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Abstract

This project investigated the performance of four different models (VGG19, ResNet50,

Inception-ResNet-v2 and Swin Transformer) for pneumonia classification. The inno-

vation of this project is that it applied the Swin Transformer model on the dataset1 for

the first time and proved the feasibility of the new Transformer model (Swin Trans-

former) for medical imaging, which differs from the traditional Convolutional Neural

Networks(VGG19, ResNet50 and Inception-ResNet-v2). A comparative analysis of

the models was conducted by comparing their performance under different hyperpa-

rameters (learning rate and the number of epochs). The effects of transfer learning and

different data enhancement methods on the models were investigated. We proved the

pre-trained weights from other source tasks could bring better performance than model

training from scratch. We also observed that contrast enhancement augmentation could

provide more improvement than the traditional data augmentation method (including

rotation and flipping) in medical imaging. The Grad-CAM heatmap was applied to

analyse the convolutional neural networks’ behaviour. Eventually, it was found that the

VGG19 model was able to have the best performance in small data sets, but the Swin

Transformer kept improving and it had the potential to outperform other models.

1Kaggle Chest X-ray Images [33]
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Chapter 1

Introduction

1.1 Motivation

Over the past decades, artificial intelligence (AI) has developed rapidly with the com-

bined influence of hardware and software. It is no longer just capable of executing a

fixed program based on pre-arranged instructions and parameters, but can learn and

automatically adjust its parameters to better perform the task. It could imitate human

intelligence to perform tasks and iteratively improve itself based on the information it

gathers. Artificial intelligence is now used in a broad range of fields, such as computer

vision [49], natural language processing(NLP) [35], recommendation systems [12] and

so on, and is used to assist people in making better decisions due to its promising

performance.

Meanwhile, with the development of medical technology in the past decades, the

technology of medical imaging has also been enhanced. The earliest medical images

were X-ray, then ultrasound imaging and with the advent of computer technology,

X-ray Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) have

emerged. Although X-ray was first invented and used in the medical industry, it is

still widely used today due to its low cost, high penetration and low radiation dose.

The X-ray technique uses the fact that X-rays are highly penetrating and are absorbed

differently when they pass through different tissues, so the amount of X-rays reaching

the film varies, creating black and white contrast pictures. Nowadays, it is used by

physicians to detect and assist in the diagnosis of clinical conditions such as orthopaedic,

pulmonary, breast and cardiovascular diseases.

Chest radiology is currently the most commonly used radiological method for

diagnosing diseases. Depending on the angle of capture, it could be divided into frontal

1
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and lateral views. The frontal chest X-rays could be used to show the blood vessels in

the lungs, the shape and contours of the heart, or the bones in the chest. And the lateral

ones are employed for more detailed observation of the heart condition. Pneumonia, as

an infection of the lungs, is usually diagnosed by chest X-ray. A distinct chest X-ray

with pneumonia will look fainter than normal and have large grey areas (Fig. 3.1). But

in some cases, images of pneumonia do not have such distinctive features and make

diagnosis difficult. What’s worse, this disease causes the loss of a large number of lives

each year. So it is important to develop an efficient approach to detect it.

(a) Health (b) Pneumonia

Figure 1.1: Heath and Pneumonia images

Since artificial intelligence can be utilized in the computer vision area, it becomes

possible to apply this technique in chest radiology analysis. We hope that it will help

physicians to better distinguish pneumonia so that patients can be detected and treated

in a timely manner.

1.2 Problem Statement

The economy and ease of use have made chest X-rays the diagnostic choice of most

physicians, but it also creates a tremendous workload for them. In 2006, there were

approximately 128 million chest films generated in the United States alone [30] and

the workload of radiologists in the same year amounted to 14,900 procedures, which

had increased by 3% in the last three years and continued to grow [5]. A World Health

Organization’s report stated that pneumonia was responsible for 15% of deaths among

infants under five years of age [34]. In 2018, 1.5 million people in the United States

were diagnosed with pneumonia in emergency departments and 44,000 lives were lost

as a result [16]. Therefore it is important to provide an effective diagnosis of pneumonia

so that the pneumonia could be detected as early as possible and also ease the pressure

on radiologists.
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1.3 Aims and Objectives

This project aims to apply artificial intelligence methods to provide a pneumonia

diagnosis system, which could classify healthy ones and those with pneumonia in chest

X-rays. This kind of work could be called Computer-Aided Diagnosis (CAD). The

research hypothesis could be listed as follow: (1) The system could accelerate the

process of pneumonia diagnosis; (2) It could reduce the cost of diagnosis; (3) The

accuracy of diagnosis could achieve human radiologists level.

The objectives of this project are: (1) Provide different artificial intelligence models

that are capable of performing the classification task on chest X-rays dataset; (2)

Innovatively utilise the Transformer model for medical image classification rather than

traditional convolutional neural networks; (3) Attempt to use different methods to

improve the performance of the models; (4) Analysis their performance and discuss

how to extend the current work in the future.

1.4 Achieved Result

In this project, we not only utilized three common convolutional neural networks (the

VGG19, ResNet50 and Inception-ResNet-v2) but also applied a novel Transformer

model (the Swin Transformer) to the medical classification task. To the best of our

knowledge, this is a novel study that the Swin Transformer was trained in a small

medical dataset and achieved radiologist-level accuracy. We innovatively compared

the Swin Transformer with other models with different hyperparameters. Although the

VGG19 model performed best under certain conditions, the potential capacity of the

Swin Transformer was the best. We also compared the common data augmentation

methods (rotation, shifting and flipping) with the contrast enhancement method and

concluded that the contrast enhancement was more suitable for processing X-rays

images.

1.5 Dissertation Outline

This dissertation will be divided into seven chapters. Chapter 2 will present the related

work about the most popular network architecture (Convolutional Neural Network)

and the emerging architecture (Transformer). It also introduces the concept of transfer

learning and related medical image classification projects. The data information will
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be introduced in Chapter 3 and the related augmentation will also be presented. In

Chapter 4, the methodologies used in this project will be displayed, such as the models,

visualisation methods and evaluation metrics. After that, the experiment design and

the results will be exhibited in Chapter 5. Chapter 6 would be used for discussing

and analysing the results. Finally, the conclusion and future work will be discussed in

Chapter 7.



