
Empirical Comparison of Current M2M

Protocols

Ajitaa Jagannathan

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2022

Abstract

Since the beginning of digital computing, machine-to-machine(M2M) communication

has been a crucial component of enterprise architecture. Phone notifications available

in smart watch, is one such example of M2M communication that almost everyone

would have experienced. Several protocols, also referred to as M2M protocols, specify

the semantics and syntax of messages transmitted across the network for this M2M

communication to take place. The fact that there are so many choices for M2M protocols

to choose for M2M communication to take place makes it difficult to choose which

protocol to utilise for a given use-case. Unfortunately, there are some cases where

programmers pick the incorrect M2M protocol for a specific use-case thereby degrading

the application performance. To ensure the system achieves maximum performance,

a protocol’s advantages, disadvantages and performance in different settings should

be considered before adopting it in a system. This study addresses this problem and

provides an empirical comparison of three M2M protocols– REST1, SOAP2, gRPC3

by developing the servers for each protocol in two programming languages– Java and

Go, thereby adding an additional layer of comparison. The comparison documents the

performance of the protocols in different scenarios such as: message size variation,

server-side database interaction, concurrency variation, and monitors the network level

packet exchange. Apart from these, the soft facts and characteristics are documented

and compared for each protocol. From this comparison, developers will be able to fully

comprehend the three protocols and its behaviour in different scenarios enabling them

to choose the protocol that is most appropriate for a given use case.

1REST- Representational State Transfer
2SOAP- Simple Object Access Protocol
3gRPC- Google Remote Procedure Call

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy.

It did not involve any aspects that required approval from the Informatics Research

Ethics committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Ajitaa Jagannathan)

ii

Acknowledgements

I want to express my gratitude to my supervisor, Dr. Michael Glienecke, for igniting

my interest in M2M Communication Protocols, guiding me through my dissertation,

and patiently answering all of my questions while being incredibly understanding. He

offered me a tremendous amount of assistance, and I am very appreciative of that.

Additionally, I want to express my gratitude to my loving family, who motivated and

supported me ceaselessly from miles away and my friends, who helped me with my

effort by being supportive and encouraging.

iii

Table of Contents

1 Introduction 1
1.1 Aim . 2

1.2 Motivation . 2

1.3 Results Achieved . 3

1.4 Structure of the Dissertation Report 4

2 Background 5
2.1 REST . 6

2.2 SOAP . 7

2.3 gRPC . 9

2.4 Literature Review for the Comparison of Current M2M Protocols . . . 9

2.5 Implementation of the Comparison and How it Stands Out From Previ-

ous Work . 11

3 Description of the work undertaken 13
3.1 Stage 1: Test Definition and Development Phase 13

3.1.1 Implementation in this Phase 14

3.1.2 Challenges and Solutions . 16

3.2 Stage 2: Test the Protocol Implementations 17

3.2.1 Implementation in this Phase 19

3.2.2 Challenges Faced and Solutions Adopted 19

3.3 Stage 3: Documentation and Comparison 20

3.3.1 Implementation in this Phase 20

3.3.2 Challenges and Solutions . 20

4 Analysis or Evaluation 21
4.1 Comparison Based on Message Size Variation 21

4.2 Comparison Based on Server-side Database(DB) Interaction 26

iv

4.3 Comparison Based on Request Load Concurrency 28

4.4 Comparison Based on Network Level Packet Exchange 32

4.5 Comparison between Java and Go 36

4.6 Comparison on Soft Facts . 36

5 Conclusion 39
5.1 Observations and Analysis . 39

5.2 Suggestions for Future Work . 40

Bibliography 41

v

Chapter 1

Introduction

The process through which machines communicate with one another in a service based

architecture is referred to as machine-to-machine (M2M) communication. An example

of M2M communication would be the communication between a smart watch and a

smart phone, wherein data like daily activities, heart rate, step count are synced from

the watch to the phone, and notifications like text messages, alerts, are sent to the smart

watch from the smart phone. The information provider typically receives a request from

the requester, processes it, and then returns a response thereby providing the requester

or client with some service. This kind of network communication is used in a variety of

applications, and it requires precise set of standards and specifications. M2M protocols

play this important role by defining the semantics and syntax of messages delivered

over networks. M2M communication can be carried out through a variety of M2M

protocols.

For M2M communication to take place there are endpoints on the information or

service provider, sometimes referred to as the server, that are developed in line with

the specifications and guidelines of the M2M protocols. An URI-Uniform Resource

Identifier is essentially what an endpoint is, and its usage is implied by the access

method. The server or the information provider can be invoked for a particular service

by the consumer through the appropriate endpoint and access method. When developed

accordingly, an endpoint can be used to build an application architecture that allows

interaction between many different types of consumers. IoT (Internet of Things)

devices, mobile phones, and computers can all use the same endpoint. When creating

an endpoint for a specific use-case, the importance of choosing the most optimal M2M

protocol is sometimes overlooked. Before making a decision, one must assess the

protocol’s advantages and disadvantages as well as understand how it would perform

1

Chapter 1. Introduction 2

in different scenarios. Thus, this project seeks to address this issue by offering a

thorough comparison of the M2M communication protocols REST (Representational

State Transfer), SOAP (Simple Object Access Protocol), and gRPC (Google Remote

Procedure Call). This comparison considers the characteristics of each protocol as well

as how well it performs in diverse settings. It also features a programming language

component in the comparison taking into account Java and Go. The upcoming sections

in this chapter detail the aim, motivation, results achieved and the structure of the overall

dissertation report.

1.1 Aim

This project aims to provide an empirical comparison of REST, SOAP, and gRPC

protocols. This comparison documents the features of each of the protocols and their

performance in different settings. Both Java and Go were used in the development

of the protocol based servers for this comparison. The goal of this comparison is to

provide developers with a thorough understanding of each protocol and assist them in

determining which one is most suitable for a particular use-case, rather than identifying

which of the three protocols is the best. Since each protocol also takes into account the

programming language dimension, the comparison broadens its scope in order to assist

developers in selecting the programming language that best suits their needs in addition

to the protocol.

1.2 Motivation

Endpoints or interfaces have become more important than ever before as a result of the

necessity for digital-first strategy — businesses striving toward organizing in a digital

environment1. The endpoints are developed following the specification of an M2M

protocol. Each protocol has its own set of features, security options, advantages and

disadvantages. Multiple research and comparison has been done in the past to compare

M2M protocols but, only one or two settings are taken into account for the comparison.

This empirical comparison is done taking into account five test settings, namely:

• Message Size Variation

• Server-Side Database Interaction
1https://www.redhat.com/en/blog/role-apis-increasingly-digital-world

Chapter 1. Introduction 3

• Concurrency in Request Load

• Network Level Packet Exchange

• Soft Facts and Characteristics

This would enable a software developer to gain deep insights on the working of the

protocols in different settings and choose the most appropriate protocol for a use case.

This project proposal does not require the reader to have prior knowledge on M2M

protocols. The reader will gain an understanding of what they are and how and why

their performance varies in different test scenarios.

1.3 Results Achieved

For the empirical comparison of current M2M protocols, servers were developed in

Java and Go for each of the chosen protocols- REST, gRPC, and SOAP.

For any M2M protocol, there are three different sizes in messages being transmitted

namely:

• Small transaction style messages like bookings. Where short requests of a few

bytes are sent and short responses are received,

• Medium requests with medium answers within 1Mb size,

• Large requests which are comprised of several Mbs of data.

The comparison has documented the behaviour of the protocols for variation in message

size ranging from few kilobytes(kb) to few megabytes(Mb).

The servers developed conforming to a protocol’s standards might need to interact

with a database by performing a selection query or insertion query. The performance of

the server for each of the protocols when a database interaction is involved is recorded

in both Java, and Go.

In terms of real world scenarios where an endpoint receives thousands of requests at

a time the servers have been tested for concurrent requests upto ten thousand and how

the response time varies with respect to concurrency. This is done in both Java and Go

to understand how each protocol fares in each language in such a scenario.

The servers developed in accordance to each of the three protocols have different

standards for exchanging the payloads, and setting headers. The payloads may be

Chapter 1. Introduction 4

exchanged in JSON, XML, Binary format, etc and the headers for each protocol vary in

size. All of these factors cause difference in network load during communication. Thus,

the network load caused by each protocol and the order in which packets are exchanged

by each protocol is studied using Wireshark and RawCap network tools.

Lastly, the soft facts for the protocols and their individual characteristics are docu-

mented and compared with each other.

1.4 Structure of the Dissertation Report

The structure of the dissertation report is as shown in Figure1.1. The next chapter

Figure 1.1: Structure of the Dissertation Report

provides the reader sufficient background information in this domain. The reader will

be able to understand what each protocol is and how they function. Previous work is also

highlighted to the reader, to understand how the dissertation stands out from the previous

work. Chapter 3 explains the three stages in which the project was completed. The test

definition and development phase is stage 1, the test execution phase is stage 2, and the

results documentation and comparison phase is stage 3. In the fourth chapter the test

scenarios are described and the results produced are documented and compared. This

section is what would help a software developer choose the most optimal protocol for a

given use-case. The dissertation’s conclusion is presented in the last and final chapter,

which also discusses potential directions for further research on this comparison.

