
Data collection for policy

evaluation in reinforcement

learning

Rujie Zhong

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2021

Abstract

In reinforcement learning (RL), policy evaluation is a task to estimate the expected

returns when deploying a particular policy (called the evaluation policy) to the real

environment. One common strategy to conduct policy evaluation is On-policy Sam-

pling (OS), which collects data by sampling actions from the evaluation policy, and

makes estimations by averaging the collected returns. However, due to sampling error,

the distribution of OS data collection could be arbitrarily different from that under the

evaluation policy, making the value estimation suffer from a large variance.

In this work, we propose two data collection strategies, Robust On-policy Sam-

pling and Robust On-policy Acting, both of which can consider the historical collected

data and reduce sampling error in future data collection. Experiments in different RL

domains show that limited to the same amount, this low-sampling-error data can gen-

erally enable a more accurate policy value estimation.

i

Acknowledgements

I would like to kindly thank my supervisor Stefano Albrecht, co-supervisors Josiah

Hanna and Lukas Schäfer for their insightful comments and guidance throughout this

project.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Rujie Zhong)

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 2

1.2 Hypothesis . 3

1.3 Structure . 3

2 Background 4
2.1 Problem Formulation . 4

2.2 Policy Value Estimation . 5

2.2.1 Monte Carlo Estimation . 5

2.2.2 Ordinary Importance Sampling 5

2.2.3 Regression Importance Sampling 6

2.2.4 Model-Based . 6

2.2.5 Fitted Q-evaluation . 7

2.2.6 Comparison . 8

2.3 Data Collection Strategy . 8

2.3.1 On-policy Sampling . 9

2.3.2 Behavior Policy Gradient . 9

3 Methodology 10
3.1 Preliminaries . 10

3.2 Robust On-policy Sampling . 11

3.3 Robust On-policy Acting . 13

3.4 Comparison of ROS and ROA . 15

3.5 Connection to RIS . 16

3.6 Measurement of Sampling Error . 16

4 Experiments 17
4.1 Preparation . 17

iv

4.2 Experimental Set-up . 18

4.3 Main Results . 18

4.4 Performance with FQE and MB . 23

4.5 Extension . 24

5 Analysis 27
5.1 Effect of Hyper-parameter in ROS 27

5.2 Effect of Hyper-parameters in ROA 28

5.3 Richness of State-action Pairs . 29

5.4 Consistency . 30

6 Conclusion 32
6.1 Unsolved Problems . 32

6.2 Future Work . 33

Bibliography 34

A Experiment Domains 36

v

Chapter 1

Introduction

Reinforcement learning (RL) is a learning task that aims to train a policy that can max-

imize a numerical reward when interacting with the environment. One crucial problem

when applying reinforcement learning to real problems is policy evaluation. The goal

is to estimate the expected returns produced by a particular policy (called the evaluation

policy πe). To accomplish this, two steps are indispensable: data collection and value

estimation. In many RL applications like recommender systems [Afsar et al., 2021]

and robot control [Polydoros and Nalpantidis, 2017], data collection could be very

time-consuming and expensive. Therefore, it is important to design a data collection

strategy that leads to lower error value estimation with a limited number of samples.

Although exploration has been well studied in terms of RL agent training [Ostrovski

et al., 2017, Tang et al., 2017], its goal is to efficiently collect data that can produce a

higher return, rather than more accurate policy evaluation. Apart from this, there is a

lack of research in this field and thus a huge research gap.

The most common data collection strategy is On-Policy Sampling (OS), which col-

lects data by sampling actions from the evaluation policy. The main idea of this strategy

is that it assumes the distribution of data collection is close to the distribution under

the evaluation policy (called the evaluation distribution). To make value estimation

on this data, one standard method is Monte Carlo estimation (MC), which estimates

the policy value by averaging the total returns of all collected data [Sutton and Barto,

2018]. However, as OS samples data independently for each step, it could easily end

up with the data collection where some actions are collected too often and some others

too rarely, which we refer to as sampling error. With this biased data distribution, the

value estimation could be of low accuracy.

In this work, we design and evaluate two robust on-policy strategies which can

1

Chapter 1. Introduction 2

consider the historical sampling error, and be able to correct this error in future data

collection. Experimental results show that these data collection strategies can generally

produce a more accurate value estimation than other baseline strategies with the same

amount of data.

1.1 Motivation

Based on whether aiming to collect data with distribution close to the evaluation distri-

bution, data collection strategies can be divided into two categories: on-policy strategy

and off-policy strategy. To our best knowledge, On-Policy Sampling (OS) is the only

on-policy strategy in existing work. However, due to sampling error, the OS data dis-

tribution may be arbitrarily different from the evaluation distribution. To make more

accurate estimations, Regression Importance Sampling (RIS) is designed to correct this

error in the value estimation stage [Hanna et al., 2019]. It first estimates the empirical

policy πD, which is the policy that is most likely to generate the collected data, and

uses the importance sampling technique to re-weight each sample of data. However,

the importance ratio in RIS is computed according to the relative probability between

πe and πD, it could lead to a large variance if there is a large difference between πe

and πD (large sampling error). Therefore, it is necessary to reduce sampling error even

with RIS as the value estimation method.

On the other hand, off-policy strategies can follow an arbitrary policy (called the

behavior policy πb) to collect data, which has a different distribution from the evalu-

ation distribution. To mitigate this difference, the importance sampling technique is

again commonly used to re-weights the returns according to the relative probability

between πe and πb. Based on this technique, Behavior Policy Gradient (BPG) is de-

signed to find the optimal behavior policy that can lead to the minimum of the mean

square error (MSE) of the estimation [Hanna et al., 2017]. However, when using the

importance sampling technique, it can usually introduce extra variance caused by the

importance ratio. Although BPG can theoretically find the behavior policy that can

minimize the MSE of important sampling estimation, there is still a lack of evidence

whether this estimation can produce lower MSE than MC with OS data.

Therefore, this project will follow the idea of on-policy strategy, and explore how

to collect on-policy data with lower sampling error.

Chapter 1. Introduction 3

1.2 Hypothesis

To form this work, we hold the following hypothesis:

• Hypothesis 1: Our robust on-policy strategies can collect data with lower sam-

pling error. To test this hypothesis, we propose to evaluate sampling error by

KL-divergence of πD and πe.

• Hypothesis 2: With the sampling error reduced, the value estimation will be

more accurate.

1.3 Structure

In Chapter 2, we first review existing value estimation methods, divide them into

trajectory-based and transition-based estimations, and discuss the reasons why current

data collection strategies fail to collect data that can produce an accurate estimation.

Among these problems, we choose to mitigate sampling error, and propose two data

collection strategies (robust on-policy strategies) in Chapter 3. Theoretical necessity

and effectiveness of these strategies are also discussed in this chapter. In Chapter 4,

we design a series of experiments in all kinds of RL domains, to evaluate whether

our proposed strategies can collect data with lower sampling error, and whether this

data can enable more accurate estimations for different value estimation methods. In

Chapter 5, we explore the properties of our proposed strategies, including the effects

of hyper-parameters, richness of data collection and consistency. Finally, we present

the conclusions of this project, and discuss the unsolved problem and possible future

work in Chapter 6.

Chapter 2

Background

In this chapter, we will formally introduce the problem studied, and present relevant

literature.

2.1 Problem Formulation

In reinforcement learning, Markov Decision Process (MDP) is a classical formal-

ization of sequential decision making [Sutton and Barto, 2018], where the distri-

bution of the current state and reward is determined by only last state and action.

In this project, we assume the environment is a finite-horizon MDP with the state

space S , the action space A , the transition model P : S ×A × S ×R 7→ [0,1] and

the initial-state distribution P0 : S 7→ [0,1]. A policy π : S 7→ [0,1]|A | is a map-

ping function from states to the distribution over actions. In particular, π(a|s) rep-

resents the probability of choosing action a in state s. In a finite MDP problem, let

H = (S0,A0,R1,S1, . . . ,ST−1,AT−1,RT ,ST) be a possible trajectory, where T is the ter-

minal step. The probability of the episode H sampled under policy π can be computed

as Pr(H|π) = P0(S0)∏
T−1
t=0 π(At |St)P(St+1,Rt+1|St ,At). The discounted returns can be

denoted as G(H) = ∑
T−1
t=0 γtRt+1 where γ is the discount factor. Policy evaluation is

to estimate the expected discounted returns when deploying the evaluation policy πe,

which can be denoted as vπe = E[G(H)|H ∼ Pr(H|πe)].

