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Abstract

Windthrow occurs when strong winds uproot trees and is a common disturbance to

European forests. Windthrow needs to be assessed quickly to mitigate the socio-

economic impact however current solutions are lacking. Optical satellites require

cloudless skies and airborne assessments rely on suitable flying conditions; both are

unlikely after a major storm. Synthetic Aperture Radar (SAR) satellites alleviate this

owing to their ability to see through clouds, day and night. However, current SAR

windthrow detection algorithms rely on temporal change detection and are not timely.

Capella currently offer high resolution SAR imagery of any scene on Earth with an

average delivery time of 6 hours. This research is the first to apply Convolutional Neural

Networks to Capella imagery, the first to automatically segment and identify windthrow

in single SAR images and also presents a novel method for removing the “no data”

values from satellite images which could be applied to other forms of satellite imagery.

It was demonstrated that a U-Net like architecture is able to segment windthrow with

competitive results to the temporal methodologies, which combined with Capella’s

quick data delivery offers a solution to rapidly mapping where windthrow has occured.

This would allow forest managers to promptly identify and recover windthrown timber

as well as quickly clearly blocked transportation links and mapping areas of potential

fire risk. It was observed that performance was significantly better in images where

the range dimension was perpendicular to the timber fell direction, a phenomena not

mentioned in current literature.
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Chapter 1

Introduction

Windthrow, demonstrated by Figure 1.1, occurs when strong winds uproot or snap trees

and is the most prominent cause of disturbances to European forests, responsible for

around 51% of all recorded damage. Over 3 million people are employed in Europe’s

forest sector which is estimated to be worth C120 billion and serves a wide range of

societal services ranging from wood production, recreation and carbon sequestration.

Windthrow therefore has far reaching socio-economic consequences and the ultimate

ramification is largely dependent on how quickly the extent can be mapped. Salvage

operations need to be established in order to avoid the secondary disaster of not being

able to make use of the windthrown timber [1], the total extent determines whether

standard clear felling operations need to be ceased in order to manage supply and

demand and not negatively affect timber prices. Transportation links are often blocked

and need to be identified and cleared as well as any potential damage to power lines [2].

Cataloging where windthrow occured is of interest to forest managers and insurers as

future windthrow is likely to occur where it has previously occured [3]. Addtionally,

cleaning up windthrow promptly is important because of complex environmental issues

related to carbon sequestration [4], fire risk [5] and bark beetle outbreaks [6]. Com-

pounding these factors is that extreme storm events are becoming more frequent across

Europe [7].

Despite the importance, current approaches for mapping windthrow are lacking.

Assessments are typically acquired via field surveys or interpreting optical imagery

from airborne/satellite platforms. Field surveys are slow, expensive and only provide

limited coverage. Flying airborne platforms is expensive and requires suitable weather

conditions whilst passive optical satellites require cloudless skies; conditions often not

present after a storm. These approaches are further limited in that imagery can only

1



Chapter 1. Introduction 2

Figure 1.1: Image of windthrow observed at Monynut obtained during fieldwork under-

taken on 19th June 2022. Capella Imagery of this site was obtained in December 2021.

be obtained in daylight which frequently results in an indefinitely long period until an

assessment can be made [8, 9]. Synthetic Aperture Radar (SAR) satellites alleviate

these issues owing to their ability to capture images in all weather conditions, day and

night. However, access to SAR imagery has historically been prohibitively expensive

or required lengthy research proposals to be approved and the revisit times (time to

re-image an area of Earth) have been on the orders of days [10]. ESA’s Sentinel-1

mission is unique in this regard, providing openly accessible imagery since 2014 [11],

unfortunately the resolution of Sentinel-1 imagery is not sufficient to unambiguously

detect windthrow in a single images. Current approaches utilising Sentinel-1 instead

rely on temporal change detection and are at best able to map windthrow in a time frame

on the order of weeks; by which time clear optical imagery may be available [9].

Capella Space [12] and ICEye [13] are changing the paradigm of SAR products.

Both companies operate a constellation of SAR micro-satellites and offer sub-meter

resolution SAR imagery with hourly revisit times as a commercial enterprise. For the

first time high resolution SAR imagery of any site on Earth is available essentially on

demand for anyone willing to pay for it. In the wake of Storm Arwen in which an

estimated 20% of Scottish annual timber yield was windthrown in a single evening

[14], teams at Earth Blox [15] and the University of Edinburgh acquired 5 Capella

images of sites affected by windthrow. Windthrow is easily identifiable as a distinct

texture in these images where the forest appears combed over, however due to the large

spatial size of satellite imagery manually identifying areas is still an arduous task. This

work hypothesised that this distinct texture would instead be a strong enough feature

to train a Convolutional Neural Network (CNN) to perform pixel-level predictions

(semantically segment) in order to classify windthrow pixels, which combined with
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Capella’s quick data delivery offers a potential solution for rapid mapping of windthrow.

CNNs continue to exhibit state-of-the-art segmentation performance within fields such

as medical imaging [16] and are gaining growing interest in application to optical

satellite imagery [17]. Despite this, CNN application to SAR imagery has lagged

behind; likely a consequence of the sparsity of SAR datasets suitable for training

segmentation models.

This research presents one of the few attempts to apply CNNs to SAR imagery and

is the only example of applying CNNs to Capella imagery in open publication. This

work contributes a labelled sub-meter resolution Capella SAR dataset and due to the

non-existence of literature working with Capella products, also presented is a processing

pipeline for manipulating the products into a format suitable for the training of CNNs.

The processing pipeline includes a novel approach for dealing with the border of “no

data” values which could be generalised to all forms of satellite data. This is the only

known attempt to segment windthrow in individual SAR images and the inadequacy of

classical machine learning approaches (Gaussian Naive Bayes; Logistic Regression) for

segmentation of Capella imagery is highlighted, despite their popularity in the optical

domain [18, 19]. Subsequently, it is demonstrated that a U-Net [20] inspired CNN

architecture is able to mask Capella images in less than a minute and achieve equivalent

performance to the sole example of utilising CNNs for segmenting windthrow in high

resolution optical imagery [21]. These results are also competitive with established

SAR temporal change detection approaches [9, 22], therefore proving that the proposed

utilisation of Capella products presents the opportunity to map windthrow in a time

frame potentially less than a day instead of weeks.

1.1 Dissertation Structure

This dissertation is organized as follows: Chapter 2 introduces Synthetic Aperture

Radar, Convolutional Neural Networks, a review of previous approaches to segmenting

windthrow along with general considerations when working with satellite data and how

these are relevant to SAR. Chapter 3 describes the Capella images used in this research,

the labelling procedure to create training data and the processing steps undertaken to

manipulate the data into format suitable for training convolutional neural networks.

Chapter 4 describes the evaluation metrics and methodology conducted for segmenting

windthrow. Chapter 5 presents and discusses the experimental results. Chapter 6

concludes the dissertation and suggests future work.



Chapter 2

Background and Related Work

2.1 SAR Primer

Many researchers are familiar with passive optical remote sensors such as Landsat and

Sentinel-2 which measure reflected radiation in the visible, near-infrared, and short-

wave infrared portions of the electromagnetic spectrum. This is likely a consequence

of the open data policy that these instruments have pioneered [23], but also because

the interpretation of the imagery is not dissimilar to interpreting a normal photograph

[24]. Synthetic Aperture Radar (SAR) is an alternative and less familiar active remote

sensing technique in which pulses of microwave radiation are actively emitted.

Before describing SAR it is useful to consider Real Aperture Radar (RAR), the side

looking nature of which is demonstrated by Figure 2.1a. The sensor emits a pulse of

electromagnetic microwave radiation, it bounces off the surface (known as backscatter)

and returns an echo to the sensor. Knowing the altitude of the sensor, together with

the speed of light, this configuration allows the distances along the ground from which

the echo returned to be accurately calculated by measuring the time delay. By further

measuring the intensity of the returned echo (which is largely determined by the surface

characteristics of the point on the ground from which the echo bounced) detailed 2D

images of the ground can be constructed as the sensor moves in the direction along the

flight path. RAR actively generates its own microwave illumination and perhaps the

most useful property of this is that microwaves do not interact with the particles present

in common atmospheric obstructions such as clouds, smoke, smog and sandstorms.

This allows RAR systems to capture day and night, in all weather conditions.

Radar images have two dimensions known as range and azimuth in which the

resolutions can and often do differ because they are governed by different sensor

4



Chapter 2. Background and Related Work 5

(a) Real Aperture Radar (b) Synthetic Aperture Radar

Figure 2.1: (a) Geometry of RAR and associated terminology. As the instrument moves

in the direction along the flight path detailed images of the ground can be built up [25].

(b) Geometry of SAR. The beam is designed to be wide in the azimuth direction to make

adjacent footprints overlap the same points on the ground. These overlapping footprints

can be combined to synthesise the characteristics of a larger effective antenna [25].

characteristics. Azimuth resolution is often the limiting factor in RAR as it is determined

by the size of the instruments antenna and often requires impractically large antennas to

achieve useful resolution. SAR alleviates this issue by synthesising a large effective

antenna, the geometry of which is illustrated by Figure 2.1b.

In SAR the beam is designed to be wide in the azimuth dimension which allows the

beam to overlap as the sensor moves along the flight path. The effective length of the

synthesised antenna (and resulting azimuth resolution) is governed by how long the

target dwells in the beam. SAR spotlight mode utilises this by steering the beam as the

instrument flies past to cover the same point on the ground, see Figure 2.2. This results

in much longer dwell times and finer azimuth resolution at the cost of image size.