Chapter 2

Related Work

2.1 Convolutional Neural Network

Convolutional neural network (CNN) is a popular architecture in the deep learning area

for recent years and performs well in many machine learning tasks like classification,

detection or segmentation. The common elements that comprise a CNN are convolu-

tional layers, max pooling layers and fully connected layers, which could be displayed

via the configuration of the AlexNet [25] (Fig. 2.1). The convolutional layers are used

to extract features from the input data, which is a matrix of the same size as the input

image. It uses a filter with k kernels and a receptive field (represents the region in the

input space that will affect feature extraction) size of nxn to scan the input in a certain

stride and multiple the corresponding input space with each kernel on the filter to get

a new matrix, which is the extracted feature. Then the max pooling layers follow for

downsampling to reduce the feature size as successive convolutional layers can increase

the data size. Finally, the fully connected layers make a final classification of the results

based on the features obtained earlier.

The concept of CNN was introduced as early as 1998 by Yann LeCun [27]. But due

to a lack of successful practice, this excellent concept did not really have a profound

impact on the field of deep learning until the advent of AlexNet. AlexNet was created by

Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton together in 2012 [25]. This model

won the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge), which

was one of the top events in the field of computer vision and represents the cutting edge

of deep learning in the field of imaging. Its success brought CNN into the public eye

and since then CNN has gained tremendous momentum.

A series of excellent CNN models after that have been proposed and have achieved

5
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Figure 2.1: AlexNet network configurations

excellent results in this competition. For example, VGG is a convolutional neural

network introduced by the group called Visual Geometry Group from Oxford University

[43]. It achieved first and second place respectively in the ILSVRC localization and

classification tasks in 2014 by virtue of its network depth. Kaiming He and his team

solved the problem of model degradation caused by excessive depth increase and

proposed the ResNet [19]. This model had an extraordinary 152-layer network but still

maintained exceptional performance and won the 2015 ILSVRC. Another well-known

convolutional neural network is GoogLeNet, which is also known as Inception [46]. It

applied a method called Inception Module to fuse the image features obtained from

different kernels to combine them to obtain a better result. This modification increased

the width of the model and also helped it win the 2014 ILSVRC. Inception model also

absorbed the advantages of VGG, ResNet’s model and evolved InceptionResNet, which

made it converge faster and easier to train.

2.2 Attention and Transformer

In addition to the traditional CNN models for image tasks, the Transformer model also

had a profound impact on deep learning in the last few years. A Transformer model

is a novel network architecture that discards the structure of the traditional CNN or

RNN1 model and instead uses the attention mechanism for learning [48]. So before

introducing the Transformer, it is necessary to have a basic understanding of attention.

1The Recurrent Neural Network can be used to process temporal data, passing the output of the
previous moment as an input to the next moment



Chapter 2. Related Work 7

Figure 2.2: Traditional Encoder-Decoder

Figure 2.3: Encoder-Decoder with Attention

Attention was first used for the task of machine translation. In the traditional

machine translation task, the RNN Encoder-Decoder structure (Fig. 2.2) was popular

as it could handle the common problem of unequal lengths of input and output. The

encoder is responsible for encoding the variable-length input sequence into a fixed-

length vector, while the decoder is used to decode the vector into a variable-length

output sequence [7] and this structure is also applied by a Transformer. However, the

experiments have shown that the performance of this approach deteriorates dramatically

with increasing sentence length. This is because with longer sentences, the information

tends to be lost as the gradient vanishes during transmission. It is also very difficult

to generalize all the semantic details of a long sentence with a fixed length vector. So

Bahdanau et al. [4] proposed a mechanism called attention to address this bottleneck.

The most important modification was that the intermediate vector would no longer be

encoded as a fixed-length. It allows the decoder to review the entire words or segments

of the input sentence depending on what is currently being processed, and then generate

a new vector (C1, C2 and C3 in Fig. 2.3) for the current output (Y 1, Y 2 and Y 3 in

Fig. 2.3). Each context vector is used to indicate the correlation (or weights) between

one element in the output sequence and all elements in the input sequence and a high

correlation indicates that two elements have a strong contextual connection. These

various context vectors could help the model pay attention to high correlation elements

and obtain more accurate semantic information and thus improve the accuracy of the
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Figure 2.4: The Transformer Encoder-Decoder [48]

translation.

A Transformer is a novel network architecture that discards the structure of the

traditional CNN or RNN model and instead uses the attention mechanism for learning

[48]. It was first applied to the field of machine translation and then later extended

to the field of vision (Vision Transformer). Self-attention is the key component of

a Transformer. In self-attention, each input element would be embedded and this

embedded vector would produce three vectors, which are query, key and value. By

comparing the similarity of one query with other keys, the result (as the weight) is

multiplied with the corresponding value. The sum of all multiplied values is the final

output. Unlike the aforementioned attention in the RNN, which is used to establish a

link between input and output, self-attention is used to apply attention within the input;

hence the term self-attention. In Fig. 2.4, there are two similar layers with ’Nx’ (N

means this layer could be applied N times) next to them. The left part is the encoder

and the right part is the decoder. The input of the encoder would be first embedded and

converted to vectors, then a positional encoding would be applied to let the transformer

know the position of each input so that it has temporal awareness like an RNN. Then the

embedding vectors would be converted to queries, keys and values and transmitted to the
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Multi-Head Attention. The Multi-Head Attention is composed of many self-attention

layers, similar in function to the channel in CNN, that projects the inputs to lower

dimensions to learn various features for better performance. Layer normalization is

applied [3] to distribute values normally and improve the training efficiency. The new

values would be delivered to the feed-forward layer, which is an activation function

that is used to strengthen the representation of the data. From Fig. 2.4, it is noticeable

that the arrows skip some layers. This is due to the use of ResNet’s shortcut to address

the degradation problem. The difference between the encoder and decoder is that the

decoder used masked Multi-Head Attention to hide future outputs so that the training

and predictions are consistent. And the decoder would take the encoder’s keys and

values with its own queries as an input of attention for further processing. This kind

of transformer architecture reduces computational complexity and enables parallel

computing. It also provides a new architecture for other machine learning tasks [48].

