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Abstract

We present a novel approach to the application of Demand Side Response (DSR) and

the associated requirement for short term load forecasting (STLF). Unlike previous

approaches forecasting either household level or grid level aggregated load, we forecast

the aggregated power load but dissagregated by appliance type. Utilising the REFIT

dataset, we choose three appliances of interest - refrigeration, dishwasher and washing

machine and for each, train deep-learning LSTM-based forecasting models to point

forecast communal power consumption in 30 minute intervals over a 24 hour forecast

horizon. We find we can learn to forecast the power load variations that are unique to

each appliance type and which vary according to both behavioural and environmental

factors. However, evaluating the accuracy of our models on a day to day basis using

traditional regression metrics such as MAPE is challenging. We show this is due to the

Aggregation Error [1] which dominates because we are in the "scaling regime" with

the limited number of appliances we have in each aggregation. For the first time in the

literature we report an Aggregation Error Curve (AEC) at the appliance level and show,

via an appliance simulation, the level of aggregation that would be needed to reduce

this error to below that of the model error.
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Chapter 1

Introduction

Demand Side Response (DSR) is a smart grid technology that enables electrical loads

to be advanced or deferred to reduce peak demand on the electrical grid or shift the load

to a period of lower cost electricity generation (perhaps when there is an abundance of

renewable energy available) [2]. In the domestic setting, examples of such loads are

electric vehicle charging, dish washing, clothes washing and drying and refrigeration.

The expectation is that occupants in a smart-grid enabled home will willingly allow

a change of schedule of exactly when these appliances draw their power load (over a

short term horizon of a few hours - perhaps overnight or during the workday) in return

for reduced energy costs [3]. The societal benefit is a reduction in the environmental

impacts of fossil fuel based energy generation and the construction of the associated

infrastructure.

For DSR to work successfully, accurate forecasting of the anticipated short-term

load available to be shifted is required. In the DSR marketplace, this typically involves

making a 24-hour ahead forecast so that an Aggregator (a commercial enterprise that

organises DSR products[3]) can offer a specific quantity of load shift for a specific

period of time in the next 24 hours to the grid operator [4]. For practical and efficient

management, the DSR market is only available for Aggregators able to control loads

above a certain size and within a specific timeframe (currently, in the UK this is 3MW

of capacity and the ability to respond within 20 minutes [5]). While there has been

successful commercial sector deployment [6, 7, 8], such requirements have so far

made it impractical for DSR to be employed at the domestic level despite this being a

sizeable portion of the overall energy market - 30% and growing [9]. In the smart grid

future, however, Aggregators operating in the domestic sector are expected to emerge,

enabled by advances in IOT connected appliances and appliance monitoring and control
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Chapter 1. Introduction 2

infrastructure [3].

Various approaches to the short-term load forecasting and DSR control requirement

have been proposed. The first is to use non-intrusive load management (NILM) to

dissagregate the whole-house (smart meter) power signal into individual appliance

power loads and then utilise forecasters for each to make a by-household, by-appliance

prediction of when each appliance of interest would be in use by that household. These

forecasts are then aggregated by the Aggregator who then makes decisions and asserts

control over the appliances centrally [10, 11, 12]. The second approach also utilises

by-household by-appliance forecasters but the control decision of which loads to shift

is made locally by a Home Energy Management System (HEMS) responding to a more

generic load shift request from the Aggregator [13, 14]. Yet others have suggested

that the entire demand response could be voluntary - occupants responding to ad-hoc

requests from the utility directly or responding to economic incentives in how their

tariff is structured [15, 16].

We propose a different approach, which to the best of our knowledge is unique.

We propose a single forecast model by appliance type, forecasting the aggregated

load of that appliance across a community of homes. DSR control could then be

asserted centrally by the Aggregator for that appliance type across the community. The

advantages of this approach are that while the data collection requirements remain the

same, only one forecaster is required (per appliance type), substantially reducing the

compute requirements (indeed, some have suggested a forecasting model per appliance,

per home is impractical [17]). Additionally, a per-household HEMS would no longer

be required, and, based on previous work, forecasting an aggregated signal can be done

more accurately than forecasting dissagregated signals [18]. We believe our approach

offers a more cost effective, practical and accurate approach compared to the previously

suggested solutions.

In this work we explore the ability to forecast short-term aggregated load, disaggre-

gated by appliance type to facilitate this approach.

The novel contributions of this work are:

1. Using the REFIT dataset [19], we build and train deep-learning models to fore-

cast aggregated power demand, disaggregated by appliance type, which, to our

knowledge, has not been reported on previously.

2. We demonstrate that we can sufficiently forecast for the application, the power

load driven by the first level of various communal behavioural and environmental
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factors identified in our EDA work.

3. We compare our forecasting results to previously reported works regarding house-

hold level and grid level short term load forecasting, and demonstrate that these

initial aggregated appliance-level results, as with household level forecasting, are

dominated by Aggregation Error [1] rather than model forecasting error.

4. We present new results showing an appliance-level Aggregation Error Curve

(AEC) and determine empirically how many appliances are needed in a refrigera-

tion aggregation to move from the "scaling regime" to the "saturation regime" (as

defined by [1]) thereby removing the aggregation error from the reported metrics.

5. We present a successful initial forecasting framework that we believe enables a

more practical domestic demand side response implementation than previously

suggested approaches.

This dissertation is presented in four main sections. In chapter 2 we summarise

the previous approaches to load forecasting, identifying the methods and practices

most appropriate to our application. We identify and analyse candidate datasets for our

investigation, select the one most applicable and perform exploratory data analysis. In

chapter 3 we present the methodologies we adopt to prepare the data for the task, the

evaluation metrics we will use, establish naive baselines against which we will evaluate

our models and present details of the forecasting algorithm. In chapter 4 we present

our experimental results, provide a detailed analysis and compare to existing literature.

Finally, chapter 5 summarises our findings and presents guidance on further work.



Chapter 2

Background

2.1 Previous work

We draw on the existing literature regarding short-term load forecasting (STLF) at

various levels of aggregation to understand what the state-of-art forecasting methods

are and the results they achieve.

STLF at the grid level is a long established discipline [20, 21]. Researchers are

motivated to produce more accurate forecasting models which can be used by the grid

operators to better forecast power needs over the coming hours and bring dispatchable

generation onto the grid in time for when it’s needed. Recent state-of-art approaches

employ a variety of deep learning architectures and can achieve accuracies, as reported

by Mean Absolute Percentage Error (MAPE) in the 1%-2% range. For example, with

Recurrent Neural Networks (RNN) [22], Long Short Term Memory (LSTM) [23],

Convolutional Neural Networks (CNN) coupled with LSTM [24] and LSTM coupled

with Gated Recurrent Unit (GRU) [25] which, as an exemplar, achieved a best-in-class

forecasting error of 1.85% on the EUNITE load forecasting competition dataset.

Recently, household-level STLF has become an extremely popular area of research

with the proliferation of data from smart metering infrastructure becoming available

publicly. The stated motivations for these studies are various. Some researchers are

motivated in the belief that by providing home occupants with a forecast of their

upcoming energy use, it will motivate them to make voluntary behavioural changes

to manually shift it to some time later to take advantage of a cheaper rate [26, 27].

Others have argued explicitly or implicitly it will be needed for a locally-managed DSR

implementation (such as a Home Energy Management System) [28, 29, 30]. Others have

argued it enables utilities to target high-use customers for DSR [31, 32] while others

4



Chapter 2. Background 5

have argued it will improve grid-level forecasting [33]. And yet others motivations

are just to improve household level STLF forecast accuracy without any other stated

motivation [34, 35]. While some of these motivations may have some validity, we argue

the explosion of research using this data is largely because of the availability of the data

itself rather than it necessarily addressing a specific problem. One area, however, where

this data has been invaluable is in the development of Non-Intrusive Load Monitoring

(NILM) which is the ability to dissagregate a household power signal (post-hoc or in

real time) into its constituent appliance components [36].

Contrary to the accuracies achievable with grid level STLF, reported accuracies at

household level STLF are much lower - typically in the 30%-45% MAPE regime. This

is because the signal at the household-level is disaggregated compared to that at the

grid level. Energy use at the individual household level is very variable - driven largely

by the individual habits and behaviours of the occupants. Habitual behaviour (both

from individuals or from the appliances themselves with pre-programmed schedules)

leads to patterns of energy use which can be learnt and predicted. On the other hand,

completely random behaviours are not learnable and cannot be predicted. Therefore,

the achievable STLF accuracy of any particular home will largely be a function of

that households habitual behaviours vs random behaviours rather than a function of

any particular forecasting methodology (at the grid level, these random behaviours are

"averaged out" of the data, leaving only the deterministic part and a large reason why

the achievable forecasting accuracies are so much better).