Chapter 2

Background

This chapter gives the reader a thorough overview of the project that was undertaken.

Readers will have a comprehensive understanding of what M2M communication proto-

cols are, how each of the selected protocols works, and how the comparison was made.

Aside from this, the reader will also be introduced to literature review– earlier attempts

to compare M2M protocols, and how this study is unique and makes a significant

contribution to the M2M communication field.

Data exchange is the process of taking data structured under a source schema and

transforming it into a target schema, so that the target data is an accurate representation

of the source data. Data exchange allows data to be shared between different computer

programs[5]. Data exchange was the driving source for the development of M2M

communication. The earliest form of data exchange was physical, where data would

be downloaded to magnetic tapes and transported to a different system. As years

passed information was transferred digitally via network wires and phone lines using

all-purpose protocols like Telnet, SMTP, FTP, and http1. Based on http are M2M

protocols like REST, gRPC and SOAP which are taken into account this comparison.

An endpoint implemented on a server following the standards of the M2M protocol

chosen, when programmed accordingly, can be used by multiple physical devices or

clients – mobile phones, IoT devices, and computers. There are several M2M protocol

options to choose from for an endpoint. In order to gain deep insights into choosing

the ideal protocol for a particular use-case, this comparison compares and contrasts the

performance and features of the three selected protocols under various scenarios.

1https://www.redhat.com/architect/apis-soap-rest-graphql-grpc

5

Chapter 2. Background 6

2.1 REST

A one-tiered software application that combines the user interface and data access code

into a single program from a single platform is referred to as a monolithic application2.

In contrast to the traditional monolithic design, there is an SOA (service-oriented archi-

tecture) architectural approach which is used in software engineering3. The flexibility,

scalability, and reliability of these services, gives an organization more flexibility when

developing business modules or services. Applications are loosely coupled as a re-

sult; REST, SOAP, gRPC are all one of many possible communication protocols in a

SOA-system.

Representational State Transfer is the abbreviation for REST. Roy Fielding used

this phrase for the first time in his doctoral dissertation [6]. It is an M2M protocol for

developing stateless, reliable online APIs. RESTful is a colloquial term used to denote

a web API– an application programming interface for the Web4 that adheres to the

REST specifications and transfers data through the http protocol. REST is being used

throughout the IT industry.

A REST request includes an http method, an endpoint(URI5) which can have

optional parameters as well separated by the ’&’ symbol, headers, and an optional body

based on the http method6. The endpoint provides access to a resource and the http

method defines what is to be done to the resource. The various http methods are:

• GET to Retrieve a resource,

• POST to Create a resource,

• PUT to Update a resource,

• DELETE to Delete a resource,

• PATCH to make partial changes to an existing resource7.

http transmits UTF-8 messages. The headers are key-value pairs, the payload body

of a message can be in any pre-defined format and the header field ’Content-Type’

indicates how to interpret the payload body. Possible values for Content-Type would

2https://en.wikipedia.org/wiki/Monolithic application
3https://collaboration.opengroup.org/projects/soa-book/pages.php?action=show&ggid=1314
4https://www.w3schools.com/js/js api intro.asp
5URI- Uniform Resource Identifier
6http Method GET usually has an empty body
7https://www.rfc-editor.org/rfc/rfc5789

Chapter 2. Background 7

be application/json for the case of JSON and text/xml for the case of XML. Usually,

the request and response bodies in REST use JSON—JavaScript Object Notation type,

which allows data objects to be represented as attribute-value pairs and arrays (or other

serializable values) as shown in Figure2.1. Status codes are issued by the server along

Figure 2.1: Example of JSON formatted text

with the response for a request that the client makes to indicate the result for the request.

Figure2.2 explains what each status code that begins with a particular prefix implies,

Figure 2.2: http Status codes and what they mean[10]

for instance, response code 200 means that processing was successful.

2.2 SOAP

SOAP abbreviated as Simple Object Access Protocol evolved from XML-RPC and

uses the XML format for sending and receiving data. XML-RPC is a remote procedure

Chapter 2. Background 8

call (RPC) protocol which uses XML to encode its calls and http as its transport

mechanism[15].

Extensible Markup Language (XML)8 is a markup language and format for storing

and transmitting data in a structured way. It mainly comprises of angular brackets which

represent a tag, as shown in Figure2.3. It was first made available in 2000 and like

Figure 2.3: Example of XML formatted data

REST, SOAP is also based on the http protocol. The client and server are referred to

as soap nodes, and an XML-based soap message is sent back and forth between them.

The XML message’s enclosing element designating it as a SOAP message is called the

SOAP Envelope. The message body is contained in the SOAP Body and header details

are contained in the SOAP header.

In order for the client to use a SOAP service’s method and learn more about it, a

unique file within SOAP called the WSDL (Web Services Description Language) file

can be generated to provide information about the service and how it operates, including

the service’s name, the methods it offers, and the parameters and return values of each

method. The schema information representing the relationships between the attributes

and elements of the XML objects being exchanged by the service calls are present

online, inline or as a dedicated file which is linked inline in the XSD (Xml Schema

Definition). It describes the arguments and their types, fields, and any limitations on

those fields (such as a maximum length or a regex pattern), among other things. Using

these XML schema informations the code for the parameters is auto generated, which

saves development time and effort. SOAP is not only supported in http but can be

also transmitted through different methods and protocols like SMTP, JMS or message

queues. When a SOAP URI is accessed over the http protocol, the server responds with

response codes as shown in Figure2.2.

8https://www.w3.org/TR/xml/

Chapter 2. Background 9

2.3 gRPC

Google Remote Procedure Call, commonly known as gRPC, is the most recent RPC

technique of machine-to-machine communication. Unlike SOAP, gRPC is significantly

more recent; it was introduced in 2015, approximately 15 years after SOAP. Like

REST and SOAP, gRPC is likewise built on the http protocol, but it uses http/2.0,

which preserves everything of http/1.1’s high-level semantics, including methods, status

codes, header fields, and URIs. What is novel about this approach is how the data is

packaged and sent between the client and the server[8]. Compared to http/1.1, http/2.0

is both faster and more reliable. While http/1.1 loads a single request for every TCP

connection, http/2.0 decreases network delay by using multiplexing, allowing for the

asynchronous delivery of all requests via a single connection between the client and web

server. Another difference noted in http/2.0 is that it does not support chunked transfer

encoding that http/1.1 supports[16]. There are two modes of gRPC communications,

namely:(1)Unary RPCs where the client sends a single request to the server and gets a

single response back, just like a normal function call, (2) Streaming RPCs where there

can be Client, Server or Bidirectional mode of streaming. The data transmitted in gRPC

is binary and much more faster than http/1.1.

Similar to SOAP, gRPC has a special file known as the .proto file which defines the

contract of gRPC services and messages. From this file, gRPC frameworks generate a

service base class, messages, and a complete client. By sharing the .proto file between

the server and client, messages and client code can be generated from end to end which

results in time being saved in the development phase.

2.4 Literature Review for the Comparison of Current

M2M Protocols

Research attempts for comparing these M2M protocols are limited in number for gRPC,

however for REST vs SOAP there are multiple literature works. The research works

studied for this comparison are detailed in descending order of relevance.

• In[12], Kumar et al compares and tries to improve the performance of REST,

gRPC, and Thrift using shared memory between the services, using Unix Domain

Sockets along with appropriate NUMA9 tuning. In this study, two settings were

9NUMA: Non-Uniform Memory Access

Chapter 2. Background 10

built: (1) Localhost Baselining, in which the client and server applications were

both hosted on the same host, and (2) Docker containers on the same host using

the network stack. In the first half of the study, Kumar et al. make an effort

to show how REST, gRPC, and Thrift respond differently when the number of

calls is kept constant at 10,000 while the payload varies from 100kB to 1000kB.

They then try implementing shared memory between the services, using Unix

Domain Sockets along with appropriate NUMA tuning to boost performance,

and record the results. As a result, this study does not focus on comparing

the protocols thoroughly(only documents how the protocols perform for varied

message size),and the reader is not provided with a comprehensive comparison

of the protocols.

• In[21], by creating applications in .NET 5.0 platform with identical functionality

in each of the three protocols, REST, GraphQL, and gRPC are compared. This

research work is published in Polish language, and Google translate is used to

attempt to understand what has been done. Measurements and comparisons were

made of parameters including the function’s processing time, the number of

transactions per second, and the amount of data processed. In this study, the

protocols are compared solely based on how the database size and operations

affects an application rather than on other factors like concurrency, significant

message size variation, and soft facts like usability, learnability, etc.

• The work done by Bolanowski et al in [2] is similar to the first test scenario in our

project– comparing the performance of the REST and gRPC when the message

size varies. However, the maximum size of message taken into consideration is

only 3.4Mb, whereas in our comparison upto 25Mb is taken into account. This

project also does not look at concurrency, or database interaction or the network

layer for REST and gRPC.

