
Deep Co-Adaptation of Agents

with Probabilistic

Q-Value-Surrogates

Timofey Abramski

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2021

Abstract

In nature, morphology and behaviour are co-adapted through the process of nat-

ural selection [1] across many generations. In this project, we co-adapt behaviour

and design of robots using reinforcement learning in a data-efficient manner, such that

design and controller are co-adapted in the minimum number of design evaluations.

Similar to previous work by Luck et al. [19], we achieve this by taking advantage

of neural networks’ generalisation across the space of possible designs, but unlike

previous literature, we include the uncertainty associated with neural networks’ out-

puts as a key heuristic to aid in efficiently exploring the design space. This helps us

avoid wasting design evaluations for designs which are already associated with high

certainty, therefore lending exploration more to the notion of maximising knowledge

[7]. In this report, we explore multiple ways of generating neural network uncertainty

estimates, including converting the critic in the Soft-Actor Critic algorithm [14] to a

probabilistic one, ensembling neural networks, as well as a novel semi-probabilistic

approach involving both deterministic and probabilistic (Monte-Carlo Dropout) neural

networks [9]. We demonstrate that two of our methods improve on the data-efficiency

of previous work by Luck et al. [19] in the Half-Cheetah environment [6], with our

semi-probabilistic approach being particularly successful. We show that the generated

uncertainty estimates have the expected properties of epistemic uncertainty, ultimately

allowing for our novel combined deterministic and probabilistic algorithm to find bet-

ter design-controller pairs in fewer iterations, while also achieving significantly higher

performance than in the previous work [19], even when running the previous model

for more design iterations.

i

Acknowledgements

I would like to thank my supervisor, Kevin Sebastian Luck for taking me on for the

project when I was in a tough spot, as well as for his support throughout the project.

I have learned a lot, and I am very grateful for his willingness to help me with any

problems I had to deal with.

I would also like to thank my family, as well as my significant other, Sara who gave

significant feedback and support in the writing of the thesis.

ii

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Related Work . 2

1.3 Objectives . 4

1.4 Report Structure . 4

2 Background 5
2.1 Deep Learning . 5

2.2 Reinforcement Learning . 5

2.3 Probabilistic Neural Networks . 7

2.4 Dropout and Monte-Carlo Dropout 8

2.4.1 Monte-Carlo Dropout Training 8

2.4.2 Monte-Carlo Dropout Inference 9

2.4.3 Soft Actor Critic . 10

2.5 Co-adaptation of morphology and controller 11

3 Methodology 13
3.1 Problem Statement . 13

3.2 SAC algorithm with probabilistic critic 14

3.3 Ensembling Q-value functions . 16

3.4 Semi-probabilistic approach . 16

3.5 Design exploration . 18

4 Experiments 20
4.1 Experimental Setup . 20

4.2 Variance over start-states for Q-value uncertainty 21

4.3 SAC algorithm with probabilistic critic 24

4.3.1 Dropout rate variation . 24

iii

4.3.2 Improving stability through Q-loss and Q-target variation . . . 27

4.3.3 Alternative stabilisation strategies 30

4.4 Uncertainty estimates from ensembling Q functions 31

4.5 Semi-probabilistic approach . 32

4.5.1 Uncertainty and design selection analysis 35

5 Conclusions 38
5.1 Summary . 38

5.2 Future Work . 39

6 Appendix 41

Bibliography 46

iv

Chapter 1

Introduction

1.1 Motivation

In nature, both morphology and behaviour are adapted together in unison, and together

determine the possible interactions of a species with its environment [1]. The inter-

play between morphology and behaviour defines the ability of a species to overcome

adversity and hence survive. As an example, the number of limbs and their muscular

arrangement defines possible behaviours that an animal can take advantage of which

explains the diversity of animal locomotion styles. However, typically, in robotics,

the design of a robot is considered as being part of the environment that the agent

implicitly needs to take into account when learning a movement strategy or solving

a task. This raises the question of how and why the design of such a robot was se-

lected. The optimal behaviour for a robot is a function of the environment and the

design of a robot. Typically, evolutionary algorithms are used to create a population

