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Abstract

Blockchains have stirred a lot of interest both in industry and academia during the past

decade, as their tamper-proof nature and promise of decentralisation opened new doors

for financial systems, and beyond. As with any peer-to-peer network, blockchains

are reliant on the participants’ voluntary choice to maintain them, therefore they need

to provide incentives to their members, to ensure sufficient participation and, subse-

quently, stability of their network. To that end, all blockchain protocols include some

sort of incentive mechanism, but as several studies have pointed out, not all of those

mechanisms are effective in promoting desired properties of a system, such as a high

degree of decentralisation. In this work, we extend the game-theoretic model that was

proposed in the context of the reward scheme of a Proof-of-Stake blockchain, with the

ultimate goal of bringing the theoretical framework closer to the real-life system. We

also develop a configurable simulation engine that plays out the “game” under several

different settings, and we use it to run experiments that help us extend our knowledge

on the convergence and equilibria of such systems, and gain insights on the behaviour

of their participants.
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Chapter 1

Introduction

1.1 Motivation

More than a decade after the first blockchain protocol was established [1], we now

appreciate that there exist several applications for this technology beyond its original

scope, and we observe that it has taken up a key role both in industry and academia.

Named as a disruptive technology, blockchains are expected to radically influence

many sectors in the near future, including healthcare and governance [2].

An important aspect of this technology is decentralisation, namely removing con-

trol from individual trusted parties and distributing it across a large number of in-

dependent actors [3]. This transition from a central entity to a peer-to-peer network

successfully eliminates the necessity for trust, but it is reliant on the participants’ vol-

untary choice to maintain the network. In order for such systems to thrive and remain

stable they, thus, need to provide the right incentives for people to get involved —and

stay involved— with them.

This is where the field of Blockchains meets Game Theory and Behavioural Eco-

nomics, as it is necessary to analyse and understand how people behave under certain

conditions, in order to design mechanisms that align the interests of the network par-

ticipants with the interests of the system [4].

Even though incentive mechanisms have been used in blockchain technology since

its first appearance in Bitcoin [1], their design was initially not backed up by relevant

research, hence there were no guarantees for their effectiveness. In fact, numerous

studies that analysed the Bitcoin protocol after it was already in use concluded that

its incentive mechanism may not be sufficient to convince participants to engage with

the protocol in the specified (honest) way, or that it may steer the system towards

1



Chapter 1. Introduction 2

unfavourable, fairly centralised states [5, 6, 7, 8, 9].

With regard to a newer, more energy-efficient type of blockchain protocols —

referred to as Proof-of-Stake blockchains— that differ from the first ones —referred to

as Proof-of-Work blockchains— in the way they achieve consensus among the network

participants, less research work has been conducted about their incentive mechanisms

and their eventual stability. One of the few formal analyses of such systems was per-

formed by Brünjes et al [10] in the context of the Cardano network1, which makes use

of the Ouroboros Proof-of-Stake blockchain protocol [11]. Their game-theoretic anal-

ysis proved that the Reward Sharing Scheme used in Cardano incentivises participants

to behave in an honest manner and leads the system towards a state of equilibrium with

favourable properties, such as a satisfactory degree of decentralisation.

Brünjes et al additionally ran simulations to put their theory to test and the results

they got were in line with their analysis. However, several assumptions were made

through the process and restrictions were added to the model, begging the question of

whether it is comparable to the real-life system.

1.2 Objectives

The aim of this project is to extend the game-theoretic model that was introduced by

Brünjes et al for the analysis of the broad class of reward schemes of Cardano [10].

Our main focus will be to align the theoretical framework as much as possible with the

real-life conditions of the system and to develop a configurable simulation engine, that

will allow us to conduct experiments under several different settings. This will give

us the chance to further explore the properties of the incentive mechanisms of Proof-

of-Stake blockchains and to draw conclusions about the emergent properties of such

systems.

The immediate objective is to determine whether the simulations converge to the

theoretical equilibrium described in [10], where the system stabilises to a favourable

state, and to explore how this potential convergence depends on the different parametri-

sations of the system and on any potential assumptions about the behaviour of its

participants. What are the necessary conditions for the system to stabilise? Can we

remove some of the assumptions that were made, some knowledge from the players

or some degree of rationality and still attain satisfying results? What happens if par-

ticipants behave rationally but myopically? Is the final state of the system fair to all

1https://cardano.org

https://cardano.org/
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players and sufficiently decentralised? And what is the trajectory that the system fol-

lows until the point of equilibrium, if such exists? These are some of the questions

we set out to resolve, with the ultimate goal of providing insights into the behaviour

of Proof-of-Stake blockchain participants and extending our general knowledge about

the equilibria and convergence properties of such systems.

1.3 Structure

This dissertation comprises four additional chapters, that focus respectively on the

required background knowledge, the methodology that was employed, the experiments

that were conducted and the conclusions that were drawn.

Specifically, in the next chapter, we provide an overview of the background knowl-

edge that is needed for one to fully understand this piece of work, introducing concepts

from Game Theory, Behavioural Economics and Blockchain Technologies. Chapter 3

then addresses the specific techniques that were used to accomplish our goals and the

design choices that were made. In chapter 4, we present the different experiments that

were performed and we analyse the results that were attained. Lastly, in the final chap-

ter, we conclude by summarising our work and proposing several directions for future

research to extend it.



Chapter 2

Background & Related Work

In this chapter, we introduce the preliminaries that are needed for one to better un-

derstand this piece of work. These include concepts from Game Theory, Behavioural

Economics and Blockchain Technologies. We also review here relevant research work

that influenced the design choices that were made later on.

2.1 Game theory

The field of Game Theory seeks to formally describe interactions among decision-

making agents (be it humans, animals or computer systems) and the strategic play

that arises within such interactions. Since the introduction of modern concepts in the

subject area during the 20th century [12, 13, 14, 15], game-theoretic models have been

used to analyse and better understand numerous real-life scenarios, including, but not

limited to, financial markets, traffic congestion and voting.

Game Theory acknowledges several types or classes of games, which can be cat-

egorised based on the way they transpire (simultaneous or sequential), the degree

of knowledge that the players1 hold about the system’s state (perfect or imperfect

information) , the interdependence of the players (coalitional / cooperative or non-

cooperative), or the way they are represented (strategic / normal-form games which

are described by a matrix or extensive form games which require more complex struc-

tures such as trees) 2 [16, 17].
1Note that the terms agent and player are used interchangeably in the context of Game Theory.
2Note that this is a non-exhaustive list of the different game types in Game Theory.

4
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2.1.1 Strategies, Utilities & Equilibria

For a strategic-form game G with n players, we define a set of possible actions that the

players can choose from, which we call pure strategies. Let Si = {s1, ...,smi} denote

the set of mi pure strategies that are available to player i and S = S1× ...× Sn the set

of possible combinations of all the players’ pure strategies. A mixed strategy xi =

(xi(s1), ...,xi(smi)) for player i is a vector that defines a probability distribution over

their pure strategies Si and implies that the player uses randomness to decide which

strategy to play, based on the probabilities in xi
3. A strategy profile X = (xi, ...,xn) is

then defined as an n-tuple of the players’ chosen mixed strategies. If all the strategies

in X are pure strategies, then X is called a pure strategy profile.

To evaluate a profile of strategies, player i makes use of a utility or payoff function

ui : S 7→R that assigns a real value to each combination of pure strategies of the players

(the higher the value of ui the better this profile is considered for player i). For mixed

profiles, the player calculates the expected utility based on the probabilities with which

each strategy profile is expected to occur [17].

A crucial assumption that is made during every game-theoretic analysis is that all

players seek to maximise their expected utility, which is why they are often referred to

as utility maximisers. Under this assumption, a player’s best response to the strategies

of other players is defined as the player’s strategy which yields the highest expected

utility under that scenario.

When every player is playing a best-response strategy, then we arrive at a so-called

Nash Equilibrium, where no player can increase their utility by unilaterally deviating

from the current profile of strategies. This is a very important solution concept, as it

guarantees the stability of a game. According to Nash’s theorem, every game has a

Nash equilibrium in mixed strategies [13].

2.1.2 Rationality as Common Knowledge

A fact F is considered common knowledge among the players of a game G if all the

players in G know F and in addition know that all other players also know F , know

that all players know that all players know F , and so on [17].