Figure 2.2: Spotlight mode. The beam is steered as the satellite flies past enabling

longer dwell times and finer azimuth resolution of the scene. [25].

The side looking nature of SAR causes objects to geometrically distort. Foreshort-
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ening causes tall objects, such as a mountains, to appear steeper on one side with a thin

bright edge at the peak. Extreme foreshortening is called layover when the radar waves

hit the top of an object before the base, hence the echos return from top return first and

the object appears folded over on itself. Shadowing is similar to optical shadows, an

object blocks the path of the radar signal and causes dark areas in the image where

there is no returned signal [25]. Radar images contain artifacts which look like salt and

pepper noise, known as speckle. Speckle is often described as noise however this is not

correct as it is a repeatable phenomena resulting from interference between coherent

echoes. Two images taken of the same scene with identical imaging geometry will

produce the same speckle pattern. One way to reduce speckle at the cost of spatial

resolution is by multi-looking where the formed synthetic antenna is split into multiple

sub-antennas and each is used to generate an image of the scene. A multi-looked image

with reduced speckle can be generated by taking an incoherent average of these images.

Radar images appear similar to gray scale images however the intensity of a pixel

in a radar image is not indicative of color and instead represents the intensity of

backscattered radiation, known as “radar brightness” or “Beta Nought”, β0. Beta

Nought is influenced by properties of the radar system such as incidence angle, the

surface properties of the scene such as roughness and dielectric constant [25] and is

further influenced by the local topography. “Sigma Nought”, σ0, is a calibration which

aims to make the image radiometry comparable between images regardless of incidence

angle and often incorporates topographical information to provide more consistent

results. Sigma nought calibration aims to make the variation in brightness between

pixels across different images being solely down to properties of the ground surface

instead of instrument or geometric specifics [25].

Electromagnetic waves have a property known as polarisation, which is defined to

be the direction in which the electric field oscillates as the wave propagates through

space. Waves are described in terms of perpendicular polarization planes known as

horizontal and vertical which are defined by convention with reference to the Earth’s

surface. SAR systems can operate in 4 modes: HH, VV, HV, VH. The first letter

denotes the transmit polarisation and the second denotes the receive polarisation. The

polarisation mode influences measured pixel value as different modes are sensitive to

different types of backscatter as demonstrated by Figure 2.3. HH indicates the presence

of double bounces, caused by reflective surfaces at right angles to each other redirecting

the incoming energy back to the sensor. To a lesser extent strong HH indicates rough

surface scattering but this tends to be more sensitive to VV. Strong HV/VH comes from
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Figure 2.3: Sensitivity of types of backscatter to the polarisation mode. [24].

volume scattering, where the transmitted signal bounces several times within a medium

before being redirected; resulting in a change of polarization. Multi-channel SAR

images are formed by stacking the results from different polarisation modes together.

This leads to the definitions of SinglePol (HH or VV channels only), DualPol (HH and

VV) and QuadPol (HH, VV, HV and VV) imagery. SAR systems can operate at several

wavelengths (X;C;L;P band) that interact uniquely with different media, therefore SAR

images acquired of the same scene at different wavelengths may appear drastically

different. As an example, Figure 2.4 demonstrates how different wavelengths penetrate

into forest canopies; shorter wavelengths mostly interact (and therefore only image) the

top of the canopy whilst longer wavelengths penetrate further and can image textures

beneath the canopy.

Figure 2.4: Wavelengths interactions with tree canopies. The listed length corresponds

to the wavelength of the associated radar band [24].

2.2 The Capella Constellation

Capella operates a constellation of micro-satellites capable of producing SinglePol

images in either HH/VV with revisit times averaging less than 4 hours. Users request

imagery through a self serve console where they specify an imaging mode and tasking

tier (time to get data) from 1;3;7 days, tasking requests are however usually accepted

within minutes and on average data is delivered less than 6 hours after collection

[10]. Images can be be acquired in spotlight (SP), sliding spotlight (SS) and stripmap

(SM) and currently cost around $5000 an image, however exact pricing strategies are

still being established. Stripmap mode has the largest scene size (5km×20km) but the
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coarsest azimuth resolution. In spotlight mode, Capella’s agile design allows the antenna

beam to dwell on a scene for tens of seconds which allows sub-meter resolution imagery

to be acquired at the cost of scene size (5km×5km). Sliding spotlight is a compromise

between these two modes in terms of resolution and scene size (5km× 10km) [26].

Capella’s tasking additionally enables customers to specify many undiscussed (beyond

the scope of this report) SAR acquisition parameters which influence the resulting

image, allowing tailored imagery to be collected for specific tasks. Images are available

in several data formats including Single Look Complex (SLC), Geocoded Ellipsoid

Corrected (GEC) and Geocoded Terrain Corrected (GEO). SLC images achieve the

highest spatial resolution however, for many applications SLC images are not useful

because of the high level of speckle. Capella’s GEC/GEO formats are multi-looked

images with reduced speckle and only differ in how topographical information is

incorporated into the calibration [26]. Speckle reduction between between SLC and

GEC/GEO products is illustrated by Figure 2.5.

Figure 2.5: (left) SLC Capella image and (right) Capella multi-looked image of the Nippon

Budokan, Tokyo, Japan. Increase in clarity can be seen in the multi-looked image and

texture differences between grassy areas can now be distinguished [12].

2.3 Convolutional Neural Networks

In image processing a kernel is a matrix which can be applied to an image via a

convolution to output a new image. Kernel is often used interchangeably with filter

and in the deep learning community it is common to see the term feature detector

with the resulting image referred to as a feature map. The convolutional operation is

illustrated by Figure 2.6a; the kernel moves across the source image and at each position

a new pixel value is calculated by summing the centre pixel with its local neighbours,

weighted by the kernel values. Historically, kernel weights have been manually defined

to extract features from images such as edge detection [27], for image processing

tasks like blurring [28] and even within the SAR community for speckle reduction

[29]. The resulting size of the convolved image can be controlled by specifying the
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(a) Convolution Operation (b) Max Pooling Operation

Figure 2.6: (a) Example of a convolutional operation between a source image and kernel

to result in a new pixel value within the output image [31]. (b) Example of a 2×2 max

pooling operation with stride 2 [32].

stride and padding and one such use for this is to increase the spatial size of an image

with up-sampling convolutions. Several up-sampling variants exist such as transposed

convolutions (deconvolutions) and bilinear convolutions, both are described by [30].

The concept behind Convolutional Neural Networks (CNNs) is that the weights of

the kernels that should be applied to extract features from the images are learnt instead

of being manually specified. In contrast to other machine learning techniques, CNNs

therefore account for spatial information instead of individual pixel values in isolation.

CNNs initially showed potential for image classification when the AlexNet CNN won

the ImageNet challenge in 2012 [33] and continue to exhibit state-of-the-art image

classification performance and have since extended to image segmentation [34, 16].

CNNs architectures are typically built by stacking sequential convolutional layers

combined with non-linear activation functions [35], max pooling [36], batch normalisa-

tion [37], skip connections [38] and dropout [39]. Introducing non-linearity is required

otherwise the network effectively collapses into a single convolutional layer [35]. Max

pooling, illustrated by Figure 2.6b, selects stronger invariant features, which leads to

better generalisation and faster convergence [36]. The entirety of the training data for

CNNs often does not fit into memory which leads to them being trained on batches.

Batch normalization calculates the mean and standard deviation for the current batch

at various points in the network and standardises the data such that the batch has 0

mean and unit variance. Batch normalisation enables faster and more stable training

of deep neural networks, exactly why is still an open debate [40]. Skip connections

pass information from one layer of the network to another without it passing through

the intermediate layers; they have been shown to be essential in segmentation tasks at

recovering spatial information lost during max pool downsampling [41]. Models are
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described to have overfitted the training data when they do not generalize well to unseen

data [42, 43]. Techniques to mitigate overfitting are often referred to as regularization

and one such technique for CNNs is Dropout. Dropout randomly zeroes some of the

outputs of the previous layer with some probability. This effectively forces the data to

take different paths through the network and is a proven regularization technique [39].

2.3.1 U-Net architecture

U-Net, illustrated by Figure 2.7, was originally developed in 2015 for segmenting

single channel medical images [20] and it remains a popular architecture for medical

image segmentation [16] but has also shown potential in other fields, for example cloud

masking in the remote sensing community [44]. Despite there being other segmentation

architectures such as FCN [45] and SegNet [46], U-Net was chosen for the task of

segmenting SinglePol Capella imagery because of the capacity of U-Net to learn from

limited data [20, 16] and also because of its successes with medical images, which are

often single channel intensity based images much like SAR.

The network consists of a contracting path with repeated applications of double 3x3

valid padded convolutions followed by ReLUs (DoubleConv+ReLU) before downsam-

pling the spatial size by half with a 2x2 max pooling operation. The initial number

of feature channels is set to 64 and this doubles after each downsampling. Following

the contracting path is an expansive path with repeated application of 2x2 transposed

convolution up-sampling that doubles the spatial size whilst halving the number of

feature channels. The resulting feature map is concatenated with the centre crop of the

feature map from the corresponding layer of the contracting path via a skip connection.

Cropping is necessary due to spatial size reductions caused by repeated application of

valid padded convolutions. The concatenated feature map passes through a Double-

Figure 2.7: U-Net architecture as it was originally proposed [20].
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Conv+ReLU and the output is passed to the next up-sampling layer. The final layer is

passed through a 1x1 convolution that maps output to the desired number of segmenta-

tion channels. U-Net originally used 2 segmentation channels and probability masks of

the inputs were generated using a softmax function [47]. In U-Nets source paper the

images were tiled into 512x512 patches and the network outputted 388x388 predictions.