of robot designs [25, 5], which are all trained independently to convergence in physics

simulations, and the best performing designs are selected on an empirical basis to be

deployed in a real-life setting. However, this approach suffers from the simulation-to-

reality gap, which results in robots performing worse in real life than they demonstrate

during simulations [17, 18]. Some argue that progress in these evolutionary algorithms

or simulation experiments results in little to no progress to real life robots due to this

gap [20]. Producing and training such intermediate robots selected by an evolutionary

algorithm in the real world is a seemingly attractive option, but is infeasible due to the

production costs and the amount of data needed to be collected to train a population

of robots. Secondly, this also ignores the fact that in nature morphology and controller

are inherently interrelated and co-adapted across many generations. Adaptation to en-

1

Chapter 1. Introduction 2

vironmental challenges can come in changes to an organism’s shape as well as changes

to the brain and nervous system [1]. The common approach ignores the fact that there

is some transferability in behaviour between designs.

In this project, we take this insight and explicitly model the design as part of the

Markov Decision Process (MDP), allowing us to bring the optimisation of design in-

side the reinforcement learning loop. In particular, we investigate this as it applies to

legged locomotion, where the goal is to walk/run efficiently in a particular direction

[22]. However, since the ultimate goal is to perform the design exploration as part of a

single optimisation which occurs in the real world, it is crucial for any such algorithm

to be data-efficient. We hypothesise that this data-efficiency can only come from a

model’s self-awareness regarding its own uncertainty. A model that is aware that it is

uncertain is more useful than a model that is certain but is wrong, and can be designed

to take steps that minimise its uncertainty, or maximise its knowledge. In this project,

we explore multiple methods of estimating model uncertainty and integrate them with

previous data-efficient co-adaption of design and controller by Luck et al. [19], in an

attempt to make such an algorithm more viable for production in the real world.

1.2 Related Work

In this project, we focus on using reinforcement learning to co-adapt robot design and

morphology [19]. While there are other approaches which rely solely on evolutionary

algorithms [25] to produce effective designs, deep reinforcement learning allows us to

learn more specialised behavioural policies and movement strategies than using only

evolutionary algorithms [19]. The following is an outline of some key literature that is

relevant to this direction of research.

Work by Schaff et al. [24] is a recent approach that brings the design parameters

of a robot ξ into the definition of the MDP, and therefore allows the policy to condi-

tion on the design as π(s,ξ), with the general goal of optimising the expected reward

Eπ[R] while conditioning on the design. However, this approach requires maintaining

a population of designs to compute policy update gradients for the population-wide

policy, making it difficult for such an algorithm to be applied in the real world to find

effective morphologies. Work by David Ha [13] also applied a similar method, except

using REINFORCE [29] to make updates to the design. However, this work also relies

on maintaining a population of designs. Work by Luck et al [19] takes on a unique

perspective that avoids some of these issues by training two variants - population and

Chapter 1. Introduction 3

individual - of the policy (as well as Q-value networks), which have the role of gen-

eralising across design space and specialising to particular designs respectively. This

approach avoids keeping a population of designs, making it more practical for succes-

sive printing of designs, and applying such an algorithm to real-life robots. Crucially,

this allows intermediate evaluation of expected design performance, by simply query-

ing the learned functions for new designs, accompanied with state and action. In prior

work [19], this is used as a foundation to bring design optimisation inside the rein-

forcement learning loop, ultimately allowing good designs to be found in less design

evaluations than evolutionary methods by orders of magnitude [25]. However, such

algorithms are not yet entirely viable to apply to real life robots, due to the time and

financial constraints of producing many robots in order to execute such an algorithm to

convergence. This makes the improvement of the data-efficiency of such methods vital

for progress in the field, and applicability outside of simulations. This could ultimately

be achieved using certainty-aware models known as Bayesian Neural Networks [11].

