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Abstract

Cryptographic protocols secure communication over a public channel, protecting our

data and dollars on the web from attackers. It is imperative that we be able to math-

ematically prove that a protocol satisfies some precise notion of security. However,

writing security proofs is a notoriously complex and error-prone process. As a result,

cryptographers and security researchers have increasingly looked to theorem provers

as a way to improve trust in security proofs. In this paper, we present cryptolib, a

framework for security proofs in the Lean theorem prover. As a proof of concept, we

formalize the proofs of correctness and semantic security for the ElGamal public key

encryption protocol. We further compare cryptolib to similar projects in other the-

orem provers and discuss advantages and disadvantages of working within the Lean

ecosystem.
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Chapter 1

Introduction

A theorem prover is a computer program which provides the means for writing formal

specifications and formal proofs. In contrast to proofs found in mathematical textbooks

or research papers, formal proofs can be machine checked for correctness, meaning all

deductions can be traced back to a base set of axioms [AdMK21, pp. 1–2]. Producing

formal proofs can be a tedious process; every step must be rigorously proven with no

room for intuition or proof by authority. Consequently, theorem provers often interac-

tively track assumptions and proof goals, as well as provide libraries and tools to ease

the burden on the user.

Lean is one such theorem prover which has gained traction in recent years, partic-

ularly among mathematicians. The primary goal of project is to produce a case study

development in Lean. To that end, we present cryptolib,1 a Lean library of 7 files, 883

lines of code, 23 definitions, 12 theorems, and 25 lemmas. In Appendix B, we sum-

marize the contents of cryptolib. In cryptolib, we demonstrate one way to formalize

proofs of security for cryptographic protocols in Lean. In particular, we formalize the

properties of correctness and semantic security for public key encryption protocols,

and use this formalization to verify the proofs that the ElGamal public key encryption

protocol satisfies correctness and semantic security. At the heart of our formalization

is the pmf (probability mass function) definition from mathlib, Lean’s mathematical li-

brary. In addition to proving several lemmas for future inclusion in mathlib, we provide

two new tactics to help prove equivalences between pmfs.

A secondary goal of this project is to compare our development with previous work

in other theorem provers in order to better understand the advantages and disadvantages

of working within the Lean ecosystem. In Ch. 5, we provide an extended comparison of

1Available at https://github.com/Loops7/cryptolib.
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Chapter 1. Introduction 2

cryptolib with a selection of previous projects in other theorem provers, namely Easy-

Crypt (Coq) [BGHB11], CryptHOL (Isabelle/HOL) [BLS20], Nowak’s toolbox (Coq)

[Now07, Now08], and the Foundational Cryptographic Framework (Coq) [PM15, Pet15].

To motivate cryptolib, consider that cryptographic protocols secure our data and

dollars on the web from attackers. Designing a secure cryptographic protocol is a

very difficult proposition. As one observer notes, “Since the appearance of public

key cryptography in the Diffie-Hellman seminal paper, many schemes have been pro-

posed, but many have been broken” [Poi05, p. 133]. Take for example the Needham-

Schroeder public key encryption protocol [NS78], later shown broken in [Low96], or

the Chor-Rivest encryption protocol [CR88], later shown broken in [Vau98]. Any pro-

tocol which is to be taken seriously needs an accompanying proof of security, a concept

we explore in Sec. 2.2.

As protocols increase in complexity, so do the corresponding security proofs: “many

proofs in cryptography have become essentially unverifiable. Our field may be ap-

proaching a crisis of rigor” [BR04, p. 3]. In order to address this “crisis of rigor,”

many researchers in security have looked to theorem provers as a way to improve trust

in new results, see e.g. [ANY12, BGHB11, BLS20, Now07, Now08, PM15]. Cryp-

tolib represents the first such effort in Lean.

This paper is organized as follows. In Ch. 2, we provide necessary background

information on the Lean theorem prover and provable security, and give a brief survey

of existing projects in other theorem provers for formalizing security proofs. In Ch. 3,

we introduce the formula for modeling games as probability distributions via mathlib’s

pmf object and Lean’s do syntax. Next, we use the language of games to formalize

correctness and semantic security of a public key encryption protocol. We use the

definitions from Ch. 3 to formalize the proofs of correctness and semantic security for

the ElGamal public key encryption protocol in Ch. 4. In Ch. 5, we provide a critical

evaluation of cryptolib and compare our development with similar developments in

other provers. We conclude in Ch. 6 with a brief discussion of ways to extend cryptolib.



Chapter 2

Background

In this chapter, we give the background information necessary for subsequent chapters.

In Sec. 2.1, we introduce the Lean theorem prover, using [AdMK21] as a reference. We

place Lean in context by mentioning a number of other theorem provers. In Sec. 2.2,

we draw from [Poi05] to give an overview of the different sets of assumptions and

models used in security proofs for cryptographic protocols. The chapter concludes in

Sec. 2.3 with a brief survey of tools and libraries for formalizing security proofs in

other theorem provers.

2.1 The Lean theorem prover

Leonardo de Moura originally developed the Lean theorem prover1 at Microsoft Re-

search in 2013. The latest version is Lean 4, which is not backwards compatible with

previous versions. Lean 3 is still maintained by the Lean community and includes

mathlib,2 an extensive library of formalized mathematics. The mathlib project started

as an effort by Professor Kevin Buzzard of University College London (UCL) to for-

malize the entire undergraduate math curriculum at UCL, but has since grown into a

diverse community of mathematicians and computer scientists working to formalize

entire swaths of mathematics. For a broad overview of what is and what is not in

mathlib, see 3. The Lean community is also active on the Zulip chat platform,4 where

users ask questions, discuss formalization efforts, and coordinate work. Major projects

in Lean 3 include the formalization of schemes (from algebraic geometry) [BHL+21]

1https://leanprover.github.io/
2https://leanprover-community.github.io/index.html
3https://leanprover-community.github.io/mathlib-overview.html
4https://leanprover.zulipchat.com/
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and perfectoid spaces [BCM20], and the Liquid Tensor Experiment [Sch21], wherein a

small team of mathematicians formalized a cutting-edge proof by mathematician Peter

Scholze. Due to mathlib and its active community on Zulip, our project is written in

Lean 3. Henceforth any mention of “Lean” is understood to mean Lean 3. Two popu-

lar introductions to Lean are “Theorem Proving in Lean” [AdMK21] and The Natural

Number Game,5 where players prove facts about the natural numbers using only the

Peano axioms.

In the following exposition, we draw from [AdMK21, Chs. 2–5] to develop the

basics of what it means to prove a theorem in Lean, and how we prove a theorem in

practice. The logical foundation of Lean is a type theory known as the calculus of

inductive constructions (CIC), wherein every expression is considered as a term of an

associated type. In Lean, the syntax (a : A) means a is a term of type A. For two types

A and B, we denote by A × B the type of coordinate pairs where the first coordinate

has type A and the second coordinate has type B. We denote by A → B the type of

functions which take as input a term of type A and output a term of type B. Lean is

also a functional programming language, so that applying a function (f : A → B) to

(a : A) is denoted f a, i.e. (f a : B). Users can define new functions using lambda

notation. For example, (λ (a : Z), 2 * a) denotes a term of type Z→ Z which

satisfies (λ (a : Z), 2 * a) m = 2 * m for (m : Z).

Constructing new types from other types, as we did with α×β and α→ β, falls

under the umbrella of simple type theory. Lean provides the capabilities to define types

which exist outside of simple type theory. For instance, Lean has inductive types,

which are defined with constructors and recursion. The natural numbers N can be

defined as an inductive type via the constructors 0 : N and S : N→ N. Lean also has

dependent function types, where the type of the output of the function depends on the

type of the input. Even more, types have a type! The type of Type is Type 1, and the

type of Type 1 is Type 2, and so on.

In CIC there is a special type called Prop which corresponds to a mathematical

statement. Considering a proposition as a type is also known as the Curry-Howard

isomorphism [AdMK21, Sec. 3.1]. Under this isomorphism, we “prove” a theorem,

formally specified as a term p of type Prop, by exhibiting a term of type p. In other

words, p is the type of proofs of P. Consider the following formal definition is even

for an even integer:

5https://www.ma.imperial.ac.uk/˜buzzard/xena/natural_number_game/

https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/
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def is_even (n : Z) : Prop := ∃ m, n = 2 * m

The function is even takes as input an integer and returns a term of type Prop. (Note

that Lean supports unicode characters, so is even appears exactly as it would in a

Lean file.) To prove that 2 is even according to our Lean definition is to exhibit a term

of type is even 2. In practice, we build proof terms by using Lean’s tactic mode.

In tactic mode, Lean provides a panel which lists all current assumptions, as well as

the current goal, which is what we have left to prove. The initial goal state is exactly

the theorem we want to prove. Then we iteratively apply tactics to transform the goal

until it is an axiom or a tautology. Generally, tactics incorporate a certain level of

automation so that we are not manually proving deductions down to the base axioms

of Lean. Below is a tactic mode proof of is even 2:

def is_even_two : is_even 2 := by {use 1, ring}

The by{. . .} syntax suffices to enclose short tactic mode proofs. For the longer proofs

of later sections, we delineate tactic mode via the begin . . . end syntax. The use

tactic helps to solve goals which involve the existential quantifier ∃. Recall from above

that the goal is even 2 is proving ∃ m, 2 = 2 * m. In effect, use 1 makes the

claim to Lean that 1 is the integer m such that 2 = 2 * 1, and so the goal is transformed

to 2 = 2 * 1 in Z. Finally, the ring tactic applies algebraic identities in the ring Z to

automatically close the goal.