Since we have assumed that the goal of each player is to maximise their individual

utility, then a rational player is expected to always choose the strategy that yields

the highest expected utility for them. However, to calculate their expected utility, the

3Note that mixed strategies are a superset of pure strategies.
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players also need to have information about the other players’ (future) choices, which

is not available to them. At this point, if we additionally assume that the utility function

of each player is common knowledge, as well as the fact that the players are rational,

then we make it easy for a players to “guess” the other players’ choices, as they assume

that each player will pick the strategy that generates the highest utility for them. Then,

they can make their own decisions based on this information.

2.1.3 Population games

A class of games that has been defined to model interactions within large populations

of agents is that of population games. Formally, a population game comprises a so-

ciety P = {1, ..., p} of p ≥ 1 populations of agents. Agents that belong to the same

population ρ have the same set of available strategies Sρ and select a (pure) strategy

from that set throughout the game play.

Population games are guaranteed to have at least one Nash equilibrium in pure

strategies, which can be reached through a best-response dynamics play [18].

2.1.3.1 Inertial equilibria

Gentile introduce the concept of an inertial equilibrium in the context of population

games [19]. In short, their approach accounts for the fact that a player may incur costs

when switching their strategy from action A to action B, therefore action B would be

preferred only if the increase in utility it promises is sufficient to offset this switching

cost. In reality, these could be any kind of costs, such as the time cost of learning a

new skill or the monetary cost of a transaction fee that needs to be paid for every stock

purchase. Additionally, this concept captures the notion of psychological or decision

inertia, which dictates that people tend to stick to their previous choices, even if they

are suboptimal [20].

The inertial equilibrium is formally defined as “a distribution over the action space,

where no agent has any incentive to unilaterally switch action, when accounting not

only for utility gain but also for switching cost”. Gentile et al also prove that iner-

tial equilibria are a superset of Nash equilibria and proceed by describing a “better-

response dynamics” algorithm for population games that takes switching costs into

consideration and converges to an inertial equilibrium. They refer to this algorithm

as the “natural dynamics” of the game, as it simply dictates that an agent will choose

any arbitrary action, as long as it offers an improvement to their current utility, after
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subtracting from the gains the cost that the switch will induce.

2.2 Behavioural Economics

Neoclassical economics assume fully rational decision-makers who have perfect knowl-

edge of the world around them. However, more recent schools of thought suggest that

such conditions are so far away from reality that it does not make sense to take them

for granted when trying to model or predict real-life behaviour related to economic

choice.

2.2.1 Bounded rationality

The concept of bounded rationality was formed to describe the conditions under which

real people operate. It encapsulates the fact that, in most cases, people are not equipped

with perfect information about their environment or unbounded time and computa-

tional resources to come up with all possible alternative solutions, evaluate their con-

sequences and make meaningful comparisons between them [21].

2.2.2 Optimising vs Satisficing

Herbert Simon introduces the concept of “satisficing” as an alternative to optimising in

the decision-making process of boundedly-rational agents, such as humans [21]. Sat-

isficing (satisfy + suffice) involves choosing an option that satisfies certain constraints

and is sufficiently good, e.g. in terms of its expected utility. According to studies and

lab experiments, the actual thought process of humans is closer to a heuristic search

than to an optimisation task and therefore can be better modelled by a “satificing”

mechanism.

2.3 Blockchains

Though still considered a nascent technology, blockchains have found their way into

numerous research fields and industrial applications. Their tamper-proof nature and

promise of decentralisation opened new doors for financial systems and beyond.
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2.3.1 Overview

A blockchain is a distributed database of transactions, that satisfies certain properties,

such as immutability, auditability and anonymity [3]. Simply put, once a transaction

has been registered in the database, it can never be removed, the status of a transaction

is easily verifiable by anyone with access to that database, and the transaction parties do

not have to provide any identifiable information for their transactions to be recorded4.

It owes its name to the fact that the involved transactions are grouped in “blocks” and

each block has a link to the previous one, thereby forming a “chain”.

This distributed transaction ledger is shared among the nodes of a peer-to-peer net-

work, that are also responsible for its maintenance. Carrying out this task involves

expenses (hardware purchases, electricity bills, etc.), hence those members are typi-

cally compensated by the protocol with a reward of some sort that incentivises them

to look after the network. Though not a requirement, blockchains are typically public

and permissionless, meaning that anyone can choose to participate as a node in their

network5 [3].

2.3.2 Resource pooling & (de)centralisation

Another key property of blockchains is decentralisation, as they eliminate the need

for a central trusted authority, such as a bank, to verify the transactions of the net-

work [3]. Instead, all transaction blocks are broadcast to and verified by the entire

network. However, a network controlled by 10 entities is not as decentralised as one

controlled by 1000, and so on, so it makes sense to examine the degree of decen-

tralisation of a blockchain system. Gencer et al measure the decentralisation of two

popular blockchains, Bitcoin [1] and Ethereum [23], and conclude that both exhibit

tendencies towards centralisation and that “further research is required to decentralise

permissionless consensus protocols” [6].

This tendency towards centralisation stems from the fact that it makes economic

sense for the network participants to form groups and combine their resources, in order

to reduce personal costs and maximise profits. In the context of Bitcoin —and Proof-

of-Work blockchains in general— these multi-participant entities are called mining

pools, while in Proof-of-Stake systems they are referred to as stake pools. In most

cases, the distribution of the revenue among the pool members is not defined by the
4Research suggests that the “de-anonymisation” of blockchain transactions is possible in certain

cases, but for the average user the provided degree of anonymity is sufficient [22]
5From now on, we will use the term blockchain to refer to a public, permissionless blockchain.
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protocol itself, but rather left for each pool do decide upon. There are several different

mechanisms that have been proposed and used by pools to divide the rewards, but the

common part is that, traditionally, all pools require a service fee to be paid to them by

the pool members, in exchange for the participation in the pool.

2.3.3 Incentives in Blockchain systems

Every blockchain protocol includes an incentive mechanism, with the ultimate goal of

securing user engagement and, subsequently, network stability. Though the general

recipe is the same (issue rewards for the parties that produced transaction blocks), the

specifics of each mechanism can prove of paramount importance when studying the

emergent properties of those systems (for example in terms of security or decentrali-

sation).

Incentives in Bitcoin: As the oldest blockchain protocol, Bitcoin is also the most

studied one, which is why we have so much information about its components, includ-

ing multiple analyses of its reward mechanism. Eyal and Sirer prove that the Bitcoin

protocol is not incentive compatible6, as there is a strategy that miners can adopt —

called selfish mining— that deviates from the protocol but yields higher rewards for

them [9]. Kiayias et al prove that rational participants of the Bitcoin network who need

to decide between joining an existing pool or creating a new one will always centralise

to one pool, owned by the player who can guarantee the lowest service costs [8].

Taxonomy of incentive mechanisms: The analysis of the different incentive mech-

anisms that have been used in blockchain protocols over the years revealed two preva-

lent categories: the unimodal ones, where resource holders have only one option for

engaging with the protocol, and the multimodal ones, which allow for resource-holders

to take up different roles that entail different responsibilities and result in different re-

wards [25].

A linear unimodal reward scheme suggests that an entity that commands x% of the

resources will receive x% of the available rewards, in expectation. This is the general

approach followed in Bitcoin, Ethereum and others [1, 23, 26]. An important issue that

has been identified in this approach is the tendency towards centralisation, as resource

holders expect to receive more and more rewards if they keep merging their resources.

6A mechanism is considered incentive compatible if it can not be strategically manipulated by any-
one, and thus, results in honest behaviour being a dominant strategy [24]
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In line with previous research, Brünjes et al demonstrate that linear unimodal re-

ward schemes, such as the one used in Bitcoin, have no theoretical equilibrium that

includes more than one pool [10].

In the bimodal spectrum, two subcategories have been proposed: in the represen-

tative approach, the resource holders vote for operators to represent them and the ones

who get elected run the protocol, while the delegative approach allows resource hold-

ers to either engage with the protocol directly or delegate their resources to entities of

their choice.

2.3.3.1 Reward Sharing Scheme of Cardano

In an attempt to incentivise high engagement with the protocol and increase the degree

of the sysetm’s decentralisation, Brünjes et al propose a delegative bimodal reward

scheme with capped rewards and incentivised pledging [10]. Both of these concepts

will be explained in this section.

Reward distribution among pools: As a first step, the total rewards of each epoch

are distributed among the active pools of the system. While in general the rewards

grow with the size of the pool, they stop doing so after a threshold is reached, as is

dictated by this piecewise function, which is responsible for calculating the rewards

that correspond to a certain pool:

r(σ,λ) =
R

1+α
· (σ′+λ

′ ·α ·
σ′−λ′ · 1−σ′

β

β
) (2.1)

where

• σ is the stake of the pool at the given snapshot.