Bayesian Neural Networks (BNNs) are a class of networks which explicitly model

the posterior over weights, allowing access to model uncertainty information [11]. This

can be very useful in human-in-the-loop supervised learning setting, for example, in

the healthcare setting where neural networks can flag cases for human intervention

where a model output has high uncertainty [21]. Similarly, in reinforcement learn-

ing uncertainty information can be used in tasks where exploration is important [9],

allowing a slightly different view on the exploration-exploitation dilemma, where in-

stead the agent can select actions which result in the maximisation of knowledge or

minimisation of future surprise as in the Free-Energy Principle [7].

While model uncertainty has not yet been previously used to help effectively ex-

plore the space of possible designs in robotics, Monte-Carlo Dropout [9] is a promising

method which can estimate model uncertainty. This method has previously been used

to guide exploration in other reinforcement learning settings with continuous state-

action spaces, such as Maze games [9], Lunar Lander and MinAtar [4], for which it

has been very effective. Monte-Carlo Dropout makes networks inherently stochas-

tic and allows uncertainty information to be generated by analysing the variance be-

tween the outputs of multiple forward passes. While there exist a whole class of BNNs

which can also be used to estimate model uncertainty, Monte-Carlo Dropout’s strength

is its simplicity, being implementable on any Multi-Layer Perceptron model that can

use standard dropout [26], instead of requiring different network architecture. In this

project, we will apply Monte-Carlo Dropout [9] to the value function in the algorithm

Chapter 1. Introduction 4

introduced by Luck et al. [19] in an attempt to improve data-efficiency of the co-

adaptation of design and controller. In theory, uncertainty information can help the

agent avoid wasting design evaluations where it already has high certainty of the ex-

pected reward, and instead focus on more promising designs, with the goal of attaining

more knowledge about how design maps to design effectiveness.

1.3 Objectives

The main objective of this project is to address the following question: Is it possible
to improve on the design exploration-exploitation strategy presented by Luck et al.
[19] using model uncertainty estimates, in a way to achieve more data-efficient co-
adaptation of design and controller? We mainly focus on Monte-Carlo Dropout [9],

and ensembling methods to estimate uncertainty, and address our hypothesis. The

project can be roughly split into the following main objectives:

• Assess whether the Q-value function trained by Luck et al. [19] implicitely

learns uncertainty information which could be used to improve design explo-

ration.

• Add Monte-Carlo Dropout to the Q-network in the Soft-Actor Critic algorithm

[14] in order to make it probabilistically interpretable.

• Train an ensemble of Q-value functions to generate uncertainty estimates that

can be used in design exploration.

1.4 Report Structure

We organise this report as follows: Chapter 1 gives a motivation for the approaches we

attempt in this project and outlines some of the key relevant literature. Chapter 2 gives

a background to all of the topics which are required to understand the contents of this

thesis. Chapter 3 introduces the problem we are attempting to solve in this thesis and

explains the different methodologies we use in order to address the problem. Chapter 4

begins with details regarding out experimental set-up, and continues on to discuss the

experiments which we performed as part of the project, as well as a discussion explain-

ing the main observations and findings. Finally, in Chapter 5 we give a summary and

conclusion to our experimental findings, and suggest further work which have good

potential to further improve on our results and understanding of the problem.

Chapter 2

Background

2.1 Deep Learning

The term Deep Learning refers to the process of training neural networks which consist

of an input x, multiple hidden layers h1,h2, ...hL, and terminate in an output y. Each

layer consists of a linear transformation applied to its input as shown in Equation 2.1,

with each transformation followed by an activation function.

hn = activation(Wnhn−1 +bn) (2.1)

The final output y, is computed in the same way, and is the prediction label of the

network. Activation functions are non-linear functions, for example, ReLU, sigmoid

and tanh non-linear functions, which ensures that multiple layers of the network cannot

be expressed as a single weight matrix multiplication, in other words, allowing the

network to learn a more complex set of functions. The network parameters are updated

by back-propagating gradients using the back-propagation algorithm [23].

In this project, we are mostly interested in Deep Learning being used as a method

for function approximation of the Q-value and policy functions in the reinforcement

learning setting, described further in Section 2.2.