To achieve this, we usually need two steps: data collection and value estimation.

Data collection strategy is to design a behavior policy πb (can be dynamic or fixed), and

use this policy to interact with the environment and collect data D = {H(i)}n
i=1. Based

on the collected data, the second step is to choose a proper value estimation method

(VE) to estimate the policy value v̂πe = VE(D,πe,πb). The goal is to minimize the

4

Chapter 2. Background 5

difference between the estimation and the true value. In this project, we use mean

squared error to measure this difference, denoted as ED [(v̂πe− vπe)2].

2.2 Policy Value Estimation

Most of the previous policy evaluation research focuses on the value estimation stage,

assuming that the data is already given, and designs a method that can make an accurate

estimation. This section will introduce and compare these estimation methods.

2.2.1 Monte Carlo Estimation

Monte Carlo Estimation (MC) is a method that assumes the distribution of collected

data is close to the distribution under evaluation policy (evaluation distribution), i.e.,

Pr(H|D) ≈ Pr(H|πe) and therefore make estimation by averaging the resulting dis-

counted returns [Sutton and Barto, 2018]:

vπe = E [G(H)|H ∼ Pr(H|πe)]

≈ E [G(H)|H ∼ Pr(H|D)] = vπe
MC

(2.1)

where Pr(H|D) denotes the probability of trajectory H under D .

2.2.2 Ordinary Importance Sampling

In some cases, the data may be collected by a stationary behavior policy πb, which

is different from the evaluation policy πe. In these cases, the distribution of the data

will be different from the true distribution when deploying the evaluation policy. One

standard technique to correct this difference is Ordinary Importance Sampling (OIS),

which re-weights returns according to the relative probability of their trajectories sam-

pled under the evaluation and behavior policies [Sutton and Barto, 2018].

vπe = E [G(H)|H ∼ Pr(H|πe)]

= E
[

Pr(H|πe)

Pr(H|πb)
G(H)

∣∣∣∣H ∼ Pr(H|πb)

]
≈ E

[
∏

T−1
t=0 πe(At |St)

∏
T−1
t=0 πb(At |St)

G(H)

∣∣∣∣∣H ∼ Pr(H|D)

]
= vπe

OIS

(2.2)

Chapter 2. Background 6

2.2.3 Regression Importance Sampling

Due to sampling error, the trajectory distribution from collected data D is not neces-

sary the same as that under the behavior policy, i.e., Pr(H|D) 6= Pr(H|πb). Both MC

and OIS could suffer from this error, reflected as the approximation process in Equa-

tion 2.1 and 2.2. To reduce this error, Hanna et al. [2019] propose to replace πb with

the empirical policy πD, which is defined as the policy that D is most likely gener-

ated by. The empirical policy is computed as πD = argminπKL(Pr(H|D) ‖ Pr(H|π)).
Therefore, Pr(H|πD) is a closer approximation of the data distribution Pr(H|D). Then,

regression importance sampling estimation (RIS) is computed as

vπe = E [G(H)|H ∼ Pr(H|πe)]

≈ E
[

Pr(H|πe)

Pr(H|D)
G(H)

∣∣∣∣H ∼ Pr(H|D)

]
≈ E

[
∏

T−1
t=0 πe(At |St)

∏
T−1
t=0 πD(At |St)

G(H)

∣∣∣∣∣H ∼ Pr(H|D)

]
= vπe

RIS

(2.3)

However, as the importance ratio ∏
T−1
t=0 πe(At |St)

∏
T−1
t=0 πD(At |St)

is unbounded, the variance of this esti-

mation can also be unbounded. To reduce this variance, RIS can be modified with the

technique of Weighted Importance Sampling [Sutton and Barto, 2018], and become a

new estimator Weighted Regression Importance Sampling (WRIS) as

vπe
WRIS = ∑

H∈D

∏
T−1
t=0 πe(At |St)

∏
T−1
t=0 πD(At |St)

∑H∈D
∏

T−1
t=0 πe(At |St)

∏
T−1
t=0 πD(At |St)

G(H) (2.4)

In the work of Hanna et al. [2019], this estimator has been empirically verified as the

one that can produce estimation with lower MSE.

2.2.4 Model-Based

Unlike the MC and IS-based estimations making estimation under the distribution of

collected data Pr(H|D), Model-based (MB) is designed to estimate the evaluation dis-

tribution Pr(H|πe), and compute the expectation under this distribution [Zhang et al.,

2021, Paduraru, 2007]. To accomplish this, MB first build a probabilistic model for

the transition model and the initial state distribution, and train it using the maximum

Chapter 2. Background 7

log-likelihood as

P̂ = argmaxP′ ∑
H∈D

T

∑
t=0
− logP′(St+1,Rt+1|St ,At)

P̂0 = argmaxP′0 ∑
H∈D
− logP′0(S0)

(2.5)

With these estimated models, MB can approximate the evaluation distribution as

P̂r(H|πe) = P̂0(S0)∏
T−1
t=0 πe(At |St)P̂(St+1,Rt+1|St ,At), and make the value estimation

as:
vπe = E [G(H)|H ∼ Pr(H|πe)]

≈ E
[
G(H)

∣∣∣H ∼ P̂r(H|πe)
]
= vπe

MB

(2.6)

The different between Pr(H|D) and P̂r(H|πe) is that Pr(H|D) = 0 if H /∈ D , while

P̂r(H|πe) > 0 if all transitions in H is collected in D . Therefore, MB can make full

use of each transition of the collected data D . Moreover, the accuracy of the estima-

tion only relies on the accuracy of the estimated transition model P̂ and initial state

distribution P̂0.

2.2.5 Fitted Q-evaluation

Fitted Q-evaluation (FQE) is another that can make full use of each transition of the

collected data D , which is designed to train an action-state value function from boot-

strapping data [Le et al., 2019, Paine et al., 2020].

Given policy π, the state-value function V π(s) = EH∼Pr(H|π)[∑
T−1
k=t γtRt+1|St = s]

quantifies the expected discounted returns in any state s, and the action-state value

function Qπ(s,a) = EH∼Pr(H|π)[∑
T−1
k=t γtRt+1|St = s,At = a] quantifies expected dis-

counted returns in any state s with action a. Based on this, the policy evalua-

tion can also be denoted as vπe = E [∑a π(a|s)Qπ(S0,a)|S0 ∼ P0(S0)]. According to

Bellman Equation, the action-state value function can be computed as Qπ(St ,At) =

Rt+1 + γ∑a πe(a|St+1)Qπ(St+1,a) [Sutton and Barto, 2018]. Therefore, FQE first esti-

mates the state-action function as

Q̂ = argminQE

[
T−1

∑
t=0

(
Q(St ,At)−Rt+1− γ∑

a
πe(a|St+1)Q(St+1,a)

)2
∣∣∣∣∣H ∼ Pr(H|D)

]
(2.7)

Chapter 2. Background 8

Then the FQE estimation can be computed as

vπe = E
[
∑
a

πe(a|S0)Qπe(S0,a)
∣∣∣∣S0 ∼ P0(S0)

]
≈ E

[
∑
a

πe(a|S0)Q̂(S0,a)
∣∣∣∣S0 ∼ P̂0(S0)

]
= vπe

FQE

(2.8)

where P̂0(S0) is the probability of trajectory starting with S0 in D .

2.2.6 Comparison

Based on whether using bootstrapping data, we can separate value estimation methods

into two categories: trajectory-based estimations (MC, OIS, RIS) and transition-based

estimations (FQE, MB). For trajectory-based estimations, each trajectory can only con-

tribute one return to the averaging result, while transition-based methods can “create”

infinite data based on the collected transitions. Therefore, theoretically, to estimate

the true policy value, trajectory-based estimations will require collecting all possible

trajectories, while transition-based methods only require collecting all possible tran-

sitions, which is much easier for MDP problems. However, with small data, these

transition-based methods may not be able to “create” bootstrapping data accurately,

and make estimations with extremely large error. For example, suppose we have not

collect any transition of state-action pair (s,a). When using MB, the estimated tran-

sition model may predict an extreme reward, and to transfer to some other un-tested

states. This may happen back and forth in MB and result in an extreme estimation. For

domains with continuous state or action space, this could happen more easily as it can

never collect all transitions.