• The work done by Potti et al in [20] aims to compare the working of REST

and SOAP services when they interact with the database. Functionally similar

services are developed in REST and SOAP to compare the response time and

throughput. Similar to this are the works done by Tihomirovs et al in [23], Pavan

et al in [11], and Kumari et al in [13] which compare REST and SOAP web

services for functionally similar applications developed in REST and SOAP.

• In [22], Soni et al compare REST and SOAP web services primarily on soft facts

Chapter 2. Background 11

like architecture, security, reliability, efficiency and development and architec-

tural style. They consider one hard fact– response time for database interaction.

Similarly in [9]Halili et al compare the soft facts of REST and SOAP.

• In [18] Mulligan et al, an attempt is made to evaluate both implementations of

REST and SOAP with an emphasis on their performance with regard to both

efficiency and scalability taking into consideration factors such as latency, network

packet bytes transmitted, and performance during concurrency situations.

• It is seen that Castillo et al in[3] also compare REST and SOAP in the client

server setup, as well as master-slave setup, which are both two different setup

styles incorporated in the study.

• Including gRPC with REST and SOAP, Chamas et al in [4], focuses on the

energy consumption of protocols like REST, SOAP, Socket, and gRPC in mobile

phones. This is evaluated when algorithms of various complexities, various input

sizes and types, are executed on mobile devices. The authors put forward four

research questions out of which only one focuses on the communication protocols

and if they influence energy consumption in mobile devices. Different sorting

algorithms like bubble sort, selection sort, heap sort was implemented and run

using the three protocols to document how each protocol performed for energy

consumption. Similarly REST and SOAP are compared in Android mobile phones

by Bloebaum et al in [1]. Apart from this, in research works like[17] Malik et al

aim to compare REST and SOAP in indoor actuator networks.

One important finding from the previous works above is that each comparison focuses

on a particular scenario or maximum two but, not more and gRPC is not taken into

consideration by most of the previous literature. However, the empirical comparison

undertaken takes into consideration four scenarios and soft facts making it stand out

from previous literature work, as highlighted in the next section.

2.5 Implementation of the Comparison and How it Stands

Out From Previous Work

In the implementation of the empirical comparison of current M2M protocols four

test scenarios detailed below and multiple soft facts are taken into consideration. The

Chapter 2. Background 12

development of the server is done in two programming languages– Java and Go taking

into account a new dimension for the comparison– programming language. Each of the

four test scenarios and soft facts are highlighted along with why the implementation of

the comparison stands out from previous research work:

• Message size variation and how each protocol functions when the payload size

varies is documented. This is done in [12],[2],[4] but the maximum size of request

is within 5Mb, whereas in the comparison performed it is documented for upto

25Mb of data transmission in REST, SOAP and gRPC.

• Server side database interaction and how the protocol servers perform are recorded.

This is seen only in few of the previous works such as [21],[20], [23], [11],

[13][22].

• Variation in the server’s request load, and how each protocol functions when

the volume of requests it receives varies is documented for 10000 requests.

Concurrency is not taken into account in most of the previous work except in [18]

which considers upto 100 concurrent requests.

• The network load, and packet exchange is monitored and compared for each

protocols. In [18], the size of bytes transmitted are taken into consideration for

REST and SOAP but, not on what packets are transmitted.

• The comparison is done taking into account two programming languages– Java,

Go and also compares and contrasts soft facts for each protocol. Most of the

studies only take into account the hard facts, but the characteristics and how each

protocol varies from the other are omitted except in [22] and [9] which compares

the soft facts for REST and SOAP.

Thus, this comparison has collated and compared the performance of the protocols

in multiple test scenarios and has also taken into consideration the soft facts of the

protocols. Previous work may have done one or two of the above tests in their research

but not all of the above tests. Hence, this empirical comparison would provide software

developers a deep insight of the performance of REST, SOAP and gRPC in various

scenarios and assist them in selecting the most suitable protocol and programming

language for a given use case. The next chapter will highlight how the above work has

been undertaken.

Chapter 3

Description of the work undertaken

This section details the work undertaken for the project. By developing a server and

client for each of the M2M communication protocols in Java and Go, an empirical

comparison of the current M2M communication protocols has been conducted. The

work done for this comparison may be broken down into three stages as shown in

Figure3.1: (1) defining test scenarios and the development process, (2) testing the

protocol implementations, and (3) documentation and comparison.

Figure 3.1: Stages in the Dissertation Project

The sections that follow in this chapter go into great detail on the work done in each

stage, the challenges and problems encountered in each stage, and the solutions for the

challenges.

3.1 Stage 1: Test Definition and Development Phase

This was the first phase in the project work of comparing the current M2M commu-

nication protocols.The iterative and incremental development approach was used in

this phase to construct the server and client code for the protocols, define tests, and

13

Chapter 3. Description of the work undertaken 14

conduct in-depth protocol research. The incremental development model divides the

final application into completely functional pieces that are referred to as increments.

In each iteration an increment is developed and added to the application. This is also

referred to as the Agile development model1. Figure3.2 shows how stage1 was done

using the iterative and incremental development approach where an initial study was

done to get the background of these protocols, after which tests were defined for which

the server and client code was developed. Following this, further study was done based

on ideas generated by me and my supervisor. From this study the cycle repeated itself

until we reached the time limit to proceed to stage 2 of executing the tests.

Figure 3.2: Iterative and Incremental Flow Diagram for Stage 1

3.1.1 Implementation in this Phase

As discussed in previous sections, the code for the client and server for each of the

protocols is developed in Java as well as Go. In this stage, the set up of the environment

was done on a Windows PC.

For Java, which is a general-purpose programming language designed to enable

programmers to write once and run anywhere (WORA)[14], the SDK(Software Devel-

opment Kit) version 16.0.2 along with Eclipse version 2022-06 (4.24.0) IDE is used.

Spring Boot framework and Maven3.8.6 for managing dependencies is setup for the

project. For Go, version go1.18.3 along with Visual Studio version 1.69.2 IDE is used.

After both programming languages and their IDEs were set up, extensive research

was done on REST, SOAP, and gRPC and how they should be implemented in Java and

Go. After reading[7], it was clear how the protocols’ performance might be evaluated.

1https://medium.com/@ashutoshagrawal1010/agile-methodology-incremental-and-iterative-way-of-
development-a6614116ae68

Chapter 3. Description of the work undertaken 15

This book provided insight on how to use techniques like RED– Request rate, Errors,

Duration for a given test are measured and compared. From this learning, different test

scenarios were identified that could be run on the protocol’s server implementation.

Post this, the development of the client and server for the protocols was done in Java

and Go to facilitate the running of tests. This process of research and development was

iteratively done until it was time for Stage 2 which focused on the running and reporting

of these tests.

The test settings and scenarios identified as a result of three iterations of this phase

are:

• Message Size Variation and the Performance of the Protocols: This scenario was

targeted at recording how the protocols perform when they received requests of

sizes varying from few hundred kbs to 25mb. Generally, requests to an endpoint

can be classified to three types based on their size namely: (1)Short requests

which are of a few bytes or minimal Kbs, these requests are for short transactions

like booking tickets, updating fields in an account, etc (2)Medium sized requests

which are of a few Kilobytes in size within 1Mb and (3)Large sized requests

which are of a few Mb, which may involve large files like uploading photos, pdfs,

etc. This test scenario aims to test REST, SOAP and gRPC when message sizes

are varied and record how each protocol performs in terms of response time.

• Server-Side Database(db) Interaction: This scenario was targeted to monitor how

the protocols perform when the server needs to interact with the database. This

is a very common use-case in the IT industry, as almost all applications interact

with databases to insert and retrieve data. When the server needs to interact with

the database, how each protocol performs and behaves is recorded.

• Concurrency and Load on the Server: In this scenario, the endpoints of each

protocol are tested to see how they behave when the server is under concurrent

load, that is, when it is receiving anything between 10 and 10,000 requests at a

time. How the protocols behave in both the programming languages is taken into

account and reported.

• Network Load by the Protocol Communication: In this test scenario, the com-

munication between the server and client is monitored in the network level for

the three protocols. The sequence of packets exchanged, and the total bytes

transmitted are carefully recorded and compared.

Chapter 3. Description of the work undertaken 16

• Programming Language Environment & its Performance: This scenario is to

observe the memory statistics and run-time environment of Java and Go for

the protocols, and record how the language’s environment performs when the

server of a certain protocol receives requests. It is targeted to aid in choosing the

right programming language for a use case where memory of the programming

language plays a role as cost in the application.

As stated above this phase was carried out in three iterations, where in each iteration

a test scenario was found. In each of the iterations, once the test scenario was found the

development for that scenario was carried out in Java and Go. Going by the order of

test scenarios found in the three iterations, the development done in each iteration is

documented in Figure3.3.