The Transformer, in addition to being able to compete with the state-of-the-art RNN

models for NLP tasks, has been explored as to whether it can be compared to CNN

models in the field of computer vision. By replacing the convolutional layer in ResNet

with self-attention, Ramachandran et al. [39] found that the new model is comparable

to the baseline in ImageNet classification or COCO detection tasks, thus demonstrating

that the attention layer can be stand-alone in computer vision tasks. Cordonnier et al.

[9] further explored the relationship between attention and the convolutional layer and

proved that the attention layer also performs convolution. However, text and images

have two different dimensions of data, where text is one-dimensional and image is

two-dimensional. Therefore it is important to pre-process the image input to transform

it into a NLP-compliant input vector. There are several methods to achieve that. An

Image Generative Pre-trained Transformer (iGPT) [6] would resize the input image to

a low resolution and then reshape it into a one-dimensional sequence. It then finishes

processing this input through a similar approach to that used in NLP tasks. Cordonnier

et al. [9] and Dosovitskiy et al. [14] provided an alternative approach. This is to split

the input image into a fixed-size patch and embed each patch and also add positional

embedding. Nevertheless, both approaches could only handle small images because the

computation complexity of their global self-attention is quadratic with image size. Also

such resizing inevitably results in a loss of information, whereas the Swin Transformer

[28] was created to handle larger images in general databases by using Shifted Window

Attention, such as 224x224 in ImageNet [13].
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2.3 Transfer Learning and Fine-Tuning

Transfer learning is the approach that applies knowledge learned in a previous domain

or task to a different but related area to avoid starting from scratch. This concept was

proposed since it was thought that the model would only perform well if the training

data and the test data had the same feature space and distribution. In practice, however,

there are often cases where the distribution or feature space has changed due to a lack

of data or outdated data, and it is very expensive to recollect data and train a model.

Therefore, a technique was needed that could transfer knowledge to solve this problem

[37]. Not all situations are suitable for transfer learning, considering the different feature

spaces or distributions, transfer learning is avoided in domains that are significantly

disparate, as this would result in a negative transfer and affect the training of the model.

In Pan et al.’s survey [37], they summarized different transfer learning methods. The

first one is instance-based transfer learning, which is to select the data in the source

domain that can be reused in the target domain [15] [21]. A second case is feature-based

transfer which is concerned with identifying common feature representations between

the source and target domains, and then using these features for knowledge transfer

[11]. The last one is referred to as parameter-based transfer and it is about sharing the

model parameters or prior knowledge of the source task and the target task [17].

With the development of deep learning, the most widespread approach to model

training today is to pre-train a model and then fine-tune it. Pre-training enables the

model to obtain initial parameters for the target task that have some effect and thus gain

some performance improvement in the target task training [32]. And fine-tuning is to

modify the pre-trained parameters by using data from the target domain to make the

model more suitable for the task. Yosinski et al. found out that the layers close to the

input layer do not change dramatically as the dataset changes by fine-turning or freezing

part of the layers [52]. And Kumar et al. further discovered that the inappropriate use

of fine-tuning resulted in distorted pre-trained feature extraction and degraded model

performance [26]. Therefore, the performance of the model can only be improved with

appropriate fine-tuning or freezing on the pre-trained model.

2.4 Medical Image Classification

In recent years, the success of deep learning in the field of computer vision has led

researchers to turn their attention to the medical field. And medical image classification
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has become an important task in computer vision as it can assist physicians in the

analysis of those chest radiography images. In 1995, Lo et al. constructed a simple

convolutional neural network to determine whether a chest X-ray image containing

lung nodules or not and at that time it took 15 seconds to evaluate each radiography

image [29]. Their work validated the feasibility of artificial intelligence for radiography

diagnosis. Considering different pathology has different features, Avni et al. applied the

Bag-of-Visual-Words (BoVW) [10] model to extract keypoints of features to classify

healthy and pathology cases [1]. Rajpurkar et al. provided a 121-layer convolutional

neural network called CheXNet based on ResNet [38]. This model was trained on a

dataset of more than 100,000 frontal-view chest X-ray images with 14 different diseases

and it outperformed an average physician with state-of-the-art performance. In the work

of Ayan et al, they compared the performance of different CNN models in a Pneumonia

X-ray classification task [2]. They trained a Xception model [8] (a variant of Inception

[46]) model and a VGG16 [43] with transfer learning and noticed that the VGG model

achieved a slightly higher accuracy than the Xception.

Covid-19, a highly contagious and dangerous disease that could also infect lungs,

has caught the attention of researchers since its widespread in 2019 and a lot of work has

been done on detecting it. Ozturk et al. proposed a CNN model with 17 convolutional

layers for early detection of Covid-19 and it reached 98% accuracy on binary classifica-

tion and 87% on multiple classification [36]. Hemdan et al. presented a model called

COVIDX-Net which contains several different model architectures such as VGG and

GoogLeNet [20]. Due to a shortage of Covid-19 X-ray images early in the pandemic,

this model was only validated on 50 X-ray images with 25 positive Covid-19 cases and

achieved 90% accuracy which was very impressive. In the work of Sethy et al., they

applied the ResNet50 model to extract features from Covid-19 X-ray images and then

used a Support Vector Machine (SVM) for classification and this combination achieved

95% accuracy [42].