Nevertheless, many papers have been published on this topic with increasingly

complex deep-learning architectures. In [28] the authors employ bi-directional LSTM,

RNN and GRU architectures, reporting a best-in-class MAPE of 35% on the latter. In

[31] the authors report a MAPE of 44% using a 2-layer LSTM architecture. In [26]

the authors report a 40% MAPE by combining an LSTM and CNN model compared

to a MAPE of 44% with just the LSTM alone. In [17] the authors propose a CNN

with pre-clustering of customers into similar profiles in order to reduce the number of

forecasting models required in a practical DSR implementation and report a MAPE of

39%. In [33] the authors achieve MAPE’s of 32% to 40% using an echo state network.

Almost all of the papers state they have achieved improved (sometimes, state-of-art)

results by comparing their method to some hand-picked lesser method - often ARIMA,

a traditional ML (Support Vector Regression or Decision Trees) or even another deep-

learning approach. However, the accuracy of the underlying results are still always in

the 30% - 45% range due to the random behavioural aspects already mentioned.
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In this work we are motivated to demonstrate the validity of our new approach of

forecasting aggregated appliance power, disaggregated by appliance type rather than

choosing some overly complex model architecture with which to baseline it. Based

on this outlook and our review of the related works we therefore choose a LSTM-

based model architecture: It is popular in the most recent literature, straightforward

to implement and evaluate and demonstrated to produce competitive accuracies on

both aggregated and disaggregated loads. We should expect forecasting accuracies, as

measured by MAPE, to be better than disaggregated household-level STLF state-of-art

(approximately 30-45%) but no-better than aggregated grid-level STLF state-of-art

(approximately 1-2%).

2.2 Task

Our task is to produce a 48-point forecast covering a forecast horizon of 24-hours at

a resolution of 30 minutes of the aggregated power demand, by appliance type, using

historical data and potentially additional explanatory variables.

2.3 Selection of Dataset

We analysed two datasets as candidates for this work - the IDEAL dataset [37] and the

REFIT dataset [19] (there is also UKDALE [38] but as it only monitored 5 homes, we

did not consider it further). Both studies instrumented 20 or more homes with appliance-

level monitoring devices for different appliances within each home. A summary of the

monitored appliances included in the IDEAL and REFIT datasets is shown in table 2.1.

We have noted those appliances which we believe are DSR-eligible. We argue that each

of these could have their load demand advanced or deferred with either no impact to the

user or a minimal impact to which the user agrees to in return for reaping the benefits

of participating in a DSR program.

Our task involves assembling an aggregated dataset for each DSR-eligible appliance

type we wish to consider in our study. The aggregated data needs to be constructed

coherently - that is, the period of time is chosen such that the same homes are con-

sistently reporting data for that appliance for the entire period. We wish to capture

collective appliance-use behaviour on a day to day basis. Therefore each home (and

its appliances of interest), which will have a unique behavioural pattern, needs to be

present for the entire period of our study. Apart from short periods (which we can deal
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APPLIANCE REFIT REFIT IDEAL IDEAL DSR

NAME QTY AVE DAYS QTY AVE DAYS ELIGIBLE

WASHING MACHINE 20 506 24 183 YES

MICROWAVE 17 490 28 152

FRIDGE FREEZER 16 504 28 183 YES

DISHWASHER 15 501 20 194 YES

KETTLE 15 493 28 174

FREEZER 13 519 6 139 YES

TOASTER 10 528 22 76

FRIDGE 7 497 5 130 YES

TUMBLE DRYER 7 519 3 126 YES

HEATER 4 516 5 64

WASHER DRYER 3 479 9 146 YES

Table 2.1: Summary of the appliances available in both the REFIT and IDEAL datasets.

Those considered DSR-eligible and therefore candidates for this study are identified.

with by imputation) appliances going permenantly offline or new homes being included

in the study as it progresses are not behavioural changes and are not patterns (in the first

instance) we wish to learn with our forecasting models.

Figure 2.1 shows an example appliance-level heat-map showing power data avail-

ability for dishwashers, one of the candidate DSR-eligible appliances available in both

datasets. We observe that homes in the IDEAL study were added gradually throughout

the study period vs REFIT. We found all the DSR-eligible appliances showed the same

trends in both datasets (Appendix A).

We make the following observations regarding the suitability of the two datasets to

the task.:

• The coherency of the REFIT dataset is more suited to our task - we need a long

period of data coupled with as many appliances reporting over that same period

as possible.

• Both datasets show random gaps in the data for individual appliances and also

gaps in the data that appear to have affected all appliances. This latter issue is

more prevalent in the REFIT data, particularly towards the end of the study (the

horizontal white lines in figure 2.1).
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Figure 2.1: Coherency Analysis of an example DSR-Eligible Appliance - Dishwashers.

• The most populous appliances are refrigeration, dishwashers and washing ma-

chines in both datasets. The least are tumble dryers and washer-dryers.

Based on the longer period of coherency for a larger number of appliances for each

DSR-eligible appliance type, we choose the REFIT dataset and the following appliances

- Dishwashers, Refrigeration (all types) and Washing Machines as examples to study (in

this study we are aiming to provide a proof of concept of the approach, not exhaustively

study all the available DSR-eligible appliances).

2.4 Exploratory Data Analysis

2.4.1 Dissagregated Appliance EDA

2.4.1.1 Short Timeframe Load Profiles

Figure 2.2 shows an example of the power signal for the selected appliances from REFIT

home 1 (we deliberately selected a day when all three were in use). We observe that

the dishwasher and particularly the washing machine signals are quite noisy when in

use. Both typically employ water heaters to heat the incoming mains water. In addition

they both have water pumps, control electronics, sensors and in the case of the washing

machine, employ a high-power motor to rotate the drum. All these components are
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Figure 2.2: Example Daily Load Profile for Dishwasher, Fridge-Freezer and Washing

Machine (a day and time span deliberately selected where they were all in use).

operated at various times during the operation of the appliances and are responsible for

the complexity of the signals. The flat topped regions exceeding 1kW are likely the

periods when the water heater was operating. The last few minutes of each washing

machine cycle show a curved rising power profile - likely the washing machine in the

spin cycle.

Refrigeration devices employ a compressor to compress a refrigerant which is then

rapidly expanded to provide the cooling effect. A refrigerator / freezer is typically set

to maintain a constant internal temperature while the temperature in the environment

it is located in is changing (the kitchen, utility room or perhaps even an unheated

out-building). The compressor runs to reduce the internal temperature of the fridge to

a set level (with hysteresis) and then turns off until the internal temperature rises and

triggers it again. We see this cycling effect in the plot of figure 2.2. In this example,

each on period is approximately 20 minutes and each off period is approximately 1hr

15 minutes. The sharp spike at the beginning of the 2nd cycle is due to the high start-up

current of the compressor. Usually only lasting a few seconds, this is randomly sampled

by the power monitor. As the external temperature changes, the compressor has to

come on more often to cool the appliance internally (due to thermal losses), leading to a

higher duty cycle (on time vs off time) and more average power being consumed. When

the compressor is running, the appliance in this example consumes approximately 80W.
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2.4.1.2 Anomalous Appliance Behaviour

The raw datasets for the chosen appliances were analysed for anomalous appliance

behaviour utilising timeseries plots to find periods of unusual temporal behaviour and

boxplot distributions to identify unusual appliance power distributions. These plots

and the investigations are documented in appendices B and C. The only issues we

found that resulted in individual appliance removal from the dataset were that the

appliance labelled as a freezer in home 13 was very unlikely to be correct. Furthermore,

we determined that homes 1 and 7 from the freezer dataset reported no active power

values, only zero’s throughout and were also removed. While they weren’t affecting

any aggregated profile, their presence did affect the computation of the mean power per

appliance in the aggregation.

We note in figure 2.1 the white lines across all appliances in the dishwasher dataset.

These were present in all the REFIT appliances at the same times and are periods

where there is no data reported at all, or, in the case of a few appliances, data which is

"stuck" at the last observed value just before the same period. We term these as periods

of "system-wide failure" and we will deal with them with a detection, cleaning and

imputation strategy to be described later.

2.4.2 Aggregated Appliance EDA

We turn now to looking at the aggregated loads of the appliances. For each appliance,

we sum the load across each identical 30-minute interval for all dwellings and then

compute a simple mean by dividing by the number of dwellings (a constant for each

appliance type).

Figure 2.3 shows the mean power load of each appliance over two different timescale

views - hour of day (by day of week) and month of year. In each plot, we pivot on the

calendar / time variable and compute the mean value in that interval for all the data. We

observe there is a distinct pattern of use for each of the appliances over the different

timescale views.

Dishwasher load is lowest around 5am, rising sharply in the morning, showing

significant peaks at 8am, 7pm and two more lesser peaks at 1pm and 1am. We note

that the behavioural use of dishwashers by hour is markedly different at weekends vs

weekdays. Specifically, at weekends the morning peak starts later and the use is more

spread out over the course of the day. We argue that this is consistent with expected

household behavioural differences at the weekends vs weekdays as occupants engage in
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Figure 2.3: Analysis of selected appliances. Left: Daily load profiles by day of week.