Therefore, there is no one certain value estimation method that can always produce

the most accurate estimation. In this work, we will evaluate the performance of our

data collection strategies with different value estimation methods.

2.3 Data Collection Strategy

In this section, we will introduce the only two existing data collection strategies that

are designed for policy evaluation.

Chapter 2. Background 9

2.3.1 On-policy Sampling

On-policy sampling (OS) is the most common data collection strategy, which simu-

lates deploying the evaluation policy πe in the environment by sampling actions from

πe to interact with the environment. When using this strategy, we expect to collect data

with distribution close to the evaluation distribution, i.e., Pr(H|D) ≈ Pr(H|πe). The

advantage of this strategy is that data with higher probability in the evaluation distri-

bution is more likely to be collected, which is more important to the value estimation

according to the policy evaluation equation vπe = ∑H Pr(H|πe)G(H). However, since

OS samples an action for each step independently, making it unable to avoid collect

the same data repeatedly, which could make little contribution to value estimation. In

particular, the data with low probability under the evaluation distribution could always

be hard to sample with this strategy, even if this is the only data that have not been

collected.

2.3.2 Behavior Policy Gradient

Based on the OIS estimation, Hanna et al. [2017] propose a data collection strategy,

Behavior Policy Gradient (BPG), which is designed to find the policy that can mini-

mize the mean square error of OIS estimation. To accomplish this, BPG adjusts the

behavior policy iteratively during data collection by performing one-step gradient de-

scent on the loss function as

Loss(πθ) = MSE(vπe
OIS,v

πe)

= E

[
−IS(H,πe,πθ)

2
T−1

∑
t=0

logπθ(At |St) | H ∼ πθ

]
(2.9)

where πθ is the behavior policy and IS(H,πe,πθ) is the importance-sampled returns.

As a result, this will increase the probabilities of trajectories with higher returns or

importance ratios, and thus reduce the magnitude and variance of re-weighted returns.

However, practically BPG can only compute the gradient on collected data. Sup-

pose that we have only collected data with very high probabilities, since IS(H,πe,πθ)
2

is always positive, the probabilities of collected data will further increase, and the low-

probability data could be harder to sample. In this case, BPG is not efficient to collect

low-probability data, which could make it hard to further reduce the error. Another

problem is that each update of BPG can only use the data collected by the current

behavior policy, which makes it inefficient to find the optimal behavior policy.

Chapter 3

Methodology

In this chapter, we will discuss the problem of sampling error in On-policy Sampling,

and propose two novel data collection strategies, robust on-policy strategy, that can

reduce this error.

3.1 Preliminaries

For both trajectory-based and transition-based estimations, we believe on-policy data

can have benefit because 1) for trajectory-based methods, importance ratio is intro-

duced to re-weight off-policy data, which can bring more variance; 2) for transition-

based methods, model generalization relies on the distribution of training data, espe-

cially in domains with continuous spaces. However, On-policy Sampling (OS) is not

an efficient strategy to collect on-policy data.

To explain it, we decompose the data distribution as RIS: Pr(H|D)≈ Pr(H|πD)≈
∏

T−1
t=0 πD(At |St)P(St+1,Rt+1|St ,At) where the empirical policy πD can be seen as the

approximated action density of collected data D . Suppose at a certain point of data

collection, we have the evaluation policy πe and πD as Figure 3.1. The difference

between πe and πD is what we refer to as sampling error. As the goal of on-policy

strategy is to approximate the evaluation distribution Pr(H|πe), it is intuitive to convert

it to making πD close to πe, i.e., reducing sampling error. However, continuing data

collection using OS is not an efficient way to correct sampling error. To explain this,

suppose πD is the empirical policy for an n-step data collection in a domain with only

one state. If we follow OS to collect one step of data, we will expect to update the

empirical policy as πD ← (nπD +πe)/(n+ 1). Although this new πD will get closer

to πe, this data collection still suffers from sampling error (πD 6= πe). Instead, if we

10

Chapter 3. Methodology 11

a

(a
|s

)

e

D

Figure 3.1: Distribution of evaluation policy πe and empirical policy πD.

follow the ideal behavior policy π∗b = (n+1)πe−nπD to this one step of data, we will

expect to update the empirical policy as πD ←
(
nπD +π∗b

)
/(n+ 1) = πe, which will

fully correct sampling error. Therefore, following this ideal behavior policy will be

more an efficient strategy to reduce sampling error than OS.

To better introduce our proposed strategies in the next two sections, we assume

the policy model is built for domains with discrete action space and continuous action

space as Equation 3.1 and 3.2, respectively [Williams, 1992, Mnih et al., 2016].

πθ(a|s) = softmaxa

(
w>a φ(s)

)
(3.1)

πθ(a|s) = N
(

a,w>µ φ(s),w>σ φ(s)
)

(3.2)

where φ is a parameter-free one-hot encoding operator for domains with discrete state

space and a feed-forward neural network for those with continuous state space. Be-

sides, we use θ to denote all parameters of the policy model.

3.2 Robust On-policy Sampling

Following the idea above, one alternative way to get the ideal behavior pol-

icy π∗b is that we can first obtain the empirical policy by computing πD =

argminπθ
E [− logπθ(a|s) | s,a∼D]. However, the “argmin” computation can be very

time-consuming when πθ is a neural network as it requires many steps of gradient

descent to obtain πD.

To make it more efficient, we propose a novel data collection strategy called Robust

On-policy Sampling (ROS), shown in Algorithm 1. The main idea of this strategy is

Chapter 3. Methodology 12

Algorithm 1 Robust On-policy Sampling.
Input: evaluation policy πe, step size α

Initialize ∇← 0

Initialize πθ = πe

for step i do
Observe s from the environment

θ′← θ−α∇

Choose a∼ πθ′(s)

∇← i
i+1∇+ 1

i+1∇θ logπθ(a|s)
end for

to obtain and follow an approximated ideal behavior policy. At the beginning of the

data collection, we initialize πθ = πe. As we know if we perform one-step gradient

ascent on Loss(θ) = E [logπθ(a|s) | s,a∼D], and get the new parameter θ′, the new

policy model πθ′ will get closer to πD, which can be regarded as the evaluation policy

πe is updated in the direction of πD. On the other hand, ideal behavior policy can be

reformulated as π∗b = (n+ 1)πe− nπD = πe + n(πe− πD) which can be seen as the

evaluation policy πe is updated in the opposite direction of πD. Therefore, to obtain the

approximated ideal behavior policy, we propose to perform one-step gradient descent

on Loss(θ).

To explain more about the “direction” and why this approximated ideal behavior

policy can also be efficient to reduce sampling error, we first show the inequality for

the ideal behavior policy based on its expression as (π∗b−πe)(πD−πe)< 0. From this

inequality, we can also observe that with πe as the origin, π∗b is in the opposite direction

of πD, meaning that it will reduce the probabilities of actions that are collected too

often (with πD > πe) and increase those too rarely (with πD < πe). Therefore, with

this behavior policy, sampling error can be corrected more efficiently. Although ROS

does not follow the exact ideal behavior policy, we believe it is still efficient to reduce

sampling error because its behavior policy is in the same direction as the ideal one.

Moreover, as the gradient is computed as ∇θLoss(θ) = E[∇θ logπθ(a|s) | s,a ∼
D], where ∇θ logπθ(a|s) is unchanged for the historical data, we can use incremental

implementation to store and compute the average gradient. In this way, we can adjust

the behavior policy by considering all historical data, and the whole data collection

time is only linear to the number of action steps.

Chapter 3. Methodology 13

3.3 Robust On-policy Acting

However, ROS is not capable of obtaining a behavior policy in the same direction as the

ideal one in domains with continuous action space. That is because the ROS behavior

policy πθ′ in Algorithm 1 has the same structure as πθ in Equation 3.2, meaning that

this behavior policy can only output normal distribution. Therefore, we may obtain the

ROS behavior policy πθ′ as shown in Figure 3.2. It can be observed from this figure

that πθ′ is not an ideal behavior policy as it cannot meet (πθ′−πe)(πD−πe)< 0.

a

(a
|s

)

e

D
′

Figure 3.2: Distribution of evaluation policy πe, empirical policy πD and ROS behavior

policy πθ′ .