Chapter 3

Dataset

3.1 Dataset Introduction

In this project, the dataset used is a public chest X-ray dataset from Kaggle [33],

which contains 5,863 frontal chest X-ray images (JPEG format) and is divided into

two categories (Normal/Pneumonia). However, in this dataset, there is an unbalanced

distribution of data, with roughly three times as many pneumonia images as normal

images. So the original dataset was refined by randomly selecting images and building

a balanced dataset (training data [70%] was used to fit the model with the learnt

hyperparameters; validation data[20%] was used to evaluate the model and tune the

hyperparameters; test data [10%] was used to evaluate the final model performance) as

follows:

Normal Pneumonia

Train 1151 1526

Validation 288 306

Test 144 153

Table 3.1: Data Distribution

3.2 Data Augmentation

The learning of deep models in the field of computer vision usually requires powerful

computing resources and large amounts of data as a model usually has millions or even

12
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billions of parameters to be trained [22]. However, in the medical field, collecting

enough data is a challenge, so increasing the amount of data through data augmentation

is required. In addition to the common methods, such as rotation, cropping, flipping

and shifting used, considering X-ray images which are grayscale with different tissues

having various grayscales, we also applied methods to enhance the images such as

contrast and edge sharpening [40]. In this project, there are four methods used, the first

two for contrast enhancement and the last two for edge sharpening.

The first one is Histogram Equalization (HE)(Fig. 3.1(c)), which spreads out the

most frequent intensity values to expand the intensity range according to a probability

distribution. The algorithm first finds the frequency of each pixel value in a grayscale

image. Then it calculates the cumulative frequency of each pixel value. Finally, the

cumulative frequency is divided by the overall number of pixels and multiplied by the

maximum number of greyscales in the image. This has the advantage of being effective

in enhancing images with a uniform distribution of grayscales.

The second method is Contrastive Limited Adaptive Equalization (CLAHE)(Fig.

3.1(e)), which divides the whole image into several tiles and applies the HE method

to each tile. Then, if a histogram bin is above a contrast threshold, those pixels would

be clipped and distributed evenly to other bins before applying the HE method. This

method enhances the local contrast of the image and reduces the interference of noise.

The third one is Unsharpen Mask sharpening (UMS)(Fig. 3.1(g)) which is used to

enhance the contrast of neighbour pixels. It first applies a Gaussian blur on the original

image, then subtracts the Gaussian image from the original one. Finally it restores

the pixel value to the normal range (0-255). This can remove some minor details of

interference and noise and enhance the edge in the image.

The final method is Laplace sharpening(Fig. 3.1(i)). It is rotationally invariant

and can handle the sharpening of images in different directions by using the Laplace

operator. This is also the only difference from the UMS method.
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(a) Original (b) Original Histogram

(c) HE (d) HE Histogram

(e) CLAHE (f) CLAHE Histogram

(g) USM (h) USM Histogram

(i) Laplace (j) Laplace Histogram

Figure 3.1: Original and augmented images [23]



Chapter 4

Methodology

4.1 Classification Models

4.1.1 VGG19

The VGG19 model has 19 layers and the rightmost E configuration from Fig. 4.1

illustrates its architecture. Its main layers are convolutional layers with a kernel size of

3, which means it applies a 3x3 kernel to filter the input and extract the features. Before

this, previous models could not perform well after 10 layers and their kernel sizes were

relatively large. For example, the sizes of the kernels in AlexNet are 11x11 or 7x7

[25]. However, it is not the case that the larger the kernel size, the better the model. In

[43], the VGG teams replaced a 5x5 kernel with two 3x3 kernels while keeping the

receptive field size the same. This modification not only increased the depth, but also

reduced the number of parameters to be learned as 2x3x3 is less than 5x5. As a result,

this architecture allowed the model to learn more complex patterns with deeper layers,

while keeping more efficient computations with fewer parameters. After each section

of convolutional layers, a max-pooling layer was applied to sample those extracted

features compressing them into a reduced dimension to speed up the computation. At

the end, three fully connection (FC) layers were added, which were used to project the

extracted features to the corresponding label space for classification. The final softmax

layer was used to distribute the probabilities of all labels for eventual classification.

4.1.2 ResNet

The ResNet model was introduced by Kaiming He and his team to address the problem

of network degradation caused by increasing depth [19]. They noticed that a well-trained

15
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Figure 4.1: Six VGG network configurations with different layers [43]. The depth of

increases from left to right (from 11 to 19 layers), and the parameters of each layer is

displayed as conv⟨kernel size⟩−⟨number o f channels⟩.

Figure 4.2: Residual block [19]
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shallow model could not be improved by stacking more identity mapping (underlying

mapping) layers and these added layers could not perform identity mapping so that

instead the performance was reduced. A residual mapping was provided by them to

replace the original underlying mapping and address the degradation problem. The

core concept is that in a residual block (Fig. 4.2), the layers do not learn the complex

underlying mapping (H(x) in eq. (4.1)) directly, but learn the comparatively simple

residual mapping (F(x) in eq. (4.1), where x is the input). This shortcut connection that

skips one or more layers can still perform identify mapping and gain better performance

without introducing extra parameters or increasing the computational complexity. In

this project, ResNet50 was applied and the dimensions of each layer differed with

depth. When the input and output dimensions are different in one residual block, a 1x1

convolutional layer would be applied for the linear projection (Ws in eq. (4.2)) or extra

zeros are be added to the increased dimensions. If this identity shortcut is applied to

feature maps of two sizes, it is common to use with a stride of 2 to match the two sizes.

H(x) = F(x)+ x (4.1)

H(x) = F(x)+Wsx (4.2)

4.1.3 Inception-ResNet

The Inception-ResNet model is a combination of the ResNet and Inception models. In

the ResNet model, the residual block would handle the degradation problem caused by

increasing the depth, but the impact of increased width had also attracted the attention

of researchers. Initially, Szegedy et al. [46] noticed that any uniform increment of

the number of two chained convolutional layers’ filters would result in a quadratic

increase in the amount of computation resource. Also with a larger model it was easier

to overfit when using limited data and this caused computation inefficiency. To solve

such bottlenecks, they provided a filter-level sparse structure, codenamed the Inception

module. The first version of the Inception module is displayed in Fig. 4.3. It executes a

convolution operation on the input by using 3 filters of different sizes (1x1, 3x3, 5x5)

and furthermore performs a maximum pooling. This combination of sub-layers can

parallelise the processing of the input and increase computation efficiency. Several

1x1 convolutional layers are added before the 3x3 and 5x5 convolution operations and

after max polling is utilized to reduce the number of channels of input and thus the
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Figure 4.3: Inception v1 module [46]

computational cost of operations. The outputs of all sub-layers are finally cascaded

and passed to the next Inception module. In Szeged et al.’s further work [47], they

modified the Inception module to make it more efficient, without leading to a loss of

expressiveness, by applying convolution factorization, which is the same as replacing

one large convolutional layer with two smaller ones as mentioned in the VGG part (Fig.