• λ is the stake that the pool owner has pledged to the pool.

• R ∈ R are the total rewards for this epoch.

• α ∈ [0,∞) is a parameter of the reward scheme that determines the importance

of the owner’s pledge in the calculation of the pool’s rewards.

• σ′ = min{σ,β}

• λ′ = min{λ,β}
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• β = 1
k is the saturation threshold, with k ∈ N denoting the desired number of

pools in the system (k < n).

Note that R, α and k are fixed for a system, therefore the rewards of the pools

vary based on their specific stake and pledge.

Capped rewards: With regard to the size of a pool (i.e. the stake that it is respon-

sible for), the reward function (2.1) dictates that as the size grows, the reward grows as

well, until a threshold is reached, denoted by β. After that threshold, the pool’s rewards

stabilise, regardless of its increase in size. Indirectly, this imposes a cap on the sizes

of the pools, as there is no incentive (in fact there is counter-incentive) to have pools

larger than the threshold. However, the protocol still allows for a bigger pool to exist,

hence the we can view β as a soft cap on the pools’ size. The threshold is given the

value β = 1
k , where k is the desired number of pools for the system. A pool with stake

equal to or greater than β is called saturated.

By disincentivising the creation of large pools, the authors of [10] aim to end up

with a more decentralised pool formation than past attempts. However, they acknowl-

edge that restricting the pool sizes in this manner might result in some participants

engaging in Sybil behaviour, namely assuming multiple identities in the system [27]

—which in this case is equivalent to an operator splitting their pool to form multiple

pools. In such a setting, the decentralisation of the system would be compromised, as

the number of pools in the final configuration would not represent independent enti-

ties. To battle this issue, they introduce the concept of incentivised pledging, which is

explained below.

Incentivised pledging: Pool operators in Cardano are encouraged to “pledge” a

certain amount of stake when opening a pool. This pledged stake gets “locked” and

can not be retrieved by the pool owner while the pool is still functioning. To give a

reason to the pool operators to provide a high pledge, Brünjes et al introduce the α

parameter that was seen in formula 2.1. This parameter, when given a non-zero value,

results in higher-pledged pools receiving more rewards (the higher the value of α the

bigger the difference in the rewards of a low-pledged and a high-pledged pool).

By favouring higher-pledged pools through the reward mechanism, the authors be-

lieve that higher commitment to the protocol will be achieved and that misuse of power

due to the implicit amplification of pool operators’ stake will be limited. Addition-

ally, incentivised pledging provides counter-incentives for operators to create multiple
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pools —because splitting their pledge into multiple pools would result in lower total

rewards— and could therefore help in the prevention of Sybil behaviour.

However, a very high value of α exacerbates the “rich getting richer” phenomenon,

which is an inherent issue in Proof-of-Stake protocols [28], therefore the parameter

is tuned so that a trade-off is made between egalitarianism and Sybil resilience of the

system.

Reward distribution within pools: As a further step, the protocol also handles the

distribution of rewards to the individual pool members. Note that this is different

from previous approaches in blockchains, which were only concerned with distributing

rewards to a pool as a whole, leaving the pool owner responsible for the redistribution.

This new approach of distributing rewards directly to the pool members removes the

need for additional trust in the face of the pool owner.

As mentioned before, the pool owners need to declare their operational costs upon

the creation of their pools. When a pool’s reward gets calculated, an amount that cor-

responds to the declared cost is first set aside for the pool operator7, to offset that cost.

If the reward is not sufficient to cover the pool’s cost, then no rewards are distributed

to its members. Note that, in this case, the pool operator suffers a loss (as they have

to pay the operational costs anyway), whereas the pool members do not (in the worst

case they get zero rewards, but they never go negative, so there is no danger involved

for them).

To compensate the operators for the added risk they have to bear and to further

incentivise pool creation, the protocol allows them to set a value of their choice that

determines the fraction of the rewards (after cost deduction) that will be further set

aside for the operator before any additional distribution. This value is called the pool’s

margin and it is important for the operators to set it carefully, as it has the power to

attract or drive away delegators.

After the operating rewards have been allocated, the remaining fraction of the

pool’s rewards get distributed to its members proportionally to the stake they con-

tribute. Remember that as a pool’s size get larger, its rewards increase and therefore

the rewards of its members increase. However, if a pool’s size exceeds the satura-

tion point, then its total rewards stay constant and the rewards of individual members

decrease, as they are allocated a smaller fraction of the same pot.

7According to the latest specifications of Cardano (hydra.iohk.io/build/delegation design spec.pdf),
the terms pool operator and pool owner have a slightly different signification, but in this setting, we will
use them interchangeably, to refer to the (single) person who receives the special pool rewards.

https://hydra.iohk.io/build/6141104/download/1/delegation_design_spec.pdf
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Formally put, if a pool has stake σ, cost c, margin m and pledge λ, then:

Each delegator that contributes stake ad to the pool receives:

rd =

(1−m) · (r(σ,λ)− c) · ad
σ

if r(σ,λ)> c

0 otherwise

And the pool owner, who contributes stake ao = λ to the pool, receives:

ro =

c+m · (r(σ,λ)− c)+(1−m) · (r(σ,λ)− c) · λ

σ
if r(σ,λ)> c

r(σ,λ) otherwise

where r(σ,λ) are the rewards that a pool with stake σ and pledge λ is entitled to.

Brünjes et al formally define a game to model the above reward scheme, which we

are going to refer to as Pooling Game, because of its involvement with the formation

of pools among the resource holders8. They conduct a game-theoretic analysis of the

game and prove that there exists an equilibrium point, where there are exactly k pools,

run by the players with the highest potential profits and saturated by the delegations of

other players [10].

This is precisely the game that our work focuses on, and extends, where deemed

necessary, therefore more information about it will be given in the next chapter, which

describes our methodology.

8Brünjes et al use the term “Stake Pools Game” but we choose the more general “Pooling Game”
to account for the fact that the model could easily be extended to analyse systems that do not run on
Proof-of-Stake.



Chapter 3

Methodology

In this chapter, we go over the specific techniques that were used to accomplish our

goals, namely modelling the behaviour of Proof-of-Stake blockchain participants and

analysing it through configurable simulations. First, we give a description of the game

model that was developed and we justify any design choices that were made, and then

we provide an overview of how the simulation of the game unfolds.

3.1 Extending the Model

Our model builds upon the Pooling Game that was introduced in [10], keeping the same

building blocks, but extending it where deemed necessary. A lot of the definitions that

we use in this section are taken straight from [10], but our additions to the model

(most prominently the introduction of pool splitting as a strategy) necessitated some

adjustments in the notation of the game’s components. Note that we do not make any

changes whatsoever to the reward scheme itself (described in 2.3.3.1), but rather in the

way we allow players to move, granted that such a reward scheme is in place.

3.1.1 Formal description

As mentioned in paragraph 2.1.1, a game can be described by a set of players, their

possible strategies and the utility functions they use to evaluate each combination of

strategies. In this game, we have a set of players N = {1, . . .n}, alternatively referred

to as stakeholders, as they represent the asset holders in the case of Proof-of-Stake

blockchains. Each player i is allocated some stake si and a cost ci that determines the

operational cost of player i’s first pool, should they choose to open one (the cost of sub-

14
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sequent pools will be defined below). It holds that ∑
n
i=1 si = 1, meaning that the total

stake of the system (before the distribution of the rewards) is equal to 1 (alternatively

we can consider si to be player i’s relative stake). We also set R = 1, meaning that the

total rewards that can be distributed to the players are equal to 1. Note at this point that

for convenience, we use absolute values for the rewards and the costs, contrary to the

stake, which is in line with the model in [10].

Strategies: We define the strategy Si of player i as the following quadruple:

Si = (ξi,mi,λi,ai)

where

• ξi ∈ N is the number of pools that player i wishes to operate. (Note that we can

then easily calculate the total number of pools in the system as ξ = ∑
n
i=1 ξi).

• mi = (mi,1, . . . ,mi,ξi) with mi, j ∈ [0,1] are the margins that the player imposes to

their ξ pools.

• λi = (λi,1, . . . ,λi,ξi) with λi, j ≥ 0 and ∑
ξ

j=1 λi, j ≤ si are the pledges that the player

commits to their pools.

• ai = (ai,1, . . . ,ai,n) describes the allocation of player i’s stake to the pools of

players 1, . . . ,n, where ai,j = (ai, j1, . . . ,ai, jξ j
) describes the allocation of player

i’s stake to the ξ j different pools of player j. It holds that ∑
n
j=1 ∑

ξ j
k=1 ai, jk ≤ si,

meaning that each player can allocate part or all of their stake (but obviously no

more than that) to the pools of the system.