To mitigate this problem, we propose another algorithm, called Robust On-policy

Acting (ROA), shown in Algorithm 2. Instead of finding and sampling from the ideal

behavior policy to correct sampling error, this algorithm aims to identify and choose

the action that can minimize sampling error, which is where the word “Acting” comes

from. As we know if πD = πe (no sampling error), we will have ∇θLoss= 0. Therefore,

in order to reduce sampling error, we propose to choose the action that can lead to the

minimum of the L1-norm of the gradient, as a∗ = argmina∈A‖∇θLoss‖. We refer to

this action as the ideal action and choosing this action as the correction operation. As

the gradient generated by historical data is also unchanged, this algorithm follows the

same way as ROS to update and store the average gradient.

However, there is one problem in this algorithm for domains with continuous state

space where φ is a neural network. Theoretically, if the algorithm tries to reduce sam-

pling error in a certain state, only those historical data in similar states should be con-

sidered. However, when φ is a neural network, the gradient generated by all historical

data will be stored and merged together. Therefore, suppose that we have not col-

Chapter 3. Methodology 14

Algorithm 2 Robust On-policy Acting.
Input: evaluation policy πe, correction probability ε, potential action number m

Initialize ∇← 0

Initialize πθ = πe

for step i do
Observe s from the environment

Sample u from U(0,1)

if u < ε then
if A is a finite set then

Ã ← A
else

Ã ←
{

F−1(i
m+1 |πe(s))

}m
i=1 where F−1 is the inverse CDF.

end if
Choose a = argmina′∈Ã‖

i
i+1∇+ 1

i+1∇θ logπθ(a′|s)‖
else

Choose a∼ πθ(s)

end if
∇← i

i+1∇+ 1
i+1∇θ logπθ(a|s)

end for

lected any or only collected a small amount of data in a certain state, this algorithm

will choose the action that can reduce the gradient mostly generated by other unrelated

states, which in fact cannot reduce sampling error. What is worse is that the norm

of gradient has already reduced, meaning that some historical sampling error will be

erased from the gradient and thus cannot be corrected by this algorithm in future data

collection. To reduce the effects from unrelated states, we propose to reserve a proba-

bility ε to sample actions from the evaluation policy, by which we can collect enough

data for the algorithm to identify the ideal action more precisely.

In addition, for domains with continuous action space, A is an infinite set, which

makes it hard to conduct the “argmin” operation. To make it more efficient, this algo-

rithm only considers an m-action finite subset of the whole action space. This finite

subset is obtained by computing the inverse cumulative distribution function (CDF) on

the uniform probability. which could consider a wide range of actions.

Chapter 3. Methodology 15

3.4 Comparison of ROS and ROA

To correct sampling error, the main idea of ROS is to increase the probabilities of

actions that is sampled too rarely in historical data collection (called less-often actions).

while that of ROS is to identify the action that can minimize sampling error. However,

one problem of ROS is that choosing less-often actions cannot guarantee to reduce

sampling error.

To explain this, suppose at step t, we have the empirical policy as πt
D(a|s) =

Nt(s,a)
Nt(s,·)

where Nt(s,a) means the count of state-action pair (s,a) occurring in t-step historical

data. If we collect data of (s,a′) for the next step t + 1, the empirical policy will be-

come π
t+1
D (a|s) = Nt(s,a)+δaa′

Nt(s,·)+1 where δ is the Kronecker delta. ROS will increase the

behavior probability of those less-often action a′ such that πt
D(a
′|s) < πe(a′|s). How-

ever, especially when Nt(s, ·) is small, choosing this kind of action may dramatically

change the empirical policy, and cannot guarantee reducing sampling error. For exam-

ple, suppose we have the evaluation probability πe(a1|s) = 0.9 and πe(a2|s) = 0.1. If

we have only collected one-step data of action a1, the empirical policy is πt
D(a1|s) = 1

and πt
D(a2|s) = 0. At this point, action a2 is a less-often action for state s. How-

ever, if we choose action a2, the empirical policy will become π
t+1
D (a1|s) = 0.5 and

π
t+1
D (a2|s) = 0.5, which will significantly change the empirical policy and enlarge

sampling error. We refer to this phenomenon as over-correction. On the other hand,

ROA can avoid over-correction, as it first “simulates” choosing actions and then actu-

ally choose the action that can minimize the updated gradient, which it thought to be

equivalent to minimizing sampling error.

Moreover, as both ROS and ROA use the gradient to store information of historical

data, they share the same defect: for policy models that involves neural networks,

when choosing an action for a certain state, both of them may consider historical data

in other unrelated states, and reduce sampling error in a wrong way, which we refer to

as over-consideration.

To better understand this, we start from policy models that contain no neural net-

work. We can observe from Equation 3.1 and 3.2 that φ is a non-parametric one-hot

encoding operator for discrete state space, which makes each parameter of the policy

model only responsible for one state. In this case, the gradient generated by data of a

certain state will have no effect on the parameter responsible for other states. There-

fore, the action decisions in ROS and ROA will not be affected by data from different

states. However, for continuous state space, φ is a parametric neural network, and

Chapter 3. Methodology 16

the parameters are shared among different states. In this case, it is inevitable that the

gradient generated by a certain state could have effects on the action decisions in other

states. If these effects happen across totally unrelated states, over-consideration occurs.

3.5 Connection to RIS

Regression Importance Sampling uses maximum likelihood to compute the “actual”

behavior policy, aiming to correct sampling error for data that have already been col-

lected, while our robust on-policy strategies are designed to reduce sampling error

during data collection. There are two main reasons why it is still necessary to col-

lect low-sampling-error data even with RIS value estimation: 1) RIS uses importance

sampling technique to re-weight the returns. If the empirical policy πD has a large

difference from the evaluation policy πe, the importance ratio could be extremely large

or small, which can cause a large variance of the estimation. 2) RIS will be a biased

estimation if there exists data that has a positive probability under πe but have not been

collected in historical data. As the empirical probability for this un-tested data is 0, it

will always be seen as the less-often data. To reduce sampling error, this data will in-

evitably be taken into account, and usually have a higher probability of being collected

(more discussion see Section 5.3).

3.6 Measurement of Sampling Error

In order to compare sampling error across different data collection strategies, we pro-

pose to quantify sampling error using KL divergence of the empirical policy πD and

the evaluation policy πe as

KL(πD ‖ πe) = E [logπD(a|s)− logπe(a|s) | a∼ πD(a|s)]

≈ E [logπD(a|s)− logπe(a|s) | s,a∼D]
(3.3)

In this equation, as πD getting closer to πe, we will have KL(πD ‖ πe)→ 0, meaning

that the data collection suffers from less sampling error.

Chapter 4

Experiments

In this chapter, we will evaluate the performance of Robust On-policy Sampling (ROS)

and Robust On-policy Acting (ROA) in reinforcement learning domains with different

state and action space (detailed description see Appendix A):

• Discrete states and discrete actions: k-armed bandit problem [Sutton and

Barto, 2018], 4x4 Gridworld [Hanna et al., 2017].

• Continuous states and discrete actions: CartPole [Brockman et al., 2016].

• Continuous states and continuous actions: MountainCarContinuous [Brock-

man et al., 2016].

4.1 Preparation

To conduct policy evaluation, we need to prepare a set of evaluation policies. For

domains with discrete action space and domains with continuous action space, we

build the policy model as Equation 3.1 and 3.2, respectively. For all domains, we

use REINFORCE [Williams, 1992] to train the policy model, and randomly choose a

policy snapshot during training as the evaluation policy, which has higher returns than

random policies, but is still far from convergence. To obtain the true policy value, we

use on-policy sampling to collect n = 106 trajectories and compute the Monte Carlo

estimation of discounted returns. We use µg and σg to denote the mean and standard

deviation of discounted returns, and σµ =
σg√

n is the estimated standard deviation for

µg, representing the error bound of the true policy value, as shown in Table 4.1. To

compare across different domains, we normalize the policy value to 1 and during the

following experiments, all the rewards will be normalized as R̃ = R
µg

.

17

Chapter 4. Experiments 18

Table 4.1: Information of prepared policies in different domains.