2.2 Reinforcement Learning

In reinforcement learning, there is an environment in which an agent lives. The agent

makes observations from the environment, known as the state s, uses this information

to decide its action with a policy function π(s) and is returned a reward signal r. The

5

Chapter 2. Background 6

goal of the agent is to maximise the reward signal over time. This dynamic between

the agent and its environment can be seen in Fig 2.1.

More formally, this interaction can be described by the Markov Decision Process

(MDP). The MDP is a 4-tuple consisting of (S,A,P,R), where S is the state space which

encompasses all of the states that an agent may find itself in, A is the action space and

contains all of the accessible actions from state s, P is the set of transition probabilities

conditioned on the state-action pair (s,a) which describes the probabilities of landing

in any state s′ and R are the rewards attained by moving from one state to another via

a specific action a.

Figure 2.1: RL formulation from [27], depicting an agent’s choice to select action, which
together with the environment determines the agent’s next state St and attained reward Rt

Given this formulation, the goal of the agent is to learn an optimal policy π∗, which

is a policy that maximises the return Eπ[∑
∞
t=0 γtr(st ,at)] where γ is the discount fac-

tor in the range [0,1] and determines how much the agent considers rewards far in

the future. The value function Vπ(s) describes the cumulative expected return from

a particular state onwards Eπ[∑
∞
t=0 γtr(st ,at |s0 = s] and a useful quantity to model in

order to help learn effective policies. Alternatively, the action value function Qπ(s,a)

can be used instead of the value function, which conditions on action in addition to

state, and therefore denotes the expected cumulative reward after taking action a from

state s: Eπ[∑
∞
t=0 γtr(st ,at |s0 = s,a0 = a]. In the case of deep reinforcement learning,

the policy, value function and action-value functions can be represented using neural

networks. Such networks allow for end-to-end learning, where the internal representa-

tions and features are learned directly in a way that best suits the problem at hand. This

end-to-end learning occurs with the help of back-propagation [15] which propagates

the loss derivative backwards through the layers of the neural networks and updates

the model parameters to minimise the loss.

One of the big differences between reinforcement learning and other machine

learning paradigms is that in reinforcement learning the agent’s decisions affect what

data is collected, and there is therefore a constant trade-off between exploration and

exploitation. In exploration, the agent attempts to visit novel areas of the MDP with the

Chapter 2. Background 7

goal of attaining more knowledge which will be later helpful in attaining a higher re-

ward, whereas exploitation is where the agent purposely uses only the existing knowl-

edge to select the best currently known actions. An agent which exploits too frequently

fails to attain knowledge of the MDP that will help to achieve higher reward in the

long run, while an agent that explores too much never takes advantage of the gained

knowledge by maximising the reward. This is a constant struggle in the problem of

reinforcement learning and is very much task dependant, however, recent work has

shown that the use of probabilistic neural networks can be used to effectively explore

in an efficient way which is motivated by the agent being self-aware of the gaps in its

knowledge, and seeking out areas of the state-space therefore in few iterations gaining

maximum knowledge [9]. In this project, the trade-off of exploration and exploitation

is important as it applies to finding effective robot design parameters.

2.3 Probabilistic Neural Networks

Probabilistic or Bayesian neural networks (BNN) refer to the extension of standard net-

works to include posterior inference of model parameters, instead of assuming that the

learned weights are deterministic and correct. The posterior is the probability distribu-

tion which describes the probability of parameter θ given model evidence X : P(θ|X),

in the form of data. In the training of a standard neural network, the weights of a

converged model are equivalent to the maximum likelihood estimate (MLE) of the

weights, or argmaxθP(θ|X). However, it is often the case that this approach is not

satisfactory, as it completely ignores the shape of the posterior distribution, and dis-

cards any uncertainty information about the output of the neural network, which can be

useful in practical applications of supervised learning [8] where humans can intervene

when a model is uncertain, or like in this project it can be used as the basis of an explo-

ration strategy in reinforcement learning [9, 8], where exploration is defined in terms

of maximising knowledge or reducing model uncertainty and thus expected future sur-

prise [7]. Probabilistic neural networks provide a way to explicitly reason about the

weight posterior and therefore model uncertainty. One approach is to use Bayesian

neural networks, which explicitly model the posterior for each parameter, resulting in

more uncertain outputs from uncertain weights [2]. Alternatively, one can learn an

ensemble - train multiple deterministic models instead of one. In the ensemble, each

model needs to be trained independently from each other by ensuring that each model

starts with its own random initialisation and is trained on different random batches.