If ξi > 0 then ai,ik = λi,k for k ∈ {1, . . . ,ξi} else ai,i is a null vector (as is every

ai,j when ξ j = 0 for j ∈ {1, . . . ,n}).

Note that this strategy definition allows for a player to both operate a pool and

delegate stake to other pools at the same time. As a reminder, the pooling game tran-

spires over several rounds, so the above definition of a strategy represents the player’s

strategy during one round of the game.

A pool that is owned by player j is denoted by π jk , k ∈ [1,ξi], and the stake of the

pool is σ jk = ∑
n
i=1 ai, jk . Remember that if σ jk ≥ β, namely if the pool’s stake exceeds

the reward scheme’s saturation threshold, then pool π jk is called saturated (or also

oversaturated if the inequality is strict).



Chapter 3. Methodology 16

Utility functions: A natural choice for the utility function of the players would be

the reward they receive from the protocol, based on their strategy, minus any costs

they have to bear. Brünjes et al refer to that value as the myopic utility of a player, as it

only takes into consideration the current state of a pool and does not look ahead to what

the pool could accomplish in the future. To incorporate a more far-sighted element in

the logic of the players, they go one step further and define the non-myopic utility of

a player, which in principle is the same as the myopic utility (rewards minus costs),

but calculates the rewards of a pool based on its expected future stake, instead of its

current one [10]. Note that using this type of utility function assumes that rationality

is common knowledge among the players of the game (as defined in 2.1.2).

To estimate the future (non-myopic) stake of a pool, they define the following no-

tions, which we borrow for our model. Note that, for simplicity, in this section we keep

the definitions as they are, with only one index to refer to a pool’s properties (e.g. λ j

instead of λ jk for the pledge of a pool owned by player j), but they can all be trivially

extended to match our multi-pool-strategy notation from the previous paragraph.

• The potential profit of a pool π j with pledge λ j and cost c j:

P(λ j,c j) = r(β,λ j)− c j (3.1)

represents the highest profit that a pool with this pledge and operational cost can

yield (basically the profit it would get at saturation). Note that r represents the

reward function that was described in formula 2.1.

• The desirability of a pool π j:

D j =

(1−m j) ·P(λ j,c j) if P(λ j,c) ≥ 0

0 otherwise
(3.2)

represents the maximum profits that the delegators could get from this pool. Note

that this value depends on the margin m j of π j, so by choosing lower margins,

pool owners make their pools more desirable and vice versa.

• The rank of a pool is then defined based on the desirabilities of all pools, so that

the pool with the best (highest) desirability is assigned rank 1, the second best is

assigned rank 2, and so on.
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Then, the non-myopic stake of a pool π j with current stake σ j, pledge λ j, and rank

rank j is defined as follows:

σ
NM
j =

max(β,σ j) if rank j ≤ k

λ j otherwise
(3.3)

This means that the top k pools of the system are expected to become saturated,

while the rest are expected to end up only with their owner’s pledge, as delegators

would choose the higher-ranked pools over them.

Having defined the non-myopic stake of a pool, we can now proceed to the defini-

tion of the non-myopic utility of a player with regard to that pool. Specifically, if pool

π j has current stake σ j, cost c j, margin m j, pledge λ j and rank rank j, then:

Each delegator i that contributes stake ai, j to π j has an expected payoff of:

ui, j =


0 if λ j = 0 (inactive pool)

max((1−m j) · (r(β,λ j)− c j) ·
ai, j

σNM
j
, 0) if rank j ≤ k and λ j 6= 0

max((1−m j) · (r(λ j +ai, j,λ j)− c j) ·
ai, j

λ j+ai, j
, 0) otherwise

(3.4)

And the owner of pool π j, who contributes pledge λ j to the pool, can calculate their

payoff from π j as:

u j, j =


0 if λ j = 0 (inactive pool)

r(σNM
j ,λ j)− c j if r(σNM

j ,λ j)< c j and λ j 6= 0

(r(σNM
j ,λ j)− c j) · (m j +(1−m j) ·

λ j

σNM
j
) otherwise

(3.5)

The total utility of a player i is then calculated as the sum of the individual utilities

from the pools they participate in: ui = ∑
n
j=1 ui, j. Note that 3.4 does not yield negative

values, while 3.5 does, which represents the fact that, unlike pool operators, delegators

never risk having any losses.

While the previous approach dictated that all players use the non-myopic utility

as a driver for their decisions [10], we add heterogeneity to the model, by allocating

different utility functions to different sets of players. Specifically, we consider the

partition of the players into three populations:

• The non-myopic players NNM = {1, . . .n1}, whose goal is to maximise their non-

myopic utility, as it was introduced in [10] and described by equations 3.4 and

3.5 above.



Chapter 3. Methodology 18

• The myopic players NM = {n1 +1, . . .n2}, whose goal is to maximise their my-

opic utility, which is the same as the non-myopic one, but uses only the current

stake of the pools instead of their expected future stake.

• The abstainers NA = {n2 + 1, . . .n}, who stay inactive throughout the entire

gameplay. In practice, that means that if player i is an abstainer, then their strat-

egy is always: Si = (0,0,0,0). Alternatively, we can say that these players are

using a constant function u = c, c ∈ R as their utility function.

It holds that NNM ∪NM ∪NA = N and NNM ∩NM ∩NA = ∅, meaning that each player

necessarily belongs to one and only one of the above populations.

Game configuration: After defining the players’ strategies and utility functions, we

augment the model, to account for concepts that were introduced in Chapter 2, such as

the bounded rationality or inertia that characterises agents in such a setting as ours.

For the active players N′ = NNM ∪NM, we introduce an inertia ratio ρ, which is

taken into consideration when determining the utility of a player’s currently established

move. Specifically, if player i played strategy Si during round q, then during round

q+1, i will calculate the final utility of strategy Si as (1+ρ) ·u(Si), where u(Si) is the

value that is returned from player i’s utility function for strategy Si. In practice, this

means that in order for a new strategy S′i to be chosen, it is not only required to yield

higher utility than the previous one, but it needs to yield sufficiently higher utility, i.e.

u(S′i)> (1+ρ) ·u(Si).

This is in line with the concepts of decision inertia and inertial equilibria that were

introduced in paragraph 2.1.3.1 and embody the fact that real-life actors are averse to

changing their chosen course of action. For the sake of simplicity, we chose to have

the same value of inertia ratio for all the players, but it would also make sense to tailor

this value to the different players, to account for the heterogeneity of the real-world

agents. Alternatively, we could use switching costs (i.e. scalars instead of ratios) like

they did in [19], but ultimately we expect that the big picture in all cases would be the

same.

On a related note, we also impose a restriction on the pool owners, so that after

they open a new pool, they are not allowed to close it (or any other of their pools if

they have more) for a certain number of rounds. This is to account for the fact that a

real-life pool operator would give their pool a chance to grow and would not abandon

it after the first hurdle. In practice, a variable is included in the model that determines
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the minimum number of steps that a player needs to keep a pool; let us denote this by

δ.

Therefore, if at step q−1, player i’s strategy includes ξi = x pools and at step q it

includes ξi = x+ 1 pools (meaning that i opened a new pool), then at step q+ δ and

at every step in between, it should hold that ξi ≥ x+ 1. Note that the player is still

allowed to create new pools during these rounds or change their strategy in any way

other than reducing the number of pools (for.example by changing the margin of their

pools).

Another variable that is added to the model is that of a fixed cost per pool, γ. The

need for this variable arises when we consider that we allow players to open multiple

pools each. As mentioned above, each player i is assigned an individual cost value ci

that corresponds to the operational costs that owning a pool would potentially incur on

i. However, it would not be wise to assume that a second pool operated by i would cost

an additional ci, as there are costs that can be shared between multiple pools, such as

any specialised equipment. Therefore, the extra pool would be expected to only add to

the total cost by a small factor.

This is a common concept in business and economics, first introduced by Adam

Smith and commonly known by the term economies of scale, implying that it is pos-

sible to produce more units of a good or service with lower costs per unit on average

[29]. We can, thus, view the pool operation activity as an economy of scale and assume

that ci represents the first big investment and that every additional pool only increases

the total cost by γ. It is important to choose the value of γ carefully, so that it is lower

than any player i’s starting cost ci, as operating two or more pools is assumed to cost

less per pool for every player than operating one pool would.