Domain T µg±σµ µ̃g± σ̃µ

MultiBandit 1.00 0.78 ± 4.45e-04 1 ± 5.72e-04

GridWorld 7.18 4.70 ± 3.73e-03 1 ± 7.94e-04

CartPole 147.44 73.41 ± 1.73e-02 1 ± 2.36e-04

MountainCarContinuous 181.74 7.76 ± 9.35e-03 1 ± 1.20e-03

* T denotes the average steps of each trajectory. µg denotes the mean of discounted

returns, σµ denotes the standard deviation of µg, and µ̃g, σ̃µ denote their normalized

values.

4.2 Experimental Set-up

For each domain, we follow different data collection strategies to collect around 213

trajectories of data, which is equivalent to 213× T steps of data. For every step in

{2i×T}13
i=1, we use the current collected data to perform evaluation, including value

estimation and sampling error evaluation. Each experiment is conducted with 200 dif-

ferent seeds, and the metrics are averaged over these seeds. In this chapter, we choose

step size α = 1000 for ROS and correction probability ε = 1.0 for ROA in Multi-

Bandit and GridWorld, α = 10 for ROS and ε = 0.05 for ROA in CartPole, α = 0.1

for ROS and ε = 0.05,m = 15 for ROA in MountainCarContinuous. More discussion

about hyper-parameters will be presented in Chapter 5. In addition, we take On-policy

Sampling (OS) and Behavior Policy Gradient (BPG) as the baselines in this project.

Note that we have experimented with adapting Upper Confidence Bound (UCB) for

policy evaluation [Sutton and Barto, 2018]. However, as there is no consideration of

the evaluation policy πe in UCB, it may end up with data collection with extremely

low probability under πe. In our experiments, we found that this data can make little

contributions to policy evaluation, and thus omitted it from our reported results.

4.3 Main Results

In this section, we will show and compare the performances of ROS, ROA and other

baseline data collection strategies.

Figure 4.1 compares sampling error (KL-divergence) of different data collection

strategies. Hypothesis 1 can be verified that our proposed strategies (ROS and ROA)

Chapter 4. Experiments 19

101 102 103 104

steps

10 6

10 5

10 4

10 3

10 2

10 1

Sa
m

pl
in

g
er

ro
r

OS
BPG
ROS
ROA

(a) MultiBandit

101 102 103 104

steps

10 6

10 5

10 4

10 3

10 2

Sa
m

pl
in

g
er

ro
r

OS
BPG
ROS
ROA

(b) GridWorld

103 104 105 106

steps

10 5

10 4

10 3

10 2

Sa
m

pl
in

g
er

ro
r

OS
BPG
ROS
ROA

(c) CartPole

103 104 105 106

steps

10 5

10 4

10 3

10 2

Sa
m

pl
in

g
er

ro
r

OS
BPG
ROS
ROA

(d) MountainCarContinuous

Figure 4.1: Sampling Error of Different Data Collected Strategies

can generally reduce sampling error faster than OS and BPG. It is worth noting that

ROS can lead to larger sampling error with small data collection in GridWorld (Fig-

ure 4.1b). That is because as discussed in Section 3.4, ROS tends to choose less-often

data, while this data cannot guarantee to reduce sampling error, especially with small

data. Another interesting finding is that in CartPole (Figure 4.1c), ROS can enable

lower sampling error than ROA with small data, but gradually have the sampling er-

ror close to data from OS. That is because this result is from ROS with large step

size (α = 10), meaning that it can have a large probability to choose less-often ac-

tions with small data. On the other hand, the correction probability ε for ROA is only

0.05, meaning that it only spends few steps to make correction operation. However,

as it collects more data, the average gradient decreases significantly, which makes the

ROS behavior policy very close to the evaluation policy (the behavior policy of OS)

(more discussion see Section 5.4). In addition, we can also notice that BPG has similar

sampling error compared to OS, which is because BPG has a similar behavior policy

Chapter 4. Experiments 20

101 102 103 104

steps

10 4

10 3

10 2

10 1

M
SE

OS - MC
OS - WRIS
BPG - OIS
BPG - WRIS
ROS - MC
ROS - WRIS
ROA - MC
ROA - WRIS

(a) MultiBandit

101 102 103 104

steps

10 7

10 5

10 3

10 1

M
SE

OS - MC
OS - WRIS
BPG - OIS
BPG - WRIS
ROS - MC
ROS - WRIS
ROA - MC
ROA - WRIS

(b) GridWorld

103 104 105 106

steps

10 5

10 4

10 3

10 2

10 1

M
SE

OS - MC
OS - WRIS
BPG - OIS
BPG - WRIS
ROS - MC
ROS - WRIS
ROA - MC
ROA - WRIS

(c) CartPole

103 104 105 106

steps

10 4

10 3

10 2

10 1

100

M
SE

OS - MC
OS - WRIS
BPG - OIS
BPG - WRIS
ROS - MC
ROS - WRIS
ROA - MC
ROA - WRIS

(d) MountainCarContinuous

Figure 4.2: Mean Squared Error of Different Policy Evaluations

as OS during most of the data collection, as every update of BPG requires a batch of

trajectories and a small step size to perform reliable gradient descent. As BPG collects

more data, its behavior policy will be more different from the evaluation policy (i.e.,

BPG becomes more “off-policy”), and its sampling error will stop decreasing and even

start increasing.

To evaluate the performance of these data collection strategies, we first perform

trajectory-based value estimation on them: MC, WRIS on data from on-policy strate-

gies (OS, ROS, ROA) and OIS, WRIS on data from the off-policy strategy (BPG).

Figure 4.2 shows the curves of mean squared error between these estimations and the

true policy value. From these figures, it can be observed that “BPG - OIS” has a very

close MSE as “OS - MC”, which is because BPG requires large data and makes small

updates. On the other hand, when using the same value estimation methods, ROS and

ROA can generally lead to lower MSE than OS in domains with discrete action space

(Figure 4.2a, 4.2b and 4.2c), while only ROA can lower the MSE of OS in the domain

Chapter 4. Experiments 21

Table 4.2: The final MSE of trajectory-based estimations with different data collection

strategies.

Strategy Estimation MultiBandit GridWorld CartPole MountainCarCon

OS MC 4.04e-05 8.23e-05 6.72e-06 1.59e-04

OS WRIS 3.08e-05 2.78e-06 2.68e-06 1.25e-04

BPG OIS 3.61e-05 7.46e-05 4.74e-06 1.74e-04

BPG WRIS 7.96e-05 2.35e-05 3.23e-06 1.24e-04

ROS MC 3.02e-05 4.04e-06 4.87e-06 1.87e-04

ROS WRIS 3.18e-05 1.21e-06 2.79e-06 1.44e-04

ROA MC 3.00e-05 1.64e-08 2.75e-06 1.26e-04

ROA WRIS 2.99e-05 5.45e-08 2.48e-06 1.20e-04

with continuous action space (Figure 4.2d). Therefore, for Hypothesis 2, we suggest

that data with lower sampling error can generally enable lower MSE, but no guarantee

can be made. In addition, WRIS can generally lower MSE from these on-policy strate-

gies with large data, but not necessarily for small data in non-tabular domains. That

is because WRIS could re-weight data according to the difference between πD and πe

and correct sampling error. For small data collection, πD could be very different from

πe, and thus could bring a large variance of WRIS. The MSE of estimations on the

final data collection is reported in Table 4.2, and it is shown that ROA is the strategy

that can produce the lowest MSE of trajectory-based estimations in these domains.

To further explore how ROS and ROA perform in different RL domains, we will

discuss each experiment more thoroughly. In Multi-armed Bandit (Figure 4.2a), ob-

vious improvement of ROS and ROA can be seen with small data collection, which

is brought by correcting sampling error. In particular, ROA can enable lower MSE

than ROS, because ROA with ε = 1 can identify and choose the ideal action for each

step, while ROS can only increase the probability of less-often data and still requires

sampling. As they collect more data, the performance gap between ROS, ROA and OS

is getting closer, which is because sampling error can be easily reduced even with OS

in this one-state domain. Moreover, it is worth noting that with small data collection,

OS cannot enable the same level MSE as ROS and ROA even with the help of WRIS,

which is designed to correct sampling error during the value estimation stage. This

shows the importance of reducing sampling error during the data collection stage.

