is found to be not injec-

tive i.e, distinct node features to different edge elements must generate different node

embedding. Due to this feature, the GraphSAGE network starts to generate similar

node embedding as the number of layers increases. This explains that the lesser hops

showing better performance and increase in layers does not increase the performance

of our solution.

5.2 Cognitive Solution for ConvQA

The primary reason to adopt human way of reasoning for question answering is to

achieve human performance. One important process of humans during decision mak-

ing in a conversation is to learn based on their previous mistakes [2]. For instance,

when a human reasons out a wrong answer for a question or could not recollect the

right answer for a question, they update their memory with the correct answer or add

the answer to their memory [59]. This is achieved in dual process theory during the

conscious phase of question answering. The knowledge representations i.e, the node

embedding generated in the unconscious phase is added with new nodes for every

unanswerable question. This solution of adding new nodes is not implemented as part

of the ConvQASARE is because QuAC is a dataset which results in an ”unanswer-

able” answer when the information is not available in the context passage. But in

general, for a conversation question answering task, this would not be the case. There-

fore a cognitive solution on a general ConvQA involving node addition would fetch

better results. This is included as part of the future works in this work.
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Conclusions

This chapter concludes the works presented in this thesis as a detailed summary. The

limitations and the future works of this thesis are also discussed below in detail.

6.1 Summary of this work

In this dissertation, an end-to-end model for Conversational Question Answering that

fills the gap between the scalability, combinatorial explosion of graph-based models

and high training cost of state-of-the-art PLM based models was proposed. First, a

baseline model with simple GNN layer, knowledge graph construction and poor his-

tory selection module was constructed. Later, a second model with better scalable and

efficient GNN layer but with the same history selection module was built. This model

also included simple yet efficient knowledge graph construction to overcome the chal-

lenges of the baseline model. Finally, to overcome the poor history selection method

which results in inefficient training, an end-to-end model was built on top of the best

performing model built so far. To evaluate this proposal on the ConvQA task, two

experiments on QuAC dataset was performed. The first experiment was to train and

test these models on the QuAC dataset. Our end-to-end single hop model performed

better than GraphFlow and all of our proposed models. This shows that permutation

invariant training, scalability and better capturing of long-range dependency is impor-

tant for better performance. In the second experiment, investigating our end-to-end

model with GraphFlow, the proposed model shows efficiency and effectiveness of our

ConvQASARE model.

36
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6.2 Limitations and Future work

As discussed in the previous chapter, the primary reason for our model’s single hop

results were injectivity. This can be overcome by implementing new GNN methods

or by changing GraphSAGE aggregator function. Moreover, our model perform pretty

well on training data but they overfit, resulting in less validation performance and test

score. Due to the limitations in time and training resources, more experiments could

not be performed to mitigate this issue. Besides, for the same reason, this work is

experimented only on single ConvQA benchmark, QuAC. This work was not evalu-

ated on other ConvQA benchmarks like CoQA. Moreover, our model does not achieve

state-of-the-art performance which is 9 points behind our F1 score. So these works are

considered as the limitations of this thesis.

To fill the limitations of this work here are potential future works that will benefit

the AI research field:

• Research on more suitable GNN methods which improves the injectivity of

GraphSAGE and implement this on the proposed framework to check how it

affects the performance of ConvQA task.

• Completely run the regularisation technique on our model or implement graph

augmentation techniques to reduce overfitting of the model.

• Evaluation of our end-to-end model on other Conversational Question Answer-

ing benchmarks like CoQA. As our proposed model follows CMRC framework,

evaluation can be performed on more downstream tasks like text summarisation,

text generation.

• Apart from overcoming the limitations of our thesis, the proposed history selec-

tion method has never been applied to any other NLP downstream task. This

type of history selection can be evaluated on other tasks like Entity Resolution.
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Appendix A

Result Screenshot

Figure A.1: Screenshot of results of ConvQA experiment on

QuAC benchmark dataset. This is a screenshot from the live url

https://worksheets.codalab.org/worksheets/0x06cbafcd9414478b8987955a6b94b2ee

45
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The above images are the screenshot of the ConvQA experiment metrics on QuAC

dataset. The first part of the image shows the list of models uploaded and the second

part of the screenshot shows the corresponding scores. The scores in the second part

of the image is read in the reverse order. For example, the F1 score 66.87 corresponds

to the model ” 1hop-dropout.json”.