3.2 Playing out the Game

Based on the game that was defined above, we create an engine that can simulate the

way the game could transpire under certain (configurable) circumstances.

We simulate the game as a better-response dynamics interplay, where at every

round a player looks for a move that is better (in terms of expected utility) than their

current one, but not necessarily the “best”. This is different from the approach used

in [10], where in each round the players looked for their best response to the other

players’ strategies, meaning that they searched for the strategy that yielded the highest
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possible utility for them.

From a computational perspective, looking for a “good-enough” solution is a lot

less expensive than looking for the best, therefore our simulation is expected to have

improved performance over the previous one. Additionally, we claim that this will not

come at the expense of the simulation’s accuracy, but rather, based on the Behavioural

Economics concepts that were described in section 2.2, we expect that the chosen

method of “satisficing” in terms of the players’ strategies will yield more realistic

results than optimising would. On the Game-Theory side, it has been shown that,

under certain circumstances, better-response dynamics can even find equilibria that

best-response dynamics fail to [30], so it is deemed to be a very promising approach.

3.2.1 Determining delegation moves

In order to choose which pool(s) to delegate their stake to, players look at the state

of the system and calculate the desirability of the existing pools (refer to 3.1.1 for

definition). As mentioned earlier, the desirability of a pool represents the fraction of

the profits that is left for the delegators, so it makes sense for players to want to join

pools with high desirability. Therefore, the prospective delegators use a desirability-

related heuristic to choose where to delegate their stake to, namely they rank the pools

based on their desirability and choose to delegate their stake to the pool(s) with the

highest desirability that are not already saturated.

We note here that the definition of desirability given by formula 3.2 makes use of

a pool’s potential profit, which is a value related to long-term thinking and, thence, a

myopic delegator can not be expected to calculate it. Instead, myopic players use a cor-

responding myopic desirability, which is calculated in the same way as the desirability

but using a pool’s current profit instead of the potential one. This value expresses how

desirable a pool appears at that very moment in time and is subject to many fluctua-

tions, as the stake distribution changes.

3.2.2 Determining pool moves

The players use a combination of heuristic and greedy methods to determine potential

pool-operator moves, namely strategies where a player i plans to have ξi pools, with

ξi ≥ 1.
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Potential for pool: First of all, it should be noted that not all players “go through the

trouble” of determining a suitable pool-operator strategy. For some, it is rather obvious

that their combination of personal stake and operational cost is not competitive enough

to even try to open a pool. To determine whether they have “potential for a pool”,

players once again resort to the useful metric of desirability. Essentially, they pose the

question to themselves of whether they have the capacity to create a pool that could

potentially be more desirable than any of the currently open pools.

To that end, the player calculates their potential profit —which is equal to the de-

sirability that the player’s pool would have if its margin was set to 0— and concludes

that their pool would stand a chance within the current landscape only if this value is

higher than the desirability of at least one active pool. The logic behind that is that the

player in that case seeks to ”steal” the delegators from that “inferior” pool by opening

one with better prospects. If the desirabilities of all existing pools are higher, then the

player only considers delegation moves for that round.

In the special case that the current pools are not enough to cover the total stake of

the system without getting oversaturated —with the current parameter setting of β = 1
k

this is equivalent to having less than k active pools— then having a positive potential

profit is a necessary and sufficient condition for a player to have “potential for a pool”,

as it means that there is stake that is forced to remain undelegated or delegated to an

oversaturated pool that yields suboptimal rewards, therefore there is incentive for it

to be moved to a new pool, granted that the pool’s potential rewards are sufficient to

offset its costs.

Note that the the above process takes place only for players who do not have any

pools and are considering opening their first one. Players who already own pools use

more “greedy” methods to decide whether to “expand” their operations, as we will

specify in the paragraph below.

Number of pools: As has been made clear in several sections of this work, our ex-

tended model of the Pooling Game allows players to operate an arbitrary number of

pools each. This has the unfortunate side effect of increasing the complexity of a move,

in the sense that a potential pool owner now has an additional decision to make, namely

determine the appropriate number of pools to operate. To avoid excessive complexity

and to keep the process more realistic, we only have the players assess a limited num-

ber of options, the specifics of which depend on their personal situation.

If a player i, who does not own a pool, determines that they have potential to
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open one, then they form strategy Si with ξi = 1, meaning that they only consider

running one pool at that point. In practice, this corresponds to “testing the water”

before making any larger commitments. On the other hand, player j, who is already a

pool owner, considers at each step the possibilities of increasing by one, decreasing by

one —if applicable— or maintaining the same number of pools; independent of their

situation, all pool owners also evaluate the possibility of “going back to the base case”

of operating one pool. The final decision is then taken based on the expected utilities

of the above options.

It should be noted that in some cases, namely when they have “recently” opened a

new pool, the pool owner has restricted options, in the sense that they are not allowed

to close any pools. Therefore, those players would consider only the possibilities of

keeping the same number of pools or increasing it by one.

Margin: The pool owner calculates the margin of each potential pool separately, so

it is possible for them to run multiple pools with different margins. To determine

a favourable value for a pool’s margin, the player performs a “local binary search”

around the current margin of the pool m, trying out values above and below it, namely

in the range [0,2m], calculating the relevant expected utility, and continuing the search

in the most promising direction. Since the margins are in a continuous space, we only

allow for a certain number of calculations (currently set to 5), to guarantee a result in

finite time. For new pools, the search is performed around an initial margin m = 0.25.

Pledge: If, at any given point, player i with stake si decides to operate ξi pools, then

they split their stake equally as pledge among the pools, so that each pool πi j has a

pledge λi j =
si
ξi

. If si
ξi
> β, meaning if the potential pledge is higher than the saturation

point, then each pledge becomes λi j = β, as it does not make any sense for the operators

to include stake to their pool beyond the saturation point. If a pool owner has remaining

stake even after saturating their pool(s), then they delegate the remaining si−ξi ·β stake

to another player’s pool(s) (allowing a combination of operator and delegator moves

comes very handy here, as choosing only one of them would not be realistic).

In the case that the player saturates their pools with pledge, then they do not have

anything to gain by receiving delegations from other players, as they already get the

highest rewards they can. On the contrary, it is possible for them to be harmed by

delegators, as a malicious player could launch an “oversaturation attack” against them,

by adding stake to their pool beyond the saturation point and subsequently reducing
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the pool’s (and the pool owner’s) rewards.

To avoid this phenomenon, those stakeholders are allowed to set their pool’s status

to private, meaning that no other player has the authority to allocate their stake to

them. In practice, the simulation considers a pool to be private if and only if it has

pledge λ ≥ β. Note that, by default, a private pool has its margin set to zero, to avoid

unnecessary computations, as any value would yield the same result for such a pool.

At this point, it should be noted that the above procedure is followed by all active

players, regardless of their characterisation as “myopic” or “non-myopic”. This is

because we assume that when making such an important decision as operating a pool,

any rational stakeholder will at least attempt to plan ahead. Future research is welcome

to find a way to lift this assumption, but for now we take it for granted, and, therefore,

for this context, we do not define a separate, myopic play.

3.2.3 Simulation set up

Setting up the simulation involves initialising the n players, as well as defining the state

of the system at round 0.

Initialise players

Stake: We considered two options for distributing stake among the players, namely:

• Pareto distribution: We assume that the players’ stake follows a Pareto distri-

bution, as in most cases of wealth distributions. Therefore, we create a pareto

distribution with a certain (configurable) shape value and sample n values from

it and allocate them to the players in random order. Note that this is the method

used in the previous simulation tool [10] and the default method used here.

• Actual distribution of Cardano: We sample n values from Cardano’s actual stake

distribution and allocate them to the players in random order. The data was

collected through a collaboration with another student, Leonidas Triantafyllou,

who queried the full node of Cardano during epoch 275.

Cost: We assume that the players’ costs are uniformly distributed within a cer-

tain (configurable) range. Therefore, during the set-up, we sample n values from

U(min cost, max cost) and allocate them to the players in random order.
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Initialise system state: We start with no pools in the system, meaning that at step 0

all players play the “null” strategy S = (0,0,0,0).

The remaining parameters of the simulation, such as the inertia ratio γ or the frac-

tion of myopic players |NM |
n are all configurable and no further assumptions were made

about them. The default values of all the variables of the simulation can be seen in

Figure 4.1 in the next chapter.

3.2.4 Termination criteria

In each simulation execution, we run the model until convergence or until a predefined

maximum number of iterations has been reached. In each step, all players get the

chance to make a move.