Figure 3.3: Development done in each iteration

3.1.2 Challenges and Solutions

The initial setup for Java and Go had quite a few challenges– Maven setup, and GoLang

integration with Visual Studio. A few forums where answers to problems were discov-

ered from discussions with other developers who had same setup challenges include

Stackoverflow2, Java’s Oracle Community3, and the Go developer community4. Finding

2https://stackoverflow.com/
3https://community.oracle.com/tech/developers/categories/13287-java
4https://go.dev/help

Chapter 3. Description of the work undertaken 17

test cases was first a little tricky, but after reading [7], various performance measurement

techniques became evident. Through the use of these techniques, test scenarios were

found by consulting the supervisor, earlier literary works, and those discussed in section

2.1.4. The development process during the three iterations was the most challenging

part in the whole project. The REST protocol was well documented, and a strategy

could be easily identified in Java and Go from the documentation and developer forums.

Implementation required some effort and extensive self-learning due to the lack of

easily available documentation for gRPC in Java SpringBoot. The JAXB dependency,

sometimes referred to as the Java Architecture for XML Binding, enables Java develop-

ers to quickly incorporate XML data and processing activities in Java programs (JAXB).

For SOAP in Java, this dependency is required. But as JAXB became depreciated after

Java 11, SOAP had to be developed in Java 11. Due to the extremely low number of

resources available for Go, it took a great deal of trial and errors to get the SOAP server

to function.

3.2 Stage 2: Test the Protocol Implementations

This project phase combined the TDD- Test Driven Development with Agile to under-

stand the test, review the test, develop the tests in the relevant clients and execute the

tests, shown in Figure3.4.

Figure 3.4: Individual phases of Stage2

The test scenarios and server configurations for each scenario were thoroughly

understood, and extensive web reading was done to identify appropriate tools and

software to test the selected scenarios on the protocols. Tools like Postman, Apache

Bench, GHZ, Wireshark, RawCap, Prometheus, and Grafana were discovered from

the research done. Reading[25] gave thorough information on endpoint testing using

Postman which is a software tool that is the client to invoke an endpoint in the server.

Upon invoking the server through Postman, we can see the response code, body, status,

and time sent by the server. Figure3.5 shows a sample request sent to a REST endpoint

using Postman.

Chapter 3. Description of the work undertaken 18

Figure 3.5: REST request sent to server using Postman Tool

To perform volume varying tests on the server Apache Bench which reports the

results of tests is shown on Figure3.6 is used for SOAP and REST, and GHZ for

gRPC. They are both command line computer programs used for benchmarking the http

protocols. It helps in load testing the endpoint by sending ’n’ number of requests where

the concurrency ’c’ level can be specified. This tool helps in testing the protocols when

concurrency levels vary – test scenario defined in iteration3. For recording the network

Figure 3.6: Apache Bench invoking REST 1000 times with concurrency level 10

level data exchange, Wireshark and RawCap were setup and used. For obtaining metrics

from the programming language’s environment we use Prometheus– ”an open-source

Chapter 3. Description of the work undertaken 19

systems monitoring and alerting toolkit” 5. It helps in recording real-time metrics in

a time series database (allowing for high dimensionality) with flexible queries[24].

This enables us to monitor metrics of the environment of Java, and Go. To visualise

the metrics from Prometheus, we use Grafana– an open source, cross-platform online

application for interactive visualisation and analytics. When connected to supported

data sources, it offers charts, graphs, and alerts for the web. The metrics of Java, and Go

are recorded using Prometheus and visualised via a Grafana interface that is interactive

and visually appealing. Figure3.7 displays a Grafana interface with Prometheus metrics

incorporated into it, including the metrics of Java Heap committed and Java Heap used.

Figure 3.7: Grafana Interface with integrated Prometheus Metrics

3.2.1 Implementation in this Phase

Postman, Apache Bench, GHZ, Wireshark, RawCap, Prometheus and Grafana were

setup and used to send requests to test message size variation, server side db interaction,

and concurrency. Apache Bench is used for REST, SOAP and GHZ for gRPC to

simulate 10000 requests on the server with concurrency varying from 0 to 10000 with

an increase of 500. The RED methodology of performance measurement: request rate,

errors and duration of the test was recorded. For the network level data transmission

capture, RawCap with Wireshark was setup and packets were analysed. To record the

performance of the environments and metrics of Java and Go, Prometheus and Grafana

were used.

3.2.2 Challenges Faced and Solutions Adopted

Postman, Apache Bench, GHZ, WireShark, RawCap Prometheus and Grafana were

downloaded, and installed on the system. Minor setup issues like the application not

5https://prometheus.io/docs/introduction/overview/

Chapter 3. Description of the work undertaken 20

opening up, the Grafana and Prometheus integration configuration issues were all found

and resolved using the documentation available. The GHZ tool for testing gRPC was

found after extensive search. Capturing the local packets on Wireshark was not working

initially, after which research was done and RawCap6 a network sniffing tool was found

to help in monitoring the packets.

3.3 Stage 3: Documentation and Comparison

This stage is the last and final stage in the project undertaken. All test results and

test scenarios from Stages 2 and 1 of the project are documented during this stage.

To identify trends in performance and behaviour in the examined test scenarios, the

findings from the tests for each protocol are documented and compared to one another.

This will present to a software developer how the protocols function in the test scenarios

in turn allowing them to weigh the pros and cons of each protocol for a scenario to

choose the most appropriate protocol for a use case. Apart from the previously specified

test scenarios, each protocol’s soft facts, characteristics and features supported are noted

and compared in the comparison. The result of this stage is the empirical comparison

that is provided in the next chapter of the report.

3.3.1 Implementation in this Phase

The implementation in this phase mainly focused on documenting the results obtained

and performing research to include soft facts, features supported and characteristics of

each protocol. A lot of figures, charts and graphs have been drawn and plotted using

Google Sheets and Rawgraphs7 software.

3.3.2 Challenges and Solutions

Given the time limitations, it is extremely difficult to take into account all the qualities

and soft facts; as a result, the most interesting and practical information that would help

a developer choose a protocol for a use case is taken into consideration.

6https://www.netresec.com/?page=RawCap
7https://www.rawgraphs.io/

Chapter 4

Analysis or Evaluation

This chapter presents the results obtained and the critical analysis done on the protocols

for different test scenarios. Three servers are built in Java and Go following each of the

protocol standards. Client requests are made, and servers answer in accordance with

these standards. The client and server are both present on the same system, with the

specifications mentioned in Table4.1. For SOAP and REST, Postman acts as a client for

Feature Device Specification

Processor 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz

RAM 16.0 GB (15.8 GB usable)

System Type 64-bit operating system, x64-based processor

Operating System Windows 11 Version 21H2

Table 4.1: System Specifications on which the Protocols are Evaluated

single requests, and Apache Bench for concurrent or a sequence of ’n’ requests. For

gRPC, a client program is developed in Java and Go to invoke the respective gRPC

servers. For a sequence of requests or for concurrent requests GHZ is a command line

tool that helps in invoking gRPC server. In the upcoming sections of this chapter, the

comparison will be made on various test scenarios, on the network level and upon the

soft facts and characteristics of each protocol.

4.1 Comparison Based on Message Size Variation

The performance of the protocols is highlighted in this section for varying sizes of

message payloads transmitted between the client and server. Small messages have

21

Chapter 4. Analysis or Evaluation 22

payloads that are only a few bytes in size, medium messages have payloads that range

from a few kilobytes to one megabyte, and large communications have payloads that are

several Megabytes in size. A functionally similar application with three endpoints, each

accepting messages of a specific size range, is constructed for each protocol in Java and

Go. To each endpoint accepting a message of certain size is passed the same parameters

in the request body regardless of the protocol. A series of 1000 requests are passed for

the small and medium messages using Apache Bench for REST and SOAP and GHZ

for gRPC. For the large message type 1 message is sent using Postman for REST and

SOAP and the developed client program for gRPC in Java and Go. The comparison is

recorded based on the RED Methodology[7]– reporting the Request rate, Errors and

Duration for each of the tests. The initial paragraphs would discuss the duration or the

total response time for each of the tests and finally the errors and request rate per second

would be discussed.

Firstly, the protocols are tested for short message communication. The request is

sized at an approx of 200 bytes with the request body containing fields populated with

String(mixture of alpha numeric characters) and Integer(numerical) data types in this

scenario. The total response time for processing 1000 requests of short message size

through REST, gRPC, and SOAP is documented in Table4.2 and compared using the

line graph shown in Figure4.1. From the table it is clear that REST performs the best

Protocol Test Duration in Java [seconds] Test Duration in Go[seconds]

REST 0.909 0.343

gRPC 2.17 0.392

SOAP 4.139 0.357

Table 4.2: Total Test Duration for 1000 Short Messages Serviced

in Java and Go when compared to gRPC and SOAP for the case of short messages of

payload size of few hundred bytes. This could be due to the JSON mode of transmission

which is faster than XML, and the caching ability which is not present in gRPC and

SOAP1. With gRPC as choice 2 and SOAP as choice 3 in Java and the exact opposite in

Go, the second and third protocols of choice are dependent on the language. In terms of

language, Go performs faster than Java. This is due to Go’s superior multithreading that

1https://stackify.com/soap-vs-rest/

Chapter 4. Analysis or Evaluation 23

Figure 4.1: log(Total Response Time for 1000 short requests) vs Each Protocol in Java

and Go

speeds up the processing2.