Right: Hourly power distribution by month.

leisure vs work / school routines during those times, respectively. Over the course of

the year dishwasher load is lowest during the summer months and highest in December.

This could be behavioural or perhaps more likely due to the incoming water temperature

(which the appliance must heat to a target internal temperature) which varies over the

year according to the annual seasons.

Refrigeration load rises from its low at 5am, peaking at around 6pm before declining

again over the evening and overnight. We see 3 small disturbances in load around 7am,

12-1pm and 6pm which we ascribe to behavioural factors - increased door opening

activity and perhaps loading of warm items to be cooled, all around common mealtimes

in the UK. During the week, the average load remains fairly constant, even at weekends
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although we see perhaps some evidence of spread out use at the weekend in the daily

load profile (the two highest lines between the morning and evening peaks are the two

weekend days). Over the course of the year refrigeration load peaks approximately

40% higher in the summer months vs winter coinciding with peak vs low environment

temperatures.

The peak of washing machine load is the morning hours, from 8-9am with a lesser

peak around 6-7pm. Over the course of the week, the load varies somewhat, peaking

on Saturdays, Mondays and Sundays respectively. As with dishwashers, we see a later

morning peak on Sunday and also that the load is lowest during the summer months

providing perhaps further evidence that the higher incoming water temperature leads

to less heating power being required (although behavioural factors can’t be eliminated

entirely based on this observation alone).

Overall we see three seasonalities in the data - daily, weekly and annually, which we

infer with domain knowledge (we only have just over 1 year of data but we infer some

of the change over the year to be the effects of environment temperature on the power

required to refrigerate or heat water). Note that we adopt the terminology defined in

[39] where seasonality refers to any recurring pattern with a fixed frequency, explicitly

distinguishing it from cycles and trends.

Some of the features we observe are due to behavioural patterns and others are due to

environment (temperature). It’s perhaps important to note that the behavioural patterns

are likely to be community and culturally specific. The REFIT study collected data from

20 homes in the Loughborough region of the UK. The UK has a typical north European

climate, a particular school/working week vs weekend cultural schedule and particular

cultural and public holidays. Other communities and climates would perhaps have

their own unique factors that would drive their behavioural use of particular appliances

differently. Indeed, the actual appliances used themselves may be quite different from

different communities and cultures. This in itself presents an interesting area of study,

perhaps leading to ways of implementing transfer learning between culturally similar

communities separated geographically, or, to simply increase the level of aggregation.

This, however, is not the focus of our initial study and we do not consider it further here.

Figure 2.4 presents a visualisation of the daily load profile for each appliance over

the course of a year. Presenting the data as an image this way allows us to more easily

spot patterns and trends and how they change over the course of a year, Firstly, we see

the peaks in use at certain times of day for each appliance as horizontal lines of lighter

colours.
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Figure 2.4: Heatmaps of appliance daily load vs date.
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Periods of high use on particular dates show up as bright vertical lines in figure

2.4. We note the two bright lines in dishwasher use correspond to December 25th and,

interestingly, Monday January 5th 2015 into Tuesday January 6th. The high use of

dishwashers on December 25th is understandable given that it’s Christmas Day and

is typically celebrated culturally in the UK as a feast. Investigation revealed January

5th/6th was found to be an excessive use from a single home. Washing machines show

a particularly high power on August 8th which corresponds to an appliance "fault"

anomaly we identified in the appliance-level EDA work (appendix B). Refrigeration

shows many vertical (somewhat wider) lines spread throughout the year and also

variation over the course of the day forming some quite bright regions. We find these

observations to be explainable by temperature - both as it varies throughout the day and

how it varies throughout the year. The bottom image in figure 2.4 is a heatmap of the

half-hourly temperature for the Loughborough area over the same period as the REFIT

data collection [40]. One can see qualitatively how well correlated they are in terms of

the bright regions and bright vertical lines (the Pearson cross-correlation coefficient is

0.62).

Figure 2.5 shows the daily load profiles for different types of days that we felt might

be explanatory for differences in power load: weekday, weekend day, public holiday

and school holiday. The Pearson cross-correlation matrix between the daily load profiles

is shown in the lower figures. We see that for dishwashers, public holidays are highly

similar to weekend days and dissimilar to weekdays and school holidays (which look

the same). Refrigeration load shows very little sensitivity to day type and they are

all very highly correlated to each other. Washing Machine load doesn’t change much

between day types - the highest correlated are school holidays and week days which at

0.97 are essentially identical. The least correlated are weekdays and public holidays at

0.83 which is still quite high - we note the range of differences in correlation coefficient

is quite small. We conclude that weekdays, weekend days and public holidays are useful

markers, depending on appliance. School holidays do not appear to be useful markers.
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Figure 2.5: Public holidays and school holidays vs non-holiday weekdays and weekend

days.



Chapter 3

Methodology

3.1 Data Preparation

3.1.1 Cohort Analysis and Assembly

For each selected appliance, we wish to assemble a cohort of homes from which to

generate the aggregate signal. We apply the following criteria to determine which

homes and how much data from each to include in the cohort assembly:

• The span of time must be at least 1 year to capture at least one example of

expected annual seasonality effects.

• The number of appliances included must be as large as possible to smooth out

randomness in individual household behaviour.

• Aside from short periods (which shall be imputed), a cohort must have all appli-

ances reporting data for the entire duration of the cohort - it must be coherent.

We implemented a cohort assembly algorithm conforming to these requirements.

The algorithm and the selection of homes it picked for each appliance aggregation are

detailed in Appendix D. All fridges, freezers and fridge-freezers were merged into

one appliance type - refrigeration. The data were re-sampled from the original REFIT

datafiles to down-sample them from the original stochastic sampling process (sample

rate was approximately 8 seconds, but variable) to a specific alignment (on the half

hour) and a fixed period of 30 minutes. The value we compute is the mean of the power

measurements recorded in each 30 minute interval. A summary of the cohort assembly

process for the three selected appliances is shown in table 3.1.

16
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DISHWASHERS REFRIGERATION WASHING_MACHINES

NUM APPLIANCES 14 31 19

START DATE 2014-03-31 2014-04-02 2014-04-02

END DATE 2015-05-10 2015-05-10 2015-05-10

NUM DAYS 405 403 403

NUM INTERVALS 19455 19366 19366

PCT IMPUTED 3.27 3.25 3.3

Table 3.1: REFIT Appliance Cohort Assembly Summary

3.1.2 Outliers, Anomalies and Missing data

As noted in the appliance-level EDA, a number of issues were identified which need to

be addressed before our data can be used for the task.

• We devised an algorithm to detect the region of system-wide failure identified

in section 2.4.1.2 and deleted all values within those regions for all appliances.

Details of the algorithm and the regions detected and deleted are shown in

Appendix F.

• We applied a 99.9% quantile limit (computed separately for each appliance)

to the refrigeration data to remove extreme outliers due to compressor start-up

transients.

• After aggregation we imputed the missing values from the periods of system-wide

failure from the same time interval and day from the week before. A summary of

the imputation process is shown in table 3.1.

3.1.3 Train, Validation and Test Split

The dataset for each aggregated appliance was split into training, validation and test sets

as summarised in table 3.2. The test-set was held back and not used for any purpose

except evaluating finalised models. We chose to maintain strict temporal ordering in

our dataset (and not shuffle or use cross-validation) as in a real-world implementation

we would wish the model to adapt over time to behavioural or appliance changes which

occur at specific dates and remain so thereafter.
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SET START DATE END DATE DAYS INTERVALS %

TRAIN (DW) 31/03/2014 11/30/2014 245 11760 60%

TRAIN (R & WM) 02/04/2014 30/11/2014 243 11664 60%

VALIDATION SET 01/12/2014 30/01/2015 61 2928 15%

TEST SET 31/01/2015 10/05/2015 100 4800 25%

Table 3.2: Train, Validation and Test Set Constituency

3.1.4 Normalisation

The data were normalised using min-max scaling as computed on only the training

period - finding the offset and scale values that convert the training data to values

between 0 and 1 and then applying these to all data values including the validation and

test periods.

3.1.5 Conversion to Supervised Dataset

Figure 3.1 shows the formation of a single training sample at time t. Each training

sample input features are formed of N previous (lagged) observations and (optionally) a

one-hot encoded label for each day of the week. The labels are the future 48 intervals

from t. During training, t is advanced 30 minutes (1 interval) for each training sample,

generating 11664 training samples for dishwashers and washing machines (refrigeration

is 11760). The validation set is also evaluated in 30 min intervals (2928 samples). For

testing, t is advanced 48 intervals (1 day) at a time since we only compute one 24-hour

forecast for each day at 6am and then roll forward to 6am the next day to simulate the

application in real-world operation (running a single forecast each day to provide the

data for a DSR bid to the grid operator). Care was taken to ensure that there was no

overlap of training samples or their associated labels from the validation and training

sets.