Working within tactic mode is often a process of trial and error which involves try-

ing out many different lines of attack on the goal. In response, Lean provides real time

feedback to each tactic application by changing the hypotheses and/or the goal. In this

sense, Lean is an interactive theorem prover. Certain tactics such as ring and simp

can automatically prove more complicated goals, and library search can check the

database of results in Lean to try to solve the current goal. Hence, Lean is simultane-

ously an automatic theorem prover. Documentation for the dozens of tactics in Lean

and mathlib can be found at 6. In Appendix A, we give a step-by-step walkthrough of

a non-trivial proof in Lean to better demonstrate tactic mode.

Lean exists within a diverse ecosystem of theorem provers. Its closest relative is

Coq [dt21], which also based on CIC. Coq includes many of the same features as Lean

6https://leanprover-community.github.io/mathlib_docs/tactics.html

https://leanprover-community.github.io/mathlib_docs/tactics.html
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such as tactic mode and is generally comprehensible to someone well versed in Lean.

Agda [BDN09] is another theorem prover which uses CIC as its logical foundation,

but unlike Lean and Coq, Agda does not provide a tactic-mode for constructing proof

terms. Isabelle [NPW02] is a proof assistant which can implement several different

logics but which is usually paired with higher order logic (HOL) to yield Isabelle/HOL.

Unlike theorem provers based on CIC, Isabelle/HOL cannot express dependent types.

However, Isabelle/HOL is generally better than tactic-based provers at using automa-

tion to dispense goals. ACL2 [KMM13] is a theorem prover based on a different

logical framework than HOL or CIC. In particular, ACL2 is based on quantifier-free

first-order logic. Researchers have used ACL2 extensively in the domains of software

and hardware verification.

2.2 Provable security

Since we rely on cryptographic protocols to secure the modern web, it is paramount

that the protocols guarantee some form of security. Historically, such guarantees fell

short of mathematical proof: “The simple fact that a cryptographic algorithm withstood

cryptanalytic attacks for several years has often been considered as a kind of validation

procedure” [Poi05, p. 134]. As the name implies, provable security is the attempt to

provide such mathematical proofs of security.

Provable security dates to the work of Rabin [Rab79], who presented an encryption

protocol based on integer factorization and proved that an attacker A can efficiently

break the protocol only if A can also factor an integer that is the product of two large

primes. The problem of integer factorization is considered hard, in the sense that it

is believed that there is no efficient algorithm which solves it. All security proofs for

cryptographic protocols rely on some problem assumed to be hard, which we term

alternatively as a complexity or hardness assumption. In Sec. 4.3, we formalize the

decisional Diffie-Hellman (DDH) problem, and in Sec. 4.4 we show that breaking the

ElGamal encryption protocol implies solving the DDH problem.

There are several models of computation for security proofs for cryptographic pro-

tocols. In the standard model, we work only with a complexity assumption. Security

is proven by showing that any attacker A which can efficiently break the protocol can

also efficiently solve the problem assumed to be hard [Poi05, p. 137]. Since it can be

difficult to provide such reductions for complex protocols, researchers have developed

other models of computation which approximate the standard model but ease the proof
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burden. For instance, in the random oracle model, any cryptographic hash function

which a protocol uses is treated instead as an idealized hash function [BR93]. The

version of ElGamal encryption for which we prove security uses no hash function, and

so our proof is given in the standard model.

Besides specifying the model of computation, security proofs of cryptographic pro-

tocols exist in one of two models: the Dolev-Yao model and the computational model.

(Note a “model” of computation and the Dolev-Yao/computational “model” coexist

within the same set of assumptions; the use of “model” is overloaded and often confus-

ing.) In the Dolev-Yao (or symbolic) model, an attacker cannot break any cryptographic

primitive. For example, if a protocol uses an encryption function in its execution, we

assume that an attacker cannot break the encryption. Proofs in the Dolev-Yao model

often employ algebraic methods since cryptographic primitives can be treated as black-

boxes [Bla12, p. 5].

On the other hand, in the computational model, we assume that an adversary can

break a cryptographic primitive with negligible probability. In general, results in the

computational model are harder to achieve, but are preferred since they more closely

model the real world. All proofs in cryptolib are in the computational model.

An efficient algorithm as it is used in the preceding exposition is informally defined

as a probabilistic algorithm which runs in time polynomial in a fixed security parameter

η ∈ Z>0. The difficulty of the complexity assumption is also a function of η (e.g. the

integer to factor is an η-bit number), as is the probability that an attacker can break a

cryptographic protocol in the computational model. A completely rigorous treatment

of the computational model (as defined by the terms “hardness assumption”, “efficient

algorithm”, and “negligible function”) in terms of the security parameter η is given in

[BS15, Sec. 2.3]. Except for a brief detour in Sec. 3.4, we omit the security parameter

in our discussion and formalization. This is possible by showing that the value we are

interested in is exactly equal to a different value assumed to be negligible by a hardness

assumption.

Finally, we introduce the so called game hopping or game-based method for struc-

turing security proofs in the computational model, as suggested by [Sho04] and [BR04].

In this methodology, we phrase security as an attack game (or simply game) between

an efficient attacker A and an impartial challenger C. Consider the toy game G:

1. C samples from Z2 uniformly at random, and secretly writes down the sampled

bit b.
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2. A runs an efficient algorithm and submits a guess b′.

We say that A wins the game G if b = b′. Denote by G(A) the event that A wins the

game. We outline how a game-based proof of Pr[G(A)] = 1/2 might proceed.

In this paper, we follow Shoup [Sho04] in considering games as random variables

on {0,1}, or equivalently Z2, the integers modulo 2. Consider the random variable

G0(A) defined by the following procedure:

1. Sample b from Z2 uniformly at random.

2. Sample b′ from A (considered as a probabilistic, polynomial-time algorithm).

3. Return (1+b+b′) ∈ Z2

By construction, the event G(A) is G0(A) = 1, so that Pr[G(A)] = Pr[G0(A) = 1]. To

reason about Pr[G(A)], we construct a sequence of intermediate games G1(A),G2(A), . . .

which satisfy Pr[Gi(A) = 1] = Pr[Gi+1(A) = 1] for each i, until we arrive at Gn(A) de-

fined by

1. Sample b from Z2 uniformly at random.

2. Return b ∈ Z2.

Then it is obvious that Pr[Gn(A) = 1] = 1/2. Hence we deduce that A can do no better

than random guessing in the initial game. The name “game hopping” refers to the fact

that we arrive at Gn(A) by “hopping” from G0(A) to G1(A), to G2(A), and so on. In

general, hops where Pr[Gi(A) = 1] and Pr[Gi+1(A) = 1] are negligibly close are also

permitted in game-based proofs.

Note that the random variable G0(A) induces a distribution on Z2. We often abuse

notation and refer to a game as a probability distribution with the understanding that

this induced distribution on Z2 is the one to which we refer. In Sec. 3.2.2, we define

the semantic security game for a public key encryption protocol and define semantic

security as the property that any efficient attacker A can do no better than random

guessing to win the game. In Sec. 4.4, we formally prove semantic security for the

ElGamal encryption protocol using the game-based proof from [Sho04].

2.3 Related work

Due to the complexity of security proofs for cryptographic protocols, and the poten-

tially catastrophic consequences of an incorrect proof, researchers have increasingly
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turned to theorem provers within the last fifteen years to address the “crisis of rigor”

[BR04, p. 3]. Early projects such as ProVerif [Bla01] provided libraries for formaliz-

ing proofs in the Dolev-Yao model. Due to the model’s simplifying assumptions, the

current state of formalization in the Dolev-Yao model is quite mature [Bla12, p. 19].

Much of the recent activity in the field concerns formalizing and automating game-

based proofs in the computational model. Two distinct paradigms have emerged to

model games in a theorem prover: deep embedding and shallow embedding. In a deep

embedding, games are not considered as random variables or distributions. Instead,

games are syntactic objects, i.e. code written in a programming language, and game

hops are formal syntactic manipulations. This is the approach suggested by Bellare

and Rogaway [BR04], who offer a sample formal language L in which to write game-

based proofs. To deeply embed games within a theorem prover means to write an

additional language within the host language. EasyCrypt [BGHB11, BDG+13] is one

framework which uses a deep embedding in Coq to formalize security proofs. A game-

based proof of semantic security for a hashed version of ElGamal is used as a proof of

concept. In general, automation of proofs is easier in a deep embedding, but comes at

the cost of writing a significant amount of code to get off the ground [Now08, p. 369]

and expanding the trusted computing base beyond the kernel of the theorem prover in

which the language is deeply embedded [PM15, p. 68].

On the other hand, a shallow embedding of games within a theorem prover fol-

lows Shoup [Sho04] by modeling a game as a random variable, or equivalently, the

probability distribution induced by a random variable. Thus the problem of modeling

games in a theorem prover is reduced to formally defining probability distributions in

the theorem prover. In turn, a game hop is a proof in the theorem prover relating distri-

butions. Importantly, these proofs rely solely on the axioms of the theorem prover and

can leverage any existing tactics or libraries within the host ecosystem [Pet15, p. 33].

One of the first projects to use a shallow embedding of games as probability distri-

butions was Nowak’s Coq toolbox [Now07]. As in cryptolib, Nowak proves semantic

security for ElGamal under the decisional Diffie-Hellman assumption as a proof of

concept. He further proves that the hashed version of ElGamal is semantically secure

in the random oracle model under the computational Diffie-Hellman assumption. In

[Now08], Nowak extends his toolbox by formalizing the quadratic residuosity problem

in order to formalize security proofs for two other cryptographic protocols.

In [PM15], Petcher and Morrisett introduce the Foundational Cryptographic Frame-

work (FCF), a library which uses a shallow embedding in Coq similar to that of Nowak.
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FCF incorporates some aspects of automation and can model more complex game-hops

than the toolbox provided by Nowak. FCF was originally outlined in Adam Petcher’s

PhD thesis [Pet15], wherein he uses FCF to formalize the proof of semantic security

for ElGamal and hashed ElGamal, as well as the Searchable Symmetric Encryption

scheme of Cash et. al. [CJJ+13].