In the case of medium message transactions in REST, SOAP and gRPC the message

was sized at 1Mb, and the performance of the protocols when 1000 requests are sent to

the servers are recorded in Table4.3 and compared in Figure4.2. The request payload

fields have a mix of String and Integer data types sizing to 1Mb. For the test of medium

Protocol Test Duration in Java [seconds] Test Duration in Go[seconds]

REST 9.688 6.164

gRPC 1.95 0.475

SOAP 20.438 30.158

Table 4.3: Total Test Duration for 1000 Medium Messages Serviced

messages, it is seen that the rankings of the protocol in terms of response time is the

same for both Java and Go in the order of gRPC, REST and SOAP. gRPC is the fastest,

and this could be accounted to the http/2.0 protocol that supports binary transmission of

data using protobuf. Binary transmission is usually light on the network and easy to

parse, hence it responds fastest compared to REST and SOAP3. REST is ranked second,

followed by SOAP, and this is due to the fact that SOAP is heavy weight, verbose, and

textually dense to parse compared to REST. Thus, for endpoints that expect medium

2https://www.ideamotive.co/blog/go-vs-java-similarities-differences-and-business-applications
3https://blog.restcase.com/http2-benefits-for-rest-apis/

Chapter 4. Analysis or Evaluation 24

Figure 4.2: log(Total Response Time for 1000 medium messages) vs Each Protocol in

Java and Go

sized messages the protocol of choice would be gRPC, followed by REST and SOAP.

In terms of programming language, the performance of gRPC, and REST are better in

Go, but for SOAP Java is more suited. This could be because Go has very few packages

for SOAP servers and further research must be done to support SOAP better in Go4.

Finally, in the case of large messages where endpoints are expected to receive

several Mb of data, the protocol to be implemented must be chosen carefully as the

network tends to face high load in such a scenario. A file of 25Mb is transferred from

the client to the server using REST, gRPC and SOAP protocols in this experimental

setup. This setup is different from the previous two scenarios because only 1 request is

sent to the server, instead 1000 requests.

The results in terms of response time for large sized messages is reported in Table4.4

and compared in Figure4.3. The ranking of each protocol in both the languages is

Protocol Test Duration in Java [seconds] Test Duration in Go[seconds]

REST 0.969 0.28

gRPC 0.322 0.162

SOAP 1.05 0.937

Table 4.4: Total Test Duration for 1 Large Message Serviced

4https://pkg.go.dev/github.com/globusdigital/soap

Chapter 4. Analysis or Evaluation 25

Figure 4.3: log(Total Response Time for 1 large request) vs Each Protocol in Java and

Go

the same as the previous scenario of medium sized messages with gRPC ranked first,

followed by REST and SOAP. gRPC outperforms REST by 3 times and SOAP by 3.2

times in Java and 1.75 times faster than REST, and 5.7 times faster than SOAP in Go.

In terms of language, Go performs better than Java for all the protocols. The speed of

gRPC could be accounted to the client side streaming feature that it supports- where the

client sends a stream of messages to the server not just one single message. Thus the

large file is read and written at the same time– the client reads few bytes and sends it as

a stream to the server where the server writes it, and this process is repeated till the file

is read completely. This feature of client side streaming is not supported by REST and

SOAP where the server expects only a single message, thus, the client has to read the

whole file and then send the whole file’s bytes with base 64 encoding to the server for

processing. Another reason why gRPC is much faster than SOAP and REST would be

due to the fact that the file data is sent as binary by http/2.0 whereas in SOAP and REST

it has to be base64 encoded. When given, the use case of large message transmission

upto a few megabytes gRPC would be the first choice opted for, independent of the

language. For the purpose of streaming larger sized files like videos in applications like

Youtube, Vimeo other http protocols like DASH5, and RTMPS6 are used.

According to the RED methodology, the duration of the tests have been discussed

in the above paragraphs, the Errors are found to be 0 for all the protocols in both the

languages for the given scenarios. This may not be the case in a real world scenario

5DASH-Dynamic Adaptive Streaming over http
6RTMPS- Secure form of Real-Time Messaging Protocol

Chapter 4. Analysis or Evaluation 26

as, many more public networks maybe involved. The request rate per second for each

protocol shares a positive correlation with the test duration and is recorded in Figure4.4.

Figure 4.4: Request rate per second for each protocol considering message size variation

4.2 Comparison Based on Server-side Database(DB)

Interaction

In a number of use case scenarios, the developer must develop a server that commu-

nicates with the database. The server may need to read data from the database, write

data to the database, or in certain situations do both. The objective of this analysis

is to contrast how different protocols function when they interact with databases and

when they do not. In this case, PostgresSQL is the database configured, and the mes-

sages that are sent to the server’s endpoint are short in size containing both String and

Integer data types. The server reads data from one database table, which has about

100 rows, and inserts data into another table, which contains more than 10,000 rows.

Thus performing both read and write operations. 1000 requests are sent to the server,

and RED-recommended metrics are logged. Another endpoint which accepts similar

payload without db interaction is also developed so that the results may be compared.

According to the RED metrics the Request rate per second for each protocol when

database interaction is involved and not is compared in Figure4.5. There are no errors

when the test is performed for all the protocols in both the languages, for both endpoints.

The total test duration shares a positive correlation with the request rate, and the results

for total test duration are shown in Figure4.6 and reported in Table4.5.

From the graph in Figure4.6 it is clearly seen that when there is database interaction

the response time is higher than when not. This is because interacting with the database

is computationally expensive as operations such as maintaining a connection pool,

accessing the data from the table and inserting the data to the table are involved. The

Chapter 4. Analysis or Evaluation 27

Figure 4.5: Request Rate per Second for Each Protocol in Java & Go when Database is

integrated and Not Integrated

Protocol Test Duration
in Java with
Db[seconds]

Test Du-
ration in
Java without
Db[seconds]

Test Duration
in Go with
Db[seconds]

Test Duration
in Go without
Db[seconds]

REST 3.097 0.858 3.171 0.384

gRPC 2.873 1.642 4.94 0.422

SOAP 4.068 2.456 5.14 0.394

Table 4.5: Total Test Duration for the Protocol Servers when Databases are involved and

Not

total response time for the protocols vary in both the languages, and this is due to

the fact that each language has its own database interaction management algorithms

implemented.

When there is database interaction involved Java appears to perform better than

Go for each of the protocols with gRPC ranked first followed by REST and SOAP.

Whereas in Go, REST ranks first followed by gRPC and SOAP in the last. SOAP is

uniformly ranked last in both the languages and this could be due to SOAP’s payload

being textually intense, and heavy on the network, making the parsing process take

longer than in REST and gRPC. From this test, the protocol of choice for a server with

database interaction would be gRPC in Java and REST in Go. The next section performs

further investigation when database interaction is involved including the concurrency

Chapter 4. Analysis or Evaluation 28

Figure 4.6: Bar graph showing the response time for each protocol with and without

database interaction, when developed in Java and Go.

perspective.

In the case of no database interaction Go appears to surpass Java by being twice

as fast for REST, 3.8 times fast for gRPC, and 6.2 times fast for SOAP. In both Java

and Go, REST is the protocol of first preference as it has caching, clustering and load

balancing mechanisms[19]. For gRPC and SOAP, the rankings are 2, 3 in Java and 3, 2

in Go. In both scenarios for database interaction, no errors were reported during the test

execution.

4.3 Comparison Based on Request Load Concurrency

If an endpoint is consumed by many clients potentially thousands of clients at a time

there would be an increase in load on the server, and a probable delay in response.

In such a situation, the right protocol choice plays a key role. This is because each

protocol has its own style and standards for parsing, transmitting and compressing

the requests and providing the response. They may also have their own set of unique

features accounting for the variation in response time, one such feature being the

streaming feature offered by gRPC that enables the client and server to communicate

through streams, thereby making reading and writing happen simultaneously and in-turn

producing the response very quickly in certain situations. However, REST and SOAP

do not support this feature causing an increased response time in some scenarios where

streaming possibly reduces the response time.

Chapter 4. Analysis or Evaluation 29

This scenario test aims to compare the protocols on how they vary in terms of

response time when the concurrency load is at a certain level. 10000 requests are sent to

each server in total, for different levels of concurrency. The levels of concurrency varies

from 10 to 500 with 50 increment in each test[10,50,100,150,200..500] and then 1000

to 10000 with an increase of 1000 in every test. The comparison is done involving three

dimensions– where the dimension of focus is concurrency, followed by programming

languages and presence/absence of database integration in the server. Thus, the protocols

are compared in Java and Go for database and no database integration for varying levels

of concurrency.