3.2 Evaluation Metrics

Model forecasting performance will be quantified in terms of how well it predicts the

power signal for each of the 30 minute intervals over the forecast horizon of 24 hours

from 6am each day. For each set of 48 intervals over a single forecasted 24-hr period we
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Figure 3.1: Conversion to a supervised dataset for model training.

compute the most commonly reported metrics in the literature, RMSE (eqn 3.1), MAE

(eqn 3.3) and MAPE (eqn 3.4) between the forecasted signal and the actual signal.

These measurements are then repeated for each day in the test period. We summarise

our overall performance by averaging each metric over all the days in the test (or

validation) period as the example for RMSE is shown in eqn 3.2. We will use the

average RMSE computed over the entire validation set as the means to select hyper-

parameters and save the weights from the best observed model. We will also use the

regression metrics computed over the entire test set to compare our results to the existing

literature.

3.2.1 Root Mean Square Error (RMSE)

RMSE for a single test day is given as:

RMSEd =

√√√√ 1
48

48

∑
i=1

(ŷdi− ydi)2 (3.1)

where i is the interval in the forecast horizon, d is day in the test period, ŷ is the interval

forecasted power, y is the actual interval power. RMSE for the entire test period is then:

RMSE =
1
D

D

∑
d=1

RMSEd (3.2)

where D is the total number of days in the test period.

3.2.2 Mean Absolute Error (MAE)

MAEd =
1

48

48

∑
i=1
|ŷdi− ydi| (3.3)
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DISHWASHERS REFRIGERATION WASHING MACHINES

NUM WEEKS 19 6 15

VALIDATION SET RMSE 54.47 6.04 29.45

Table 3.3: The optimal number of weeks to compute the Recent Day of Week & Interval

of Day Means over for the Naive Baseline.

3.2.3 Mean Absolute Percentage Error (MAPE)

MAPEd =
100
48

48

∑
i=1

|ŷdi− ydi|
ydi

(3.4)

3.3 Naive Forecast Baseline

It’s important in any machine learning task to establish a naive forecast baseline against

which the forecasting results of candidate models can be compared. In our dataset,

which we have shown to have daily, weekly and, by inference, annual seasonality,

there are a number of season-aware naive forecasts we could consider for each forecast

interval of the forecast horizon. We note that while it is likely our dataset has an annual

seasonality, it is not possible to construct any annual seasonal naive forecasts as we do

not have data spanning previous multiple years to compute such a forecast from. We

therefore chose a seasonal naive forecast which is the recent mean of the same interval

of day from the same day of the week, going back several weeks. The naive forecast

was optimised by sweeping the number of previous weeks to compute the mean over,

monitoring the RMSE on the validation set and using the value that yields the lowest

value for each appliance. The findings are summarised in table 3.3.

Full details of all the naive forecasts we considered and their evaluation results on

the test period is given in Appendix G.

3.4 Forecast Model

The LSTM architecture is well suited to time-series forecasting problems as it directly

encapsulates the ordered, temporal nature of the input data [41, 42, 43]. The architecture

of our particular implementation is shown in figure 3.2.
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Figure 3.2: Model Architecture

3.4.1 Implementation Details

The architecture and setup parameters common to all the forecasting models are shown

in table 3.4.

3.4.2 Hardware / Software

We utilised a Windows based PC with the following hardware and software to perform

all the experiments in this report. Processor: Intel 16-core i7 10700K 3.8GHz, GPU:

NVIDIA GeForce RTX3080, Development Environment: Jupyter Notebooks running

Anaconda 4.10.1 for Windows (10), Deep-Learning Library: Tensorflow-gpu v2.5.0.

3.4.3 Hyper-Parameter Tuning

For hyper-parameter tuning we adopt the methodology described in [46] of tuning the

hyper-parameters using random search. Such an approach allows a larger area of the

parameter space to be searched per compute resource unit. Table 3.5 shows the possible

values for each of the hyper-parameters being tuned. For each trial, we sample a value

for each with uniform probability from each list.

The efficacy of each combination of hyper-parameter values are quantified by

training the models on the training set and evaluating them using RMSE evaluated on

the validation set. At the end of each epoch (one complete pass of the training data
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PARAMETER VALUE

LSTM LAYERS 1

LSTM ACTIVATION RELU [44]

FULLY-CONNECTED (FC) HIDDEN LAYERS 1

FC HIDDEN ACTIVATION RELU

BATCH SIZE 250

LOSS FUNCTION MSE

OPTIMISER: ADAM [45]

ADAM LEARNING RATE 1E-3

ADAM LEARNING RATE DECAY NONE

EARLY-STOPPING PATIENCE 100

Table 3.4: Common model architecture and configuration

PARAMETER VALUES

LAGGED OBSERVATIONS 6, 12, 24, 48, 96, 192, 384

LSTM HIDDEN SIZE 32, 64, 128, 256, 512, 1024

FULLY-CONNECTED HIDDEN SIZE 32, 64, 128 ,256, 512, 1024

Table 3.5: Random hyper-parameter search values

through the model) the model is used to compute the forecast interval squared error

for each interval in the validation set. The square root of the mean of these is then

computed for a single evaluation metric for that epoch to yield its RMSE. If the RMSE

is the best yet seen during training, the model weights are saved to disk. Training

then continues through multiple epochs (typically 100-200) whereby at the end of the

training we have a best-seen RMSE and model saved to disk for that particular set of

hyper-parameters. Furthermore, we monitor the validation RMSE and employ an early

stopping strategy as recommended by [47]. If, after 100 epochs (the "patience"), the

validation RMSE has not improved from the best yet seen, we terminate training. This

strategy allows more combinations hyper-parameter settings to be evaluated efficiently

within our available compute resource by reducing our time over-training our models.

This procedure is then repeated for all the hyper-parameter settings to be evaluated. We

select the hyper-parameters that yielded the lowest RMSE on the validation period for
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final model evaluation on the test set.

3.4.4 Model Evaluation

After hyper-parameter tuning we evaluate trained models using the selected hyper-

parameters on the held-out test period. First, we retrain ten models with different known

seeds (1000 to 1009, step 1), each time using the minimum RMSE on the validation

period as a means to save the best model weights and terminate with early-stopping.

Finally, we run the held-out test set through each of the trained models and report the

metrics along with standard deviations to quantify the repeatability of the model training

process.
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Experimental Results and Discussion

Our EDA work informs us the appliances we have chosen have different power signa-

tures over the three seasonalities and it is likely that they will need different treatment

when building and evaluating our forecasting models. We will consider each separately.

4.1 Refrigeration Forecasting

We noted from our EDA that we have two strong seasonalities in our refrigeration

data - a daily and an annual one, both of which are strongly correlated to temperature.

Furthermore, we also detected an additional behavioural pattern in the daily cycle - that

of increased power consumption around mealtimes as users interact with the fridge.

4.1.1 Hyper-parameter Tuning and Test Results

The results of the random hyper-parameter search as evaluated on the validation period

are summarised in table 4.1. Here we are showing the top performing configuration (by

RMSE) in 65 random trials which took approximately 18 hours to complete. Figure 4.1

shows a typical training / validation curve where we can see, in this case, the model is

under-constrained - there is a point of best validation RMSE after which the validation

RMSE worsens as the model starts to over-fit to the training data.

The result of the test set evaluation of the best performing model from the hyper-

parameter search is shown in table 4.2. We see that the model has beaten the Naive

baseline for RMSE and MAE. improving it by approximately 10% in each case and

MAPE by 9.3%. The standard deviation over the 10 retrained models with different

seeds is very small (<0.55%) indicating that the model training process with this

24
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TRIAL NUM LSTM DENSE VALIDATION BEST FIT TIME

RANK LAGS HIDDEN HIDDEN RMSE EPOCH (SECS)

1 192 32 512 5.340 317 5010

Table 4.1: Refrigeration - Best performing settings from random hyper-parameter search

trials.

Figure 4.1: Example training and validation loss (MSE) curve showing the model, in this

case, to be under-constrained (early-stopping is disabled in this example).

particular set of hyper-parameters is quite repeatable.

EVALUATION METRIC: RMSE MAE MAPE(%)

NAIVE BASELINE 5.820 4.695 14.488

FORECAST MODEL 10X MEAN 5.230 4.192 13.140

FORECAST MODEL 10X STDDEV(%) 0.24 0.19 0.54

VS BASELINE -10.1% -10.7% -9.3%

Table 4.2: Refrigeration Model vs Naive Baseline Test Period Evaluation

Figure 4.2 (left) shows an example forecasted day (the first day of the test period).