Convergence is defined as follows: if no changes occur in the composition of pools

for a predefined number of steps, then we assume that players have no incentive to

deviate from their chosen strategies and conclude that an equilibrium point has been

reached. To ensure that everyone gets a chance to update their strategy in any way they

wish, we impose that the number of “idle” steps needed for convergence is always

higher than δ, i.e. the number of steps during which an operator might be restricted

from closing their pools.

3.2.5 Simulation step

Briefly put, during a step of the simulation each player examines a handful of strategies,

including delegation and pool strategies, and chooses the one that yields the highest

utility, with the current strategy being given an additional benefit because of inertial

forces.

In more detail, the following process takes place, which can also be seen through

the flowchart of Figure 3.1:

In each round, all players are given the chance to make a move; to ensure fairness

and make the process more realistic, players are always activated in random order1.

Each player i makes their move as follows, upon their turn:

• If i ∈ NA, i.e. if player i is an abstainer, then they do not engage in any strategic

thinking and they end their turn right away, letting the simulation proceed with
1To get reproducible results, we set a seed number for generating pseudo-randomness, but to ensure

that the results are not biased towards this input, we later run the simulation with multiple seeds during
some experiments.
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the next player. Otherwise, they consider changing their strategy as outlined in

the steps below.

• The player calculates the expected utility from their current strategy (myopic

or non-myopic utility, depending on the type of player) and augments it by the

specified inertia factor, so that this move has an advantage when compared with

the utilities of other moves, as dleness is preferred over moves that offer minimal

improvement.

• The player forms a potential delegation strategy:

– They look at the current pools (besides their own if they have any) and rank

them based on their desirability. They consider an allocation of their stake

to the pool(s) with the highest desirability that are not saturated.

– They calculate the expected utility of this delegation strategy.

• In some cases, the player forms a set of potential operator strategies:

– If the player is not a pool operator, then they explore the possibility of

opening a new pool:

* They examine their personal situation and the current pool landscape

and they determine whether they have the potential to open a pool,

based on the process that was described in paragraph 3.2.2.

* If the player decides that opening a pool is a viable option, then they

determine the parameters of their potential pool, using the processes

outlined in 3.2.2 and then calculate the expected utility of this pool

strategy.

– If the player is already a pool operator, then they form an alternative oper-

ator strategy:

* They consider up to 4 different pool strategies, using the process de-

scribed in 3.2.2.

* They calculate the expected utilities of these strategies and keep as a

final candidate the highest-utility one.

• The player then compares the utility of their (up to) 3 possible strategies (keeping

current status, being a pool operator or being a delegator), chooses the role that

yields the highest utility and executes the respective strategy. If there is a tie
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between two moves, the one that requires less effort is chosen (so current status

is preferred over delegation and delegation is preferred over pool operation).

• If the player chooses to open a pool, then they are obligated to keep it for at least

the predefined number of steps, δ, to give their pool(s) a chance to grow before

making any further decisions.
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Figure 3.1: Flowchart of player activity during a step of the simulation. Note that the δ

parameter has been omitted for tje purposes of this illustration.
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3.3 Comparison with previous approach

Ultimately, our objective was to extend the model of the Pooling Game that was in-

troduced in [10], in order to make it more realistic, and to develop a new simulation

engine for that model, capable of playing out any scenario that may be considered

useful.

The main addition of our model is the adjustment in the definition of the players’

strategies, which enables each player to operate an arbitrary number of pools. In the

previous model, it was assumed that players could only open one pool each, which is

not in line with the “rules” of the real-life system.

Furthermore, this time we do not impose an upper bound on the players’ wealth

by truncating the stake distribution. Instead, to solve the issue of oversaturated pools

that could arise when such “rich” stakeholders are in place, we allow them to open

multiple pools or to combine pool operation and delegation moves (depending on their

personal situation, one or the other might be more favourable). This highlights another

difference of our simulation engine, as the previous one did not support combined

moves of operating a pool and delegating to other pools (even though the theoretical

model did).

We also integrated heterogeneity in the model, by allowing players in the same

instance of the game to adhere to different utility functions, compared to the previous

one which used the non-myopic utility for all players. Abstention was also introduced

as a possible strategy of the players, to account for the fact that in real life 100%

participation is never the case. On top of that, we formalised the notion of inertia and

included it as a variable in the model, along with other variables, such as the minimum

number of steps that a pool operator has to keep their pool.

It should be noted at this point that the previous simulation also included a similar

logic, namely restricting what the operators can do after they open a pool, but their

restrictions were more strict, as they didn’t allow operators to even update the margin of

their pool (they were basically completely blocked for a number of steps). By relaxing

this restriction and allowing the operators to do anything besides closing pools during

that time period, we capture the fact that opening a pool is a commitment, but one

that does not remove all freedom from the operator (for example changing the pool’s

margin is an easy process and does not influence the longevity of the pool).

Last, but by far not least, we removed the unrealistic assumptions with regard to

the players’ knowledge about the personal situation of each other. In the previous
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simulation, all players were expected to know the exact stake and operational cost of

every other player, information which they then used to determine their optimal strat-

egy. However, one can not expect such “omniscience” from real-life actors (even if

they analyse the blockchain to get data about the players’ stake, predicting the per-

sonal costs of other players would be a very tough task). In our case, players only use

information that in real life is publicly available, such as the stake and cost of pools that

are already in operation. A key element that allowed us to reduce the players’ assumed

knowledge was the substitution of “best-response” with “better-response” dynamics,

namely heuristically looking for a sufficiently good solution, instead of trying to deter-

mine the absolute best one.

The experiments of next section will reveal the impact of these changes on the final

outcome of the simulation.



Chapter 4

Experiments & Results

In this chapter, we present the different configurations that the simulation was run with

and the results that were produced. We aggregate this information to interpret how the

different parameter values or assumptions can influence the course of the game and

what the repercussions for the real-life systems are.

4.1 Baseline configuration & assumptions

We define the baseline scenario for the simulation, which can be seen in Figure 4.1.

In all other experiments, if we do not specify some of these values, it can be taken for

granted that the values used are the ones mentioned in that figure.

It should be noted at this point that certain parameter values were set arbitrarily, in

lack of any relevant research to support the choice —an example of such a parameter

is the inertia ratio. For that reason, although our goal is to align the model with the

real-life system as much as possible, we must acknowledge the possibility of diverging

from it, in case the values we test turn out not to be representative.

As mentioned in the previous chapter, we assume that the costs of the players are

uniformly distributed in a certain range and that their stake follows a Pareto distribu-

tion.

4.1.1 Baseline Analysis

Our baseline simulation converges to the desired number of pools, 10, which is in line

with the theoretical analysis and the experiments conducted in [10]. These pools are

generally owned by the stakeholders with the highest potential profits, as we can see

30
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Baseline parameter values for the experiments

Game parameters

• n = 100: we have 100 stakeholders in the system (same as in [10]).

• cost ci ∈ [0.001,0.002]: the players’ costs are uniformly distributed in this

range. These values are also taken from [10].

• common cost γ = 0.0001: for every additional pool a player opens, they

will bear this additional cost.

• inertia ratio ρ = 0.1: a player switches from strategy SA to SB only if the

increase in utility is substantial, namely: uSB > 1.1 ·uSA .

• minimum steps to keep pool δ = 10: after opening a pool, an operator

has to refrain from closing any pools for at least 10 rounds.

• abstaining fraction |NM|
|N| = 0.1: 10% of the players abstain completely

from the game.

• myopic fraction |NM|
|N| = 0.1: 10% of the players are short-sighted (use

myopic utility and desirability as a driver for their decisions).The remain-

ing 80% are non-myopic.

Reward scheme parameters

• k = 10: the desired number of pools is 10.

• α = 0.3: the value that is currently used in the real-life system of Cardano,

to trade between efficiency and Sybil resilience.

Simulation parameters

• Pareto shape value α = 2: the players’ stake is sampled from a Pareto

distribution with this parameter. This is in accordance with the experi-

ments in [10].

• pool splitting = on: players are allowed to operate multiple pools each.

• max iterations = 1000: if the players do not reach an equilibrium after

each having the chance to move for 1000 times, then the simulation stops.

• random seed = 42: the pseudorandom generator is initialised with this

seed, for reproducibility purposes.

Figure 4.1: Parameter values used in the baseline scenario, grouped in categories.
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(a) Number of open pools per round. (b) Average pledged stake per round.