To enable seamless segmentation of the original images an overlapping tiling strategy

was incorporated that used mirroring to deal with the missing data brought about from

the down-sampled output [20].

2.3.2 Optimization & Loss functions

Neural networks are trained by minimising a differentiable loss function with respect to

the networks parameters. This loss function is used to calculate the gradient for each of

the networks parameters via backpropagation [48] and then a gradient descent algorithm

(optimizer) is employed to change the parameter values by a small step (learning rate)

in the direction negative to their gradient such as to optimise the loss function. Many

optimizers exist each with their own strengths and weaknesses [49], however the choice

of loss function is arguably more important as this plays an essential role in determining

the networks performance - optimising a poor choice of loss function will yield poor

results regardless of the choice of optimizer [50]. For segmentation it is not possible

to declare a universal loss function that will perform well for all tasks. Which loss

function will perform best for a given task depends on properties of the dataset and is

usually determined experimentally. Some general guidance is that focal loss functions

work best for highly in-balanced datasets [51], whereas binary cross-entropy loss works

well for balanced datasets [52]. Dice coefficient based loss functions can work well

regardless of class imbalance [50, 53].

2.4 SAR Semantic Segmentation

Noted in the project proposal for this work [54]: publications utilising Capella products

are sparse. Therefore, the literature was surveyed for how other SAR satellites had

been used for mapping windthrow. To summarize this previous review, the potential

of a single high resolution HH polarised X-Band images for detecting windthrow has

been acknowledged. However, no attempts have been made to automatically segment

windthrow in single images. Attempts instead rely on temporal change detection and
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the most established method utilises Sentinel-1 (C-band) and is at best able to segment

windthrow in ≈ 4 weeks and averages a dice coefficient [55] (Section 4.1) of ≈ 0.7 [54].

The vast majority of the literature regarding semantic segmentation in the remote

sensing domain deals with passive optical imagery [17]. A large contributing factor to

this is the near non existence of SAR datasets suitable for training segmentation models;

the MSAW (Multi-Sensor All Weather Mapping) dataset collected over Rotterdam

consists of airbourne quad-polarity X-band SAR imagery designed to be similar to

Capella data and accompanying building masks is the only known example in the

same sub-meter resolution category [56]. Despite the lack of literature, transferable

considerations can be inferred from segmentation in the optical domain. Classical

machine learning techniques achieve comparable performance to CNNs in multispectral

optical remote sensing and this can be attributed to the large channel size (Landsat-

8, 11 channels; Sentinel-2, 12 channels) increasing the likelihood that the desired

segmentation class is separable in at least one of the channels [57], without the need

to account for spatial information [18, 19]. Conversely, SAR images can at most have

4 channels (QuadPol) however, more common is 2 channels (DualPol) and sub-meter

resolution imagery tends to be 1 channel (SinglePol) [58, 26]. The effect of the number

of channels for forest segmentation in SAR imagery was investigated by [59]. Pixels

were classified based on their channel values and significantly lower performance was

observed when considering a single channel compared to when other channels are

introduced. The poor performance for single channel segmentation is to be expected as

many factors can cause pixels to have similar values in SAR imagery, see Section 2.1.

As the Capella images are single channel, it is reasonable to expect classical machine

learning approaches will exhibit poor segmentation performance.

Architectures similar to U-Net have recently been applied to SAR images and

offers a potential segmentation solution. A TernausNet model was used to segment

buildings in sub-meter resolution SAR imagery and achieved a dice coefficient of 0.21

[56, 60]. The most comparable study to this research was the segmentation of roads

in sub-meter resolution SinglePol TerraSAR-X HH images using U-Net [61]. Despite

the thin nature roads making them challenging to segment and the fact that road pixels

represented the minority of the pixels in the images (around 5% overall) they achieved

a respectable dice coefficient of 0.63. Although not SAR imagery, it is worth noting the

only example of CNN segmentation of windthrow in optical satellite imagery; achieving

a dice coefficient also of 0.63 [21].

The large spatial size of satellite imagery combined with memory constraints mean
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that the images need to be tiled down into smaller patches when training CNNs. Seam-

less segmentation masks are created by stitching together the predictions for the indi-

vidual tiles. The chosen patch size has significant influence on the models performance.

It is beneficial to use large patches to capture spatial patterns, however as patch size

increases the size of the training batches decrease. This influences batch normalization

layers resulting in a balance between large patches to account for spatial patterns and

large batches which improve regularization and training speed [62]. It was found that

several tiling and stitching mechanisms have been utilised in the optical remote sens-

ing literature. Sometimes the overlapping/mirroring strategy originally proposed with

U-Net [20, 62] was mimicked, however it was most common to use non-overlapping

patches of various sizes with the most frequent size being 256× 256 pixel patches

[44]. Regardless of the tiling strategy used, there is often little justification and little

experimental evidence of the impact of the particular approach [63].

A feature common to optical and SAR satellite imagery is that the image is angled

and surrounded by a border of “no data” values, see Figure 3.1. This is a consequence

of the projections that are applied to the images to geocode them into a coordinate

system such that the images are in the correct location on the Earths surface [62].

Several different methods for dealing with the “no data” values have been observed.

One approach is to take the average pixel values of the data pixels for each image and

in-paint the “no data” values with these averages [62]. Another approach incorporates

the “no-data” values as their own class and performs multi-class segmentation predicting

the “no data” values simultaneously with areas of interest [64]. The satellite images are

sometimes cropped such that the resulting crop only contained actual data pixels [21].

However, most common in the literature is to not detail how the “no data” values were

handled so it is assumed that they were not [44, 65].

Once Sigma Nought Calibrated, SAR pixels have a range on a logarithmic scale

roughly between −70 → 20 and are visually similar to grey scale images. Contrast

stretching (“Normalization”) is a pre-processing technique for grey scale images that

stretches the range of intensity values that the image contains to span a desired range of

values, usually the full range of pixel values that image type concerned allows. This

increases contrast between an image’s relative highs and lows and enhances subtle

differences [66]. Contrast stretching has been shown to improve performance of CNNs

trained on grey scale images in general [67]. Further, contrast stretching is a useful

mechanism for transforming pixel value ranges of single channel imagery such that they

lie between 0 - 255 which is standard for many CNN architectures.
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Data

Capella delivers data for all product modes and product types in a 3-file bundle known

as the Capella TIFF+JSON format. The Capella TIFF+JSON bundle includes one

GeoTIFF image along with two JSON metadata files (STAC; Extended). The TIFF file

contains an angled raster image surrounded by a black border of “no data” values, see

Figure 3.1. The STAC file contains standard geospatial metadata [68]. The extended

json file contains Capella specific metadata.

Figure 3.1: Capella GEC spotlight image of the Monynut forest area acquired on 17/12/21,

see Table 3.1 for more details.

Capella’s multi-looked GEC product type was the chosen format for this analysis

because GEC images provide unmatched image clarity and spatial resolution with low

amounts of speckle. GEC images are therefore ideally suited for visual literal image

interpretation as is the case with detecting windthrow [69]. The 5 images used for this

research are of various scenes across Scotland and were acquired in the wake of Storm

Arwen [70]. The images can be downloaded through the Capella console [71] with

appropriate permissions; the properties of these images are detailed in Table 3.1.

14
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Site Date Mode # of Polarisation Range Azimuth Pixel Size

Looks Resolution Resolution

Monynut 17/12/21 SP 9 HH 0.73 m 0.64 m 24152 x 24342

Monynut 11/01/22 SP 9 VV 0.73 m 0.64 m 23918 x 24148

Glenisla 17/12/21 SP 9 HH 0.73 m 0.64 m 21519 x 21263

Glenisla 15/12/21 SS 4 HH 0.88 m 1.07 m 14343 x 21906

Fetterangus 15/12/21 SS 4 HH 0.82 m 1.01 m 15790 x 21915

Table 3.1: Properties of the 5 Capella GEC images used for this research.

3.1 Labelling

To enable the training of machine/deep learning models binary masks the same spatial

size as the original images were generated where a pixel value of 1 corresponded to

“windthrow” and a pixel value of 0 corresponded to “not windthrow”. ESA’s SNAP

toolbox [72] was chosen for this task due to its confirmed compatibility with the Capella

TIFF+JSON format [73]. Each Capella image was first imported into SNAP and then

converted to BEAM-DIMAP format [74] to enable the creation and persistence of vector

containers for drawing polygons around windthrow as well as the generation of the new

band (channel) required for the binary mask [75]. It was observed that SNAP applies

an incorrect Sigma Nought calibration when loading Capella images, this did not affect

this research as SNAP was only used for generating windthrow masks however the issue

was raised with the SNAP developers [76].

Some areas of windthrow in the Capella images are obvious however other areas

were more ambiguous as forest stands can appear different in SAR images due to

microwave interaction. This can be attributed to variations in structural properties

between stands such as size, orientation and spatial patterns of trees themselves, but also

of their branches and leaves [77, 78, 79]. Optical imagery is a useful aid in correctly

interpreting SAR images as it allows one to compare what is actually happening on

the ground to how different surface textures present themselves in SAR imagery. To

help resolve the ambiguity and ensure generated masks were as correct as possible the

geographical extent of each Capella TIFF file was imported into Google Earth Pro [80]

and historical high resolution MAXAR [81] images of each scene from 2021 before

Storm Arwen occurred were exported to aid in the labelling.