Another recent project is CryptHOL [BLS20, Loc17, LSB17], which uses a shal-

low embedding of games for security proofs in Isabelle/HOL. Example proofs in-

clude semantic security for ElGamal and hashed ElGamal. Researchers have also

adapted CryptHOL to formalize security proofs for secure multi-party computation

protocols [BAG17], oblivious transfer protocols [BAG20], and commitment schemes

[BLAG21].



Chapter 3

Provable Security in Lean

In this chapter, we describe how cryptolib formalizes security proofs in Lean via a shal-

low embedding of games. In Sec. 3.1, show how mathlib’s pmf monad is used with

Lean’s do syntax to model games. In Sec. 3.2, we use the pmf + do combination to

formalize the properties of correctness and semantic security for a public key encryp-

tion protocol. Next, we explain in Sec. 3.3 how we can use the monadic laws as well

as two custom tactics from cryptolib to prove that two pmfs are equal. We describe a

stand-alone formalization of negligible functions in Sec. 3.4.

3.1 Modeling games as pmfs

Cryptolib uses a shallow embedding of games as probability distributions in Lean,

following the description by Shoup [Sho04]. We can define a distribution over the

finite sample space Z2 via a probability mass function (pmf), which in this setting is

a function Z2 → R≥0 which assigns to each element in the domain its probability in

the underlying distribution. For example, a coin flip (where “Heads” and “Tails” are

identified with 0 and 1) corresponds to the pmf f : Z2 → R≥0 given by f (0) = 1/2

and f (1) = 1/2. More generally, we can consider probability mass functions over Zq

where q is a positive integer. For instance, the pmf r : Z6→ R≥0 given by r(a) = 1/6

for all a ∈ Z6 corresponds to the roll of a fair six-sided die. Even more generally, we

can define a probability mass function on any finite group.

Mathlib provides a definition of a probability mass function via the pmf defini-

tion in measure theory/probability mass function.lean (which we simplify

slightly for the purposes of exposition):

11
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def pmf (α : Type) : Type := {f : α→ R≥ 0 // has_sum f 1}

In mathematical terms, for a given type α, pmf α is the type of functions α→ R≥0

for which ∑a∈α f (a) is well defined and has value 1. Since a probability mass function

uniquely specifies a distribution, we often refer to a pmf as a distribution. In the cryp-

tolib file uniform.lean, we define several special pmfs. First, the uniform distribution

on finite groups:

noncomputable theory

variables (G : Type) [fintype G] [group G] [decidable_eq G]

def uniform_grp : pmf G :=

pmf.of_multiset (fintype.elems G).val (group.multiset_ne_zero G)

We describe the effect of the variables command in Section 3.2 since it is not impor-

tant for our purposes yet. The commands [fintype eq G], [group G] , [decidable eq G]

are type class requirements (see [AdMK21, Ch. 10]). Informally, the type class re-

quirements mean that anyone who wants to use the definition uniform grp for a type

G must supply to Lean a proof that G satisfies the formal properties of a fintype (fi-

nite type), group, and decidable eq (decidable equality). In the file to mathlib,

we supply proofs that the type zmod q is an instance of a group and fintype for all

positive integers q. As we discuss in Ch. 5, we avoid having to supply an instance proof

of decidable eq by invoking classical logic with the noncomputable keyword. The

two instance proofs and noncomputable theory let us define pmfs over zmod q.

The function pmf.of multiset from mathlib returns a pmf which corresponds to

the uniform distribution over a finite type, but we have to provide the proof

group.multiset ne zero G (from the cryptolib file to mathlib) of the fact that

our arbitrary finite group G is non-empty. Next, we define the special case of G = Zq

using the zmod definition from mathlib:

import data.zmod.basic

def uniform_zmod (n : N) [fact (0 < n)] : pmf (zmod n) :=

uniform_grp (zmod n)

The bracketed [fact (0 < n)] is again a type class requirement that requires the

provided n to satisfy the fact 0 < n. Since we so often need the uniform distribution
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on Z2, we define a further shortcut with uniform 2:

def uniform_2 : pmf (zmod 2) := uniform_zmod 2

Because we use the pmf.multiset function to define uniform grp, it actually takes

some effort to prove the following lemma:

lemma uniform_grp_prob : ∀ (g : G),

(uniform_grp G) g = 1 / multiset.card (fintype.elems G).val

In words, uniform grp prob states that the probability of any element g∈G is 1/|G|
for the pmf defined by uniform grp. Similarly, we prove the special case of the

previous lemma for uniform zmod:

lemma uniform_zmod_prob {n : N} [fact (0 < n)] : ∀ (a : zmod n),

(uniform_zmod n) a = 1 / n

The use of the curly braces for the parameter {n : N} tells Lean that n is implicit; it

can be inferred from (a : zmod n). Hence for (a : zmod n), uniform zmod prob a

is a proof of (uniform zmod n) a = 1 / n. If we used parentheses (n : N) in-

stead, we would have to invoke the lemma via uniform zmod prob n a.

To fully model games, we need more than just static distributions. Recall how we

constructed the distribution G0(A) in Sec. 2.3 by a executing a sequence of samples

from different distributions and then returning some function on those sampled values.

It turns out that this is exactly the behavior of a monad. The recognition that probability

distributions have a monadic structure is due to Giry [Gir82]. In particular, a pmf is a

monad.

Let α and β denote types. That pmf is a monad means it comes equipped with two

special functions (in mathlib), pure and bind:

def pure (a : α) : pmf α

def bind (p : pmf α) (f : α→ pmf β) : pmf β

which satisfy three relations, known as the monad laws. We present the monad laws

for pmfs in Sec. 3.3. For (a : α), pure a defines the distribution on α which assigns
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probability 1 to a and 0 to all a’ 6= a. Informally, p.bind f is the distribution which

results from sampling from p and passing the sampled value to f.

The bind function is exactly how we chain together a sequence of samples to create

a new distribution, as in G0(A). In fact, we can model G0(A) with a pmf:

def G_0 (A : pmf (zmod 2)) : pmf (zmod 2) :=

(uniform_zmod 2).bind (λ b, A.bind (λ b’, pure (1 + b + b’)))

Lean provides a nicer way to define the same distribution using the do syntax:

def G_0 (A : pmf (zmod 2)) : pmf (zmod 2) :=

do

b ← uniform_zmod 2,

b’ ← A,

pure (1 + b + b’)

The do syntax makes the presentation of the distribution much more clearly resem-

ble the description of G0(A). The pmf + do syntax is the crucial combination which

cryptolib leverages to formalize game-based proofs in Lean. In addition to access to

all of formalizations and tactics in mathlib, the expressiveness of the pmf + do syntax

justifies our choice to use a shallow embedding for cryptolib.

3.2 Public key encryption protocols

Public key encryption is a fundamental cryptographic primitive that offers a way for

two parties to communicate a private message over a public channel without having a

pre-shared private key. From [BS15, Def. 11.1], we define a public key encryption
protocol P = (K, E, D) as a triple of algorithms:

• K is an efficient key generation algorithm which takes no inputs and returns a

pair (pk, sk), where pk denotes the public key and sk denotes the private (or

secret) key,

• E is an efficient encryption algorithm which takes as input a public key pk and a

message m and returns a ciphertext c,

• D is a deterministic decryption algorithm which takes as input a private key sk

and a ciphertext c, and returns a message m.
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Further, we assume for P that all messages are elements of some set M , known as the

message space. Similarly, all ciphertexts are elements of a ciphertext space C .

Suppose Alice wants to use P to communicate private information to her friend

Bob over a public channel. One solution is for Bob to run K to obtain a key pair

(pk, sk). He then posts the public key pk on the public channel for all to see. Now

Alice encrypts her plaintext message m using E and sends the ciphertext c = E(pk, m)

over the public channel. Bob uses D to decrypt c and obtain a plaintext m′ = D(sk, c).

If we want P to actually implement private communication, we require that m′ = m

and that there is some guarantee that it is hard for an attacker on the public channel to

obtain m from c. These basic properties of correctness and security are introduced and

formalized in Sec. 3.2.1 and Sec. 3.2.2, respectively. In Sec. 3.2.1 and Sec. 3.2.2, we

fix the following notation:

P = (K, E, D) := a public key encryption protocol,

M := the message space for P ,

C := the ciphertext space for P .

These hypotheses are formalized at the top of pke.lean as follows:

noncomputable theory

variables {G1 G2 M C: Type} [decidable_eq M]

(keygen : pmf (G1 × G2))

(encrypt : G1 → M → pmf C)

(decrypt : G2 → C → M)

We use the more descriptively named keygen, encrypt, and decrypt to formalize

K,E, and D. Here G1 is the type of public keys and G2 is the type of private keys. The

curly braces tell Lean to infer G1, G2, M, and C from keygen, encrypt, and decrypt.