In GridWorld (Figure 4.2b), at the beginning of the data collection, estimations

Chapter 4. Experiments 22

on data from ROS has slightly higher MSE than that from OS, which is perfectly

consistent with the sampling error curve in Figure 4.1b. That is because ROS tends to

choose the un-tested data, which may have low probability and thus can only make a

very small contribution to accurate policy evaluation with small data. However, as it

collects more data, the benefit of reducing sampling error is shown with ROS showing

large improvement over OS. On the other hand, for ROA, the error range of MC

estimation is interestingly 0, because GridWorld is a pure deterministic domain, and

this result is from ROA with ε = 1, a deterministic strategy. Although the MSE of

estimation on data from ROA fluctuates as data collection, it can still be observed that

this MSE is decreasing and is generally lower than the MSE from all other strategies.

Moreover, WRIS can significantly reduce the MSE of OS data but only makes little

difference for the MSE of ROS and ROA data, showing ROS and ROA data have less

sampling error to be corrected. Although WRIS can reduce MSE of OS data, there is

still a gap to the performances of ROS and ROA with WRIS.

In CartPole (Figure 4.2c) and MountainCarContinuous (Figure 4.2d), we can first

notice that compared with MC, WRIS can even enlarge MSE with small data collec-

tion, showing that WRIS may require larger data to work in non-tabular domains. In

CartPole, it is noteworthy that the MSE of “ROS - MC” is getting closer to “OS -

MC”, which is also very similar to the sampling error curves in Figure 4.1c, and has

the same reason that the ROS behavior policy is getting closer to the evaluation policy

πe (more discussion see Section 5.4). On the other hand, ROA will not be affected

by that because it has a fixed correction probability, and thus can maintain the per-

formance improvement as collecting more data. In MountainCarContinuous, although

ROS can collect data with lower sampling error in Figure 4.1d, it cannot produce lower

MSE of policy evaluation, showing that the MSE curve is not always consistent with

the sampling error curve. Moreover, ROA is the only one that can enable lower MSE

than OS among these strategies.

To sum up, although ROS can generally enable lower MSE than OS, it has the

following limitations: 1) with small data, it may increase sampling error; 2) with large

data, it may end up with the behavior policy very close to the evaluation policy, making

it inefficient to further reduce sampling error; 3) it could have higher MSE in domains

with continuous action space. On the other hand, when using MC as value estimation,

ROA can always lead to lower MSE than OS, and there are no sign that this MSE gap

between will get smaller if continuing data collection. Moreover, WRIS can hardly

produce a more accurate estimation for ROA data, as this data has low sampling error.

Chapter 4. Experiments 23

101 102 103 104

steps

10 4

10 3

10 2

10 1

M
SE

OS - MC
OS - FQE
OS - MB
BPG - FQE
BPG - MB
ROS - FQE
ROS - MB
ROA - FQE
ROA - MB

(a) MultiBandit

101 102 103 104

steps

10 7

10 5

10 3

10 1

M
SE

OS - MC
OS - FQE
OS - MB
BPG - FQE
BPG - MB
ROS - FQE
ROS - MB
ROA - FQE
ROA - MB

(b) GridWorld

103 104 105 106

steps

10 6

10 4

10 2

100

102

M
SE

OS - MC
OS - FQE
OS - MB
BPG - FQE
BPG - MB
ROS - FQE
ROS - MB
ROA - FQE
ROA - MB

(c) CartPole

103 104 105 106

steps

10 4

10 3

10 2

10 1

100

101

102

103

M
SE

OS - MC
OS - FQE
OS - MB
BPG - FQE
BPG - MB
ROS - FQE
ROS - MB
ROA - FQE
ROA - MB

(d) MountainCarContinuous

Figure 4.3: Mean Squared Error of Different Policy Evaluations

4.4 Performance with FQE and MB

In this section, we will evaluate the performance of these data collection strategies with

the transition-based value estimations (FQE, MB). Value estimation is performed on

the same data collection as Section 4.3, and the MSE curves are shown in Figure 4.3.

As discussed before, the behavior policy of BPG only experiences slight updates

from the evaluation policy, and therefore, we can observe a very close performance

between BPG and OS with FQE and MB, within small data collection. As they collect

more data, BPG can generally enable larger MSE of these transition-based estimations

than OS, showing that this slightly off-policy data cannot help improve the accuracy

of estimation. On the other hand, our proposed robust on-policy strategies (ROS and

ROA) can also generally lower MSE than OS with these estimation methods.

To further compare their performances in different RL domains, we will discuss

each experiment more thoroughly. In pure tabular domains (Figure 4.3a and 4.3b),

these transition-based estimations can generally enable lower MSE than the classical

Chapter 4. Experiments 24

trajectory-based estimation (MC and OIS). That is because the accuracy of transition-

based estimations heavily relies on the accuracy of the bootstrapping data, which can

be improved by collecting more different transition data (state-action pairs). Since

ROS and ROA will choose less-often data to reduce sampling error, they can usually

collect data with more unique transitions (more discussion see Section 5.3), and thus

lead to lower MSE of these estimations. As these strategies collect all transitions, they

will end up with very similar estimations, shown as the close MSE gap between them

at the end of data collection. Surprisingly, there is still a small gap of MB estima-

tions among ROS, ROA and OS in GridWorld, even though all of these strategies have

collected all transitions (shown in Figure 5.3b). That may be because the estimated

transition model is under-fitting, and tries to fit the data with higher frequency in the

data collection. In this case, low sampling error could still be important even for large

data.

In CartPole (Figure 4.3c), the most striking observation is that “OS - FQE” has

extremely large MSE compared to ROS and ROA with FQE. That is because with very

small data, the Q-value model could be easily over-fitting. Suppose OS happens to

collect a trajectory with low probability under πe but with large returns. The bootstrap-

ping data will have relatively large rewards, and since the Q-value model is updated

recursively, it could cause large MSE of estimation. However, ROS and ROA could

lower the probability of this accident, as this low-probability trajectory can cause large

sampling error for small data collection. Another finding worth noting is that MB fails

to make more accurate estimation than classical trajectory-based estimations. That is

because this domain involves continuous state space, and will require large data of

different states for the estimated transition model to generalize well.

In MountainCarContinuous (Figure 4.3d), both FQE and MB have larger MSE

than classical trajectory-based estimations. That is because this domain involves con-

tinuous state and action space, and will also require large data of different states and

actions to train the estimation model. In addition, an obvious performance gap be-

tween ROS, ROA and OS with MB can be observed, again showing the importance of

low-sampling-error data for estimation model training.

4.5 Extension

In this section, we design experiments to simulate a certain scenario where there al-

ready exists some off-policy data, and evaluate how much our proposed strategies can

Chapter 4. Experiments 25

0 100 200 300 400 500 600 700
steps

10 2

2 × 10 2

3 × 10 2

4 × 10 2

Sa
m

pl
in

g
er

ro
r

OS
ROS
ROA
ROS'
ROA'

(a) Sampling error

0 100 200 300 400 500 600 700
steps

10 5

10 4

10 3

10 2

10 1

100

M
SE OS - WRIS

OS - FQE
ROS - WRIS
ROS - FQE
ROA - WRIS
ROA - FQE
ROS' - WRIS
ROS' - FQE
ROA' - WRIS
ROA' - FQE

(b) MSE

Figure 4.4: Performance of continuing data collection in GridWorld

improve the estimation by collecting more data.

By taking GridWorld as an examples, we first prepare around 100 off-policy tra-

jectories (100×T steps) by following the behavior policy as

πb(a|s) = (1−δ)πe(a|s)+δ
1
|A |

where δ∈ [0,1] controls the probability of randomly choosing an action from the action

space, or otherwise it will sample from the evaluation policy πe. To make this prepared

data collection more random, we sample δ from the uniform distribution U(0,1) for

each trajectory.

After that, we then use OS, ROS, ROA respectively to continue collecting also

around 100 trajectories, and combine this new data collection with the off-policy data

prepared above. In particular, we denote ROS and ROA as the version that only con-

siders their newly collected data as historical data, while ROS′ and ROA′ as the version

that could also consider the off-policy data as historical data. Therefore, the aim of OS,

ROS and ROA is to make the distribution of newly collected data close to the evalua-

tion distribution, while that of ROS′ and ROA′ is to make the whole distribution close

to the evaluation distribution. We can also observe this difference from Figure 4.4a

that ROS′ and ROA′ (overlap) could reduce sampling error of whole data collection

much faster than others.

We then perform one trajectory-based estimation (WRIS) and one transition-based

estimation (FQE) on these merged data collections, shown in Figure 4.4b. It is shown

that without considering the prepared off-policy data, ROS and ROA will lead to very

simialr performance as OS with WRIS, and only slight improvement to OS with FQE.