Figure 4.2: Results from the baseline execution.

on Table 4.1, with minor exceptions that can be attributed to abstention, myopic play

or other reasons. We also note that, in general, the potential profit rank is closer to the

owner’s stake rank than to their cost rank, which can be attributed to the relatively high

value of the α parameter, which assigns higher rewards to higher-pledged pools. There

are four private pools, owned by the “richest” players, who were able to saturate them

with pledge (λ = 0.1), while the rest are open to delegations, with pledge equal to their

owner’s stake and small —but non-zero— margins.

We observe that at the equilibrium there is no pool splitting behaviour, other than

the case of the richest player, who could saturate two pools with their pledge. However,

taking a look at Figure 4.2a, we can understand that most, if not all, pool owners

engaged in pool splitting at some point through the game, as the number of pools

grows beyond the number of players for some rounds. From Figure 4.2b, we can

see that the average pledged stake of the system generally grows over time, which is

consistent with the fact that pool splitters close down their extra pools and concentrate

their entire stake into a single pool.

Another observation from Table 4.1 is that, although the majority of the pools are

saturated, there are a few exceptions, meaning that the total stake that is controlled by

pools is less than the total stake of the system. This happens for two reasons. The

obvious one is the abstaining fraction of the players (10% in our baseline execution),

as the stake of those players remains undelegated throughout the gameplay. The less

obvious reason is the inertia ratio in combination with the “rich” stakeholders: when

a pool operator saturates their pool with pledge and still has remaining stake, then the

rational thing to do is delegate the remaining stake to another pool, which is what these
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Pool

id

Pool

stake

Margin Pledge Owner

stake

Owner

stake

rank

Pool

cost

Owner

cost

rank

Owner

PP

rank

8 0.1000 0.0132 0.0215 0.0215 8 0.0010 6 8

21 0.1000 0.0000 0.1000 0.1060 3 0.0011 16 1

31 0.1000 0.0000 0.1000 0.2110 1 0.0008 43 2

51 0.1000 0.0000 0.1000 0.1188 2 0.0019 92 3

57 0.1000 0.0183 0.0293 0.0293 5 0.0016 62 5

63 0.1000 0.0000 0.1000 0.2110 1 0.0008 43 2

111 0.0709 0.0082 0.0153 0.0153 13 0.0014 50 14

123 0.0471 0.0065 0.0252 0.0252 7 0.0017 72 7

170 0.1000 0.0141 0.0315 0.0315 4 0.0018 84 4

172 0.1000 0.0026 0.0161 0.0161 11 0.0011 14 9

Total 0.9180 - 0.5389 - - 0.0132 - -

Table 4.1: Results from the baseline scenario. The pools are arranged in rows based

on the order in which they were created and PP stands for potential profit.

players do when first devising their strategy; however, if the pools of their choice close

down, then re-delegating that stake is not a move that yields much higher utility for

them compared to their current status, so they do not “bother” doing it, leaving part of

their stake inactive.

It should be noted that the baseline scenario was also run with different random

seeds, but all of them exhibited similar behaviour (convergence to around k —if not

exactly k— pools with the properties described above).

4.2 Additional experiments

To examine the effect of the different parameters on the dynamics of the game, we run

16 additional scenarios, that differ by at least one value from the baseline (see Table 4.2

for details). In the paragraphs below, we summarise the results of these experiments

and analyse the ones that were of greatest interest. We included some of these results

in the appendix, where we also added aggregate results from some more experiments.
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Experiment No Differences from baseline
scenario

Default values & Objectives

1 0% myopic players

2 50%

3 90% myopic players

Examine the effect

of myopic play.

Default is 10%

4 0% abstaining players

5 30%

Examine the effect of

abstention. Default is 10%

6 inertia ratio ρ = 1% &

iterations = 10 000

7 ρ = 5%

8 ρ = 15%

Examine the

effect of inertia.

Default is 10%

9 δ = 0

10 δ = 20

Examine the effect of restricting

operators. Default is 5

11 pool splitting not allowed Examine the setting of

restricting operators to having

one pool each.

12 n = 1000 Examine how the simulation

scales. Default is 100

13 stake sampled from real data Examine the effect of our

assumptions. Default involves

sampling from Pareto

distribution with α = 2.

14 k = 30

15 α = 0.01

16 α = 1

Examine the effect of the

reward scheme parameters.

Defaults are 10 and 0.3

Table 4.2: List of conducted experiments.

4.2.1 Myopic play

The first 3 experiments focus on myopic play, by adding to or subtracting myopic

players from the game and observing the effects. As a reminder, myopic play implies

that players look at the current state of the system (current stake of each pool, etc.) and

not at its expected future state, when making decisions, such as which pool to delegate

their stake to.

We expected that this behaviour could lead to less optimal final configurations of



Chapter 4. Experiments & Results 35

the system, however this was not the case, as even the results from cases 2 and 3 that

included high fractions of myopic players had only negligible differences from the

baseline. We can interpret this in two ways: either the system is not influenced by

myopic play (which would be a very positive result for its real-life equivalent) or (un-

fortunately more likely) our representation of myopic play is not sufficient (remember

that only delegator moves can be made myopically in our simulation, while pool moves

always assume a degree of far-sightedness). In defence of our simulation, we observe

that in the cases considered so far, the stake rank of the players was very similar to

their potential profit rank (see Table 4.1 for an example of that), which implies that the

myopic thinking of choosing the pools with the highest stake would be fairly aligned

with the non-myopic thinking of choosing the ones with the highest potential profit.

To get a better understanding of the effect of myopic play on the system, we believe

that more work is needed, to investigate the different possibilities listed above.

4.2.2 Abstention

Experiments No 4 and 5 focus on the effect of abstention, by tweaking the fraction

of the player population that remains inactive throughout the game. When no players

abstain from the game (case 4), the only observed difference from the baseline is that

the total stake controlled by the pools increases, approaching the total stake of the

system. This was an expected result, as the previously inactive players were free to

delegate their stake or even open pools of their own now.

When a significant fraction of the players abstain (30% in case 5), the total stake

controlled by pools is significantly lower (around 0.71 compared to the baseline’s 0.92)

and we observe more pool owners with lower potential profits. In addition, the total

pledge of the system is decreased and the total costs are slightly increased. These

results were expected, as a higher abstention rate results in higher probability of leaving

well-situated players out of the game (the abstaining players are chosen at random

among all players, so at the beginning of the game they all have equal probability of

abstaining).

4.2.3 Inertia

Perhaps the most interesting set of experiments, cases 6, 7 and 8 revealed the significant

impact of decision inertia (and subsequently of our assumptions) on the convergence

of the system.
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While an inertia ratio of 5% (case 6) or 15% (case 7) only yielded minimal dif-

ferences from the baseline’s 10% (e.g. slightly higher total stake in the first case and

quicker convergence in the latter) , setting a value as low as 1% (case 6) prevented

the simulation from reaching a point of equilibrium —at least with the definition of

equilibrium that we have given so far.

This is because players in our game never determine their “optimal” strategy, so

it is very likely that they can always make at least a very small improvement to their

current strategy, which can create room for improvement in another player’s strategy,

and so on. However, this continuous search for a better alternative is not necessarily

a bad result —in fact, one might say that it is more realistic than the absolute stability

that the other experiments yielded. A lot depends though on the state of the system

during this infinite play: was the system relatively stable (e.g. by having a consistent

number of active pools) or did it keep going through major alterations?

(a) Cumulative frequencies of pool numbers. (b) Area of interest from (a).

Figure 4.3: Results from experiment No 6. The frequencies shown are normalised, but

the absolute frequencies can also be easily determined by multiplying by the number of

rounds, namely 10 000.

To get a grasp on the above, we perform a statistical analysis of the simulation’s

output, and specifically of the time series that reveals the number of open pools during

each round. Figure 4.3a depicts the cumulative frequencies of pool numbers, i.e. what

percentage of rounds includes at least x pools, with x taking all the values that occurred

during the simulation run. Evidently, even though the simulation did not “converge”,

the number of pools remained relatively stable throughout the most part. Figure 4.3b

zooms into the area of highest interest, to facilitate our understanding of the situation.

From there, we can see that in more than 75% of all rounds, we have 12 or less pools,
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which is very close to the desired number of pools (10 for this run). We also observe

that more than 90% of the time we have 17 pools or less and that more than 99% of the

time, the number of pools does not exceed 30. This is a satisfying result, as it shows

that, even when the majority of stakeholders are extremely opportunistic and hardly

ever “stay put”, the system does not diverge too much from its target state.