By declaring keygen, encrypt, and decrypt at the top of pke.lean as variables,

all subsequent definitions in the file which reference these variables will be given an

additional parameter. As in Sec. 3.1, [decidable eq M] is a type class requirement

which requires anyone who provides instance of an encrypt function (e.g. to use

the later definitions in the file) to also provide a proof that the type M satisfies decid-

able equality. We avoid having to supply such a proof by declaring noncomputable

theory, as we discuss in Ch. 5.
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3.2.1 Correctness

Drawing from [BS15, Def. 11.1], we say P satisfies correctness if for all possible key

pairs (pk, sk) output by K, and all messages m ∈M ,

Pr[ D (sk, E (pk, m)) = m ] = 1. (3.1)

Intuitively, P satisfies the property of correctness if decryption is the inverse of en-

cryption. However, since K and E are probabilistic algorithms, it makes sense that

statements about their outputs will also be probabilistic. To formalize correctness in

Lean, we first write a probabilistic program enc dec which simulates running the pro-

tocol and returns 1 with probability 1 if Eq. (3.1) holds:

def enc_dec (m : M) : pmf (zmod 2) :=

do

k ← keygen,

c ← encrypt k.1 m,

pure (if decrypt k.2 c = m then 1 else 0)

First notice the use of the projections k.1 and k.2 in the definition of enc dec, and

consider that we could have written enc dec in a way which improves readability:

def enc_dec (m : M) : pmf (zmod 2) :=

do

(pk, sk) ← keygen,

c ← encrypt pk m,

pure (if decrypt sk c = m then 1 else 0)

In fact, we initially wrote enc dec in exactly this way, under the assumption that Lean

would treat the two identically. However, Lean handles the (pk, sk) on the left side

of the arrow in a very clunky manner by introducing a lambda function into the goal

that is hard to break through with tactics. In a comment on Zulip,1 a user mentioned

encountering similar difficulties, and said that he solved the issue by using projection

notation. After spending multiple days on the problem, we were willing to sacrifice

readability in the interest of progress.

1https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/_match_
1_.20term.20in.20monad.20unfolding/near/245857781

https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/_match_1_.20term.20in.20monad.20unfolding/near/245857781
https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/_match_1_.20term.20in.20monad.20unfolding/near/245857781
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Next, recall that since we defined keygen, encrypt, and decrypt as variables,

and enc dec references these variables, the actual type of enc dec, which can be

checked in Lean via #check enc dec, is:

pmf (?M1 × ?M2)→ (?M1 → ?M3 → pmf ?M4)

→ (?M2 → ?M4 → ?M3) → ?M3 → pmf (zmod 2)

The appearance of ?M1, ?M2, ?M3, and ?M4 where we might expect G1, G2, M, and C,

respectively, is due to the fact that we declared the latter types implicitly via curly

braces. In other words, the placeholders ?M1–?M4 will be filled in upon input of

keygen, encrypt, and decrypt.

Finally, we specify correctness:

def pke_correctness : Prop :=

∀ (m : M), enc_dec keygen encrypt decrypt m = pure 1

In words, for a public key encryption protocol P specified by instantiations of keygen,

encrypt, and decrypt, we say P is semantically secure if running the enc dec pro-

tocol with any message m results in the distribution which assigns probability 1 to

(1 : zmod 2). Since enc dec is constructed to return 1 with probability 1 if Eq. (3.1)

holds, our formalization matches the definition. We will see similarly long chains of

inputs to construct the definitions of pke semantic security in Sec. 3.2.2 and DDH

in Sec. 4.3.

3.2.2 Semantic security

When Alice uses P to send her private message to Bob, she is not only relying on the

fact that P is correct, but also on the fact that it is hard for an attacker to recover the

original message m from a ciphertext c. Consider a game between a challenger C and

an attacker A defined as follows:

1. C runs K to obtain (pk, sk) and passes pk to A.

2. A runs any efficient algorithm and outputs two messages m0, m1 ∈M .

3. C samples b← Z2 uniformly at random, and passes c := E(pk, mb) to A.

4. A runs any efficient algorithm and outputs a bit b′.



Chapter 3. Provable Security in Lean 18

The bit b′ corresponds to a guess that the challenger encrypted the message mb′ . We

call this game the semantic security game, and say A wins the game if b′ = b, or

equivalently if 1+ b+ b′ = 1 ∈ Z2. Intuitively, P is semantically secure if A can do

no better than random guessing. More precisely, denote by SSG(A) the event that A

wins the semantic security game. We say that a public key encryption protocol P is

semantically secure [BS15, Def. 11.2] if for any efficient attacker A,

SSG Adv(A) := |Pr[SSG(A)]−1/2| is negligible. (3.2)

In Sec. 3.4, we precisely define the term “negligible” in terms of a security parameter

η ∈ Z>0. However, at the end of this section we discuss how formalizing negligibility

is unnecessary for the purposes of the ElGamal security proof.

In Lean, we can model the probabilistic attacker A as a pmf. However, it is unclear

over what type the pmf should be defined, since A returns a value in M×M in step 2 of

the semantic security game, and a value in Z2 in step 4. Furthermore, the information

which A has access to in step 2 is the public key pk that it received in step 1, whereas

the A in step 4 has access to pk from step 1, its output (m0, m1) from step 2 (as well as

any intermediate calculations conducted in the execution of step 2), and the ciphertext

c from step 3. Since a function must have a precisely specified domain and range in

a theorem prover, we cannot model A with a single pmf in Lean. Instead, we mirror

the construction from FCF [Pet15, p. 58] by modeling the single attacker A as the

composition of two probabilistic programs A1 and A2:

variables (A_state : Type)

(A1 : G1 → pmf (M × M × A_state))

(A2 : C → A_state → pmf (zmod 2))

Here A1 corresponds to A in step 2 and A2 corresponds to A in step 4. We declare

A state to be the type of data which A1 passes to A2. In this way, we model the idea

that A1 and A2 are really the same entity. And since A1 and A2 are arbitrary variables,

our model encompasses an arbitrary adversary A. In Nowak’s toolbox, the adversary

A is similarly modeled as two probabilistic programs A1 and A2 [Now07, p. 320].

However, A1 does not pass any sort of state to A2, so it is unclear how his specification

models the fact that A1 and A2 are same entity in the semantic security game.

Using the work of Sec. 3.1, we formalize the semantic security game as the proba-

bilistic program SSG, again using projections on the left of the arrows as discussed in

Sec. 3.2.1:
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def SSG : pmf (zmod 2) :=

do

k ← keygen,

m ← A1 k.1,

b ← uniform_2,

c ← encrypt k.1 (if b = 0 then m.1 else m.2.1),

b’ ← A2 c m.2.2,

pure (1 + b + b’)

Then the probability that A wins the semantic security game, i.e. Pr[SSG(A)] is the

probability of (1 : zmod 2) in the distribution induced by SSG. Hence, we can for-

malize the semantic security as given in equation (3.2):

local notation ‘Pr[SSG(A)]‘ := (SSG keygen encrypt A1 A2 1 : R)
def pke_semantic_security (ε : nnreal) : Prop :=

abs (Pr[SSG(A)] - 1/2) ≤ ε

Notice that we don’t pass decrypt to SSG above. Since SSG does not reference decrypt,

it is not added as a parameter.

Ultimately, we prove semantic security for ElGamal in Sec. 4.4 by proving for any

efficient attacker A, the value SSG Adv(A) from Eq. 3.2 is equal to a value which is

negligible by hypothesis. Hence our definition of semantic security does not need a

formal definition of the term negligible; an arbitrary ε suffices as a placeholder. This

is also the approach in FCF [Pet15, Sec. 5.1.5].

3.3 Proving equivalence between pmfs

In the game hopping proof style described by Shoup [Sho04], the critical step is prov-

ing that a certain probability in a game is negligibly close to a certain probability in

the next game in the sequence. For our later game-based proof of semantic security

for ElGamal in Sec. 4.4, we actually show that each game in the sequence induces the

same distribution over Z2. Since we model distributions as pmfs in cryptolib, it follows

that we need ways to prove that two pmfs are equal.

Let α, β, and γ denote types in Lean. In mathlib, equality between two pmfs is
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defined by functional extensionality:

lemma ext : ∀ {p q : pmf α}, (∀ a, p a = q a) → p = q

In words, the distributions p and q are equal if they assign the same probability to each

element of α. The three monad laws (as defined in mathlib) which the functions pure

and bind from Sec. 3.1 satisfy give us one way to prove that two pmfs are equal. The

first is pure bind:

@[simp] lemma pure_bind (a : α) (f : α→ pmf β) :

(pure α).bind f = f a

which says that sampling from the distribution pure a and passing the sampled value

to f is the same as passing a to f deterministically. The @[simp] decorator on pure bind

means that any invocation of the simp tactic will automatically try to rewrite the goal

using pure bind. The other two monad laws also include the @[simp] decorator. The

next monad law is bind pure:

@[simp] lemma bind_pure (p : pmf α) : p.bind pure = p

which says that the distribution obtained from sampling from p and returning the sam-

pled value is equal to p. Last is bind bind:

@[simp] lemma bind_bind

(p : pmf α) (f : α→ pmf β) (g : β→ pmf γ) :

(p.bind f).bind g = p.bind (λ a, (f a).bind g)

which is a form of associativity for the bind operation on pmfs. Besides the monad

laws, mathlib has another useful lemma for proving equivalence between pmfs:

lemma bind_comm (p : pmf α) (q : pmf β) (f : α→ β→ pmf γ) :

p.bind (λ a, q.bind (f a)) = q.bind (λ b, p.bind (λ a, f a b))

In words, bind comm says that if p and q are independent of each other, we can sample

a from p and b from q in either order to obtain the same distribution f a b (over γ).
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Apart from the above four lemmas in mathlib, we define the bind skip and

bind skip const tactics in the file tactics.lean to simplify proofs of equivalence

between pmfs. The bind skip tactic is similar to the comp skip tactic from FCF and

is based on the following lemma:

lemma bind_skip’ (p : pmf α)(f g : α→ pmf β) :

(∀ (a : α), f a = g a) → p.bind f = p.bind g

The lemma can be applied when two pmfs (each defined as a sequence of samples

via the do syntax) sample from the same distribution on their first step. In that set-

ting, bind skip’ states that it suffices to prove that the two distributions agree on all

elements of the distribution p which they have in common.