The 95% confidence interval for each forecast interval is computed from the residuals

of the training period as per [39]. We observe that the confidence intervals remain

somewhat constant vs the forecast over the forecast horizon (tracking with the forecast,

but not diverging). This is one of the benefits of a non-linear model over a linear model,

such as ARIMA, where there the confidence interval always grows over the forecast
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horizon due to having to bootstrap previously forecasted values to get the next interval

prediction [39]. We observe in figure 4.2 (left) how erratic the actual signal is over the

forecast horizon. On the other hand the forecast is quite smooth and the naive baseline

is somewhat in between. Comparing the forecast to the expected daily load profile that

we determined in the EDA work (figure 2.3) we can see that the model forecasts a peak

around 6.30-7pm and there is some evidence of increased power at around 7am and

1pm (although, it’s not strong). While the actual signal and naive baseline clearly show

the daily seasonality also, they seem too erratic to make out the mealtime behavioural

peaks at all.

Figure 4.2: Model Forecast, Naive Baseline Forecast and Actual over the forecast interval

for the first day in the test period. The RMSE between the forecasts and the actual signal

for this day is 5.33W vs 5.93W for the model and naive baseline respectively.

The left and right plots of figure 4.3 show the MAE and MAPE respectively over

the forecast interval for the same forecasted day as figure 4.2. Of course, the MAE and

MAPE values reflect the erratic behaviour of the actual signal vs forecast throughout

the forecast horizon but the main thing to note here is how flat the overall trend is -

while the underlying signal against which MAE and MAPE are both computed rises

and then falls over the daily cycle (figure 4.2), the errors (apart from some individual

peaks) do not - the forecast, naive baseline and actual signal all follow the same daily

seasonality and the variance of the error is not changing throughout the forecast horizon.

We examined many examples of forecasted days in the test period and we found the

observations we have described here to be common to all of them.
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Our reported MAPE over the entire test period is 13.14% (table 4.2). As we noted

in section 2.1 state-of-art STLF for a single home achieves MAPE’s in the 30%-45%

range whereas state-of-art grid-level STLF (an aggregation of thousands of homes)

achieves MAPE’s in the 1%-2% range. Here we have an aggregation of 31 appliances

(somewhat in between 1 and thousands) and so our MAPE accuracies perhaps fall

within the range that we would expect between these two extremes. We will discuss

this further in section 4.4 after reporting our dishwasher and washing machine results.

Figure 4.3: MAE (left) and MAPE (right) over the forecast interval for the first day in

the test period. The mean MAE between the forecasts and the actual signal is 4.18W

vs 4.70W for the model and naive forecasts respectively. The MAPE between the

forecasts and the actual signal is 14.34% and 16.68% for the model and naive forecasts

respectively.

4.1.2 Exploring the Learnt Features

We can explore further some of the important features we would expect our model

to have learnt by averaging the forecasted and actual signals over different timescale

dimensions as we did in our EDA work. For example, we can average the 48 forecasts

for each day to obtain the mean daily forecasted power compared to the mean daily

actual power and then view this over all the days in the test period to see how well

the forecast model tracks the temperature change in the weather over a few months.

We can also average each forecast interval over all the days in the test period and then

look across the average forecast horizon to see how well the model forecasts the power

changes due to daily temperature change and the behavioural interactions with the

fridge.

These two views are shown in figure 4.4. The left plot shows the mean daily power

of the actual signal, the naive baseline and the model forecasts over the test set period.
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We observe that the model tracks closely with the actual mean daily power vs the naive

baseline, which doesn’t so well. The mean daily power is changing over this timescale

due to changes in the temperature due to the weather. The naive baseline is essentially a

6 week moving average which is unable to track changes which occur much faster than

this. The weather in the period around 7th March 2015 was particularly warmer than

the surrounding period. This particular event can also be seen in the original EDA work

in figure 2.4 around the same dates (the rightmost vertical arrow in the refrigeration and

temperature plots). This divergence between the ability of the forecast model and the

naive baseline to follow the change in power due to the weather is the primary reason

the forecast model reports significantly better metrics than the naive baseline in table

4.2.

The apparent slight delay between the actual and the forecast power is due to the

model forecasting the next 24 hours based on lagged power observations only. Since

it doesn’t have any other information, the model will forecast a daily mean power

according to these historical values. Since the temperature of each day is variable

from day to day, there is an error between what the model forecasts (based on the last

few days) and the actual power based on what the actual temperature (of the future

forecasted day) was. This error could be mitigated by providing the model with a

weather forecast value of "tomorrows" expected temperature as an additional input

feature to the model.

Figure 4.4: Left: Model forecast, Naive forecast and Actual daily mean power vs test

day. The RMSE of the Model and Naive forecasts to the Actual daily mean are 1.33W

vs 2.38W respectively. Right: Model forecast, Naive forecast and Actual interval mean

power over the forecast horizon. The RMSE of the Model and Naive interval mean

forecasts to the Actual interval mean are 1.0W vs 1.03W respectively.

Figure 4.4 (right) shows the average of the forecast intervals over the forecast



Chapter 4. Experimental Results and Discussion 29

horizon for all the days in the test period. We can see qualitatively from this figure that

overall the model forecasts the mean daily load profile quite well. There is also stronger

evidence that it forecasts the behavioural peaks around mealtimes (8am, 12:30pm and

7:30pm) but also that it does not capture it fully as in each of these regions we under

forecast the actual signal. At the interval of peak load we note that we under-forecast

the actual power by approximately 5% (36.5W vs 38.5W).

4.2 Dishwasher Forecasting

We observed in our EDA work (figure 2.3) that aggregated Dishwashers have a strong

behavioural daily seasonality (the time of day that they are typically used is after meals

and overnight) and, unlike refrigeration, a strong weekly seasonality in that we see

weekend use is markedly different from weekdays.

4.2.1 Hyper-parameter Tuning and Test Results

We follow the same methodology for training and evaluating a model as we did for

refrigeration. We use the same model architecture, settings and possible choices for the

random hyper-parameter search (tables 3.4 and 3.5). Table 4.3 shows the top performing

hyper-parameter configuration from the random hyper-parameter search.

RANK NUM LSTM DENSE VALIDATION BEST FIT TIME

LAGS HIDDEN HIDDEN RMSE EPOCH (SECS)

1 192 512 512 57.924 76 1270

Table 4.3: Dishwasher - Top performing hyper-parameter settings.

The result of the test set evaluation on ten models trained with different seeds with

the best performing hyper-parameter settings in table 4.3 is shown in table 4.4. We see

that the model is worse than the naive baseline for both parameters by 5-8%. MAPE is

not shown as it could not be computed on a daily basis as the actual aggregated signal

goes to zero at some points during the course of each day due to the very low number

of appliances in the aggregation (there’s no base load). The standard deviation over the

10 models is small indicating that the model training process with different seeds but

with this particular set of hyper-parameters is quite repeatable.
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EVALUATION METRIC: RMSE MAE

NAIVE BASELINE 47.38 36.15

MODEL (NO DOW FEAT) 50.05 39.18

STDDEV(%) 0.86 2.72

VS BASELINE +5.6% +8.4%

MODEL (W/ DOW FEAT) 48.88 37.75

STDDEV(%) 0.45 0.8

VS BASELINE +3.2% +4.4%

Table 4.4: Dishwasher Test Set Evaluation without and with the Day of Week input

feature.

Figure 4.5 shows an example forecasted day (the first day of the test period). As

with the refrigeration example, we see that the actual signal is very erratic compared

to the naive baseline and model forecasts. Comparing our RMSE and MAE results

(50.05W and 39.18W respectively) to the refrigeration test results (5.23W and 4.19W

respectively) we can see that the metrics are approximately an order of magnitude

worse. On the other hand, the signal is only of the order of 2-3 times higher at the peak

(80W for the dishwasher aggregation and 30W for the refrigeration aggregation for

this example day). We ascribe the relative degradation in accuracy metrics to the lower

number of appliances in the aggregation coupled with the behavioural differences of

dishwashers vs refrigeration loads (which are more consistent over the day).

4.2.2 Exploring the learnt features

As we did with refrigeration, we now explore what salient features of the aggregated

dishwasher load the model has learnt to accommodate in the forecast. The two timescale

averaged views are shown in fig 4.6. We can see in the left plot that unlike refrigeration,

there is no trend over the test period in mean daily power. We can see that the forecast

model does not follow the excursions in the actual signal very much at all, presenting

more of an average signal through the entire test period. This is likely day to day

random behaviour in our aggregation which we are observing because of the very

limited number of appliances coupled with the pure behavioural nature of dishwashers.
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Figure 4.5: Dishwasher Model Forecast, Naive Baseline Forecast and Actual over the

forecast interval for the first day in the test period. The RMSE between the forecasts and

the actual signal is W vs W for the model and naive baseline respectively.

In the right plot we see that the forecasted average day tracks the actual signal very well

for both the model and the naive baseline. We note that we under-forecast the interval

of maximum demand by approximately 10% (80W vs 88W). The fact that the daily

plot shows quite a lot of erratic behaviour and the interval plot is relatively smooth

indicates that the times that dishwashers are likely to get used is typically the same

(around mealtimes and overnight) but day to day the number of homes running them

at all in the aggregation varies somewhat randomly (unlike in refrigeration where we

mostly assume they are on all the time in all the homes).