4.4). For example, they proposed that the original 5x5 convolutional layer was replaced

by two 3x3 convolutional layers (Fig. 4.4(a)) and a nxn convolutional layer could also

be replaced by a 1xn convolution followed by a nx1 convolutional layer (Fig. 4.4(b)).

This parallel structure, with asymmetric convolutional kernels, allows for a reduction

in computational effort while ensuring that information loss is sufficiently small. The

1*1 convolution kernel in the structure is also used for dimensionality reduction and

increases the nonlinearity.

(a) Inception example 1 [45] (b) Inception example 2 [45]

Figure 4.4: Inception Module examples

Also in their work, Szeged et al. [45] combined a residual block with the Inception

module and got an architecture where each block has an identity shortcut connection

that connects directly to the plus sign from the previous layer’s activation result, and
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the right parts of Fig. 4.5(a) and Fig. 4.5(b) remains the same structure as the Inception

module.

(a) Inception-ResNet example 1 [45] (b) Inception-ResNet example

2 [45]

Figure 4.5: Inception-ResNet Module examples

4.1.4 Swin Transformer

The Swin Transformer model is a new vision Transformer provided by Liu et al. and is

considered as a general-purpose backbone for computer vision [28]. Its crucial aspect

introduces a method called Shift Window Attention that applies self-attention in each

small window so that large-scale images could be processed. It first divides the image

equally into non-overlapping windows with mxm patches (Layer l in Fig. 4.6) and

then applies multi-head self-attention in each window to reduce the computation cost.

In order to create connections between neighbour patches in different windows, the

windows would be shifted and then the image would be divided into new windows again

Figure 4.6: Shifted Window approach [28]
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Figure 4.7: Cyclic shift [28]

Figure 4.8: Swin Transformer architecture where H, W and C are the height, width of

the input and an arbitrary dimension [28]

(Layer l+1 in Fig. 4.6) so that patches among the new windows could do Multi-Head

Self-Attention cross the previous boundary. However, the number of windows after

shifting is changed and the numbers of patches in windows differ. A cyclic shift method

is utilized to move the smaller windows to form a normal-sized window, and mask the

unrelated (not adjacent in the original image) areas and then perform the self-attention

calculation (Fig. 4.7).

The Swin Transformer’s architecture is displayed in Fig. 4.8. First, the input image

is partitioned into several 4x4 patches and thus the feature dimension is 4x4x3 = 48.

Then a linear embedding is applied to convert patches into fixed-sized (C) vectors and

the result is passed to a Swin Transformer Block. In the block, layer normalization

is applied and Shifted Window attention is used with an Unmasked Multi-Head Self-

Attention and a Masked Multi-Head Self-Attention. Patch merging is used to merge

adjacent patches for down-sampling and to increase the receptive field while acquiring

multi-scale features. As the rate of down-sampling is 2, the output’s height and width

would be half of the input (e.g. H to H/2 and W to W/2) and the number of channels in

the C dimension would be 4 (a HxW token would be divided into 4 H/2xW/2 tokens)

times of the original (e.g. C to 4C). In order to match VGG and ResNet, the number of

channels in the C dimension should be twice the input and a linear mapping is used to

convert 4C to 2C. This hierarchical design allows the model to gain features in different
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scales. After several patch merging and transformer blocks, the output is processed by

global average pooling to classify the result.

4.2 Visualization Method

Gradient-based Class Activation Mapping (Grad-CAM) is utilized to visualize the

behaviour and determination of neural networks and can provide an explanation of the

model [41]. The procedure of generating Grad-CAM is to first get the input image

and the desired category, then forward propagate the input image through the CNN

model and obtain rectified convolutional feature maps (A, usually the output of the

last convolutional layer output after ReLU) and the prediction score of all categories

(before softmax). Then the score of the specific category in the prediction would be

backpropagated to the feature maps and the gradient information would be produced.

The gradient is global-average-pooled to obtain the importance of each feature map.

Then these weights are multiplied by the feature maps obtained and summed, and finally

the Grad-CAM is obtained by the ReLU activation function.

α
c
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
i j

(4.3)

Lc
Grad−CAM = ReLU(∑

k
α

c
kAk) (4.4)

The weights for each channel would be generated through eq. (4.3). The specific

category prediction score (yc) would be extracted from the prediction result (y) according

to the category (c). And it would be backpropagated to the feature map (A) at channel k

(Ak). The gradient of yc and Ak would be calculated for each position in the feature map

(i j is the position of data at a height of i and width of j) and its result would be applying

a global-average-pooling that divided by Z (the result of multiplying the height and the

width of the feature map). As a result, the weight (αc
k) for channel k is obtained. And

eq. (4.4) is by Grad-CAM to visualize the area where the classification is made. Each

feature map (Ak) and its corresponding weight (αc
k) are multiplied and accumulated in

all the products. The result would be applied a ReLU activation function to retain only

the information that is useful for this category.
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4.3 Evaluation Methods

In the image classification tasks, the predicted result is classified into four categories:

true positive (TP), true negative (NP), false positive (FP) and false negative (FN). Here

true or false means if the model predicts the category correctly or not, and positive or

negative represents the predicting category. For example, in a cat and dog classification

problem, if predicting a dog is the positive class, TP stands for the correct prediction of

a dog and FN represents the model mistaking a dog for a cat. These values would be

used to perform the following operations to evaluate the model’s performance.

• Accuracy = (TP+TN)/(TP+TN+FP+FN): This is the ratio of the number of cor-

rectly classified to the whole number of predicted data. A higher score means

that the model’s classification performance is better.