First, we run the tests on Java where we develop three servers each for REST, gRPC

and SOAP. In each server are two endpoints one which interacts with the database and

another which doesn’t. The results for response time when there is varying level of

concurrency on a server with no DB interaction in Java is shown in Figure4.7. From

Figure 4.7: Line Graph Comparing the Response Time against Concurrency for Each

Protocol when Implemented in Java without DB Interaction

the graph it is clearly seen that for all the protocols as concurrency increases for a fixed

number of requests, the response time also increases. Out of the three protocols, gRPC

has the fastest total response time with a range of 0.772-2.22 seconds. REST and SOAP

fall within ranges of 4.19-13.1 seconds and 4.8 - 17.2 seconds respectively. Thus, in

such a given scenario gRPC would be the protocol of choice followed by REST and

SOAP. In the case of database interaction, the results are shown in Figure4.8 and it is

clearly seen that the ranking in terms of response time is gRPC, REST, and SOAP. The

rankings for both database and no database interaction is the same in Java, with gRPC

topping the list and being the first protocol of choice for applications that would expect

to see high levels of concurrency. This is followed by REST and then SOAP. In both

the scenarios there are no failures.

Chapter 4. Analysis or Evaluation 30

Figure 4.8: Line Graph Comparing the Response Time against Concurrency for Each

Protocol when Implemented in Java with DB Interaction

For the protocol servers developed in Go, gRPC leads the list for the case of no

database interaction, and REST and SOAP share almost similar values with a difference

in response time of no more than 0.5 seconds at specific levels of concurrency, with

REST performing better at such levels. No failures are observed in this scenario.The

results are documented and compared in Figure4.9.

Figure 4.9: Line Graph Comparing the Response Time against Concurrency for Each

Protocol when Implemented in Go without DB Interaction

For protocol servers developed in Go with db interaction, requests were serviced

only upto a threshold of 200 concurrency level. This was due to the fact that PostgreSQL

by default can not handle multiple clients beyond a certain threshold at a time, and Go’s

threadpool has to be manually configured to help in addressing this issue7. Post this

7http://go-database-sql.org/connection-pool.html

Chapter 4. Analysis or Evaluation 31

configuration change, it is seen that initially upto a concurrency level of 250 gRPC was

the slowest. However, post this as concurrency was increased gRPC was seen to perform

the fastest compared to REST and SOAP by being upto 20times faster than REST and

25 times faster than SOAP in certain levels. SOAP on the other hand, performs faster

than REST upto the concurrency level of 6000 beyond which REST goes on to become

upto 1.2 times faster than SOAP, this could be accounted due to the XML payload

of SOAP causing high network load and increased parse time. The results of this are

shown in the line graph in Figure4.10, where it is seen that the best performing protocol

in terms of fastest response time accepting high concurrency load is gRPC followed

by SOAP when concurrency is less than 6000, and REST if concurrency is higher than

6000.

Figure 4.10: Line Graph Comparing the Response Time against Concurrency for Each

Protocol when Implemented in Go with DB Interaction

Overall, it can be observed that gRPC is the clear winner in the use-case of an

endpoint that receives a lot of concurrent load, followed by REST when a database is

not involved. If a database is involved, the second and third protocol of choice would

be REST followed by Go. For a server in a high concurrency situation without database

interaction, Go would be the preferred language, whereas Java for a server in a high

concurrency situation with database interaction.

Chapter 4. Analysis or Evaluation 32

4.4 Comparison Based on Network Level Packet Ex-

change

Each protocol produces varying load on the network. This section analyses the network

load for each of the protocols when it is implemented in Java. The client for REST

and SOAP is Postman, and for gRPC the client is a programmed Java client. The

size of the message exchanged is short and the request body is within few hundred

bytes. To monitor the network load caused by each protocol, Wireshark and RawCap

network monitoring and sniffer tools are used to capture the packets exchanged. http/2.0

wire format is more efficient due to multiplexing, compression and binary protocol

transmission instead of http/1.1 which is textual8. All http protocols are layered over

TCP - Transmission Control Protocol applicable in the transport layer of the network

stack. Between applications operating on hosts connecting through an IP network,

the TCP protocol ensures reliable, ordered, and error-checked transmission of bytes

of data9. The client establishes a connection with the server through a three way

handshake connection: the client sends a SYN flag to server performing the active

open, in response to this the server replies with a SYN,ACK flag indicates that the

server has acknowledged the receipt of SYN from the client and is okay to proceed

with the connection, finally the client sends an ACK back to the server in response to

the SYN,ACK flag. After this handshake, data is sent between the client and server

and ACKs are exchanged between each other acknowledging the receipt of data to the

sender. There is another flag known as the PSH flag which is sent by the sender to

the receiver indicating that the data can be pushed to the application directly, to which

the receiver responds with an ACK.10. Post this data exchange, keep alive flags are

sent between the client and server to ensure the connection is not broken, or RST,ACK

maybe sent to abort the connection. The following paragraphs will detail the network

exchange seen in http/1.1 Protocols– REST, and SOAP followed by http/2.0 Protocol–

gRPC.

In the case of REST, gRPC and SOAP the request body fields are populated with

the same values to ensure the request body is of the same size across the protocols. This

setup enables us to measure how the network load varies for each protocol independent

of the request body sent– for each protocol the headers are differently sized, the request

8https://blog.restcase.com/http2-benefits-for-rest-apis/
9https://en.wikipedia.org/wiki/TransmissionControlProtocol

10https://packetlife.net/blog/2011/mar/2/tcp-flags-psh-and-urg/

Chapter 4. Analysis or Evaluation 33

body for gRPC and REST is in JSON but for SOAP it is XML. For the case of gRPC

based on http/2.0 protocol, additional packets such as Magic, Settings and Ping are

transmitted. This may cause difference in the number of packets and bytes exchanged

between the client and server for each of the protocols. From Wireshark it is observed

that the SOAP has the maximum amount of bytes exchanged followed by REST and

gRPC.

In SOAP, the total number of bytes exchanged including the overhead of the protocol

headers for Ethernet, IP and TCP, is 1737 bytes with a tcp three way handshake, 1 client

packet (request) of 705 bytes, 1 server packet (response) of 808 bytes, and TCP flags of

sizes varying between 40 to 52 bytes. The exchange captured on Wireshark for SOAP

is shown in Figure4.11. The XML payload, which is extremely verbose with XML tags

and an XML Envelope results in long parse and serialisation times, making the protocol

heavyweight on the network. After the exchange is done, TCP Keep Alive packets are

sent back and forth between the server and client to keep the connection active.

Figure 4.11: Network Level Packet Exchange for SOAP as seen on Wireshark

In the case of REST, the total bytes exchanged are 1090 including the overhead of

the protocol headers for Ethernet, IP and TCP which is 1.5 times less than the total bytes

exchanged by SOAP. This might be explained by the fact that JSON packaged data is

more compact than XML, as well as by the fact that REST does not require additional

headers and envelope like SOAP. The 1090 bytes of data transmitted can be broken

down into the following components: 1 request packet of length 381 bytes, 2 chunked

server responses with a total of 445 bytes, and additional TCP flags ranging in size from

40 to 52 bytes. The chunked server responses is what makes the REST communication

different from SOAP, and is highlighted in Figure4.12. The PSH, ACK message sent by

the server to the client contains the response data and indicates that it may be pushed to

Chapter 4. Analysis or Evaluation 34

Figure 4.12: Network Level Packet Exchange for REST as seen on Wireshark

the client’s application before the server actually sends the http response with response

status. This is due to the chunked transfer encoding feature allowed in http/1.1, which

allows content to be sent in chunks and explicitly signals when it has finished so that

the connection is accessible for the subsequent http request/response11. Following this

exchange, it can be seen that the client and server exchange a few TCP Keep Alive

packets to retain the connection, much like SOAP. Thus in http/1.1, when comparing

REST and SOAP in terms of network load, REST is the winner.

gRPC is based on the http/2.0 protocol and shares a few similarities with the http/1.1

protocols of REST and SOAP with the three way handshake of exchanging SYN, SYN-

ACK, ACK messages before starting the connection. Every http/2.0 connection starts

with the client sending a Magic Message that mimics an http/1.1 message after the

three-way handshake in gRPC. This allows http/1.1 servers to reject the connection

and respond with an http/1.1 response, informing the client to switch back to http/1.1,

indicating that the server does not support http/2.0. Although it’s formally designated as

the Connection Preface, people commonly call it the ”Magic” message12. Following the

Magic Message, the server and client exchange a packet known as the SETTINGS frame.

The SETTINGS frame communicates configuration data that determines endpoint

communication, such as preferences and peer behaviour restrictions. Following the end

of the SETTINGS frame exchanges, the request is delivered to the server. Additionally,

ping packets are transferred back and forth between the server and client to determine

the shortest round-trip time and see if the idle connection is still functional. The

messages specific to gRPC are highlighted in Figure4.13. In contrast to REST, the

11https://en.wikipedia.org/wiki/Chunked transfer encoding
12https://www.rfc-editor.org/rfc/rfc7540#section-3.5

Chapter 4. Analysis or Evaluation 35

server responds with headers and response status before the data once the server’s

processing is complete. Another way that gRPC differs from REST and SOAP is that

the connection is terminated once the client receives the response and a few pings have

been sent and received. Figure4.13 shows the gRPC network interaction as captured on

Wireshark. The total number of bytes including the overhead of the protocol headers

for Ethernet, IP and TCP exchanged in this communication is 1547 including the 3 way

handshake, magic message, settings frames, request, response and pings.