Figure 3.2 demonstrates a patch of obvious windthrow; the forest appears combed

over and individual tree trunks are visible, compared with the MAXAR imagery where

the forest is standing. Figure 3.3 demonstrates the different appearances of various

types of forest stands, dense stands appear sunken compared to fielded areas around
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them whereas less dense stands look somewhat combed in appearance and could be

confused with windthrow without the optical aid. A less obvious patch of windthrow

is demonstrated by Figure 3.4; the SAR image reveals that there appears to be a

discontinuity in the forest which could be could be caused by structural variations in

the forest stand, however the optical image reveals this is not the case and therefore this

must be windthrow.

Figure 3.2: (left) Obvious windthrow in the Monynut HH image (right) MAXAR image of

the same scene.

Figure 3.3: (left) Various ground surfaces and differing forest stands in the Monynut HH

image (right) MAXAR image of the same scene.

Figure 3.4: (left) Less obvious windthrow in the Fetterangus image (right) MAXAR image

of the same scene. The Fetterangus image had less clarity and higher levels of speckle

that other images.

Visually, windthrow was much more identifiable in the HH images which is con-

sistent with the literature [82]. Therefore, only the HH images were utilised for this

research. During this analysis it was noted that windthrow appears brighter overall,
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with the individual trunks visible only when the range dimension (incoming energy

direction) is perpendicular to the direction of the felled timber. This is the case for

Monynut SP; Glenisla SS, roughly the case for Glenisla SP however for Fetterangus SS

the range dimension was parallel to the windthrow. This is a phenomena not mentioned

in the literature and the exact reason for it is not known. It is speculated that when the

trunks are perpendicular to the incoming energy they are blocked less by leaves and

present more opportunities for double bounces to occur. Conversely, if the trunks are

orientated parallel to the incoming energy they may be masked by layover and shadow

from standing timber and also covered more by their own canopies given the shallow

penetrating capabilities of X-band, see Figure 2.4. These combined make windthrow

more ambiguous under literal interpretation in this configuration (J Brown [Capella

Space] & I Woodhouse , 2022, personal communication, 28 June).

Polygons were manually drawn around identifiable areas of windthrow which were

collated into a mask and a virtual binary band the same spatial size as the original input

was created using SNAP’s “band maths” [83] tool where pixels contained within this

mask were set to 1 and all other pixels were set to 0. The binary band for each image

was exported as a GeoTIFF to serve as labels for all experiments.

3.2 Processing

Figure 3.5: The processing procedure that each individual image and associated binary

mask underwent. The end result were arrays that could be used for classical machine

learning algorithms and image tiles that could be used for training convolutional networks.

Processing steps are shown are diamonds, inputs and intermediate outputs are shown

as oblongs, outputs are shown as rectangles.

The goal of the processing procedure was to calibrate the images and tile them into

smaller patches together with their masks to enable the training of CNNs. Addtionally,

the images and masks were “vectorised” (flattened) into 1D arrays to enable the training
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of classical machine learning baselines. The processing code was written in Python 3

[84] and made use of rasterio [85], GDAL [86], numpy [87], scipy [88] and OpenCV

[89]. Due to memory constraints the code was developed locally as a PyPi package

against test GeoTIFFs [90] before being installed into a high RAM GPU Google Colab

environment [91] where it could be run against the real Capella GeoTIFFs. The full

procedure is illustrated by Figure 3.5 and each step is elaborated more in the following

sections.

3.2.1 Rotation Angle & Trimming

As demonstrated by Figure 3.1, the Capella TIFF comes with the image angled sur-

rounded by a large black border of “no data values” which come about from various

geographic processing steps [62]. Such processing steps are useful for geographic

related tasks however the resulting “no data” values are a hindrance when applying

deep learning. Existing approaches for dealing with these “no data” values outlined

in Section 2.4 are in-painting, defining a “no data” class, cropping and doing nothing.

Each of these approaches has disadvantages. In-painting passes large regions of non

applicable imagery to a model which is arguably a waste of computational resource.

Similarly, passing the no data values as their own class for the network to learn is

inefficient and somewhat redundant considering that the value that represents no data

will be present in the images meta data and a no data mask can readily be generated.

Cropping the image down to only contain data pixels has the advantage that the trained

models only see relevant pixels but has the obvious disadvantage that not all of the

available data is being utilised. Doing nothing is similar to in-painting in that large

amounts of useless data is passed to the network.

To improve upon these existing methodologies alternative techniques were explored

the with the aim to maximise use of data pixels whilst minimising the use of “no data”

pixels. Initially, it was investigated whether information about the applied projections

was present in the Capella metadata such that reversing them could be attempted in

an effort to remove the “no data” values. However, the only related data describes

the affine transformation matrix that transforms the image from coordinate space to

its projected georeferenced coordinate space, known as a geotransform [92]. This

maintains orientation and therefore does not reduce the “no data” values.

Therefore, a new technique was developed for this project inspired by the approach

described by [93] for document skew detection and correction. A no data mask was
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generated for each image from which the coordinates of a minimum area rectangle

that bounded all the “data” pixels was determined. The skew angle of this bounding

rectangle was calculated and the affine transformation matrix required to remove the

skew angle from the bounded rectangle was determined using OpenCVs implementation

of the algorithm described by [94]. This transformation was applied to the image with

the end result being an image which was no longer skewed, albeit still surrounded by a

border of “no data” values. The image was therefore trimmed by removing any columns

or rows that solely consisted of “no data” values. To ensure the mask associated with

the image was still correct, the same transformation was applied to the mask and the

rows and columns that were removed from the image were also removed from the mask.

The procedure is illustrated by Figure 3.6 and Table 3.2 details image information after

this process.

Figure 3.6: The rotation and trimming processing steps demonstrated for one of the

Capella images and its accompanying mask.

Site Rotation Windthrow Processed Pixel Size

Angle Percentage (Range x Azimuth)

Monynut HH SP −20.56◦ 5.8% 14523 x 14257

Glenisla HH SP −5.57◦ 4.0% 14189 x 14480

Glenisla HH SS 9.23◦ 3.9% 8303 x 17451

Fetterangus HH SS −15.26◦ 1.3% 8259 x 16991

Table 3.2: Capella imagery after rotation, trimming and calibration. Rotation angle is the

angle of rotation required to remove the tilt from the image. Windthrow percentage is the

percentage of pixels that represent windthrow in the rotated and trimmed image.

3.2.2 Calibration & Contrast Stretching

After rotation and trimming the images were manually Sigma Nought calibrated in order

to minimise the differences in image radiometry. For Capella images Sigma Nought (in
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decibels) is calculated from the Digital number (pixel value) for GEC products using

Equation 3.1

σ
0
db = 20 · log10(SC ·DN), (3.1)

Where SC is the scale factor (found in the extended image metadata) which accounts

for internal calibration of the radar subsystem and DN is the Digital Number [95]. Once

calibrated, the images were further contrast stretched such that the pixel range was

between 0 - 255 according to equation 3.2,

Pout = a+(Pin − c) ·
(

b−a
d − c

)
(3.2)

where Pout is the resulting pixel value, Pin is the input pixel value, a and b are the

desired lower and upper limit respectively (0−255), and c and d are the lowest and

highest values currently present in the image respectively. Outlying pixels with either

a very high or very low value can severely affect the value of c or d which leads to

unrepresentative scaling. Therefore, a more robust approach is to take a histogram of

the image and select c and d at percentiles in the histogram, say 5th and 95th. Any

pixels with value below the 5th percentile value would be set to the lower limit and any

pixels above the 95th percentile value would be set to the upper limit.

The distribution of SAR images tends to be very asymmetric with the majority of

pixels representing low intensity back-scattering followed by a long tail of bright high

intensity pixels. The multi-looking process already filters a large amount of outliers via

speckle reduction and given that windthrow tends to present itself as brighter than its

surroundings an asymmetric stretch using the 5th and 99th histogram percentiles was

implemented. The intent of this was to enhance separation amongst the bright pixels by

collapsing low intensity pixels to the same value. This adds further noise reduction to

the low intensity pixels and increases the range of values that the bright pixels can be

stretched into.

3.2.3 Vectorisation

To convert the images into a format suitable for the training of classical machine learning

algorithms, each image and its associated masks were flattened into 1D arrays of equal

length. These arrays were shuffled and split 80%;10%;10% into smaller training,

validation and test arrays. The resulting data splits for each image were collated into
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Site Training Validation Testing

Pixels Pixels Pixels

Monynut 165,643,529 20,705,441 20,705,441

Glenisla (SP) 164,365,376 20,545,672 20,545,672

Glenisla (SL) 115,916,523 14,489,565 14,489,565

Fetterangus 112,262,937 14,032,866 14,032,866

Total 558,188,365 69,773,543 69,773,543

Table 3.3: Properties of the training, validation and testing vectorised splits. These

numbers apply to the Sigma Nought calibrated arrays, contrast stretched arrays and

arrays formed from the masks labels.

larger arrays now containing data for each image. Both the calibrated images and

the further contrast stretched images were vectorised in identical manners in order to

investigate whether the contrast stretching was beneficial for the task of segmenting

windthrow. Information regarding the vectorised data splits is given by Table 3.3.