In Lean, we can use the apply tactic in conjunction with a lemma (or theorem)

of type P → Q to change a goal Q to a goal P. The apply tactic is the analogue of

the mathematical argument structure “By Lemma X, it suffices to show . . . .” We use

bind skip in tactic mode by writing bind skip with x, where x can be any identifier

the user wants. This invokes the sequence of tactics: (1) apply bind skip’, and (2)

intro x. The intro tactic handles the universal quantifier ∀ in the new goal (after

apply) by introducing the hypothesis (x : α).

Informally, bind skip lets us peel back the layers of two pmfs defined as se-

quences of monadic binds which sample from the same distribution on their first step.

To illustrate the use of the bind skip tactic, consider the distributions p1 and p2:

def p1 : pmf (zmod 5) := def p2 : pmf (zmod 5) :=

do do

x ← uniform_zmod 5, x ← uniform_zmod 5,

y ← uniform_zmod 5, y ← uniform_zmod 5,

pure (x + y) pure (y + x)

It is clear mathematically that p1 and p2 define the same distribution because x+ y =

y+ x in Z5. However, we have to peel off the monadic binds before we can use the

lemma add comm which says x+ y = y+ x in Z5; the bind skip tactic makes this

possible:
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example : p1 = p2 :=

begin

simp [p1, p2], bind_skip with x, bind_skip with y,

simp_rw add_comm,

end

The other tactic we provide in cryptolib, bind skip const , is used in a manner

similar to bind skip and is based on the following lemma:

lemma bind_skip_const’ (pa : pmf α)(pb : pmf β)(f : α→ pmf β):

(∀ (a : α), f a = pb) → pa.bind f = pb

Intuitively, the bind skip const tactic lets us skip superfluous binds. We show its

use by way of example. Consider the distribution p3:

def p3 : pmf (zmod 5) :=

do

x ← uniform_zmod 5,

y ← uniform_zmod 5,

pure y

It should be obvious that the actual value of x after the sampling has no impact on

the resulting distribution, and so p3 is equal to uniform zmod 5 by the bind pure

monad law (applied automatically below by using simp):

example : p3 = uniform_zmod 5 :=

begin

bind_skip_const with x,

simp [bind, pure],

end

Though this example is rather trivial since the rest of p3 never references the bound

variable x again, it is a common scenario that a distribution is unaffected by a sam-

pled value even when that value is later referenced. Therein lies the purpose of the

bind skip const tactic: if a sampling (in the form of a monadic bind) has no impact
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on the resulting distribution, then we can safely ignore it. The bind skip const tac-

tic greatly simplifies the proof of correctness for ElGamal in Sec. 4.2 and one of the

key lemmas in the proof of semantic security in Sec. 4.4. The bind skip tactic also

proves critical within later proofs.

3.4 Negligibility

In cryptolib, we prove semantic security for ElGamal in Sec. 4.4 by proving for any

efficient attacker A, the value SSG Adv(A) from Eq. 3.2 is equal to a value which is

negligible by hypothesis. Hence, we are able to show that SSG Adv(A) is negligible

without ever needing a formalization of the term negligible. This is exactly the proof

strategy used in FCF [Pet15, Sec. 5.1.5], and it means we avoid having to specify the

dense mathematical foundation of the computational model, which we briefly discuss.

Recall that we mentioned in Sec. 2.2 that a rigorous definition of efficient involves

a security parameter η ∈ Z>0. Since we assume A is efficient, it turns out that the

“value” SSG Adv(A) is actually a function of η [BS15, Sec. 2.3.4]. It follows that

negligibility is a property of a function: we say a function f : Z≥0→ R is negligible
[BS15, Def. 2.5] if for all c > 0,

lim
η→∞

f (η) ·ηc = 0. (3.3)

Though the slick proof from FCF hides the security parameter under the rug, we pro-

vide the file negligible.lean in cryptolib in the event that someone (else) wants to

completely formalize the computational model in Lean in the future.

We first formalize the definition of negligible from Eq. (3.3):

def negligible (f : N→ R) :=

∀ c > 0, ∃ n0, ∀ n,

n0 ≤ n → abs (f n) < 1 / (n : R)ˆc

Note that we use N as the domain for f since N = Z≥0 in Lean, i.e. 0 ∈ N. We also

provide several lemmas, such as the sum of two negligible functions is negligible:

lemma negl_add_negl_negl {f g : N→ R} :

negligible f → negligible g → negligible (f + g)



Chapter 3. Provable Security in Lean 24

We use negl add negl negl to prove by induction that for any m ∈ N, f negligible

implies m · f is negligible:

lemma nat_mul_negl_negl {f : N→ R} (m : N):
negligible f → negligible (λ n, m * (f n))

We also prove that any function bounded by a negligible function is negligible:

lemma bounded_negl_negl {f g : N→ R} (hg : negligible g):

(∀ n, abs (f n) ≤ abs (g n)) → negligible f

Finally, we use nat mul negl negl and bounded negl negl to prove that for c ∈ R,

f negligible implies c · f is also negligible:

lemma const_mul_negl_negl {f : N→ R} (m : R) :

negligible f → negligible (λ n, m * (f n))

We also state, but do not prove, that f : N→ R given by f (n) = 2−n is negligible:

theorem neg_exp_negl :

negligible ((λ n, (1 : R) / 2ˆn) : N→ R) := by sorry

A mathematical proof of this fact proceeds by induction on c (from the definition of

negligible) and uses L’Hôpital’s rule to apply the inductive hypothesis. Mathlib has

a formalization of L’Hôpital’s rule,2 but we were unable to parse the definitions to

the point that we could apply them to our specific case in time for inclusion into the

submitted version of cryptolib. A concerted effort over the course of a day or two (or

delegating the task via Zulip) would suffice to close this goal. The above lemmas can

be combined to prove that any function in O(2−η) is also negligible, which is a useful

fact for asymptotic proofs in the computational model, since 2−η often appears as a

bound.

2https://leanprover-community.github.io/mathlib_docs/analysis/calculus/
lhopital.html

https://leanprover-community.github.io/mathlib_docs/analysis/calculus/lhopital.html
https://leanprover-community.github.io/mathlib_docs/analysis/calculus/lhopital.html


Chapter 4

ElGamal

In this chapter, we describe our formalization of the ElGamal public key encryption

protocol and the proofs of correctness and semantic security. In Sec. 4.1, we define

the ElGamal protocol using a finite cyclic group G, and show that the protocol satisfies

correctness. In Sec. 4.2, we formalize the proof of correctness (with respect to the

definition given in Sec. 3.2.1) leveraging the bind skip const tactic to prove an

equivalence between pmfs. We also compare the formal proof of correctness with the

computational proof of correctness given in Sec. 4.1. In Sec. 4.3 we formalize the DDH

assumption before finally proving in Sec. 4.4 that ElGamal is semantically secure when

the decisional Diffie-Hellman assumption holds for the group G on which the protocol

is based. For the remainder of this chapter, we fix the following notation:

G := a finite cyclic group,

g := a generator of G, that is G = 〈g〉,

q := the order of G, or equivalently the order of g.

These hypotheses are formalized at the top of elgamal.lean as follows:

parameters (G : Type) [fintype G][comm_group G][decidable_eq G]

(g : G)(g_gen_G : ∀ (x : G), x ∈ subgroup.gpowers g)

(q : N)[fact (0 < q)](G_card_q : fintype.card G = q)

include g_gen_G G_card_q

The parameters keyword has a different purpose than variables. If we declared

variables (G : Type), then each subsequent definition in elgamal.lean which ref-

erenced G would automatically be given an extra parameter to supply a Type. On the

other hand, when we use parameters (G : Type), any proof context of a theorem

25
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(or lemma) which references G gains the hypothesis that (G : Type). In essence, we

are declaring some fixed G for the file elgamal.lean, so that any reference to G is to

the same G. We use this method because elgamal.lean is a “concrete case” file, in

the sense that its contents will be not be used by other files; we use the other files to

prove the things in elgamal.lean. Similarly, the include command automatically

adds the hypotheses g gen G and G card q to every proof context. Since g gen G

and G card q are not referenced explicitly in theorem statements, parameters is not

enough to ensure they are in the context.

4.1 The protocol

Taher El Gamal defined the eponymous public key encryption protocol in [Gam85].

In what follows, we only modify the notation used in the original description of the

protocol. The key algorithm samples x ∈ Zq uniformly at random. Then the public

key is pk := (G, g, q, gx) and the private key is sk := (G, g, q, x). We formalize this

probabilistic algorithm as keygen.

def keygen : pmf (G × (zmod q)) :=

do

x ← uniform_zmod q,

pure (gˆx.val, x)

Here x.val is the minimal element of N in the equivalence class x ∈ Zq. Note that

declaring G, g, and q (along with their respective hypotheses) as parameters at the

top of the files ensures that they are made implicit inputs for all other functions. In

other words, it suffices to have keygen return (gˆx.val, x) as the public and private

key pair, instead of the more cumbersome ((G, g, q, gˆx), (G, g, q, x)).

The message space for ElGamal is G and the ciphertext space is G×G. One might

imagine in practice that if we wanted to communicate a sequence of English letters,

we could use ASCII encoding to get a sequence of bytes, which in turns corresponds

to some non-negative integer n. If we choose G such that the order q is greater than

n, then gn uniquely encodes our ASCII message. For a message m ∈ G, the encryp-

tion algorithm proceeds by sampling y ∈ Zq uniformly at random and returning as the

ciphertext

c := (gy, (gx)y ·m) ∈ G×G
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This probabilistic algorithm is encoded as encrypt below.

def encrypt (pk m : G) : pmf (G × G) :=

do

y ← uniform_zmod q,

pure (gˆy.val, pkˆy.val * m)

Finally, the deterministic decryption algorithm takes as input the private key x ∈ Zq

and a ciphertext (c.1, c.2) ∈ G×G and returns c.2/c.1x ∈ G.

def decrypt (x : zmod q) (c : G × G) : G :=

(c.2 / (c.1ˆx.val))

The correctness of ElGamal is easy to verify by hand from this description. For (gx, x)

returned from K and a message m ∈ G, we have

D (x, E (gx, m)) =
(gx)y ·m
(gy)x =

gxy ·m
gyx = m. (4.1)

However, formalizing this seemingly straightforward calculation in Lean is a little

more involved and is the subject of Sec. 4.2.