Our research on the subject also revealed that there exists a concept of an equi-

librium that could potentially capture the results from this experiment. Grazzini and

Richiardi define the notion of a transient equilibrium, in the family of statistical equi-

libria, for given time windows of agent-based models [31]. In simple terms, a statis-

tical equilibrium is described by the mean value of a model’s output series of interest,

within a certain time window, and it is considered transient if there exists another time

window where that mean value has changed. The catch is that the time series in ques-

tion needs to be (weakly) stationary in order for the above to hold, so we would have

to first analyse the output for stationarity, to be able to characterise any such equilibria

within [32]. This analysis is outside the scope of this work, but it opens up an inter-

esting direction for future research, namely to explore the emergent properties of the

model’s output, examine whether the concept of a transient equilibrium can success-

fully describe our data and, if yes, what that means for the real-life system.

The results we reach from these executions are critical in understanding how be-

havioural traits of a system’s stakeholders, such as a strong tendency to stick to past

decisions, can influence its eventual stability. We speculate that inertia is a determining

factor in the stability of the system, so we could direct more research into measuring

the real inertia ratios that people (subconsciously) use to make decisions, to see which

one of our scenarios is more representative of reality.

We note that experiments 9 & 10 can also fall under the broad category of “inertia”,

as they represent the degree to which a pool operator is determined to keep their pool up

and running, regardless of its performance. The results obtained from these executions,

however, imply that this form of inertia is not as strong as the previous one, since the

final configurations that were generated for the different values were almost identical

to the baseline; only the speed of convergence was impacted to a meaningful degree.
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4.2.4 No pool splitting

Though our theoretical model allows players to create multiple pools each, we can

choose to disable this behaviour in the simulation, to observe how players would adapt.

In general, the expected behaviour arises and our results are consistent with the

simulations in [10], which did not allow for pool splitting. Some small differences

between this execution (No 11) and the baseline is that the total pledge of the system is

a bit lower (0.48 vs 0.54) and the total operating costs are a bit higher (0.016 vs 0.013).

4.2.5 Reward scheme parameters

Brünjes et al confirmed through simulations that their model produces the expected

results, namely that the system converges to k pools for an arbitrary value of k and

that the value of α influences the pool properties of the final formation, while at the

same time, other factors, such as the number of stakeholders in the system or the exact

distribution of their stake, had no impact on the result [10]. In this paragraph, we

examine whether the changes we made to the model had an effect on any of the above

and we explore how pool splitting behaviour can be influenced by these parameters.

In general, we observe that the conclusions that were drawn in [10] also hold in

our simulations. The execution with a higher value for k (case 14) yielded more pools

than the baseline 1, while sampling the players’ stake from real data instead of a Pareto

distribution (case 13) had minimal impact on the final configuration and same goes for

an increased number of stakeholders in the system (case 12).

The most interesting results were achieved through our last experiments (No 15

and No 16), which proved experimentally what was described in theory, namely that

a higher value of α prevents pool splitting behaviour, while a low value does not. In

the case of a low α value, while k remained the same as in the baseline (10 desired

pools), the final configuration at the equilibrium involved 16 pools, run by a mere 4

of the players (see Table A.1 in the Appendix for details). On the other hand, the

higher α prevented pool splitting behaviour, resulting in a configuration similar to the

baseline, which also included a slightly increased total pledge. These results imply

that the theoretical analysis of [10] was correct and that the value currently used in

Cardano (α = 0.3) is big enough to disincentivise Sybil behaviour (see also Figure A.2

in the Appendix for aggregate results from simulations with varying values of α that

highlight the effect of the parameter on pool splitting behaviour).

1see Figure A.1 in the Appendix for more results related to k.
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Conclusions

5.1 Summary

In this project, we modelled the stake pool operation and delegation process of the

Cardano blockchain as a game, both theoretically —by extending the model that was

introduced by Brünjes et al in [10]— and empirically, through configurable simula-

tions. We brought the model closer to the real-life system in several ways, including

lifting assumptions about the “players” and not requiring excessive knowledge from

them.

Our most prominent addition was the inclusion of pool splitting as a potential strat-

egy, which lifted the previous restriction that each player could only operate one stake

pool at a time. Other adjustments entailed having a heterogeneous population of play-

ers, removing excessive knowledge from them and integrating the notions of bounded

rationality and decision inertia in their behaviour.

This broader model helped us examine the efficiency of Cardano’s reward scheme

under a diverse set of conditions, through simulations. Our experimental analysis

yielded results that were in line with the ones in [10], and also confirmed theoreti-

cal claims that could not be evaluated with the previous simulation tool, such as the

expectation that an increased value of the reward scheme’s α parameter can effectively

prevent pool splitting and Sybil behaviour among the stakeholders of the system.

5.2 Limitations & Future Work

There exist several ways in which this work can be built upon. First of all, one po-

tential course of action is to conduct additional, structured series of experiments using

39
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the simulation engine that was developed, to extract more insights about the emergent

properties of the system in question. Due to the time constraints of the current project,

a very large part of the work was dedicated to the modelling and development pro-

cesses, therefore our design and analysis during the experimentation phase was not as

comprehensive as it could be, possibly leaving the rigorous reader with questions about

directions that were not thoroughly investigated. Another option would be to extend

the simulation tool itself, for example by defining an explicit way with which play-

ers who have been characterised as “myopic” make their pool moves or by allowing

players to evaluate a bigger range of strategies during each round.

A potentially more interesting direction would be to extend even more the theo-

retical model of the (extended) Pooling Game that we described in section 3.1. There

are many ways in which this can be accomplished, such as adding more heterogeneity

among the players (e.g. by introducing a new set of players that are active but are

predisposed to being delegators and therefore never form pool-operation strategies) or

refining our notion of inertia (e.g. by assigning different inertia ratios / switching costs

to different players or different pairs of strategies of the game).

A somewhat challenging addition to the model might be the incorporation of ex-

change rates, to account for the fact that in real life the costs of pool operators are not

measured in the same unit as the rewards that the system distributes (one of them is

typically paid in fiat currency while the other in cryptocurrency). In a setting where

this distinction is modelled, it would be interesting to simulate events, such as volatility

or shocks in the market, and observe the impact they have on the system.

A natural extension of the model would be to make it compatible with other similar

systems, for example with other Proof-of-Stake blockchains, such as Ethereum 2.0 [33]

or Algorand [26]. Though outside the scope of the current work, care was taken in the

development of the simulation engine, to ensure that extending it in such a way would

not be troublesome.

In an effort to improve our model, without necessarily extending it, one could also

attempt to “tune” its parameters, so that their values are as close as possible to their

real-life equivalents. A simple example of a parameter that needs tuning is that of

the inertia ratio. As we saw through our experiments in Chapter 4, different values

of inertia can lead to very different results for the system, therefore it is important to

understand which value represents best the decision-making process of real-life actors.

We appreciate though that this is not an easy task to perform, as it requires extensive

research on human behaviour.
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Appendix A

Additional results

Figure A.1: Number of pools at equilibrium for different values of k.

45
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Figure A.2: Average number of pools per operator at equilibrium for different values of

α.

Figure A.3: Pool dynamics of the baseline simulation.
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Pool

id

Pool

stake

Margin Pledge Owner

stake

Owner

stake

rank

Pool

cost

Owner

cost

rank

Owner

PP

rank

8 0.1000 0.0002 0.0036 0.0215 8 0.0003 6 3

25 0.1000 0.0000 0.0177 0.1060 3 0.0003 16 1

36 0.1000 0.0000 0.1000 0.2110 1 0.0008 43 2

47 0.1000 0.0000 0.1000 0.1188 2 0.0019 92 5

54 0.1000 0.0000 0.1000 0.2110 1 0.0008 43 2

60 0.0177 0.2228 0.0177 0.1060 3 0.0003 16 1

75 0.1000 0.0002 0.0036 0.0215 8 0.0003 6 3

79 0.0177 0.2226 0.0177 0.1060 3 0.0003 16 1

113 0.0140 0.0073 0.0140 0.0140 16 0.0012 24 16

137 0.0177 0.2206 0.0177 0.1060 3 0.0003 16 1

138 0.0168 0.0002 0.0036 0.0215 8 0.0003 6 3

228 0.1000 0.0002 0.0036 0.0215 8 0.0003 6 3

240 0.0177 0.2336 0.0177 0.1060 3 0.0003 16 1

265 0.0177 0.2266 0.0177 0.1060 3 0.0003 16 1

360 0.1000 0.0002 0.0036 0.0215 8 0.0003 6 3

530 0.0036 0.0002 0.0036 0.0215 8 0.0003 6 3

Table A.1: Results from experiment No 15. Note that all pools are run by only 4 players.
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