• Error: In this project, the Cross Entropy Loss was applied to measure the error

value, which represents the classification error in the tasks. If this error value is

smaller, the better the performance of the model.

• F1-score = 2(Recall * Precision) / (Recall + Precision): Precision (= TP/(TP+FP)),

this represents the percentage of samples with a positive prediction that are truly

positive and Recall (= TP/(TP+FN)) is the amount of positive cases in the sample

that were correctly predicted. The F1-score combines two indicators to avoid

extreme situations and a higher value represents better performance.
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Experiment and Results

5.1 Experiment Environment

In this project, VGG19, ResNet50, Inception-ResNet-v2 (IR) and Swin Transformer

(SW) were used in this pneumonia classification task. All of them are implemented

by using Tensorflow 2.9 with its Keras library1. The code was written in Python. All

experiments were run on an NVIDIA GeForce RTX 3070 GPU with CUDA 11.3.

5.2 Experiment Settings

In the experiments, the optimizer used was Adam [24], which helps the model to

converge better. To measure the difference (or error) between the predicted and true

values, the Cross Entropy Loss function was used consistently. Early stopping was also

applied to avoid overfitting (this only performs well on the training set but poorly on

the test set) so that if the value of the error did not decrease in the next 5 epochs, the

model would stop training and save the best weights. We explored the effects of the

learning rate, the number of epochs, transfer learning and data augmentation. Since it is

stated in the article [28] that the Swin Transformer requires a large dataset for training

and would be difficult to be trained by one individual, in our subsequent experiments it

was used pre-trained.

Learning rate is one of the hyperparameters, where hyperparameters are the pa-

rameters used to configure the process of model training. It refers to the step size in

each iteration that moves in the direction of the minimum of the loss function. If the

learning rate is too large, it might miss the minimum loss, while if it is too small it will

1Tensorflow is an open source machine learning platform and Keras is a high-level API of Tensorflow

23
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take a long time to reach the optimal result. In this experiment, different learning rates

were compared (1e-3, 1e-4 and 1e-5). Another hyperparameter we fine-tuned was the

number of epochs, which represents the number of times the model has been trained in

the entire training data. During the training process, as the epoch grows, the training

results of the model will go from underfitting (the model performs poorly on the training

set), to fitting (performs well on both training and testing sets), and if the number of

epochs is too large, it will produce overfitting results. We tried different numbers of

epochs (20, 50) without applying early stopping to visualise the most realistic changes

in the performance of the models. We also applied transfer learning (see Section 2.3)

in our experiments so we could initialize the model with pre-trained parameters and

hope that a good initialization of the model would improve the performance. The

corresponding pre-trained weights are included in the Keras library (VGG19, ResNet50

and Inception-ResNet-v2) or downloaded from the official Github repository (Swin

Transformer [31]) and they are trained on non-medical images. According to the afore-

mentioned research, fine-tuning should be utilized appropriately and layers closer to

the output are mainly used to learn the characteristics of the current data. A certain

percentage (0%, 50% and 100%, where in 0% situation, the last fully-connected layer

would be trainable for classification) of the layers from back to front were trainable

to study the variation in the performance of the same model while other layers were

frozen and untrainable. The improvement of using different data augmentation methods

was also explored. Some data augmentation approaches that are common are applying

a rotation (rotation range from 0 to 10 degrees), horizontal flipping and shifting (both

height shift range and width shift range from 0 to 0.2). The other data augmentation

methods used are mentioned in Section 3.2 and use contrast enhancement (CE) methods.

These include Histogram Equalization (HE), Contrastive Limited Adaptive Equalization

(CLAHE), Unsharpen Mask sharpening (USM) and Laplace sharpening.

In the experiments, the results are measured by accuracy, error and F1-score values

on the test set. For the analysis of the final model, we used the Grad-CAM heatmap

images except for the Swin Transformer2.

2The Grad-CAM heatmap is applied on the convolutional layers but the Swin Transformer does not
have convolutional layers
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5.3 Results of different Learning Rates for models

The effect of different learning rates is explored and displayed in Tab. 5.1. The number

of epochs was set to 20 and no data augmentation methods were applied. As the training

of the Swin Transformer requires a large dataset (14M-300M images), it is difficult for

an individual to train a model from scratch. Therefore, the Swin Transformer model was

trained using the weights obtained from pre-training with all parameters trainable, while

others were trained from scratch. We can see that decrement in the learning rate could

improve the performance of the model and the VGG19 achieved the best performance

among all models.

Model Learning

Rate

Test

Accuracy

Test Error F1-score

VGG19 1E-3 0.515 0.701 0

VGG19 1E-4 0.925 0.172 0.905

VGG19 1E-5 0.946 0.134 0.950

ResNet50 1E-3 0.851 0.449 0.862

ResNet50 1E-4 0.888 0.446 0.777

ResNet50 1E-5 0.929 0.226 0.928

IR 1E-3 0.932 0.162 0.934

IR 1E-4 0.919 0.266 0.910

IR 1E-5 0.932 0.171 0.916

SW 1E-3 0.515 0.704 0

SW 1E-4 0.925 0.165 0.935

SW 1E-5 0.936 0.139 0.921

Table 5.1: Learning rate experiments. The number of epochs was set to 20 and no

pre-trained (except for SW) or data augmentation methods were applied (IR means the

Inception-ResNet-v2 and SW means the Swin Transformer)

5.4 Results of larger Epochs for models

According to the previous experiment, the learning rate was set to be 1E-5 so we could

achieve the best performance for each model. In this part, the effect of the larger number
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Figure 5.1: VGG19

Figure 5.2: ResNet50

of epochs was explored, so early stopping was not applied. The Swin Transformer was

still equipped with pre-trained weights while others were not. The result was shown in

Tab. 5.2 without data augmentation.