However, with the prepared off-policy data into consideration, both ROS and ROA

Chapter 4. Experiments 26

can enable much lower MSE than OS with WRIS or FQE. This result could show the

rationality of how ROS and ROA make use of the historical data.

Chapter 5

Analysis

In this chapter, we will explore the properties of ROS and ROA both empirically and

theoretically.

5.1 Effect of Hyper-parameter in ROS

From Algorithm 1, ROS only involves one hyper-parameter, step size α, which con-

trols how much the ROS behavior policy is updated in the “opposite” direction of the

empirical policy. Therefore, we can say ROS with larger α will have higher probabil-

ity to sample less-often data. In Figures 5.1, we show the MSE curves of ROS with

different step size α. In particular, OS can be seen as ROS with α = 0.

A similar trend can be observed in domains with discrete actions (Figure 5.1a

and 5.1b): ROS with small α can enable lower MSE with small data, while ROS

with large α leads to lower MSE with large data. As we discussed in Section 3.4,

choosing less-often data, especially with small data, may enlarge sampling error (over-

correction). As ROS with larger α could have higher probability to choose this less-

101 102 103 104

steps

10 5

10 4

10 3

10 2

10 1

100

M
SE

OS(= 0) - MC
ROS(= 10) - MC
ROS(= 100) - MC
ROS(= 1000) - MC

(a) GridWorld

103 104 105 106

steps

10 5

10 4

10 3

10 2

M
SE

OS(= 0) - MC
ROS(= 1) - MC
ROS(= 10) - MC
ROS(= 50) - MC

(b) CartPole

103 104 105 106

steps

10 3

10 2

10 1

100

M
SE

OS(= 0) - MC
ROS(= 0.001) - MC
ROS(= 0.01) - MC
ROS(= 0.1) - MC

(c) MountainCarContinuous

Figure 5.1: ROS with different α

27

Chapter 5. Analysis 28

often data, it could cause over-correction more easily with small data. However, the

problem of over-correction could disappear, as it collects more data, because the em-

pirical policy will not be affected dramatically by one single step of data. Therefore,

with large data, ROS with larger α could have higher probability to reduce sampling

error, and lead to a more accurate estimation. Based on this result, we believe a chang-

ing α during data collection can make a better ROS version. Unfortunately, due to the

time limit, we have not further explored this in this project.

On the other hand, in domains with continuous action space, as the ROS behavior

policy could only approximate the same distribution as the evaluation policy πe (nor-

mal distribution), it cannot guarantee to be an ideal behavior policy. From Figure 5.1c,

we can observe that when using small α (0.001 or 0.01), ROS has very similar per-

formance as OS, as the ROS behavior policy is only changed very slightly. As α is

increased to 0.1, ROS will generally lead to larger MSE. Furthermore, results of ROS

with α > 0.1 cannot be shown because when ROS behavior policy is changed too

much from πe, it could easily sample actions with probability density function close

to 0 under πe. In this case, the gradient ∇θ logπe(a|s) will be exploding, and the ROS

behavior policy will diverge.

5.2 Effect of Hyper-parameters in ROA

From Algorithm 2, ROA involves two hyper-parameter, correction probability ε and

potential action number m. In Figures 5.2, we show the MSE curves of ROA with

different ε and m. In particular, OS can be seen as ROS with ε = 0.

From these figures, we can notice that ROA with larger ε can generally enable lower

MSE in the domain with discrete state space (Figure 5.2a), while this pattern cannot

hold for domains with continuous state space (Figure 5.2b and 5.2c). As discussed in

Section 3.4, in domains with discrete state space, the ROA action decisions are only

affected by historical data from the same state. Therefore, its correction operation

can always reduce sampling error. On the other hand, in domains with continuous

state space, the ROA correction operation may over-consider data from other unrelated

states, and may reduce sampling error in the wrong way. In this case, ROA is expected

to follow a smaller ε, which will spend more steps to collect enough data for each state,

and help to make a more precise correction operation. Therefore, the setting of ε for

ROA is a trade-off between precision and frequency of correction operations.

On the other hand, potential action number m is a hyper-parameter that only matters

Chapter 5. Analysis 29

101 102 103 104

steps

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

M
SE

OS(= 0) - MC
ROA(= 0.6) - MC
ROA(= 0.8) - MC
ROA(= 1.0) - MC

(a) GridWorld

103 104 105 106

steps

10 5

10 4

10 3

10 2

M
SE

OS(= 0) - MC
ROA(= 0.02) - MC
ROA(= 0.05) - MC
ROA(= 0.1) - MC

(b) CartPole

103 104 105 106

steps

10 4

10 3

10 2

10 1

100

M
SE

OS(= 0) - MC
ROA(= 0.02) - MC
ROA(= 0.05) - MC
ROA(= 0.1) - MC

(c) MountainCarContinuous

103 104 105 106

steps

10 4

10 3

10 2

10 1

100

M
SE

OS - MC
ROA(m = 5) - MC
ROA(m = 9) - MC
ROA(m = 15) - MC
ROA(m = 25) - MC

(d) MountainCarContinuous

Figure 5.2: ROA with different ε and m

in domains with continuous action space. In Figure 5.2d, we show the MSE curves of

ROS with ε = 0.05 and m = 5,9,15,25. It can be observed that with large data, ROS

with m = 5 cannot enable lower MSE. That may be because ROS can only choose

action from these 5 potential actions, which may not contain any action that can reduce

sampling error. As m increases, ROA can enable lower MSE, but we can notice that

ROA with m = 15 has a similar performance as ROA with m = 25. However, ROA

with m = 25 could have a higher computation cost, as it needs to compute the gradient

of 25 actions for each correction operation. Therefore, the setting of potential action

number m is a trade-off between precision and computation cost.

5.3 Richness of State-action Pairs

In Figure 5.3, we show the count of unique state-action pairs along data collection.

It can be observed that ROS tends to collect more unique state-action pairs than the

Chapter 5. Analysis 30

101 102 103 104

steps

5

10

15

20

25

30

un
iq

ue
 st

at
e-

ac
tio

n
pa

irs

OS - MC
BPG - MC
ROS - MC
ROA - MC

(a) MultiBandit

101 102 103 104

steps

10

20

30

40

50

60

un
iq

ue
 st

at
e-

ac
tio

n
pa

irs

OS - MC
BPG - MC
ROS - MC
ROA - MC

(b) GridWorld

Figure 5.3: Unique State-action pairs of Different Data Collected Strategies

baseline strategies (OS and OIS) before they reach the maximum number. The reason

is that ROS is performing gradient descent every step to reduce the behavior probabili-

ties of collected data, and thus increase the probabilities of un-tested data. On the other

hand, ROA tends to collect fewer state-action pairs with a small amount of data, which

is because this un-tested data cannot guarantee to reduce sampling error, especially

with small data, as discussed in Section 3.4. However, it can be noticed that ROA is

the first strategy that can reach the maximum number of unique pairs. That is because

although ROS can increase the probability of un-tested data, this data may still not be

sampled, while ROA with ε = 1 can choose this un-tested data directly. Therefore,

ROA is the most efficient strategy among them to collect all state-action pairs.

5.4 Consistency

This section will discuss whether ROS and ROA can lead to the consistent estimation,

i.e., whether the estimation will converge to the true policy value, as we collect more

and more data. To explore this, we show the average absolute gradient of ROS along

data collection in Figure 5.4. From Algorithm 1, we can see that the ROS behavior

policy πθ′ will get closer to πe as the gradient |∇| decreases. Moreover, once the

empirical policy πD is equal to πe, we will have ∇θE [logπθ(a|s) | a∼ πD(a|s)] = 0,

and the behavior policy will be the same as the evaluation policy. Therefore, we suggest

ROS is a consistent data collection strategy.

On the other hand, ROA can only guarantee to be a consistent data collection strat-

egy for tabular domains, while its consistency relies on the settings of hyper-parameters

Chapter 5. Analysis 31

100 101 102 103 104

trajectories

10 5

10 4

10 3

10 2

10 1

| |

MultiBandit
GridWorld
CartPole
MountainCarContinuous

Figure 5.4: Average Absolute Gradient of ROS in different domains.