Figure 4.7 shows the result of adding a one-hot-encoded day of week set of features

to the model (as described in figure 3.1). We can see that with only lagged observations

the model was not able to distinguish any temporal characteristics in the days leading up

to Saturdays (in particular) or Sundays (mostly, although there is a little more separation

as Saturday’s are in fact distinctly different than workdays and so would provide some

temporal difference in the lagged observations to generate a different forecast for

Sundays). The right plot shows that with the addition of the day of week feature, the

model is now able to forecast both weekend days vs weekdays quite differently and is

qualitatively similar to the profiles we see in the EDA work (figure 2.3).
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Figure 4.6: Left: Model forecast, Naive forecast and Actual daily mean power vs test day

for aggregated dishwashers. The RMSE of the Model and Naive forecasts to the Actual

daily mean are 9.71W vs 8.59W respectively. Right: Model forecast, Naive forecast and

Actual interval mean power over the forecast horizon. The RMSE of the Model and Naive

interval mean forecasts to the actual interval mean are 9.58W vs 7.15W respectively.

Figure 4.7: Left: Forecast average daily load profile without day-of-week feature. Right:

Forecast average daily load profile with day-of-week feature. Adding the day-of-week

feature to the model enables it to learn a different daily load profile for weekends vs

weekdays and compares well with our expectations from the EDA work (figure 2.3).

4.3 Washing Machine Forecasting

Finally, we present our results for Washing Machines. Once again,we use the same

training, hyper-parameter tuning and test period evaluation procedure. The best model

found has the parameters shown in table 4.5 and the test evaluation results are presented

in table 4.6. Here we are only showing results with the day of week feature also

included (as, with the dishwasher, we observed it helped the model capture the weekend

vs weekday differences).

A single forecasted day example is shown in figure 4.8. As was the case with the

other two appliances we see a somewhat smooth model forecast, a very erratic actual
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RANK NUM LSTM DENSE VALIDATION BEST FIT TIME

LAGS HIDDEN HIDDEN RMSE EPOCH (SECS)

1 384 1024 256 30.356 10 2614

Table 4.5: Washing Machine - Top performing hyper-parameter settings.

EVALUATION METRIC: RMSE MAE

NAIVE BASELINE 28.99 20.15

MODEL (W/ DOW FEAT) 28.91 20.20

STDDEV(%) 0.36 0.77

VS BASELINE -0.28% +0.25%

Table 4.6: Washing machine Test Set Evaluation (with the Day of Week input feature).

signal with the naive baseline somewhere in between.

Our two averaged timescale views are shown in figure 4.9. Over the test period

(left) we can see a strong periodicity in the actual mean daily power signal which

the naive baseline follows very well and the forecast model less so. This is the strong

weekly seasonality of washing machine use where the mean power of washing machines

goes up significantly at weekends (particularly Saturdays). Adding the day of week

feature helped the forecast model considerably here but it still has a residual error in this

seasonality that needs further work to address. We make the following observations from

this data compared to dishwashers (the other behaviourally driven appliance). Unlike

dishwashers which tend to get used quite frequently throughout the week, washing

machines tend to get used most at weekends. They both exhibit different times of use at

weekends vs weekdays but the difference with washing machines is that they get used

by a lot more households in the aggregation during the weekend vs the weekday, not

just at different times (as with dishwashers). The right plot shows the model forecast

smooths out the peak load of day, under forecasting it by approximately 10% (48W

vs 53W) on average and also shifting the predicted time of peak load to about 1 hour

later. From figure 2.3 we can see that the timing of the morning peak load for washing

machines varies quite a bit day to day, even during the workweek. This is not the case

for the other appliances so in this case we see a smoothing out of the predicted peak

load time that we did not see with the other two appliances.
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Figure 4.8: Washing Machine Model Forecast, Naive Baseline Forecast and Actual over

the forecast interval for the first day in the test period. The RMSE between the forecasts

and the actual signal is 6.31W vs 5.76W for the model and naive baseline respectively.

4.4 Discussion

We have shown that the forecasting models can learn the first level of important seasonal

features that drive aggregated power consumption by appliance type for three different

appliances. We summarise the ability to forecast, on average, the peak load of day

in table 4.7. Here we see that on average the model under-forecasts the peak load of

day consistently for all three appliances. Although this was not a design feature of the

model, this is actually a benefit for DSR as over-forecasting (and then not being able to

deliver the committed load shift) comes with significant financial penalties. To design

for this aspect we would need to use an differentiable asymmetric loss function and

a full understanding of the commercial costs of under vs over forecasting to set the

parameters correctly [48].

We ran into two practical issues evaluating the models. First, erratic behaviour

on the actual signal prevented us from evaluating the accuracy of the model as you

would conventionally do on a forecasted day-to-day basis. Instead we had to resort to

averaging both our forecasted and actual signal over different timescale views and then

compare them in order to demonstrate model forecasting accuracy to specific seasonal

features. Secondly, we were unable to compute MAPE for dishwashers and washing

machines due to the actual signal dropping to zero or near zero during the forecast. We
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Figure 4.9: Model forecast, Naive forecast and Actual daily mean power vs test day

for aggregated washing machines. The RMSE of the Model and Naive forecasts to

the Actual daily mean are 6.31W vs 5.76W respectively. Right: Model forecast, Naive

forecast and Actual interval mean power over the forecast horizon. The RMSE of the

Model and Naive interval mean forecasts to the actual interval mean are 5.92W vs 3.70W

respectively.

APPLIANCE ACTUAL FORECAST ERROR

PEAK(W) PEAK(W)

DISHWASHER 88 80 -9.1%

REFRIGERATION 38.5 36.5 -5.2%

WASHING MACHINE 53 48 -9.4%

Table 4.7: Average Peak Load of Day Forecast Summary.

argue that these two issues result entirely from the limited number of appliances we

were able to assemble in each aggregation for this work, and would not be an issue in a

real-world implementation.

The problem of accuracy varying in short-term load forecasting due to limited levels

of aggregation is discussed in [1] and [18] where the authors introduce the concept of

the Aggregation Error Curve (AEC). As aggregation levels change from low to high,

the effects of individual random behaviours (either human or appliance driven) are, at

least initially, reduced by the square root of the number of signals in the aggregation

(the so-called law of large numbers). Consequently, the accuracy of models forecasting

such aggregated signals follow the same law. The authors term this behaviour as being

within the "scaling regime". At very high levels of aggregation, however, the AEC

curve starts to diverge from the law of large numbers and eventually saturates to a fixed
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error (2% in their particular case study of 180,000 homes) - the "saturation regime".

Whilst this study was focused on aggregated household-level STLF we argue that we

are observing the same phenomena in our study. Indeed, at only 14-31 appliances in

each aggregation, we are well inside the "scaling regime" according to their data.

When we averaged across the two different timescales to see if the models had

learnt the seasonal features of interest we were, essentially, increasing our aggregation

by performing an aggregation in time. By averaging the signal across the 48 intervals of

the forecast horizon we were producing a point forecast of the daily mean load which

had 6.9 times (square root of 48) less aggregation error than any individual interval

forecast. Similarly, when we averaged the same forecast interval over all 100 days in

the test period we are reducing the aggregation error by a factor of 10 times. With

only 14 dishwashers, 19 washing machines and 31 refrigeration appliances in each of

our aggregations, the aggregation error provides a floor to the forecasting accuracy we

can report, specific to the number of appliances in the aggregation. By performing

aggregation in time across the two timescale dimensions we were able to reduce the

aggregation error as if we had 48 or 100 times as many appliances. Aggregation in

time, of course, can only be applied when looking for specific, pre-conceived seasonal

features over which to aggregate a different seasonality. Table 4.8 shows a summary of

the reduction in RMSE when averaging across the two timescales for the 3 appliances.

We can see that the RMSE has reduced by approximately 5 times in each case. That it

didn’t reduce by 6.9 or 10 times indicates that the RMSE error is now likely due to the

model, not the aggregation error, which has been reduced to lower levels.

APPLIANCE DAY-TO-DAY DAY MEAN INTERVAL MEAN

RMSE RMSE RMSE

DISHWASHER 48.88 9.58 9.71

REFRIGERATION 5.23 1.00 1.33

WASHING MACHINE 28.91 5.92 6.31

Table 4.8: Forecast RMSE summary and estimates of model forecast error by averaging

across the two seasonal timescales.

In a real-world implementation we would need to assemble enough appliances

in our aggregations such that we were either in the saturation regime or far enough

down the AEC such that the aggregation error is lower than errors arising from the
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model’s limitations itself. This latter point is very important. We argue that the models

we implemented have lower forecasting error than the aggregation error allows us

to measure. We were able to demonstrate this by aggregating in time both the model

forecast and actual signals and then comparing the aggregation in time results. To

further illustrate this and to provide, for the first time, an Aggregation Error Curve for

an appliance-level aggregation, we implemented a refrigeration appliance simulator

from which we can construct an arbitrary aggregation of appliances.