4.2 Proof of correctness

The mathematical proof given in Eq. (4.1) in Sec. 4.1 consisted of unpacking the def-

inition of E and D and then simplifying the resulting expression based on algebraic

identities in the group G. The statement of the corresponding lemma for fixed x,y, and

m in Lean is given below:

lemma decrypt_eq_m (m : G) (x y: zmod q) :

decrypt x ((gˆy.val), ((gˆx.val)ˆy.val * m)) = m

However, this lemma does not immediately prove correctness in Lean, which we de-

fined as pke correctness in Sec. 3.2.1 as an equivalence between pmfs:

def pke_correctness : Prop :=

∀ (m : M), enc_dec keygen encrypt decrypt m = pure 1
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theorem elgamal_correctness :

pke_correctness keygen encrypt decrypt :=

begin

simp [pke_correctness],

intro m,

simp [enc_dec, keygen, encrypt, bind],

bind_skip_const with x,

simp [pure],

bind_skip_const with y,

simp_rw decrypt_eq_m,

simp,

end

Figure 4.1: Tactic mode proof of correctness for ElGamal.

Recall that enc dec takes as input the keygen, encrypt, and decrypt functions

which define a public key encryption protocol. Then, for a given message m, enc dec

runs the protocol and returns 1 if the decrypted message equals m.

Intuitively, the lemma decrypt eq m doesn’t suffice on its own because assuming

a fixed x implies we have implicitly “run” keygen (or sampled a key pair from its

distribution, in the sense of a monadic bind). Similarly, assuming a fixed y implies

we have “run” encrypt. But the key insight is that the actual values of x and y don’t

affect the resulting distribution enc dec, precisely because of lemma decrypt eq m.

Recall from Sec. 3.3 that the bind skip const tactic is written to simplify pmf proofs

in situations where the values from a sampling don’t affect the resulting distribution.

(Our initial proof1 without bind skip const was 139 lines of code versus 14 lines of

code with bind skip const .)

After unpacking the various function definitions and the universal quantifier in

pke correctness with simp and intro respectively, we use

bind skip const with x

to peel off from the goal the outermost (superfluous) bind, which corresponds to

x ← uniform zmod q in the ElGamal keygen algorithm. At the same time, the tactic

1https://github.com/Loops7/cryptolib/blob/0d710437f1129a296cc0756156f4b711eb80ad9d/
src/elgamal.lean, viewer discretion is advised.

https://github.com/Loops7/cryptolib/blob/0d710437f1129a296cc0756156f4b711eb80ad9d/src/elgamal.lean
https://github.com/Loops7/cryptolib/blob/0d710437f1129a296cc0756156f4b711eb80ad9d/src/elgamal.lean
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introduces (x : zmod q) into the proof context. A similar use of bind skip const a

couple lines later peels off the monadic bind corresponding to y ← uniform zmod q

from encrypt. The goal is then essentially reduced to decrypt eq m plus a trivial

final deduction which simp solves.

Though the mathematical proof of correctness is conceptually very simple, our

formalization of the proof involved iteratively unraveling a sequence of monadic binds

via a custom-made tactic. This section illustrates some of the unique challenges of the

formalization process.

4.3 The DDH assumption

Let x,y,z ∈ Zq be sampled independently and uniformly at random. Informally, the

decisional Diffie-Hellman (DDH) assumption on G states that an attacker cannot dis-

tinguish the two tuples

(gx, gy, gxy), and (gx, gy, gz)

with non-negligible probability. We make this notion of indistinguishability precise

with an equivalent construction. Consider a probabilistic distinguisher D : G3→ Z2.

Let DDH0(D) denote the event that D outputs 1 when it receives (gx, gy, gxy) and let

DDH1(D) denote the event that D outputs 1 when it receives (gx, gy, gz). Then we say

that the DDH assumption holds for G if

|Pr[DDH0(D)]−Pr[DDH1(D)]| is negligible. (4.2)

All formalizations in this section are in ddh.lean. First, we model the distin-

guisher D as a pmf:

variables (D : G → G → G → pmf (zmod 2))

We model DDH0(D) as the event that DDH0 = 1 for DDH0 below:

def DDH0: pmf (zmod 2) :=

do

x ← uniform_zmod q,

y ← uniform_zmod q,

b ← D (gˆx.val) (gˆy.val) (gˆ(x.val * y.val)),
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pure b

Similarly, DDH1(D) is the event that DDH1 = 1:

def DDH1: pmf (zmod 2) :=

do

x ← uniform_zmod q,

y ← uniform_zmod q,

z ← uniform_zmod q,

b ← D (gˆx.val) (gˆy.val) (gˆz.val),

pure b

Finally we formalize the idea that these two probabilities are negligibly close (in terms

of arbitrary ε, as we described in Sec. 3.2.2):

local notation ‘Pr[DDH0(D)]‘ :=

(DDH0 G g g_gen_G q G_card_q D 1 : R)
local notation ‘Pr[DDH1(D)]‘ :=

(DDH1 G g g_gen_G q G_card_q D 1 : R)
def DDH (ε : nnreal) : Prop :=

abs (Pr[DDH0(D)] - Pr[DDH1(D)]) ≤ ε

The long list of terms passed to DDH0 and DDH1 correspond to variables declared

at the top of ddh.lean, which we have omitted in our exposition. Their definitions

correspond with the parameters declared on p. 25. The input 1 at the end of the long

list of inputs to DDH0 (resp. DDH1) corresponds to the event DDH0 = 1 (resp. DDH1 =

1), which is what we need to model the DDH assumption as in Eq. (4.2).

4.4 Proof of semantic security

The formalized proof of semantic security for ElGamal is much more involved than the

proof of correctness and spans several hundred lines of code. Thus, it is impossible to

go into the level of detail we did with the proof of correctness, but we give an outline of

the proof. Let A denote the attacker in the semantic security game. As in Sec. 3.2.2, let

SSG(A) denote the event that A wins the semantic security game, and let SSG Adv(A)
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be the value |Pr[SSG(A)]−1/2|. Let D be a probabilistic distinguisher which takes as

input three elements of G and outputs an element of Z2. The distinguisher D uses A

as a subroutine and will be formally specified below. Let DDH0(D) and DDH1(D) be

defined as in Sec. 4.3. The proof of semantic security is as follows:

SSG Adv(A) := |Pr[SSG(A)]−1/2| = |Pr[DDH0(D)]−1/2| (4.3)

= |Pr[DDH0(D)]−Pr[Game2(A) = 1]| (4.4)

= |Pr[DDH0(D)]−Pr[Game1(A) = 1]| (4.5)

= |Pr[DDH0(D)]−Pr[DDH1(D)]| (4.6)

where Game1 and Game2 are intermediate games which we will also define below. If

the DDH assumption holds for the group G which underlies ElGamal, then by defi-

nition the value |Pr[DDH0(A)]−Pr[DDH1(A)]| is negligible if D is an efficient algo-

rithm. It follows that SSG Adv(A) is negligible, and so semantic security is proven.

As in Sec. 3.2.2, we model the attacker A as the composition of A1 and A2:

(A1 : G → pmf (G × G × A_state))

(A2 : G → G → A_state → pmf (zmod 2))

Then the probabilistic distinguisher D is formalized as D below:

def D (gx gy gz : G) : pmf (zmod 2) :=

do

m ← A1 gx,

b ← uniform_2,

mb ← pure (if b = 0 then m.1 else m.2.1),

b’ ← A2 gy (gz * mb) m.2.2,

pure (1 + b + b’)

D uses A1 and A2 as subroutines. We follow FCF [Pet15, Sec. 5.1.5] and do not

formally prove that D is efficient assuming A1 and A2 are efficient, but this fact is

obvious since D consists of a finite sequence of efficient subroutines.

The formal proof of semantic security consists of proving the four equalities (4.3)–

(4.6). Eq. (4.3) follows from SSG(A) = DDH0(D), which we prove by showing the

distributions SSG(A) and DDH0(D) are equal:
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theorem SSG_DDH0 :

SSG keygen encrypt A1 A2’ = DDH0 G g g_gen_G q G_card_q D

Next, Eq. (4.4) follows from the fact that 1/2 = Pr[Game2(A) = 1], where Game2

is defined in Lean as the probabilistic program Game2 below:

def Game2 : pmf (zmod 2) :=

do

x ← uniform_zmod q,

y ← uniform_zmod q,

m ← A1 (gˆx.val),

b ← uniform_2,

ζ ← (do z ← uniform_zmod q,

pure (gˆz.val)),

b’ ← A2 (gˆy.val) ζ m.2.2,

pure (1 + b + b’)

Notice in Game2 that since the value of b is random, the value of b’ does not affect the

resulting distribution of 1 + b + b’. Thus, by repeatedly applying the bind skip const

tactic, we can easily prove the following theorem:

theorem Game2_uniform : Game2 = uniform_2

from which it follows that Pr[Game2(A) = 1] = 1/2 by lemma uniform zmod prob 2

from Sec. 3.1. Finally, we specify Game1 as Game1 below:

def Game1 : pmf (zmod 2) :=

do

x ← uniform_zmod q,

y ← uniform_zmod q,

m ← A1 (gˆx.val),

b ← uniform_2,

ζ ← (do z ← uniform_zmod q,

mb ← pure (if b = 0 then m.1 else m.2.1),

pure (gˆz.val * mb)),
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b’ ← A2 (gˆy.val) ζ m.2.2,

pure (1 + b + b’)