3.2.4 Tiling

Several patch sizes and techniques exist in the literature and are often utilised with little

justification [44, 63]. The choice was taken to utilise a non-overlapping tile strategy,

partly because such tiling strategies are simple to implement and have demonstrated

good performance for other remote sensing segmentation tasks [44, 63], but also remove

the need for mirroring required by the overlapping tile strategy originally proposed with

U-Net [20]. This choice was influenced by the geometrical distortions that are present

in SAR imagery due to its side looking nature. Phenomena such as shadow and layover

are dependent on the direction of the incoming energy, therefore mirroring around any

tile which contains geometric distortions would result in nonsensical patterns which

will never actually be present in SAR imagery. This is less of a consideration for other

tasks like U-Nets original application of segmentation of biological cells, which look

similar when the image is mirrored.

The contrast stretched images were shown to be beneficial for classical machine

learning, see Section 5.1 and therefore only the contrast stretched images were tiled.

For the tiling itself, a methodology was designed to enable a systematic comparison

of the effect of different tile sizes, the end result is illustrated by Figure 3.7. The

approach required specifying a maximum and minimum patch size with the constraint

that the minimum patch size could be reached by repeatably dividing the maximum

patch size by 2. Each individual image had columns removed from the right hand side
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Figure 3.7: Tiling strategy illustrated when applied for 512× 512 pixel patches to the

mask of the Monynut HH image. From left to right: training split, validation split, testing

split. The tiles are in their correct spatial location and grey areas indicate tiles are not

present for this split. This tiling strategy means these splits are the same for smaller

patch sizes which would be visually identical even though the patch would be smaller.

and rows removed from the bottom until its rows and columns were directly divisible

by the maximum patch size - the same columns and rows were removed from the

associated mask. The image and mask were tiled into patches of the maximum patch

size and patches were named in matrix index notation [96] such that they could be

stitched back together to form the original image/mask. The tiles were shuffled and

split 80%;10%;10% into training, validation and test sets and the individual splits were

collated into top level splits that represented tiles from all images. The maximum patch

size was divided by 2 and these top level tiles were each further tiled into 4 smaller

patches and so on until the minimum patch size had been achieved. This approach

ensured that the same pixels were used for the training, validation and test sets regardless

of patch size which enabled investigations into the effect of patch size without any

bias; something currently lacking in the remote sensing literature [63]. A maximum

patch size of 512 and a minimum patch size of 128 were specified and Table 3.4 details

properties of the different tile splits for the individual images.

Tile Sizes

512×512 256×256 128×128

Site Train Val Test Train Val Test Train Val Test

Monynut 606 75 75 2424 300 300 9696 1200 1200

Glenisla (SP) 606 75 75 2424 300 300 9696 1200 1200

Glenisla (SL) 436 54 54 1744 216 216 6976 864 864

Fetterangus 424 52 52 1696 208 208 6784 832 832

Total 2072 256 256 8288 1024 1024 33152 4096 4096

Table 3.4: The resulting number of tiles for each image and data split when processed

with the described tiling strategy. Contrast stretched images and associated masks were

subject to the same tile processing.
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Methodology

The experimental methodology can be divided into two phases. (1) The training

of classical baselines which is mostly intended to demonstrate their inadequacy for

segmenting single channel SAR images. (2) A deep learning approach using a U-Net

inspired architecture. Given that there is almost no literature around applying deep

learning to SAR data an ablation study [97] with the U-Net model was performed to

measure the impact of different patch sizes, loss functions [50], up-sampling techniques

[30], augmentations [98] and dropout [39]. The code was written in Python3 and

training was performed in high RAM Google Colab environments with Nvidia P100

GPUs [99].

4.1 Evaluation Metrics

As demonstrated by Table 3.2 windthrow represents a minority of the total pixels in

the data, about 4% overall. Therefore accuracy would be a poor evaluation metric for

segmentation performance; 96% accuracy could be achieved by masking the entirety of

the images as “not windthrow”. Models were instead evaluated based on dice coefficient;

a metric derived from recall and precision. Recall is a metric that provides insight into

the performance at capturing all true positives (windthrow pixels which were classified

as windthrow) whilst disregarding false positives (non windthrow pixels which were

classified as windthrow). Precision is a metric that provides insight into the amount

of classified windthrow pixels that were actually windthrow. The calculation of recall

and precision is illustrated by Figure 4.1. Often these two metrics conflict with each

other and to find the optimum balance dice coefficient [55] (also known as F1 score)

was utilised as it is the harmonic mean between precision and recall, see Equation 4.1.

23
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Figure 4.1: Confusion matrix between predictions and ground truth for binary labelled

data. Illustrated is how recall, precision and accuracy are derived from this matrix. Figure

credit [62].

Dice =
2

Recall−1 +Precision−1 (4.1)

Dice coefficient ranges between 0 & 1 and is high when predictions match the labels

well and do not extend outside of them which makes it a robust metric for evaluating

segmentation models. A dice score of 0 means no agreement between labels and

predictions, 1 means perfect agreement and everything in-between can be interpreted

relative to these extremes.

4.2 Classical Baselines

Classical baselines were trained using scikit-learn [100] with Gaussian Naive Bayes and

Logistic regression being the chosen classifiers. Gaussian Naive Bayes classifiers work

under the assumption that considered classes are independent, they are advantageous

in that they are simple to train and can handle large amounts of data [101]. Logistic

regression belongs to the class of generalized linear models and is popular due to its

probabilistic interpretation; class label predictions for a given input range between 0 &

1 which can be thresholded to give binary predictions [102]. These models were chosen

partly because they are popular within the remote sensing community [19, 18, 103] but

mainly because their scikit-learn implementations supported incremental learning [104].

The latter is important due to memory constraints as a consequence of the large arrays

generated from the vectorisation process requires that algorithms be trained on batches

instead of the whole dataset at once. Each model was trained twice: once on the sigma

nought calibrated pixels; once on the further contrast stretched pixels. Image and mask

training pixels were randomly shuffled in the same manner and split into batches of
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1×105 pixels. This size was arbitrarily chosen and resulted in roughly 5582 training

batches. The models were trained according to their defaults in scikit-learn [105, 106]

and were evaluated on the validation and test sets (batched in the same manner). The

Gaussian Naive Bayes assigned each evaluated pixel a binary label whereas the Logistic

regression model assigns each pixel a probability of being windthrow, which was

thresholded at 0.5 to yield binary labels. These binary labels allowed the dice coefficient

between the predictions and ground truth labels to be calculated. Extensive experiments

were not conducted with the classical baselines as the literature strongly indicated that

these methodologies would perform poorly for SinglePol SAR images [21, 59].

4.3 Deep learning model

The architecture used for the deep learning aspect of this work is illustrated by Figure

4.2 and the implementation is similar to the original U-Net architecture. The 3× 3

convolutions were modified to use same padding instead of valid padding to enable

seamless segmentation of full images for the chosen non-overlapping tiling strategy.

Batch normalisation was introduced between the 3×3 convolutions and ReLUs which

significantly reduces the training time compared to the original U-Net. Combining

batch normalization and dropout can cause issues and therefore following the advice of

[107], dropout was introduced only after the final Batch norm + ReLU. The final layer

was modified to be a sigmoid, which in combination with the same padded convolutions

meant that the output was a single channel probability mask the same spatial size as

the input in which each pixel was assigned a probability of being windthrow. This

probability mask could be further thresholded to produce a binary windthrow mask

for the input patch which allows the dice score to be calculated. The architecture was

implemented in PyTorch [108] and built upon the popular U-Net repository provided

by [109]. The network was modified such that the initial feature channel size could

be specified and the type of convolutional up-sampling could be chosen between

deconvolution and bilinear [30].

The input tiles were normalized to lie between 0 & 1 which was simply achieved by

dividing the patches by 255 as only the contrast stretched patches were used. Normal-

ization helps networks learn faster [111, 37] and other initial normalisation techniques

could have been investigated such as standardising the input tiles. However, the intro-

duction of batch normalization layers make this initial step somewhat superfluous and

thus the simplest technique was chosen. For each epoch the training tiles and mask tiles
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Concatenated feature maps

1x1 Conv + Sigmoid

Figure 4.2: The deep learning architecture that was used for this work, heavily inspired

from U-Net [20]. C is the initial number of feature channels in the first layer of the

architecture and I is initial the spatial size of the input image (or patch). The number of

feature channels and spatial size for subsequent layers are given in relation to the initial

values. The input is a patch from one of the Capella images and the output is a pixel

wise segmentation map for that patch. Diagram created using [110].

were identically shuffled before being split into smaller training batches and associated

mask batches. Shuffling the data ensures that the batches that are presented to the

network for each epoch are unique. Each batch was passed through the network and

predictions were generated for each enclosed tile and from these predictions the loss for

the batch was calculated with reference to mask tiles. The parameter gradients were

derived from this loss and an optimisation step was taken. To monitor the networks

ability to generalise to unseen data and to avoid overfitting the training set, after each

epoch the network was evaluated on the validation set using dice coefficient as the

metric. To further explore the networks ability to generalise, on completion of training

the epoch which performed best on the validation set was evaluated on the test set, again

using dice coefficient as the metric.

The optimizer used for training was ADAM which differs from optimizers like

Stochastic Gradient Descent (SGD) [112] in that it maintains an adaptive learning rate

(up to an initial upper limit) for each network parameter which updates as the network

trains, instead of assigning each parameter the same learning rate. ADAM was chosen

because it has proven faster convergence than optimizers like SGD [113]. There is

debate as to whether ADAM is more prone to converging towards solutions with poorer

generalisation when compared to other optimizers like SGD [114], however given the

time constraints of the project, this potential pitfall was deemed acceptable in favour

of faster training. The default PyTorch implementation was utilised which uses the

optimizers hyperparameters recommended in the original paper [113, 115].
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Parameter Description
Loss Function The loss function to optimise during training.