The details of the simulator are given in Appendix H . For each simulated appliance

the cycling nature of the refrigeration compressor is modelled (running power, frequency,

phase and duty cycle) and the duty cycle is varied sinusoidally over a 24-hour period

to simulate the daily seasonality due to the change in ambient temperature. We also

include a simulation of the random interaction with the appliance by users around

mealtimes (by increasing the duty cycle a random amount for a half-hour period around

these times). The simulator parameters were derived and calibrated from analysing the

raw refrigeration data files and performing both time-series and spectral analysis as

described in the appendix.

We made aggregations of 1, 10, 31, 100, 500, 1k and 5k refrigeration appliances

generated using our appliance simulator. We then ran these waveforms through the

same model we trained in section 4.1 and evaluated the performance of the model

over the same test period and using the same metrics and methodology as previously

described. The results are shown in table 4.9. We can clearly see the effect of the

aggregation error reducing beyond the 31 appliance aggregation we were limited to in

our study. The trained model has considerably less error than the aggregation error at 31

appliances - at 5000 appliances, for example, it is able to forecast the signal to a MAPE

accuracy of 2.87%. We show this result in the form of Aggregation Error Curve (AEC)

in the same form as in [1] for direct comparison. We can see that in the case of our

refrigeration aggregation we are firmly in the "scaling regime" up until approximately

a 100 appliance aggregation after which we start to asymptote towards the "saturation

regime".
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Figure 4.10: Refrigeration Aggregation Error Curve (AEC).

EVALUATION METRIC: RMSE MAE MAPE(%)

NAIVE BASELINE 5.820 4.695 14.488

FORECAST MODEL 10X MEAN 5.230 4.192 13.140

SIMULATED 31 APPLIANCES 5.60 4.61 13.05

SIMULATED 100 APPLIANCES 3.13 2.56 7.00

SIMULATED 1000 APPLIANCES 1.66 1.31 3.48

SIMULATED 5000 APPLIANCES 1.41 1.09 2.87

Table 4.9: Test set results with higher levels of aggregation utilising the refrigeration

appliance simulator. Actual forecasting results on REFIT 31 appliance aggregation are

reprinted from table 4.2 for ease of comparison.
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Conclusions and Future Work

In this work we proposed an alternative approach to domestic demand side response

(DSR) than those previously presented - that we monitor and control power load by

appliance type, aggregated over many homes. This work presented exploratory data

analysis (EDA) of aggregated appliance loads for three different DSR-eligible appliances

- refrigeration, dishwasher and washing machine from the REFIT dataset. We found that

for this particular community of homes, each of these appliances had unique patterns of

power consumption over the course of a day, week and year and that there were both

behavioural and environmentally (temperature) driven factors. We concluded that these

differences could be used to advantage in the demand side response approach we have

proposed.

We demonstrated that LSTM-based deep-learning forecasting models can be success-

fully trained to forecast the aggregated appliance loads to facilitate our DSR approach.

We obtained initial accuracies on the aggregated forecasts higher than those previously

reported on household level short term load forecasting but not as good as grid-level

(highly aggregated) forecasting work. We were able to show that the error in our

forecasting results was not limited by model forecasting error but rather by aggregation

error [1] as a result of having too few appliances in our aggregations. We demonstrated

this limitation in two ways:

Firstly we showed that we could take advantage of the seasonalities in our data

and aggregate in time to produce more accurate estimates of the model forecasting

ability. We provided this analysis over two seasonalities and we found our model had

approximately 5 times less RMSE across these timescales than the aggregation error

was allowing us to measure in the day-to-day forecasts. Using this approach, we were

able to demonstrate that the model can forecast the average peak daily load (a point of

39
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particular interest for DSR) to an accuracy of approximately 5%-10% depending on

appliance. We were also able to show that the model consistently under-forecasts the

peak load of day, which is preferable in a DSR application.

Secondly, we implemented a refrigeration appliance simulator to allow us to con-

struct aggregations of an arbitrary number of appliances. By testing such aggregations

with the refrigeration model trained on the REFIT dataset, we were able to show that the

MAPE forecasting accuracy of the model was approximately 3% rather than the 13%

that the initial results had indicated. We were further able to show an appliance-level

aggregation error curve [1] for refrigeration. The curve showed divergence of the model

from the ideal curve at around 100 appliances which indicates the minimum number

of refrigeration appliances needed in an aggregation to start to see sensitivity to model

performance itself.

The next level of features that would be interesting to explore would be the effect that

public holidays have both on themselves and the days around them. Similarly, periods

of festivals (Christmas, Easter etc) are of interest in how they impact the behavioural

use of appliances. These were all sparse in our dataset as it only covered a single year

and multiple years of such data would likely be required to get enough examples in the

dataset to see meaningful effects there.

The biggest issue though hindering the investigation of learnt features (pre-conceived

or not - the very reason for utilising a deep-learning architecture) is the aggregation

error which must be reduced. For that we need to assemble larger cohorts of appliances.

We could look at combining data from different datasets but as we pointed out, these

need to come from culturally similar homes. Clustering analysis could be useful here to

identify similar communities and then combine.

Other appliances could be studied, perhaps from datasets where there are a plethora

of data from different homes even if the appliance itself is not DSR-eligible. Filtering

the data to reduce the signal noise would be another area of interest but care must be

taken here as the results arbitrarily improve as more and more filtering is applied to the

point where all the temporal information is removed from the signal and we are simply

predicting the mean of the entire dataset - very accurately.

Probably the most fruitful area of future research would be to combine NILM with

the project, obtaining the household-level data from a large number of homes and then

disaggregating it into appliance-level signals to re-aggregate into appliance aggregations.

There are a number of very large household level datasets (e.g. as in [1]) which would

certainly provide enough data to reduce the aggregation error to the "saturated regime".
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Appendix A

Dataset Heatmaps

Figure A.1: Dataset Heatmap. Refrigeration. Left: IDEAL. Right: REFIT

47
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Figure A.2: Dataset Heatmap. Washing Machine. Left: IDEAL. Right: REFIT



Appendix B

Appliance Anomalies - TIMEPLOTS

Timeplots provide us a view of the data where we can see unusual temporal events

through the dataset to be investigated further.

Figure B.1: Dishwasher long-term load profiles at 1 day resolution. The large "spike"

from home 10 was in a period before our assembled cohort so it was not investigated.

The large spikes from home 16 were investigated and found to be normal operation - in

this home the dishwasher ran a lot over the Christmas period and January 5th/6th. No

appliances were removed from the dishwasher dataset. The gaps towards the end were

periods of system-wide failure.
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Figure B.2: Fridge-Freezer long-term load profiles at 1 day resolution. The spike in home

4 was before the cohort start date and was not investigated. Actually, so was the spike

from home 9 (just) but we didn’t know it at the time so it was investigated. See figure B.3.

Figure B.3: Fridge-freezer home 9 anomaly. Zoom of the large spike from home 9 in the

fridge-freezer plot (middle) in figure B.2. This event lasted 2 weeks (March 15th-31st

2014). Prior to and after the anomaly the appliance is cycling normally and similarly to

other fridge-freezers in the plot. During the event, the load is a continuous 220W load

with no cycling at all. A possible explanation for this anomaly is that the fridge door was

accidentally left open, perhaps over a 2 week holiday when no-one was home, or, that

for this period another appliance was plugged in instead. This seems like a normal event

that could happen - the appliance was left in the dataset.
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Figure B.4: Freezer long-term load profiles at 1 day resolution. Freezers in homes 13, 1

(freezer 1) and 20 identified for further investigation. For freezer in home 13 see figure

B.5.

Figure B.5: Freezer home 13 anomaly. 30 Min resolution, zoomed into a few of the last

peaks. The peak power values that this appliance is drawing (1.4kW on average, per

30 min) are very much higher than a typical freezer compressor load. Furthermore, the

appliance is not cycling as we expect a freezer appliance to cycle over the course of

a day (with periodicity in the range of minutes - hours) as can be seen with the other

freezer appliances in this plot. We conclude that this appliance is unlikely to be a freezer.
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Figure B.6: Washing Machine long-term load profiles at 1 day resolution. Home 5

was identified for further investigation due to the large spikes but found to be operating

normally - just more than usual on those particular days. See figure B.7.

Figure B.7: Washing machine home 5 anomaly.A zoom of two of the spikes from home

5 shown in the washing machine plot (bottom) in figure B.6. In both cases (months

apart) there is a continuous load of approximately 2kW for a few hours (and unusual

hours for the example from August 2014). We speculate that the amount of power being

drawn would indicate an appliance fault - that perhaps the water heater for the washing

machine is stuck on for a few hours and then clears.



Appendix C

Appliance Anomalies - BOXPLOTS

Boxplots provide a view of the data allowing us to see appliances with unusual looking

distributions to be investigated.