5.5 Results of different Trainable Percentage for models

In this experiment, we experimented with the effects of transfer learning with different

trainable percentages (0%, 50% and 100%, where the trainable percentage of 0% means

only the last fully-connected layer was trainable). The result was displayed in Tab. 5.3.
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Figure 5.3: Inception-ResNet-v2

Figure 5.4: Swin Transformer
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Model Epochs Test

Accuracy

Test Error F1-score

VGG19 20 0.946 0.134 0.950

VGG19 50 0.929 0.455 0.924

ResNet50 20 0.929 0.226 0.928

ResNet50 50 0.932 0.291 0.928

IR 20 0.932 0.171 0.916

IR 50 0.952 0.172 0.920

SW 20 0.936 0.139 0.921

SW 50 0.952 0.115 0.950

Table 5.2: Epochs Experiments. The learning rate was set to 1e-5 and no pre-trained

(except for SW) or data augmentation methods were applied (IR means the Inception-

ResNet-v2 and SW means the Swin Transformer)

5.6 Results of different Data Augmentations for models

Normal data augmentation (flipping, shifting and rotation) and contrast enhanced data

augmentation (HE, CLAHE, USM and Laplace sharpening) were applied to explore the

effect of augmentation methods. And in this part, we utilized the early stopping and

transfer learning with a 100% trainable percentage.

5.7 Grad-CAM results of final models

This section used Grad-CAM heatmaps to indicate the area of interest of the model on

the image, with a redder colour indicating that this area is getting greater attention. Since

Grad-CAM was applied on the convolutional layers whereas the Swin Transformer does

not have these layers, we only displayed the other three models’ Grad-CAM heatmaps.
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Figure 5.5: The VGG19 Grad-CAM heatmap (0.983 accuracy with the contrast enhance-

ment). Four columns from left to right are TP (2 normal images predicted successfully),

TN (2 pneumonia images predicted successfully), FP (2 normal images but considered

to be pneumonia) and FN (2 pneumonia images but considered to be normal)

Figure 5.6: The ResNet50 Grad-CAM heatmap (0.976 accuracy with the contrast

enhancement). Four columns from left to right are TP (2 normal images predicted

successfully), TN (2 pneumonia images predicted successfully), FP (2 normal images

but judged to be pneumonia) and FN (2 pneumonia images but considered to be normal)
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Model Trainable

Percent-

age

Test

Accuracy

Test Error F1-score

VGG19 0% 0.956 0.098 0.930

VGG19 50% 0.976 0.087 0.957

VGG19 100% 0.973 0.080 0.982

ResNet50 0% 0.942 0.296 0.917

ResNet50 50% 0.945 0.176 0.920

ResNet50 100% 0.969 0.093 0.960

IR 0% 0.973 0.078 0.934

IR 50% 0.956 0.094 0.949

IR 100% 0.942 0.424 0.940

SW 0% 0.949 0.131 0.948

SW 50% 0.937 0.135 0.932

SW 100% 0.936 0.139 0.921

Table 5.3: Transfer Learning Experiments. The learning rate was set to 1e-5 and the

number of epochs was 50 with early stopping. No data augmentation methods were

applied (IR means the Inception-ResNet-v2 and SW means the Swin Transformer)

Figure 5.7: The Inception-ResNet-v2 Grad-CAM heatmap (0.956 accuracy with the

contrast enhancement). Four columns from left to right are TP (2 normal images

predicted successfully), TN (2 pneumonia images predicted successfully), FP (2 normal

images but considered to be pneumonia) and FN (2 pneumonia images but considered

to be normal)
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Model Method Test

Accuracy

Test Error F1-score

VGG19 No 0.973 0.080 0.982

VGG19 Normal 0.983 0.059 0.971

VGG19 CE 0.983 0.085 0.972

ResNet50 No 0.969 0.093 0.960

ResNet50 Normal 0.932 0.285 0.628

ResNet50 CE 0.976 0.088 0.934

IR No 0.942 0.424 0.940

IR Normal 0.949 0.136 0.942

IR CE 0.956 0.269 0.946

SW No 0.936 0.139 0.921

SW Normal 0.959 0.134 0.957

SW CE 0.959 0.116 0.958

Table 5.4: Data Augmentation Experiments. The learning rate was set to 1e-5 and the

number of epochs was 50 with early stopping and all layers were trainable (IR means the

Inception-ResNet-v2 and SW means the Swin Transformer, and CE means the contrast

enhancement).
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Discussion and Analysis

From the above results, we can see the importance of hyperparameters to the model.

From Tab. 5.1, the VGG19 and Swin Transformer models with a learning rate of 1E-3

performed poorly and their F1-scores were zeros. The reason was that both of them

could only consider the data as pneumonia and were not able to correctly classify the

normal images, resulting in a zero number of correctly identified normal images. There

were two possible reasons for this, one was that the learning rate is too large and the

model was unable to learn the correct information, so it tended to miss the minimum

loss and thus failed to converge. The other was that the features of the normal images

were not as distinct as those of the pneumonia ones, so it was not as easy to distinguish

them as the pneumonia images. However, when the learning rate decreased, most of the

models improved, as evidenced by increased accuracy and reduced errors on the test

set and higher F1-score scores. This indicates that they were able to correctly identify

normal and pneumonia photos as well as possible.

Tab. 5.2 illustrates that the larger number of epochs could provide better performance

as it could allow for a larger number of training sessions and thus the opportunity for

better convergence. However, the VGG19 showed the opposite behaviour. From

Fig. 5.1, it was evident that the performance of VGG19 on the validation set was not

improving and even tended to decrease. This might be caused by the fact that the model

was overfitting and the performance was decreasing. The validation accuracy (Fig. 5.2,

5.3 and 5.4) of the other three models was still increasing with the Inception-ResNet-v2

and Swin Transformer being the most obvious. The reason could be that the Inception-

ResNet-v2 had the largest amount of parameters, about twice as many as the other

models and the Swin Transformer was a transformer rather than a convolutional neural

network, which itself requires a huge dataset to be trained in order to have a significant

32
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improvement, so by increasing epochs a similar effect can be achieved.