Tile Size The tile size to use during training.

Batch Size The batch size to use as part of the training procedure, largely determined by hardware memory constraints.

Epochs The number of epochs (passes of the entire dataset) to complete as part of the training procedure. All conducted experiments were

trained for 50 epochs.

Initial Learning Rate Defines the initial learning rate for the ADAM optimiser. For ADAM, this specifies the upper limit of the step that can be taken when

modifying the parameter values. For all experiments an initial learning rate of 0.001 was chosen, as recommended in the original

paper [113].

Threshold Defines a value between 0 & 1 that pixel values in the probability mask must be greater than for them to be declared as windthrow.

Initial Channel Size Defines the number of channels in the initial feature map in the first layer of the U-Net model. All subsequent layers channel sizes

are derived from this initial channel size, see Figure 4.2.

Bilinear Boolean parameter for whether of not the up-sampling convolutions use bilinear up-sampling (True) or transposed convolution

(deconvolution) up-sampling (False), see [30] for how they differ.

Transformations PyTorch transformations and augmentations that were applied to the training data. A full list of available augmentations is given by

[116].

Dropout probability The probability to zero elements of the input tensor during training. The zeroing of elements is chosen according to a Bernoulli

distribution [117].

Table 4.1: The parameters (and a description of them) that could be tuned during the

model training procedure.

4.4 Deep Learning Experiments

All modifiable training parameters are detailed in Table 4.1 and the following sections

discuss the combinations which formed the basis for the conducted experiments. All

experiments were trained for 50 epochs, used an initial learning rate of 1×10−3, L2

regularization [118] of 1× 10−8 and model weights were initialized by the LeCun

uniform initializer [119]. Each model took around 4 hours to train and around 30-45s

to create a full prediction mask for one of the Capella images.

4.4.1 Patch & Batch Size

The trade off between batch and patch size has been noted in the remote sensing

literature but is rarely elaborated. The effect was investigated by establishing the largest

possible hardware limited batch size for the 512 patches, which was determined to

be 4, and from this the largest batch sizes for the 256 and 128 patches were derived

to be 16 and 64 respectively. Specifying the batch sizes in this manner ensured that

the same number of gradient steps would be taken for each epoch for each size of

patch, ensuring that any differences would be down to the interaction between batch

and patch size. For each patch/batch pair the model was trained against dice loss with

an initial channel size of 64 without augmentation or dropout. Dice loss was chosen as

an educated guess for these initial experiments as it has been shown to work well for

datasets with mild class imbalance and is capable of handling different spatial patterns

like those observed in the windthrow masks [50]. The effect of different up-sampling



Chapter 4. Methodology 28

techniques was concurrently investigated, with the described experiment repeated for

both deconvolution and bi-linear up-sampling. Finally, the thresholding level is a

tunable hyper-parameter and whether this influenced generalisation performance was

investigated by evaluating the dice coefficient for the validation set with binary masks

produced at 0.3;0.5;0.7 thresholds. The effect of smaller batches for the smaller patch

sizes was not investigated as the benefits of larger batches is well established [40, 62].

4.4.2 Loss function

The combination of patch; batch; up-sampling; threshold that generalised best to the

validation and test set was taken forward to investigate the performance of different

loss functions. The choice of loss function plays an essential role in determining the

model segmentation performance and one cannot say conclusively which loss function

will work better on a particular dataset. Therefore the performance of the following

loss functions was investigated: binary cross-entropy (BCE) loss, focal loss, dice loss,

Tverksy loss and focal Tverksy loss. These loss functions were chosen as they represent

a spread of functions that have been shown to perform uniquely, dependent on the

distribution of the given dataset [50]. Except for BCE loss, these functions are not

included with PyTorch and therefore implementations of them provided to the following

Kaggle competition were integrated into the training procedure [120]. What follows is a

succinct description of each of these loss functions; the hyper-parameter combinations

which were trained and results are discussed in Section 5.

BCE loss is defined as a measure of the difference between two probability distri-

butions for a given random variable and focuses on maximising the probability that

the correct pixels are predicted. BCE loss is widely used for segmentation tasks and

performs best for distributions with balance amongst the classes [52]. For convenience,

defining the predicted class probabilities for binary classes by Equation 4.2, allows the

BCE loss to written as Equation 4.3

pt =

p, y = 1

1− p, y = 0
(4.2)

LBCE(y, p) =− log(pt) (4.3)

where y is the true class label and p is the predicted probability. Focal loss is a

variant of BCE loss that down-weights the contribution of easy examples to allow the
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model to focus of learning harder examples. Focal loss was designed to extend BCE

loss to perform well for datasets with highly imbalanced classes [51]. By again making

use of Equation 4.2, Focal loss can be defined by 4.4

LFocal(y, p) =−α(1− pt)
γ log(pt) (4.4)

where α and γ are hyperparameters and setting α = 1;γ = 0 recovers the standard

BCE loss.

Dice Loss modifies the dice coefficient metric into a loss function and effectively

calculates the dice coefficient by working with predicted probabilities instead of thresh-

olded binary labels. This loss function is region based instead of distribution based like

BCE/Focal loss and focuses on maximising the intersection between predictions and

corresponding masks. Not being distribution based allows dice loss to perform well

regardless of class imbalance [53]. Dice loss is defined by Equation 4.5

LDice(y, p) = 1− 2yp+1
y+ p+1

(4.5)

where y is the true class label, p is the predicted probability and a 1 is introduced in

the numerator and denominator to avoid division by zero in the case of y = p = 0.

Tversky loss is similar to dice loss but is weighted by α and β constants that control

how false positives and false negatives are penalised in the loss function respectively as

their values increase [121]. Tversky loss is defined by Equation 4.6.

LT versky(y, p) = 1− 1+ yp
1+ yp+α(1− y)p+β(1− p)y

(4.6)

For the case of α = β = 0.5 Tversky Loss reduces to Dice loss. The β parameter in

particular has application in situations where models can be misleadingly performant by

making highly conservative predictions [121]. Focal Tverksy loss is a variant of Tverksy

loss which similar to focal loss, down-weights the contribution of easy examples and is

defined by Equation 4.7

LFocalT verksy(y, p) = (LT versky(y, p))γ (4.7)
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4.4.3 Ablation Studies

The loss function which generalised best to the validation and test sets from the previous

experiments was utilised for further ablation studies. From Figure 4.2 it can be seen

that the initial feature map channel size greatly influences the complexity of the model.

Lightweight versions of U-Net with smaller initial feature map channel sizes have found

success in other remote sensing segmentation tasks [122, 62] and for certain medical

image segmentation tasks [123]. Therefore, it was investigated whether smaller initial

feature map channel sizes could achieve comparable performance to that of the standard

64 that U-Net is usually trained with. Less complex models are less likely to overfit the

training data but likely have a lower performance ceiling [43]. Perhaps more relevant to

this task is that less complex models offer faster training and prediction times, which is

useful when the goal is to rapidly segment windthrow boundaries.

Augmentation encompasses a suite of techniques that increase the size of the training

dataset which can enable more performant models to be trained. Many augmentations

techniques exist and investigating them all was beyond the time frames of this project

[98]. Therefore, only brightness/contrast augmentations and horizontal/vertical flips

were investigated. Brightness & contrast jittering was chosen under the hypothesis that

it may be able represent the differences in shades between SAR images. The jittering

was implemented by specifying α between [0,1] such that a factor (φ) for each batch was

uniformly drawn between φ =U [1−α,1+α], brightness and contrast modifications

were then made in random order for each image in the batch relative to its pixel values

and according to φ. Horizontal/Vertical flips were chosen as forests in SAR images

appear different dependent on the direction of incoming radiation and it was believed

flips may help a model to learn these differences. A flip probability was defined and

each patch was given the opportunity to flip horizontally and then vertically with this

probability. Finally, whether dropout would be beneficial for the most performant

combinations was investigated. Models were retrained with varying levels of dropout,

which was only implemented after the final DoubleConv+ReLU layer.
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Results & Discussion

5.1 Classical Baselines

The results of the Gaussian Naive Bayes (GNB) and Logistic Regression (LR) classifiers

are shown in Table 5.1. The LR classifiers achieved comparable results to what was

achieved with LR for classifying windthrow in optical images, however the GNB classi-

fiers performed significantly better [21]. Contrast stretching was shown to be beneficial

and this influenced the decision to use contrast stretched patches for the deep learning

learning model. Performance between the validation and test sets remained comparable

and this is likely because no evaluation was performed on the validation during training.

The model was evaluated on the validation and test set after training and therefore

had no opportunity to acquire an affinity towards the validation set. A more rigorous

approach that monitored validation performance after each training batch may have

improved the LR performance. The GNB model performed surprisingly well, achieving

comparable dice coefficient to that for building segmentation in SAR imagery with a

deep learning approach [56]. This perhaps indicates that the independence assumption

taken by GNB classifiers is somewhat sensible for windthrow pixels. Regardless, the

resulting dice scores are poor.