Figure 4.13: Network Level Packet Exchange as seen on Wireshark with gRPC specific

packets highlighted

The overhead of the Ethernet, IP, and TCP protocol headers is included in the bytes

recorded for the aforementioned three protocols. When only the TCP data segment is

considered, the values provided by Wireshark reveal that gRPC has the least bytes (525),

followed by REST (706), and SOAP (1433), as seen in Figure4.14.The http/2.0 binary

protocol, on which gRPC is based, is the most lightweight protocol on the network

when compared to REST and SOAP because it is easier to parse, has less overhead, and

is binary. When only TCP data segment is taken into consideration gRPC is better than

REST and SOAP. However when Ethernet, IP and TCP are considered gRPC comes

second. This could be due to the multiple pings, and settings, magic frames exchanged

by gRPC which does not happen in REST or SOAP. In contrast, SOAP is the most

resource-intensive when compared to REST and gRPC. This could be explained by the

XML tags which are very verbose, and intense to parse.

Chapter 4. Analysis or Evaluation 36

Figure 4.14: Bytes Transmitted in the Network by Each Protocol

4.5 Comparison between Java and Go

For REST, gRPC and SOAP the comparison is done between the Java and Go in terms of

how the runtime environment functions when these programs are executed. A series of

1000 requests are sent to the server which is not connected to the database to observe the

statistics. The memory metrics in Java and Go for the protocols are language dependent

more than being protocol dependent that is– the question becomes simply Java Vs Go

instead of REST in Java Vs SOAP in Java Vs gRPC in Java and same for Go. Hence, a

brief analysis is done to document the findings. The total amount of memory allocated

for the heaps by the system are 7.6-14Mb for Go and 158Mb for Java. This shows

that Go is much more light weight compared to Java. The number of bytes of heap

in use and idle for Go vary between 4-9Mb and 2.8-7.8Mb. For the case of Java the

number of bytes in heap that is in use vary between 27.6 - 70.7 Mb, and idle heap bytes

vary between 84-130.4Mb. This shows that Go uses at least 28% of the heap that is

allocated whereas Java uses only 11% of the total heap allocated. Go appears to be more

memory-efficient than Java, which needed a lot of memory allocation to implement the

protocols. This might be a major factor in Go’s apparent speed advantage over Java

when server-side database interaction is not there.

4.6 Comparison on Soft Facts

This section aims to compare and contrast the soft facts, and characteristics of each

protocol. This comparison is recorded in Table4.6 and Table4.7.

Chapter 4. Analysis or Evaluation 37

Fe
at

ur
e

R
E

ST
SO

A
P

gR
PC

C
od

eG
en

er
at

io
n

T
hi

rd
Pa

rt
y

To
ol

s
lik

e
Sw

ag
-

ge
r

B
ui

lt
in

W
SD

L
fo

r
co

de
ge

n-

er
at

io
n

B
ui

lt
in

pr
ot

oc
fo

rc
od

e
ge

ne
ra

tio
n

A
PI

C
on

tr
ac

t
L

oo
se

/O
pt

io
na

l-
O

pe
n

A
PI

W
SD

L
co

nt
ra

ct
ca

n
be

ge
ne

r-

at
ed

on
th

e
fly

St
ri

ct
an

d
re

qu
ir

es
.p

ro
to

co
nt

ra
ct

Se
cu

ri
ty

T
L

S/
SS

L
T

L
S/

SS
L

an
d

pr
ov

id
es

w
eb

se
rv

ic
es

se
cu

ri
ty

th
ro

ug
h

X
M

L
di

gi
ta

l
si

gn
at

ur
e,

en
cr

yp
tio

n,
an

d
se

cu
ri

ty

to
ke

ns

T
L

S/
SS

L

St
re

am
in

g
N

o
N

o
A

llo
w

s
fo

r
bi

di
re

ct
io

na
l

an
d

un
id

ir
ec

tio
na

l

st
re

am
in

g

Pa
yl

oa
d

an
d

its
L

ea
rn

ab
ili

ty
JS

O
N

is
ea

sy
to

le
ar

n
an

d

lig
ht

w
ei

gh
t:

da
ta

is
pa

ss
ed

as

ke
y

va
lu

e
pa

ir
s

X
M

L
is

to
ug

he
r

th
an

JS
O

N

bu
t,

m
or

e
po

w
er

fu
l

as
w

el
l

an
d

he
lp

s
re

du
ce

so
ft

w
ar

e

ri
sk

.

JS
O

N
is

ea
sy

an
d

lig
ht

w
ei

gh
t,

bu
t

in
or

de
r

to

co
m

m
un

ic
at

e
th

e
pr

ot
o

fil
e

is
re

qu
ir

ed
to

ge
ne

r-

at
e

th
e

co
de

,t
hi

s
is

bo
th

an
ad

va
nt

ag
e(

co
de

is

ge
ne

ra
te

d
if

pr
ot

o
is

av
ai

la
bl

e)
an

d
a

di
sa

dv
an

-

ta
ge

(d
iffi

cu
lt

to
co

m
pi

le
)

D
ev

el
op

m
en

t
C

om
m

un
ity

in
Ja

va
an

d
G

o

ht
tp

s:
//d

ev
.to

/t/
re

st
ht

tp
s:

//d
ev

.to
/t/

so
ap

ht
tp

s:
//g

rp
c.

io
/c

om
m

un
ity

/

Ta
bl

e
4.

6:
Ta

bl
e

C
om

pa
rin

g
th

e
S

of
tF

ac
ts

an
d

Fe
at

ur
es

of
E

ac
h

P
ro

to
co

l

Chapter 4. Analysis or Evaluation 38

Fe
at

ur
e

R
E

ST
SO

A
P

gR
PC

M
es

sa
ge

Fo
rm

at
-

tin
g

Ty
pe

JS
O

N
X

M
L

Pr
ot

oc
ol

B
uf

fe
rs

w
ith

JS
O

N
or

X
M

L
to

se
ria

liz
e

da
ta

Fo
rm

at
fo

r
Pa

rs
-

in
g

Te
xt

ua
l

Te
xt

ua
l

B
in

ar
y.

H
av

e
lo

w
er

ov
er

he
ad

to
pa

rs
e,

an
d

is

lig
ht

er
on

th
e

ne
tw

or
k.

B
ro

w
se

r
Su

p-
po

rt
Y

es
Y

es
N

o.
H

ow
ev

er
,a

w
or

ka
ro

un
d

fo
r

th
is

w
ou

ld
be

to
bu

ild
a

gR
PC

w
eb

pr
ox

y
th

at
ac

ts
as

a
m

id
-

dl
ew

ar
e

be
tw

ee
n

th
e

br
ow

se
r

an
d

th
e

ba
ck

en
d

gR
PC

se
rv

er
.

T
he

pr
ox

y
co

ul
d

co
m

m
un

ic
at

e

w
ith

th
e

br
ow

se
r

us
in

g
ht

tp
1.

1
an

d
co

m
m

un
i-

ca
te

w
ith

th
e

ba
ck

en
d

gR
PC

se
rv

er
us

in
g

ht
tp

2.
0.

N
et

w
or

k
L

oa
d

an
d

Sp
ee

d
Li

gh
te

ra
nd

Fa
st

er
th

an
SO

A
P

w
he

n
on

ly
T

C
P

da
ta

se
gm

en
t

is
co

ns
id

er
ed

.
W

he
n

E
th

er
-

ne
t,

IP
an

d
T

C
P

ar
e

co
ns

id
-

er
ed

R
ES

T
is

th
e

lig
ht

es
tc

om
-

pa
re

d
to

gR
PC

an
d

SO
A

P.

D
ue

to
th

e
X

M
L

fo
rm

at
us

ed

fo
rd

at
a

ex
ch

an
ge

an
d

th
e

ad
-

di
tio

na
l

X
M

L
ta

gs
th

at
ar

e

ca
rr

ie
d

ov
er

th
e

ne
tw

or
k,

ne
t-

w
or

k
lo

ad
is

lik
ew

is
e

ve
ry

hi
gh

.T
he

re
fo

re
,a

s
co

m
pa

re
d

to
R

E
ST

an
d

gR
PC

,i
ti

s
th

e

sl
ow

es
t.

W
he

n
co

m
pa

re
d

to
R

E
ST

an
d

SO
A

P,
th

e
bi

na
ry

fo
rm

at
us

ed
fo

rd
at

a
in

te
rc

ha
ng

e
sp

ee
ds

up
da

ta

tr
an

sm
is

si
on

ov
er

ne
tw

or
ks

.
W

he
n

on
ly

T
C

P

da
ta

se
gm

en
ts

ar
e

ta
ke

n
in

to
ac

co
un

t,
th

ey
ar

e

th
e

lig
ht

es
t;

ho
w

ev
er

,w
he

n
Et

he
rn

et
an

d
IP

da
ta

se
gm

en
ts

ar
e

ta
ke

n
in

to
ac

co
un

t,
th

ey
ar

e
th

e

se
co

nd
lig

ht
es

td
ue

to
th

e
in

cl
us

io
n

of
ad

di
tio

na
l

pa
ck

et
s

lik
e

Se
tti

ng
s,

Pi
ng

,a
nd

M
ag

ic
.