Eq. (4.5) follows from the fact that Pr[Game1(A) = 1] = Pr[Game2(A) = 1], which is

formalized by showing that Game1 and Game2 induce the same distribution:

theorem Game1_Game2 : Game1 = Game2

Notice Game1 and Game2 are exactly the same until the fifth line. Thus, repeated use of

the bind skip tactic simplifies the proof. However, the meat of the proof is a tedious

verification that the distribution from which ζ samples in Game1 is the same as the

distribution from which ζ samples in Game2, using the base definition of equality of

pmfs via functional extensionality from Sec. 3.3. That proof involves five lemmas and

almost 150 lines of Lean code in elgamal.lean. A key lemma is exp bij:

lemma exp_bij : function.bijective (λ (z : zmod q), g ˆ z.val)

which formalizes the bijection Zq→G = 〈g〉 given by z 7→ gz. We assume this fact has

been proven somewhere in mathlib, but most likely at a very high level of generality, so

we decided to just go ahead and prove it manually. The last equality in Eq. (4.6) follows

from the fact that Pr[Game1(A) = 1] = Pr[DDH1(D)], which is proven in Game1 DDH1:

theorem Game1_DDH1 : Game1 = DDH1 G g g_gen_G q G_card_q D

Unfolding the definition of D within DDH1, it is apparent by inspection of the goal

state in Lean that the distributions are almost identical modulo applying bind bind,

bind comm, and the bind skip tactic. Finally, we state semantic security for ElGa-

mal:

parameter (ε : R)
theorem elgamal_semantic_security

(DDH_G : DDH G g g_gen_G q G_card_q D ε) :

pke_semantic_security keygen encrypt A1 A2’

where the parameter (DDH G : DDH G g g gen G q G card q D ε) uses the def-

inition of DDH from ddh.lean to formalize the assumption that G satisfies the deci-
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sional Diffie-Hellman assumption. The proof is a straightforward sequence of rewrites

according to Eqs. (4.3)–(4.6), as formalized in the four theorems above.



Chapter 5

Evaluation and Comparison

At a high level, the capabilities of the cryptolib library are comparable to Nowak’s

toolbox [Now07, Now08], but fall short of state of the art frameworks like EasyCrypt

[BGHB11], CryptHOL [BLS20, Loc17], and the Foundational Cryptographic Frame-

work (FCF) [PM15, Pet15]. However, these projects represent the work of several

people over the course of several years. Due to the time constraints of this project,

we couldn’t hope to produce a framework with all of the features for automation or

verified code extraction, etc., that these other projects provide. Instead, we chose to

focus our efforts on formalizing the game-based proofs of correctness and semantic

security for ElGamal encryption. The security proof for ElGamal is conceptually sim-

ple relative to other cryptographic proofs, but still yields a complete proof of concept

that the underlying modeling of games in a theorem prover is valid. Each of Easy-

Crypt, CryptHOL, Nowak’s toolbox, and FCF formalizes a similar proof for ElGamal

as a proof of concept, making it easy to compare our work and the relative benefits

of the underlying theorem prover, which are as follows: EasyCrypt is a deep embed-

ding in Coq; CryptHOL is a shallow embedding in Isabelle/HOL; Nowak’s toolbox is

a shallow embedding in Coq; and FCF is a shallow embedding in Coq. In their paper

presenting FCF, Petcher and Morrisett enumerate criteria which a framework for se-

curity proofs should satisfy [PM15, pp. 54–55]. In what follows, we use their criteria

as a framework to guide our evaluation of cryptolib and Lean. All quoted material in

(1)–(6) is from [PM15, pp. 54–55].

(1) “Familiarity. Security definitions and descriptions of cryptographic schemes

should look similar to how they would appear in cryptography literature, and a cryptog-

rapher with no knowledge of programming language theory or proof assistants should

be able to understand them.” The pmf + do syntax used in cryptolib to model games is

35
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an expressive construct that results in formalizations which closely match their math-

ematical counterparts. This is particularly clear in the case of the semantic security

game SSG, and the decisional Diffie-Hellman “games” DDH0 and DDH1. Furthermore,

Lean’s unicode support reduces the amount of code (e.g. compare ∀ and ∃ in Lean to

writing forall and exists in Coq) and improves readability.

We predict that there are two primary barriers to comprehension of cryptolib defi-

nitions for someone not familiar with a theorem prover. The first is not understanding

the effect of the variables keyword, which results in terms like

(DDH0 G g g gen G q G card q D : pmf (zmod 2))

from Sec. 4.3. However, this phenomenon is unavoidable in Lean, since DDH0 has to

know the assumptions on the group G if we are to claim that our specification accu-

rately models the DDH assumption. There is no way to get around passing in these

assumptions at some point in the code. The story is no different for Coq; Nowak’s

toolbox and FCF include similarly verbose input lists in their definitions of the DDH

assumption and semantic security. In contrast, CryptHOL uses Isabelle’s module sys-

tem by declaring a locale to avoid having to pass in the long list of assumptions as

explicit parameters in the definitions of DDH and semantic security [LSB17, p. 3, 13].

The second barrier is the use of the projection notation, as in

k ← keygen, c ← encrypt k.1 m

from the definition of enc dec in Sec. 3.2.1. Though understanding the types of

the sampled values makes the projection notation easy to parse, we suspect there are

ways to improve the readability further. One way would be to include the samples

pk ← pure k.1, and sk ← pure k.2 in the specifications, though these inclusions

negatively affect readability by increasing the length of the definition. Ultimately, we

chose to use the projection values directly in the interest of concision. Nowak uses pro-

jections Datatypes.fst in his toolbox, whereas FCF uses the nicer pattern matching

construct in game descriptions.

(2) “Proof automation. The system should use automation to reduce the effort

required to develop a proof.” The proofs in cryptolib for the most part rely on the

four lemmas pure bind, bind pure, bind bind, and bind comm, as well as the cus-

tom tactics bind skip and bind skip const to prove equivalences between pmfs.

The first three lemmas (the monad laws) are marked with an @[simp] decorator, and

so are automatically applied when we use simp in tactic mode. However, we still
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have to apply simp and the bind skip and bind skip const tactics manually to

interactively solve the goal. Nowak provides tactics which automatically apply the

monad laws, as well as a directed form of bind comm. He also gives an analogue of

the bind skip const tactic, which is especially useful in the proof of correctness

[Now07, p. 332]. FCF includes similar tactics, as well as the comp skip tactic which

inspired the bind skip tactic in cryptolib. Thus, the tactics in cryptolib, Nowak’s

toolbox, and FCF provide roughly the same amount of automation. CryptHOL sup-

ports a declarative proof style wherein proof steps are stated by the user and it tries

to automatically fill in the details [BLS20, p. 496]. However, none of the above can

approach the level of automation offered by EasyCrypt, which makes extensive use of

satisfiability modulo theories (SMT) solvers to automatically dispense goals without

user input [BGHB11, p. 73].

(3) “Trustworthiness. Proofs should be checked by a trustworthy procedure, and

the core definitions (e.g. programming language semantics) that must be inspected in

order to trust a proof should be relatively simple and easy to understand.” The choice

to use a shallow embedding of games means that cryptolib needs only the axioms

on which Lean relies. Further, we involve no outside automatic provers (e.g. SMT

solvers) as in EasyCrypt which might expand the base of trust. Thus cryptolib is at

least as trustworthy as Lean itself. FCF and Nowak’s toolbox provide a similar level

of trust with respect to Coq, as does CryptHOL with respect to Isabelle/HOL.

(4) “Extensibility. It should be possible to directly incorporate any existing theory

that has been developed for the proof assistant.” The choice of a shallow embedding

means that cryptolib has full access to the extensive mathlib library of theorems and

tactics, a key advantage of Lean. Consider that we were almost able to use the pmf

definition right out of the box to suit our needs. To use pmf in combination with the

do syntax, we only had to provide a proof in to mathlib that pmf is an instance

of a monad, but this amounted to pointing Lean at the already defined pure and bind

functions. We were further able to take advantage of the already defined structure

of the zmod type, including several key lemmas. Nowak’s toolbox and FCF include

significant amounts of code to get analogues of the pmf and zmod definitions. They

also define custom notation which mirrors the do syntax we get for free.

Similarly, much of the CryptHOL specification consists of defining a subprobabil-

ity mass function spmf and proving literally hundreds of lemmas. CryptHOL uses the

spmf in a similar way as cryptolib uses pmf, which works out of the box from mathlib.

Furthermore, pmf has a much more understandable specification than CryptHOL. The
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full specification for CryptHOL is a nearly impenetrable 316-page document [Loc17].

If we expand the extensibility criterion from “existing theory” to “existing ecosys-

tem,” then we can mention another important benefit of the cryptolib ecosystem, namely

the very active Lean community on the Zulip chat platform.1. In the course of com-

pleting this project, we asked several questions on Zulip, each of which received a

response in the span of ten minutes. In Sec. 3.2.1, we also mentioned how a Zulip user

helped us sort out mysterious Lean behavior and continue our development. The real

time help line on Zulip is a huge benefit to working in Lean.

(5) “Concrete Security. The security proof should provide concrete bounds on

the probability that an adversary is able to defeat the scheme.” Our proof of seman-

tic security for ElGamal is a concrete result in that we directly equated the advan-

tage SSG Adv(A) of the attacker in the semantic security game with the “advantage”

|Pr[DDH0(D)]−Pr[DDH1(D)]| of a distinguisher D in the decisional Diffie-Hellman

problem. However, cryptolib is limited to proving concrete security results which are

equalities, as in the previous sentence. In general, concrete security results bound the

advantage of an attacker in relation to a hardness assumption and are not restricted to

equalities. We discuss this distinction in more depth below.