Model Image Type Val Dice Score Test Dice Score

GNB σ0 Cal 0.157 0.159

GNB Contrast Stretched 0.201 0.198

LR σ0 Cal 0.066 0.067

LR Contrast Stretched 0.082 0.082

Table 5.1: Results for the classical baselines. GNB (Gaussian Naive Bayes). LR (Logistic

Regression)

31
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Model Patch Size Batch Size Up-Sampling Best Val Best Val Test Set Test Val

technique Epoch Dice Score Dice Score Diff

512Deconv 512 4 Denconvolution 27 0.495 0.420 -0.075

512Bilinear 512 4 Bilinear 9 0.525 0.427 -0.098

256Deconv 256 16 Denconvolution 33 0.629 0.626 -0.003
256Bilinear 256 16 Bilinear 42 0.649 0.632 -0.017

128Deconv 128 64 Denconvolution 50 0.690 0.558 -0.132

128Bilinear 128 64 Bilinear 36 0.713 0.582 -0.131

Table 5.2: Results of the patch size, batch size and up-sampling technique experiments.

Validation and test dice scores are calculated from binary masks thresholded at 0.5.

5.2 U-Net Model

Results from investigating the concurrent effects of patch size, batch size, up-sampling

technique are delineated in Table 5.2. Models were trained with dice loss and the choice

of patch/batch size combo greatly influenced the final performance and generalisation

capability; larger 512 patches perform worst on the validation set whilst 128 patches

perform best with 256 patches performance in between. 512 and 128 patches experience

a significant drop in performance when generalised to the test set, observed to a lesser

extent with the 256 patches. All models outperformed the classical baselines.

This interaction can be further explored by inspecting the training curve shown by

Figure 5.1. The greatest reduction in loss is achieved in the initial epochs, after which

the loss steadily decreases for each model at a similar rate. The benefits to training speed

for larger batches when utilising batch normalization is well known so it is suspected

that even though the chosen patch / batch size combinations present the same number of

pixels to the model, smaller patch sizes have the opportunity to present a wider spread

of pixels. When batch normalisation standardises the data the calculated means and

standard deviation are therefore more representative of the underlying distribution of the

pixels; leading to faster training. It is suspected the poor performance from the 512 tiles

is a consequence of the model learning slowly with these tiles, whilst the 128 tiles faster

learning is potentially leading to overfitting evidenced by the large drop in performance

on the test set. Training with 256 tiles appears to be a good balance between training

speed and mitigating overfitting.

Table 5.2 further shows that for each batch/patch combination bilinear up-sampling

achieved higher validation/test dice score than deconvolutional up-sampling. Similar

results have been observed when segmenting trees in high resolution airbourne optical

imagery [124]. Deconvolutional up-sampling has been shown to introduce checkerboard
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Figure 5.1: Training curves for each batch/patch size combinations (left). Also shown are

plots which show how the dice coefficient for the validation set varies when calculated

with binary masks produced at different probability thresholds (middle & right). For each

graph y-axis is loss and x-axis is epochs.

artifacts [125] which are not present with bilinear up-sampling; it is hypothesised that

during U-Nets expansive path these checkerboard artifacts could be misinterpreted as

strong features by the model and be distracting to the segmentation task. Figure 5.1

also illustrates the effect on the validation dice score by thresholding at 0.3;0.5;0.7. The

validation dice score for each combination when plotted against the training epoch was

quite erratic so to better understand trends the data is presented as a 5-point moving

average. The validation dice score remained quite comparable regardless of threshold

level and the epoch with the highest validation dice score was the same for each model

regardless of threshold. This indicates that U-Net is capable of producing probability

masks with confident predictions which results in the chosen threshold level being

unimportant as the probability mask already closely resembles generated binary masks.

Based on these results a patch size of 256, batch size of 16, bilinear up-sampling and a

threshold level of 0.5 was chosen for subsequent experiments.

The loss function hyper-parameter combinations that were explored are detailed

in Table 5.3, where the baseline is the most performant model from the previous

experiments. An inspection of these results reveals that none of the experimented

loss functions exceeded the baselines performance on the validation set and only the

Tverksy0802 model was able to slightly exceed the baseline when generalised to the test

set. Figure 5.2 illustrates the validation dice score against epochs for each loss function

which is again presented as a 5 point moving average to aid in interpretation. For visual

clarity the models are grouped as focal loss experiments and dice derived loss functions.

The focal loss experiments demonstrate that BCE loss has the least erratic curve and
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Model Loss α β γ Best Val Best Val Test Set Test Val

Function Epoch Dice Score Dice Score Diff

Baseline Dice - - - 42 0.649 0.632 -0.017

BCE BCE - - - 37 0.641 0.614 -0.027

Custom BCE + 0.1 Dice - - - 41 0.636 0.595 -0.041

Focal Focal 0.8 - 2 23 0.581 0.523 -0.058

Tverksy0604 Tverksy 0.6 0.4 - 37 0.628 0.615 -0.013

Tverksy0703 Tverksy 0.7 0.3 - 33 0.620 0.626 0.006

Tverksy0802 Tverksy 0.8 0.2 - 41 0.618 0.634 0.016
Tverksy0208 Tverksy 0.2 0.8 - 44 0.561 0.492 -0.069

Tverksy0307 Tverksy 0.3 0.7 - 5 0.564 0.518 -0.046

Tverksy0406 Tverksy 0.4 0.6 - 50 0.605 0.594 0.011

FocalTverksy1.5 Focal Tverksy 0.5 0.5 1.5 30 0.617 0.617 0.000

FocalTverksy2 Focal Tverksy 0.5 0.5 2 22 0.582 0.538 -0.044

FocalTverksy3 Focal Tverksy 0.5 0.5 3 10 0.604 0.501 -0.103

Table 5.3: Results of loss functions experiments, see Section 4.4.2. Each model was

trained for 50 epochs with channel size 64, patch size 256, batch size 16 and thresholded

at 0.5.

remains quite constant in performance past 20 epochs. The baseline dice model is more

erratic, averaging lower performance overall but with spikes of performance at certain

epochs above that achieved by BCE. Dice loss demonstrates an increasing trend up to

around 40 epochs before falling off which is indicative that overfitting has begun to

occur. To investigate the benefit of simultaneously maximising pixel probabilities (BCE

Loss) and intersection between mask and prediction (Dice Loss) a model was trained

with a custom loss of BCE +0.1Dice. The dice loss was weighted by 0.1 to bring its

observed loss range during training of 0.72 → 0.49 to be comparable of that observed

for the BCE loss 0.14 → 0.03 such that they would be weighted somewhat equal during

training. This custom loss curve sat somewhere between BCE and Loss and even

averaged the best perform between epochs 35-40, however this did not translate to

better test set generalisation where it performed worse than BCE and Dice. The effect

of incorporating focal loss aspects into BCE and Dice loss was investigated for various

γ values was shown to not be beneficial to performance.

Figure 5.2 additionally illustrates the effects of varying α and β within the Tverksy

loss function. Higher α weights precision more important than recall, conversely

higher β weights recall higher than precision. It can be seen that higher α values

perform comparably to standard Dice (α = β = 0.5) whereas higher β values perform

significantly worse. This suggests that there are some examples of windthrow that the

architecture is struggling to learn how to segment, even when it is rewarded for not being

precise with its predictions. This combined with the performance drop observed when
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Figure 5.2: Validation Dice score for focal loss experiments (left) and dice score derived

loss functions (right). Data is presented as a 5 point moving average.

focal aspects are introduced into the loss functions indicates that the class imbalance

between “windthrow” and “non windthrow” pixels is not the limiting performance

factor. Instead performance seemed to be limited by the architecture not being able to

cope when asked to focus on harder examples. To investigate this complete masks for

each image were generated using the baseline dice model and the dice score for each

complete image mask was calculated, the results of which are illustrated by Figure 5.3.

Figure 5.3 reveals that the models segmentation performance is related to the geome-

try that the SAR image was acquired with, this correlated with how easy windthrow was

to manually identify during labelling. The highest performance is achieved in the two

images where the direction of the felled timber is perpendicular to the range dimension

(Monynut SP; Glenisla SS). This performance drops off when the fell direction is some-

what perpendicular to the range dimension (Glenisla SP) and the model is incapable

of segmenting windthrow when the fell direction is parallel to the range dimension

(Fetterangus SS). Interestingly, the higher spatial resolution from SP over SS mode

is not a deciding factor in final performance as the Glenisla SS image covers the area

of the Glenisla SP image and despite having lower spatial resolution it demonstrates

fewer omissions than the Glenisla SP image of the same area. Failure to segment any

windthrow in the Fetterangus SP is the suspected reason for the model architecture

struggling when asked to focus on hard examples. This perhaps shouldn’t come as a

surprise the since the areas of windthrow in this image are visually distinct compared

to the other 3 images and could only be identified during the labelling stage with the

aid of optical imagery. Further exacerbating the challenge of segmenting this image is

that it contained the lowest proportion of windthrow leading to few examples for the

architecture to learn from. Small amounts of training data often causes overfitting and
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Figure 5.3: Full predictions masks and associated dice score for each image. Green

represents areas of agreement between labels and predictions (intersect), Red repre-

sents areas which should have been predicted as windthrow but were not (omissions),

pink represents areas which were predicted as windthrow but should not have been

(commissions). The yellow arrow is the approximate direction in which the timber fell.

The Dice score for the complete image mask is presented for each image.

it may be the case that the architecture has overfitted the other 3 images. Despite this

challenge, the combined test set dice score of 0.63 when utilising Dice Loss did coinci-

dentally match that achieved by the previous study utilising U-Net for road segmentation

in SAR imagery [61]; which also matched the dice score achieved for segmentation

of windthrow in optical imagery [21]. The test set results are competitive with the

most established SAR temporal change detection approach utilising Sentinel-1 which

averages a dice score of ≈ 0.7 [9]. However, omitting test tiles from the Fetterangus

image yields a reduced test set dice score of 0.71.