ε and m in non-tabular domains. That is because in domains with continuous state

space, the gradient generated by data in a certain state s may be offset by data from

other unrelated states. In this case, some sampling error in s may be missing and some

actions may never be collected if ε = 1. In domains with continuous action space, as

the potential subset of action space is limited, there may be some actions that cannot

be contained and collected. If either of these above happens, ROA cannot guaranetee

to collect all possible data as it collects more data, and thus will be a inconsistent data

collection strategy.

Chapter 6

Conclusion

In this work, we have discussed the problem of sampling error that On-policy Sam-

pling (OS) suffers from, which can lower its accuracy of policy estimation. To solve

this problem, we propose two alternative data collection strategies, Robust On-policy

Sampling (ROS) and Robust On-policy Acting (ROA), which aim to consider the his-

torical data and reduce sampling error in future data collection. Experimental results

show that our proposed strategies can generally collect data with lower sampling error.

We also find that limited to the same amount, this low-sampling-error data can gener-

ally enable lower mean squared error (MSE) for trajectory-based estimations, and can

reduce the probability of extreme estimation of transition-based estimations. In partic-

ular, ROA can generally lead to lower MSE than ROS, as ROA can choose the ideal

action directly, while ROS still requires sampling. Besides, ROS fails to generalize to

domains with continuous action space due to its inflexible output distribution, while

ROA can solve this problem. Moreover, we have explored two important properties

of our proposed strategies: 1) data richness: both ROS and ROA can collect more

unique state-action pairs quicker than OS; 2) consistency: ROS can guarantee to be a

consistent data collection strategy, while ROA cannot.

6.1 Unsolved Problems

Although we have explored the effects of hyper-parameters, we have not provided re-

liable guidance for hyper-parameter settings for different domains and different policy

models, which could damage the performance of our proposed strategies when apply-

ing them to real applications. In particular, although empirical results show that step

size α for ROS should be increased as data collection, we fail to design a dynamic

32

Chapter 6. Conclusion 33

scheme for it due to the time limit. Moreover, when the policy model involves a neural

network, both ROS and ROA cannot avoid considering historical data from unrelated

states and thus may reduce sampling error in the wrong way. However, this effect has

not been well studied and solved in this project.

6.2 Future Work

In this work, we have shown that the gradient generated by collected data could contain

information of historical data. With this information, we may be able to design data

collection strategies with other aims, e.g., uncertain-aware exploration strategy, which

aims to collect data that we have less knowledge about, and has been proved to be data-

efficient in many RL training applications [O’Donoghue et al., 2017, Osband et al.,

2016]. Therefore, in the future, we believe it worth studying how we can use this

gradient to identify data with more uncertainty.

Bibliography

M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based

recommender systems: A survey. arXiv preprint arXiv:2101.06286, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL

http://arxiv.org/abs/1606.01540.

Josiah Hanna, Scott Niekum, and Peter Stone. Importance sampling policy eval-

uation with an estimated behavior policy. In Kamalika Chaudhuri and Ruslan

Salakhutdinov, editors, Proceedings of the 36th International Conference on Ma-

chine Learning, volume 97 of Proceedings of Machine Learning Research, pages

2605–2613. PMLR, 09–15 Jun 2019. URL http://proceedings.mlr.press/

v97/hanna19a.html.

Josiah P. Hanna, Philip S. Thomas, Peter Stone, and Scott Niekum. Data-efficient

policy evaluation through behavior policy search. In Doina Precup and Yee Whye

Teh, editors, Proceedings of the 34th International Conference on Machine Learn-

ing, volume 70 of Proceedings of Machine Learning Research, pages 1394–1403,

International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL

http://proceedings.mlr.press/v70/hanna17a.html.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under con-

straints. In International Conference on Machine Learning, pages 3703–3712.

PMLR, 2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous meth-

ods for deep reinforcement learning. In International conference on machine learn-

ing, pages 1928–1937. PMLR, 2016.

34

http://arxiv.org/abs/1606.01540
http://proceedings.mlr.press/v97/hanna19a.html
http://proceedings.mlr.press/v97/hanna19a.html
http://proceedings.mlr.press/v70/hanna17a.html

Bibliography 35

Brendan O’Donoghue, Ian Osband, Rémi Munos, and Volodymyr Mnih. The un-

certainty bellman equation and exploration. CoRR, abs/1709.05380, 2017. URL

http://arxiv.org/abs/1709.05380.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep

exploration via bootstrapped DQN. CoRR, abs/1602.04621, 2016. URL http:

//arxiv.org/abs/1602.04621.

Georg Ostrovski, Marc G Bellemare, A ä ron Oord, and R é mi Munos. Count-based

exploration with neural density models. In International conference on machine

learning, pages 2721–2730. PMLR, 2017.

Cosmin Paduraru. Planning with approximate and learned models of markov decision

processes. These de maıtre, University of Alberta, 2007.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna,

Alexander Novikov, Ziyu Wang, and Nando de Freitas. Hyperparameter selection

for offline reinforcement learning. arXiv preprint arXiv:2007.09055, 2020.

Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforce-

ment learning: Applications on robotics. Journal of Intelligent & Robotic Systems,

86(2):153–173, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John

Schulman, Filip De Turck, and Pieter Abbeel. # exploration: A study of count-

based exploration for deep reinforcement learning. In 31st Conference on Neural

Information Processing Systems (NIPS), volume 30, pages 1–18, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8(3):229–256, 1992.

Michael R Zhang, Thomas Paine, Ofir Nachum, Cosmin Paduraru, George Tucker,

ziyu wang, and Mohammad Norouzi. Autoregressive dynamics models for offline

policy evaluation and optimization. In International Conference on Learning Rep-

resentations, 2021. URL https://openreview.net/forum?id=kmqjgSNXby.

http://arxiv.org/abs/1709.05380
http://arxiv.org/abs/1602.04621
http://arxiv.org/abs/1602.04621
https://openreview.net/forum?id=kmqjgSNXby

Appendix A

Experiment Domains

In this project, we evaluate data collection strategies mainly in 4 domains: Multi-armed

Bandit, Grid-world, CartPole and MountainCarContinuous.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Action

2

1

0

1

2

3

Re
wa

rd

(a) MultiBandit (b) GridWorld
(c) CartPole

(d) MountainCarCon-

tinuous

Figure A.1: Domains

Multi-armed Bandit problem is a special RL problem that only contains one state,

and when the agent takes one action, it will terminate. The rewards from different

actions follows a Gaussian distribution with different means and variance, as shown in

Figure A.1a.

Gridworld is a domain with 4× 4 states, shown in Figure A.1b. The agent

starts from (0,0) and has action spaces {left, right, up, down}. The agent will get

+10,+1,−10 rewards in terminal state (3,3), trick state (1,3) and trap state (1,1),

respectively, and−1 rewards in all other states. The maximum number of steps is 100.

CartPole is a continuous control domain where the agent can control the cart to go

left or right to keep the pole from falling over, as shown in Figure A.1c. The agent will

get +1 reward every timestep, and terminates once the pole is more than 15 degrees

from vertical or the cart move out of the picture. The maximum number of steps is

200.

36

Appendix A. Experiment Domains 37

MountainCarContinuous is another continuous control domain where the agent

aims to drive the car to the top of the right mountain, as shown in Figure A.1d. The

agent could spend energy to drive the car back and forth, and will get the energy cost

as a reward (r ∈ [−0.1,0]) every timestep. Once the car reaches the goal, it will get

+100 as a reward and terminates. The maximum number of steps is 200.

	Introduction
	Motivation
	Hypothesis
	Structure

	Background
	Problem Formulation
	Policy Value Estimation
	Monte Carlo Estimation
	Ordinary Importance Sampling
	Regression Importance Sampling
	Model-Based
	Fitted Q-evaluation
	Comparison

	Data Collection Strategy
	On-policy Sampling
	Behavior Policy Gradient

	Methodology
	Preliminaries
	Robust On-policy Sampling
	Robust On-policy Acting
	Comparison of ROS and ROA
	Connection to RIS
	Measurement of Sampling Error

	Experiments
	Preparation
	Experimental Set-up
	Main Results
	Performance with FQE and MB
	Extension

	Analysis
	Effect of Hyper-parameter in ROS
	Effect of Hyper-parameters in ROA
	Richness of State-action Pairs
	Consistency

	Conclusion
	Unsolved Problems
	Future Work

	Bibliography
	Experiment Domains