Ta
bl

e
4.

7:
Ta

bl
e

C
om

pa
rin

g
th

e
S

of
tF

ac
ts

an
d

Fe
at

ur
es

of
E

ac
h

P
ro

to
co

l

Chapter 5

Conclusion

The goal of this chapter is to offer some final thoughts, observations, and suggestions

for future work. As previously stated, this empirical comparison seeks to give software

developers a reading guide to assist them in reading and comprehending how each

protocol functions in various scenarios and different settings, as a result, help them

choose the best protocol for a use-case.

5.1 Observations and Analysis

For the case of message size variation analysed in section4.1 , given a use-case where a

developer needs to choose a protocol where the messages transmitted are short in size,

REST performs the best. REST surpasses gRPC in this case because it does not transmit

the extra packets that gRPC does, such as Magic, Settings, and Ping, and because the

payload itself is small and light on the network with JSON being easy to serialize.

However, gRPC triumphs in the case of medium and big messages. This is due to the

fact that gRPC is based on the http/2.0 protocol, which is quicker than http/1.1 protocols

as it uses header compression to reduce overhead and a binary protocol (Protobuf) rather

than a text-based one to make the network load lighter. Even though, the payload itself

is heavy and there are additional frames in gRPC, binary transmission clearly beats

textual transmission for network intensive messages making gRPC a clear winner. The

fact that XML, which is textually dense and very challenging to interpret, is used for

data exchange makes SOAP the slowest performing protocol. As a result, responses

from SOAP take longer to process. In terms of language, Go performs better than Java.

When databases are involved as seen in section4.2, it becomes clear that Java

manages the connection pool and database connection parameters better than Go from

39

Chapter 5. Conclusion 40

a programming language perspective by default. It can be seen that gRPC for Java and

REST for Go are ranked top after 1000 requests are sent to the server for processing.

However, it was found that gRPC outperformed the other protocols in both the languages

when concurrency was introduced in the server-side database interaction as discussed in

section4.3 . REST is the best option when there is no database interaction, however when

concurrent requests arrive, gRPC is the best choice. Due to binary data transmission,

simple parsing style, header compression, and minimal network traffic, gRPC is a clear

winner in concurrency situations and speeds up the processing of multiple requests

compared to textual mode of transmission.

When considering the network load the request-response exchanged by the protocol

servers developed in Java were monitored in Wireshark[Figures[4.12, 4.13, 4.11]]

detailed in section4.4. When only the TCP data segment is taken into consideration,

gRPC serves to be the most lightweight protocol. However, if IP, Ethernet and TCP

is taken into consideration REST tops the list. It is seen that, gRPC as such is a

light protocol due to header compression and binary transmission. However, when IP,

Ethernet, and TCP are taken into account, this protocol has a higher load due to the

extra packets that are exchanged between the client and server, such as settings, ping,

and magic packets, whereas REST does not. SOAP on the other hand is the heaviest

due to the textually verbose XML format being transmitted, making it difficult to parse

and heavy on the network. Finally, each protocol’s characteristics and soft facts are

presented and contrasted in section4.6. This offers a thorough understanding of the

softer elements and features.

It follows that in the aforementioned scenarios, gRPC and REST perform superior

to SOAP. REST is preferred in some situations, but gRPC is first in others. With the

exception of server-side database interaction, Go is faster than Java from a programming

language perspective.

5.2 Suggestions for Future Work

Other than REST, SOAP, and gRPC, there are a plethora of M2M communication

protocols, some of which include Thrift, GraphQL, MQTT, etc. Future research ideas

include comparing other protocols by testing them in the aforementioned scenarios,

and documenting results along with soft facts and characteristics. In the programming

language perspective, to give developers more alternatives outside of Java and Go, other

programming languages like C#, Python, etc might be considered.

Bibliography

[1] Trude H Bloebaum and Frank T Johnsen. Exploring soap and rest communication

on the android platform. In MILCOM 2015-2015 IEEE Military Communications

Conference, pages 599–604. IEEE, 2015.

[2] Marek Bolanowski, Kamil Żak, Andrzej Paszkiewicz, Maria Ganzha, Marcin

Paprzycki, Piotr Sowiński, Ignacio Lacalle, and Carlos E Palau. Eficiency of rest

and grpc realizing communication tasks in microservice-based ecosystems. arXiv

preprint arXiv:2208.00682, 2022.

[3] Pedro A Castillo, Jose Luis Bernier, Maribel Garcia Arenas, JJ Merelo, and Pablo

Garcia-Sanchez. Soap vs rest: Comparing a master-slave ga implementation.

arXiv preprint arXiv:1105.4978, 2011.

[4] Carolina Luiza Chamas, Daniel Cordeiro, and Marcelo Medeiros Eler. Comparing

rest, soap, socket and grpc in computation offloading of mobile applications: An

energy cost analysis. In 2017 IEEE 9th Latin-American Conference on Communi-

cations (LATINCOM), pages 1–6, 2017.

[5] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration.

Elsevier Science, 2014.

[6] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-

ware Architectures (Ph.D.). Chapter 5: Representational State Transfer (REST).

University of California, 2000.

[7] Brendan Gregg. Systems performance: Enterprise and the cloud. Addison-Wesley,

2021.

[8] Ilya Grigorik. Chapter 12: HTTP 2.0. O’Reilly Media, Inc, 2013.

[9] Festim Halili and Erenis Ramadani. Web services: a comparison of soap and rest

services. Modern Applied Science, 12(3):175, 2018.

41

Bibliography 42

[10] Jose I Santa Cruz G. Api calls and http status codes. https://itnext.io/

api-calls-and-http-status-codes-e0240f78f585, 2019.

[11] Pavan Kumar, Sanjay Ahuja, Karthikeyan Umapathy, and Zornitza Prodanoff.

Comparing performance of web service interaction styles: Soap vs. rest. Journal

of Information Systems Applied Research, 6(1):4, 2013.

[12] Prajwal Kiran Kumar, Radhika Agarwal, Rahul Shivaprasad, Dinkar Sitaram,

and Subramaniam Kalambur. Performance characterization of communication

protocols in microservice applications. In 2021 International Conference on Smart

Applications, Communications and Networking (SmartNets), pages 1–5, 2021.

[13] Smita Kumari and Santanu Kumar Rath. Performance comparison of soap and

rest based web services for enterprise application integration. In 2015 Interna-

tional Conference on Advances in Computing, Communications and Informatics

(ICACCI), pages 1656–1660, 2015.

[14] Nick Langley. ”write once, run anywhere?”. Computer Weekly, ”Write once, run

anywhere?”, May 2002.

[15] Simon St Laurent, Joe Johnston, and Edd Dumbill. Programming Web Services

with XML-RPC. O’Reilly, 2001.

[16] Stephen Ludin and Javier Garza. Learning HTTP/2: A practical guide for begin-

ners. O’Reilly, 2017.

[17] Sehrish Malik and Do-Hyeun Kim. A comparison of restful vs. soap web services

in actuator networks. In 2017 ninth international conference on ubiquitous and

future networks (ICUFN), pages 753–755. IEEE, 2017.

[18] Gavin Mulligan and Denis Gračanin. A comparison of soap and rest implemen-

tations of a service based interaction independence middleware framework. In

Proceedings of the 2009 Winter Simulation Conference (WSC), pages 1423–1432.

IEEE, 2009.

[19] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services

vs.” big”’web services: making the right architectural decision. In Proceedings of

the 17th international conference on World Wide Web, pages 805–814, 2008.

Bibliography 43

[20] Pavan Kumar Potti, Sanjay Ahuja, Karthikeyan Umapathy, and Zornitza Prodanoff.

Comparing performance of web service interaction styles: Soap vs. rest. In

Proceedings of the conference on information systems applied research issn,

volume 2167, page 1508, 2012.

[21] Mariusz Śliwa and Beata Pańczyk. Performance comparison of programming

interfaces on the example of rest api, graphql and grpc. Journal of Computer

Sciences Institute, 21:356–361, 2021.

[22] Anshu Soni and Virender Ranga. Api features individualizing of web services:

Rest and soap. International Journal of Innovative Technology and Exploring

Engineering, 8(9):664–671, 2019.

[23] Juris Tihomirovs and Jānis Grabis. Comparison of soap and rest based web services

using software evaluation metrics. Information technology and management

science, 19(1):92–97, 2016.

[24] James Turnbull, Tian Shi, Yuan Zhang, and Li Xiao. Monitoring with prometheus.

2019.

[25] Dave Westerveld. API testing and development with Postman A Practical Guide

to creating, testing, and managing apis for Automated Software Testing. Packt

Publishing, Limited, 2021.