It can be seen in Figure 5.3 that the Fetterangus image is less bright than the other

3 images which led to the hypothesis that Brightness/Contrast augmentations would

aid the architecture in segmenting areas of windthrow in this image. Additionally, the

effect of horizontal/vertical rotations were investigated to deduce whether this would

mitigate the observed dependence on the imaging geometry. Dice loss was utilised

for these experiments which were conducted simultaneously with varying the initial

feature map channel size, the results of which are listed in Table 5.4. The baselines in

this table refer to models trained without augmentations for a specific Initial Channel
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Model Loss Channel Jitter Flip % Best Val Best Val Test Set Test Val Fetterangus

size Epoch Dice Score Dice Score Diff Dice Score

64Baseline Dice 64 - - 42 0.649 0.632 -0.017 0.0

64Dice0125J Dice 64 0.125 - 45 0.644 0.635 -0.009 0.0

64Dice025J Dice 64 0.250 - 43 0.612 0.590 -0.022 0.0

64Dice05J Dice 64 0.500 - 50 0.580 0.519 -0.061 0.0

64Dice05F Dice 64 - 0.5 31 0.600 0.602 0.002 0.0

32Baseline Dice 32 - - 42 0.607 0.627 0.020 0.0

32Dice0125J Dice 32 0.125 - 40 0.606 0.603 -0.003 0.0

32Dice025J Dice 32 0.250 - 20 0.595 0.596 0.001 0.0

32Dice05J Dice 32 0.500 - 50 0.592 0.618 0.026 0.0

32Dice05F Dice 41 - 0.5 31 0.557 0.595 0.038 0.0

16Baseline Dice 16 - - 38 0.612 0.630 0.018 0.0

16Dice0125J Dice 16 0.125 - 43 0.598 0.584 -0.014 0.0

16Dice025J Dice 16 0.250 - 49 0.600 0.577 -0.023 0.0

16Dice05J Dice 16 0.500 - 49 0.601 0.561 -0.061 0.0

16Dice05F Dice 16 - 0.5 42 0.591 0.598 0.007 0.0

Table 5.4: Results of jittering and horizontal/vertical flipping augmentation experiments.

Each model was trained for 50 epochs with patch size 256, batch size 16, thresholded at

0.5 and used bilinear up-sampling.

Size (ICS). An interesting result from these experiments is that smaller ICSs 32; 16

achieve almost identical test set performance to that achieved with a model trained

using U-Nets standard 64 channels. These models were quicker to train, taking 1 hour;

30 minutes respectively for 32; 16 ICS compared to the 4 hours it took to train with 64

ICS. Predicted masks for a full image were also quicker, taking approximately 12s; 6s

for 32; 16 ICS respectively compared to the 45s it took to mask a full image with 64

ICS. Considering that the goal is to rapidly segment windthrow, it is encouraging that

simpler architectures achieve comparable performance to more complex models.

Table 5.4 further reveals that contrast/brightness augmentations did not improve per-

formance; no model that utilised augmentations was able to map any of the windthrow

in the Fetterangus image and only one combination (64Dice0125J) slightly improved

upon its respective baselines test set performance - all others reduced performance.

Despite the previous hypothesis that contrast/brightness augmentation may be beneficial,

it was instead concluded that they likely interfere with the Sigma Nought calibration

which leads to them being detrimental to performance. Horizontal/vertical flips of the

training tiles was found to be similarly unhelpful for each channel size, the suspected

reason for this is the geometry inherent in SAR images. Certain features will only

appear in certain positions of the images and therefore training with flipped images may

encourage the model to learn nonsensical features that will never be present in SAR

imagery; leading to poorer generalisation.
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Model Loss Dropout Best Val Best Val Test Set Test Val

Function Proportion Epoch Dice Score Dice Score Diff

DiceBaseline Dice - 42 0.649 0.632 -0.017

Dice025D Dice 0.25 50 0.614 0.569 -0.045

Dice05D Dice 0.5 33 0.612 0.651 0.039

BCEBaseline BCE - 37 0.641 0.614 -0.027

BCE025D BCE 0.25 45 0.665 0.611 -0.054

BCE05D BCE 0.5 25 0.641 0.614 -0.027

CustomBaseline BCE + 0.1 Dice - 41 0.636 0.595 -0.041

Custom025D BCE + 0.1 Dice 0.25 43 0.627 0.594 -0.045

Custom05D BCE + 0.1 Dice 0.5 37 0.624 0.604 -0.020

Table 5.5: Results of the dropout experiments. Each model was trained for 50 epochs

with channel size 64, patch size 256, batch size 16, thresholded at 0.5 and used bilinear

up-sampling.

The final experiments investigated the effect of different proportions of dropout,

which tends to encourages an architecture to learn more sparse feature representations.

It was believed that these sparse representations may improve the ability to segment

the less obvious windthrow as they would regulate the model away from focusing on

specific features which may be only present in the obvious examples of windthrow.

Dropout was investigated with Dice Loss, BCE Loss and the previously described

combination of them. Dice Loss was chosen as it had generalised best except from an

extreme α weighted Tversky loss. This Tversky loss would not encourage improving

the performance of the harder examples and was therefore not utilised. BCE loss was

chosen as it was consistent in training but plateaued relatively early and dropout may

extract further performance. The choice to investigate the combination of these loss

functions was motivated mostly by curiosity. The results of these experiments are listed

in Table 5.5, BCE Loss with 0.25 dropout was the only model that was able to exceed

the original Dice Loss baseline on the validation set, however this did not extend to

better test set generalisation. Dropout of 0.25 reduced the test set performance for each

Loss function respective to their baselines, whereas 0.5 dropout matched or exceeded

the test set performance respective to baseline for each loss function. Dice loss with

0.5 dropout was the model that generalised best to the test set across all experiments,

achieving a dice coefficient for all test tiles of 0.65 and 0.73 when Fetterangus tiles are

omitted, leading to the conclusion that relatively high dropout is beneficial for the task

of windthrow segmentation.



Chapter 6

Conclusion

SARs ability to image day and night in all atmospheric conditions, combined with

quick data delivery offered by Capella and ICEye’s constellations enables sub-meter

resolution satellite imagery to be reliably obtained almost on demand. The potential use

cases for these products are vast and the commercial SAR market is expected to grow

rapidly as more parties become aware of products on offer. This research demonstrates

that Capella imagery combined with a U-Net inspired CNN offers a potential solution to

the unsolved problem of rapid and reliable identification of windthrow; the current most

reliable approach utilises Sentinel-1 and gives an overview in approximately 4 weeks.

The presented methodology has the potential to reduce this to less than 1 day and the

most performant model achieves a competitive dice score of 0.73 when generalised to

unseen data from images with preferred geometry and polarisation.

U-Net was expected to achieve good results when applied to SAR imagery given its

successes across other fields and this project confirmed this. An interesting observation

is the importance of the acquisition properties of the SAR imagery. Consistent with

the literature, it was found that windthrow is most readily identifiable in HH polarised

images. It was further discovered that whether the fell direction of the timber was

perpendicular to the range dimension of the image significantly influences the ease of

manual windthrow identification and model segmentation performance, a phenomena

previously unobserved. 3 of the 4 utilised HH images were acquired with this geometry

and achieved competitive segmentation results whilst the remaining image had the range

dimension parallel to the fell direction and the model was incapable of segmenting

windthrow in this image. Another observation is that data augmentation techniques

(brightness/contrast jittering; flipping) regarded to be useful for optical imagery were

not as obviously beneficial for SAR. Such idiosyncrasies are important to establish to
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enable researchers to best make use of these products, especially considering that they

come at a cost.

Whether the convenience of mapping the extent of windthrow in less than a day

outweighs the associated financial cost will ultimately be determined by the authorities

that are impacted by the socio-economic consequences of windthrow. This work does

however demonstrate that the methodology is viable, with the caveat that the flexibility

offered by Capella when specifying acquisition parameters should be utilised. The

polarisation mode should be HH and the potential fell direction should be taken into

consideration when determining the orientation of the SAR image dimensions.

6.1 Future work

More sophisticated approaches for improving segmentation performance in the image

with the non-preferential geometry could be explored. These include introducing the

estimated fell direction as a parameter, experimenting with soft labels where the harder

examples are labelled < 1, modifying U-Net to perform multi-class segmentation

with multiple windthrow classes based geometry or training separate models based on

image geometry. Whilst useful to explore, from a practical standpoint it makes more

sense to task the constellation to acquire imagery in a geometry where windthrow is

easily identifiable. An interesting research avenue would instead be to investigate the

potential of stripmap images as these were not utilised for this research. Stripmap

images have the largest spatial size and therefore provide the most coverage for the

cost but have the coarsest resolution. Resolution was however not found to be a

deciding factor in segmentation performance. Therefore if stripmap images yield

competitive performance they offer the potential for rapid and widespread identification

of windthrow. If resolution becomes a limiting factor, Capella are launching satellites

with upgraded imaging capabilities in 2023 which may mitigate this [126].

Transfer learning (using the weights from a model trained on another dataset starting

point) has been successful for classification and segmentation tasks in optical imagery

where the dataset is limited. However, it has been observed that models trained on

optical imagery do not transfer well to SAR [61]. An interesting experiment would be

to train a model using the QuadPol images from the larger MSAW dataset and perform

transfer learning for windthrow segmentation using this model. Capella images are

SinglePol therefore it is recommended the QuadPol image be spliced such that only the

HH channel is used for this experiment.
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