Cryptolib is able to model games using the pmf + do syntax as in Sec. 3.1 and prove

game hops where the distribution induced by Gi is equal to the distribution induced by

Gi+1 using the lemmas and tactics described in Sec. 3.3. This framework is roughly

equivalent to the capabilities of Nowak’s framework and is sufficient to prove semantic

security for ElGamal, as well as security for certain other cryptographic protocols, such

as those formalized in [Now08]. However, in the general game-based methodology for

security proofs, much less restrictive game hops are permitted. In particular, a game

hop is permissible if we can prove

|Pr[Gi(A) = 1]−Pr[Gi+1(A) = 1]| is negligible, (5.1)

[Sho04, p. 2]. FCF is able to formalize such game hops [PM15, Sec. 3.2], as is

EasyCrypt [BGHB11, Lem. 1], and CryptHOL [LSB17, Sec. 5.5]. Each of these

projects implements the so-called “fundamental lemma of game-playing” in [BR04,

Lem. 2] which bounds the value of the term in Eq. (5.1) under certain condition. The

result is that these frameworks are able to prove concrete security for a significantly

larger class of protocols.

(6) “Code Generation. The system should be able to generate code containing

1https://leanprover.zulipchat.com/

https://leanprover.zulipchat.com/
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the procedures of the cryptographic scheme that was proven secure.” There is often a

gap between the formal specification of a protocol in a theorem prover and an actual

implementation of the protocol in software and hardware. Verifying protocol imple-

mentations is a current direction of security research, see e.g. [APS14] for a survey.

Code generation is even more ambitious; it refers to the ability to extract a provably

secure implementation of a protocol from a provably secure specification. Among

EasyCrypt, CryptHOL, FCF, and Nowak’s toolbox, FCF is the only project which in-

cludes functionality for code extraction [PM15, Sec. 3.6],[Pet15, Ch. 7].

Cryptolib does not have the capability to extract verified implementations, not be-

cause we didn’t code it, but because our framework is built on classical reasoning.

In mathlib, the definition of pmf is marked as noncomputable, which in Lean means

we are operating within classical logic, i.e. we assume the axiom of choice. Any

code in cryptolib which uses a pmf is also marked noncomputable. While we lose

the ability to extract code, we simplify many aspects of the resulting code. From the

axiom choice we can derive the law of the excluded middle, which in turn we can

use to show that every proposition is decidable [AdMK21, Sec. 11.6]. In particular,

equality is automatically decidable for any type. Recall in Sec. 3.1 how the type G

was given the type class [decidable eq G]. The use of a type class requires that we

provide a term (or instance proof, more precisely) of type decidable eq G if want to

work with terms of type pmf G. But since we are working within classical logic via the

noncomputable keyword, Lean automatically dismisses all requirements to provide

proofs of decidable eq. Due to mathlib, the makeup of the Lean community skews

towards mathematicians, 99.9 percent of whom conduct their research within classical

reasoning. Thus the community tends to produce proofs as a mathematician would,

i.e. without a care for constructive logic.

This acceptance of classical reasoning in Lean is in stark contrast to the staunchly

constructivist Coq community. This constructivist bent is reflected in both Nowak’s

toolbox and FCF. In FCF, using the type Comp A in FCF (which is analogous to a pmf

A in cryptolib) requires passing in as a parameter a term of type eq dec A. Nowak’s

toolbox includes a similar term for decidable equality in its definition of a distribution.

For a cryptographer or mathematician looking to use a framework to formalize security

proofs, it makes life much easier to not have to think about foundational issues such

as decidable equality. Furthermore, the presence of all the decidable equality terms

makes the code harder to read.
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Conclusion and Future Work

The use of theorem provers offers one solution to the “crisis of rigor” [BR04, p. 3]

in security proofs for cryptographic protocols. Consequently, researchers have spent

considerable effort in recent years to develop tools in theorem provers which aid in

the formalization of security proofs. In this paper, we contributed to this effort by

presenting cryptolib, the first such framework in Lean. The novel use of mathlib’s

pmf monad with Lean’s do syntax gave us the ability to model games as probability

distributions, which in turn allowed us to formalize game-based security proofs. As

a proof of concept, we formalized proofs of correctness and semantic security for the

ElGamal encryption protocol.

There are a number of ways to expand cryptolib. The easiest is to use the defi-

nitions and formalizations already in place. For example, we could formalize several

security properties for public key encryption protocols which are defined via games,

such as indistinguishability under chosen-ciphertext attack (IND-CCA1), and indis-

tinguishability under adaptive chosen-ciphertext attack (IND-CCA2). We could also

define correctness and security for a symmetric encryption scheme. We might also

define the random oracle model to facilitate security proofs given in that model, such

as the proof of semantic security for the hashed version of ElGamal [Sho04, Sec. 8].

The two cryptographic protocols formalized in [Now08] are also attainable within the

cryptolib framework. More ambitiously, we might look to incorporate the fundamental

lemma of game-playing from [BR04] to be able to formalize game hops which are not

equalities of the underlying distributions.
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[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella

Béguelin. Computer-aided security proofs for the working cryptographer.

In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st

Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,

2011. Proceedings, volume 6841 of Lecture Notes in Computer Science,

pages 71–90. Springer, 2011.

[BHL+21] Kevin Buzzard, Chris Hughes, Kenny Lau, Amelia Livingston, Ra-

mon Fernndez Mir, and Scott Morrison. Schemes in Lean, 2021. Available

at https://arxiv.org/abs/2101.02602. Accessed August 7, 2021.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based on pro-

log rules. In 14th IEEE Computer Security Foundations Workshop (CSFW-

14 2001), 11-13 June 2001, Cape Breton, Nova Scotia, Canada, pages

82–96. IEEE Computer Society, 2001.

[Bla12] Bruno Blanchet. Security protocol verification: Symbolic and computa-

tional models. In Pierpaolo Degano and Joshua D. Guttman, editors, Prin-

ciples of Security and Trust - First International Conference, POST 2012,

Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012, Pro-

ceedings, volume 7215 of Lecture Notes in Computer Science, pages 3–29.

Springer, 2012.

https://arxiv.org/abs/2101.02602


Bibliography 43

[BLAG21] David Butler, Andreas Lochbihler, David Aspinall, and Adrià Gascón.
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Appendix A

A Step-by-Step Proof in Lean

In this section, we complete a step-by-step proof in Lean to better illustrate the inter-

active tactic mode. Recall the definition of an even integer from Sec. 2.1:

def is_even (n : Z) : Prop := ∃ m, n = 2 * m

The formal proof which we investigate is given below:

theorem even_add_two_even (n : Z) :

is_even n → is_even (n + 2) :=

begin -- (1)

intro ha, -- (2)

cases ha with ka hka, -- (3)

use (ka + 1), -- (4)

rw hka, -- (5)

ring, -- (6)

end

In words, even add two even states that adding two to any even integer yields

an even integer. The state of Lean at each line in the proof of even add two even

is shown in Fig. A.1. Anything written after double dashes -- is ignored by Lean, so

users can write comments or documentation.

Step (1) is the state when the cursor is placed after the begin which opens tactic

mode. Our only assumption so far is that n is a term of type Z. Step (2) is after we use

the intro tactic to introduce the assumption is even n into the local context with the
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Figure A.1: State of Lean at each step in the proof of even add two even.

identifier ha. It is common to prefix identifiers for hypotheses with an h, though it is

important to remember a hypothesis is just a term of some type in Lean.

In step (3), the cases tactic splits the assumption ha into two assumptions: first,

ka is a term of type Z, and second that ka satisfies the relationship n = 2 * ka. The

latter hypothesis is given the identifier hka. As in is even 2, the use tactic in step (4)

makes the claim that (ka + 1) is the integer m such that (n + 2) = 2 * m. The last

step is to prove the claim of the previous sentence. The rw (rewrite) tactic in step (4)

tries to match the left side of the hypothesis hka with the current goal. Since n appears

in the goal, it is rewritten by the right side of hka. As in the Sec. 2.1, we use the ring

tactic automatically close the goal. in frame (6).

A next step might be to generalize further and prove even add even even:

theorem even_add_even_even {a b : Z} :

is_even a → is_even b → is_even (a + b) := by sorry

In this same way, one can build up an entire theory of even numbers, and ultimately all

of mathematics (exercise left to the reader).



Appendix B

Summary of cryptolib

• ddh.lean - Provides a formal specification of the decisional Diffie-Hellman as-

sumption on a finite cyclic group. Includes 35 loc, 3 definitions, 0 theorems, 0

lemmas.

• elgamal.lean - Contains the formal specification of the ElGamal public key

encryption protocol, and the formal proofs of correctness and semantic security.

Includes 372 loc, 7 definitions, 6 theorems, 7 lemmas.

• negligible.lean - Defines negligible functions and provides several useful

lemmas regarding negligible functions. Includes 227 loc, 2 definitions, 1 theo-

rem (unproven), 6 lemmas.

• pke.lean - Provides formal definitions for correctness and semantic security of

a public key encryption scheme. Includes 50 loc, 4 definitions, 0 theorems, 0

lemmas.

• tactics.lean - Provides the bind skip and bind skip const tactics to help

prove equivalences between pmfs. Includes 28 loc, 2 (tactic) definitions, 0 theo-

rems, 2 lemmas.

• to mathlib.lean - Contains general lemmas written in the course of the cryp-

tolib development for inclusion into mathlib. Includes 124 loc, 1 definition, 5

theorems (instance proofs, e.g. that pmf is an instance of monad), 8 lemmas.

• uniform.lean - Defines the uniform distribution over a finite group as a pmf,

including the special case of Zq, the integers modulo q, and provides two use-

ful lemmas regarding uniform probabilities. Includes 47 loc, 4 definitions, 0

theorems, 2 lemmas.
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