Figure C.1: Dishwasher individual appliance power distributions. Dishwashers in homes

5, 10, 13 have unusual looking distributions and were investigated but found to be

operating normally.
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Figure C.2: Refrigeration individual appliance power distributions. ff=Fridge Freezer,

fe=Freezer, fi=Fridge. Freezers from home 1 (fe-1-1), 7 (fe-7-1) and 13 (fe-13) were

investigated and found to be anomalous. fe-1-1 and fe-7-1 were almost all zero values

with just a few readings scattered throughout (the outlier values we see in the plot). fe-13

was determined not to be a freezer appliance. All three were removed from the dataset

before aggregation. The fridge in home 11 (fi-11) was also investigated but found to be

operating normally.

Figure C.3: Washing Machine individual appliance power distributions. Appliances from

homes 4, 5, 11 and 19 were investigated but found to be operating normally.



Appendix D

Cohort Assembly Algorithm

Algorithm 1: Appliance Cohort Assembly
Input: Appliances Dataframe: DFA, size NDays x NAppliances.

Input: Required Minimum Number of Days: LDaysMin

Compute Ndays not NaN for each An in DFA

Initialize MergedCohort DFM = AMAXD with MAX(Ndays)

RN = NAppliances−1

Drop AMAXD from DFA

while Length(DFM) > LDaysMin do
for i = 1 to RN do

LM = Test Inner Merge Length of Ai with DFM

if LM > Lbest then
Lbest = LM, Abest = Ai

end if
end for
if Lbest > LDaysMin then

Execute Inner Merge Abest with DFM

Trim orphaned dates from DFM

Drop Abest from DFA

RN = RN - 1

end if
end while
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Figure D.1: Example of the cohort assembly process - refrigeration start and end dates

vs appliances added.

Figure D.2: Example of the cohort assembly process - refrigeration total length of cohort

vs appliances added. Using a greedy choice, the algorithm attempts to maximise the

length of overlapping days and the number of appliances in the cohort. In order to meet

the 365 day requirement, the last 3 appliances were not included in the cohort.



Appendix E

Home ID’s for each Aggregation

APPLIANCE HOME ID’S

FRIDGE-FREEZER 1,2,3,4,5,9,10,12,15,16-0,16-1,17,18,19,21

FRIDGE 1,4,7,8,18,20

FREEZER 1-0,3,4,6,7,8,10,17,18,20

DISHWASHER 1,2,3,5,6,7,9,10,13,15,16,18,20,21

WASHING MACHINE 1,2,3,5,4-0,4-1,6,7,8,9,10,13,15,16,17,18,19,20,21

Table E.1: Home ID’s of REFIT homes used in each appliance aggregation. Where there

are two appliances of the same type in the home the appliance is futher marked with a

dash and enumerated (e.g. Fridge-Freezer 16-0 and 16-1).
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Appendix F

Detected Regions of System-wide

Failure

The algorithm for finding regions of system-wide failure was simply to look for runs

of where all appliances in the cohort had duplicated values for more than 12 hours.

Usually these are missing data with no values at all (which could have been detected

by just looking for regions where all the values were missing). However, there were

instances where most of the appliances had no values and a few were "stuck" at the last

observed value before the region commenced. Hence, we used the duplicate method

which found both kinds of region. 12 hours was chosen as below that we would start to

detect regions where all appliances were occasionally genuinely at zero (e.g. overnight

for for washing machines was quite common). The regions detected and cleaned (by

imputing the previous weeks values from the same day and interval) are shown in table

F.1.

REGION START END LENGTH

1 2014-08-01 18:00 2014-08-02 12:00 0 DAYS 18:00:00

2 2014-08-30 13:00 2014-09-01 08:00 1 DAYS 19:00:00

3 2014-10-27 21:30 2014-10-28 13:00 0 DAYS 15:30:00

4 2014-12-18 10:30 2014-12-19 10:00 0 DAYS 23:30:00

5 2015-03-22 08:30 2015-03-24 14:30 2 DAYS 06:00:00

6 2015-03-31 04:30 2015-04-01 15:30 1 DAYS 11:00:00

7 2015-04-03 02:00 2015-04-07 09:30 4 DAYS 07:30:00

Table F.1: Regions of system-wide failure, detected and cleaned
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Appendix G

Naive Forecast Development

These are the seasonal-aware naive forecasts we could considered for each forecast

interval of the forecast horizon:

• Persistence: Persist the value from the last observation. (e.g. for the forecast

starting at 16:30 on a particular Saturday, persist the last observed value received

at 16:00 for all 48 forecast intervals).

• Same Interval Yesterday: Impute the value from the same interval the previous

day (e.g. for forecast interval Saturday 16:30, take the known observation from

Friday at 16:30).

• Same Interval Last Week: Impute the value from the same interval the same day

the previous week (e.g. take the known observation from the previous Saturday

at 16:30).

• Day of Week Mean: Impute the mean of all the intervals for the same day in the

dataset (e.g. average the observations from all Saturdays).

• Interval of Day Mean: Impute the mean of the same interval for all the days in

the dataset (e.g. average the observations at 16:30 for all days).

• Day of Week / Interval of Day Mean: Impute the mean of the same interval of

the same day in the dataset. (e.g. average all the observations from Saturdays at

16:30 in the dataset).

• Recent Day of Week / Interval of Day Mean: Impute the mean of the last few

weeks of the same interval of the same day in the dataset. (e.g. average the last

few observations from Saturday at 16:30 in the dataset).
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NAIVE FORECAST DAILY WEEKLY ANNUAL

PERSISTENCE (LAST OBSERVED VALUE) NO NO YES

SAME INTERVAL YESTERDAY YES NO YES

SAME INTERVAL LAST WEEK YES YES YES

DAY OF WEEK MEAN NO YES NO

INTERVAL OF DAY MEAN YES NO NO

DOW / IOD MEAN YES YES NO

RECENT DOW / IOD MEAN YES YES YES

Table G.1: Ability of the naive forecasts to represent daily, weekly or annual seasonality

in their computation.

The ability of these naive forecasts to capture the daily, weekly and annual seasonal-

ities is summarised in table G.1.

The naive forecasts were computed over the test set and are shown in table G.2.

NAIVE DISHWASHERS REFRIGERATION WASHING MACH.

FORECAST RMSE RMSE RMSE

PERSISTENCE 62.0 7.23 37.4

YESTERDAY 65.9 6.94 40.6

LAST WEEK 58.9 6.79 34.9

DOW MEAN 50.9 6.72 30.6

IOD MEAN 48.2 6.38 29.1

DOW / IOD MEAN 47.3 6.42 28.5

RECENT DOW / IOD MEAN 46.9 5.60 28.7

Table G.2: Summary of RMSE on the test set for all the naive baselines. We observe

that Recent DoW & IoD Mean is best in class for dishwashers and refrigeration and

marginally 2nd best for washing machines. We therefore adopted this as our default

naive forecast baseline.
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Figure G.1: Example naive forecasts for refrigeration over a 24 hour period (the first day

of the test period).

Figure G.2: Dishwasher daily mean RMSE of the naive forecast vs the actual signal over

the test set. We note some of the zero values for the "Last Week" forecast. These are an

artifact of the imputation strategy where missing data were imputed from the same day,

1 week prior. For these particular dates no data were collected for any of the appliances,

the values were imputed from one week prior (hence the zero RMSE) and they all show

the same artifact.
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Figure G.3: Refrigeration daily mean RMSE of the naive forecast vs the actual signal

over the test set.

Figure G.4: Washing Machine daily mean RMSE of the naive forecast vs the actual

signal over the test set.



Appendix H

Refrigeration Simulator

Fridges cycle on and off through the day according to the ambient environment tem-

perature (how much power it takes to cool to a fixed internal temperature while the

temperature around it is varying) and how much the door is opened and warm things

are put inside to cool (according to our EDA, these occur around mealtimes - 7am,

1pm and 6pm). When a fridge compressor is running it consumes approximately a

constant power (start-up transients are ignored). When it is off we assume zero power.

Different fridges (size, age etc) have different active powers and cycle with different

duty cycles. We model each of these by sampling from a normal distribution where we

have specified the mean and the standard deviation.

We used the scipy.signal package to generate a square wave with pulse width

modulation according to a sinusoid. The frequency of the square wave, the magnitude

of the "on" power and the duty cycle were all sampled from normal distributions. The

mean and sdev’s of these distributions were found empirically by studying the raw time

series and with spectral plots. The "blip" in power consumption around mealtimes was

modelled by increasing the duty cycle by a "Mealtime Interaction Factor" for 30mins at

these specific times.

• Mean active power: 73W, stdev: 0

• Mean Cycle period: 2.5 Hours, Stdev: 0.25 Hours

• Mean Duty Cycle: 0.2, Stdev: 0.1

• Mealtime Interaction Factor: 0.7
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Figure H.1: The actual REFIT signal and then 31, 100 and 1000 Simulation Signals.

The aggregation error / noise reduces with the higher number of aggregations to finally

reveal the underlying signal we’re forecasting.
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Figure H.2: Spectral content of the actual REFIT signal and then 31, 100 and 1000

Simulation Signals.
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