From the transfer learning experiments (Tab. 5.3), we noticed that performance

of VGG19 and ResNet50 increased with the growing trainable percentage and most

models improved after applying transfer learning (compared with Tab. 5.2). However,

for the Inception-ResNet-v2 and Swin Transformer this was the reverse. The reasons

for this might also be related to the structure of the model and the source task of transfer

learning. Since the VGG19 and ResNet50 have relatively simpler architecture among

the four models, so fewer parameters needed to be fine-tuned. They could achieve better

performance with limited data and the pre-trained weights, which were not even trained

in the medical radiology area. But for the Inception-ResNet-v2 and Swin Transformer,

even if all parameters were trainable, it could be hard to get improved performance with

the limited data and would even degrade the model.

Tab. 5.4 demonstrates the effect of the data augmentation and both methods could im-

prove the performance. Although the VGG19 with contrast enhancement could achieve

the best performance, the Swin Transformer with contrast enhancement received the

largest improvement (2.3% improvement over using no augmentation). Comparing the

two different methods of data augmentation, it can be observed that contrast enhance-

ment could achieve more improvement than the traditional method (rotation, flipping

or shifting). This might be due to the fact that in medical diagnosis, such images

would be captured from a similar perspective. Therefore, if the image was rotated too

much or shifted too much, this might result in inaccurate data and affect the model

performance. However, contrast enhancement would not modify such information

and it could highlight the contrast and features in the image. The Receiver Operating

Characteristic (ROC) curves of each model trained with the contrast enhancement were

generated, where the ROC was used to reflect both sensitivity and specificity of the

model. If the Area Under the Curve (AUC) is larger (closer to 1), the better the model

performance. All models obtained a 3-5% improvement in the AUC values and reached

close to 0.98 after the use of the contrast enhancement. And the improvement of using

normal methods would be small.

For a better understanding of the outcome of employing the convolutional neural

networks, a Grad-CAM heatmap was applied. From the previous results, knew that

the VGG19 had the best performance (the highest accuracy of 0.983). Its Grad-CAM

heatmaps (Fig. 5.5) shows that it had a strong focus (red areas) on the lungs for correctly

discriminated images, while for those incorrectly classified images, its attention moved

away from the lungs to below or above them. Through further analysis of the results, we
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found it was able to distinguish the two categories almost correctly so that it obtained

a high F1-score (0.972). However, for the ResNet50 and Inception-ResNet-v2, their

attention was not as strong as the VGG19. Fig. 5.6 and Fig. 5.7 illustrates that their area

of focus was small. The ResNet50 seemed to be focused on a smaller part of the lungs

and was more aware of pneumonia and pneumonia-like areas. The Inception-ResNet-v2

gave less attention to the normal images and the red areas are not even on the lungs and

for those misclassified images, its attention even went beyond the lungs to the shoulders.

By analysing their classification results, we found both of them considered a lot of

normal images as pneumonia ones while the amount of misclassified pneumonia (real

pneumonia) was small. Therefore, such a bias caused the model to perform less well on

the F1-score than the VGG19.

Although the Swin Transformer (0.959 accuracy with CE) could not be analysed

with the Grad-CAM heatmap, we could obtain some important information by analysing

its final classification results. We found that in the misclassified images, there was

no bias as in the previous models (the ResNet50 and Inception-ResNet-v2). The two

categories had almost equal proportions. From this, it was inferred that the Swin

Transformer was more capable of learning adequate features for unbiased classification.

And if sufficient data were available, it might outperform other models.



Chapter 7

Conclusions and Future works

7.1 Conclusions

In this project, we applied four different artificial intelligence methods for pneumo-

nia diagnosis. In addition to the traditional CNN models (VGG19, ResNet50 and

Inception-ResNet-v2), we also innovatively applied the latest Transformer model (Swin

Transformer) and proved its feasibility in the medical imaging field. By adjusting

the hyperparameters (learning rate, the number of epochs and trainable percentage in

transfer learning), we investigated the differences between the models and found that

large models (with many parameters or layers) or models with complex structures (the

Transformer structure) require a much larger training volume than small models. We

also proved that in transfer learning, using pre-trained weights from different source

tasks (real-word images) could also improve the model performance on medical diag-

nosis. By comparing different data augmentation methods, we concluded that contrast

enhancement of data augmentation was more appropriate for processing medical images

such as X-rays. From the final models’ performance1, all of them had exceeded the

radiographers (0.95 accuracy) [50] and it took only 16 milliseconds to analyse one

image. So we proved that artificial intelligence could accelerate the diagnosis process

and achieve the human radiologist level. Finally, the VGG19 model was considered to

be the best model, but we inferred that the Swin Transformer might outperform them

with sufficient data as it performed unbiased classification and had a more capacity to

learn with a longer training process.

1The models trained with the contrast enhancement
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7.2 Future works

In this project, the normal data augmentation could alleviate the problem caused by

the lack of medical images for training methods, but the need for large amounts of

data to train well-performing models remains high. So in future work, we might apply

artificial intelligence models to generate more medical synthetic images. The Generative

Adversarial Networks (GAN [18]) have been applied to generate some simple images

for normal computer vision tasks [51], so we suggest that a good GAN model could

be trained to generate more medical data for training with the help of well-trained

physicians. Alternatively, the architecture of the Swin Transformer could be enhanced

to reduce the model’s need for huge data while maintaining good performance.

In the project, we only processed 2D X-rays, but a lot of 3D CT images have also

been used in diagnosis, and researchers have applied CNNs to process these tasks [44],

but no Transformers have been used. We postulate that 3D information could also

be embedded into a Transformer in a suitable format for processing so that the Swin

Transformer could be trained on 3D medical data in the future.
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[2] Enes Ayan and Halil Murat Ünver. Diagnosis of pneumonia from chest X-ray

images using deep learning. In 2019 Scientific Meeting on Electrical-Electronics

& Biomedical Engineering and Computer Science (EBBT), pages 1–5. Ieee, 2019.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2014.

[5] Mythreyi Bhargavan, Adam H Kaye, Howard P Forman, and Jonathan H Sunshine.

Workload of radiologists in united states in 2006–2007 and trends since 1991–1992.

Radiology, 252(2):458–467, 2009.

[6] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan,

and Ilya Sutskever. Generative pretraining from pixels. In International conference

on machine learning, pages 1691–1703. PMLR, 2020.
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