Chapter 2. Background 8

Each model’s converged weights can be viewed as a sample of the multi-dimensional

posterior. Posterior inference in an ensemble is done by comparing the outputs of the

ensemble for a given input and by ensembling more models we are effectively recon-

structing the posterior from its samples. If the outputs of the models in the ensemble

do not vary significantly, this suggests that the posterior is narrow and there is high

model certainty, while if there is high variance in the outputs, there is high model

uncertainty. Another equivalent view is that every model in the ensemble overfits to

the data in different ways, and the averaging over the ensemble removes or ”cancels”

these errors. A final approach we will focus on, known as Monte-Carlo Dropout, ap-

plies standard dropout [26] at both training and test time [9], and makes a network

inherently stochastic, with each forward pass corresponding to a sample of the poste-

rior (see Section 2.4). This approach is a computationally cheap alternative to training

multiple networks like ensembling, where instead of using training separate networks

we instead instantiate multiple sub-networks with different dropout realisations. In this

project, we will focus on Monte-Carlo Dropout and ensembling as methods to estimate

model uncertainty to guide exploration.

2.4 Dropout and Monte-Carlo Dropout

Dropout, or standard dropout is a common regularisation technique [26] for neural

networks which for each forward pass through the network during training, ”drops out”

or sets neurons to zero, with a probability determined by the pre-set hyperparameter

p, also known as the dropout rate. This forces the network’s learned representation

to be more distributed and introduces noise into training, helping the network avoid

overfitting. At test time, dropout does not shut off any neurons, and instead scales the

outputs of each hidden layer by 1/(1− p) to compensate for the increase in magnitude

of the signal passing through the network.

2.4.1 Monte-Carlo Dropout Training

In Monte-Carlo Dropout (MCDO), training occurs in the same way as in standard

dropout [26], that is for each forward pass, every hidden unit is masked with a value of

zero with a probability determined by the dropout rate, p. In general, it is possible for

different layers to have varying dropout rates p1...pL where L is the number of layers.

Therefore, the set of zeroed hidden units for a given forward pass, or the dropout mask

Chapter 2. Background 9

is equivalent to sampling the set of random variables ω̄ from the joint distribution Ω̄:

ω̄ = {ωlk : l = 1...L,k = K1...KL} (2.2)

ωlk ∼ Bernoulli(pl), ω̄i ∼ Ω̄(p1...pL) (2.3)

where Kl is the number of units in layer l. In back-propagation, gradients don’t pass

through the masked hidden units, but otherwise parameters are updated as usual, in the

negative gradient direction: w← w−α
∂E
∂w with learning rate α and error function E.

2.4.2 Monte-Carlo Dropout Inference

While training of Monte-Carlo Dropout is the same as in standard dropout, inference

occurs differently. At inference, MCDO involves computing multiple forward passes

through the network for a single input, with dropout enabled [9], such that each set of

random variables ω̄1...ω̄T for each forward pass is sampled from the joint distribution

Ω̄. The network’s best point estimate is computed as the mean across multiple stochas-

tic forward passes: µQ ≡ E
ω̄∼Ω̄

[Q(s,a,ξ, ω̄)] ≈ 1
T ∑

T
t=1 Q(s,a,ξ, ω̄t). The variance of

the T outputs σ2
Q ≈

∑
T
t=1(Q(s,a,ξ,ω̄t)−µQ)

2

T−1 is an estimate of the network’s uncertainty.

Monte-Carlo Dropout is an approximation of the probabilistic deep Gaussian Pro-

cess and can be interpreted as a variational approximation of the posterior distribu-

tion over the network’s parameters [9]. Running a stochastic forward pass through a

MCDO network can be viewed as taking a sample from the model’s predictive distri-

bution, with the output being the point estimate µQ with noise sampled proportional

to the model’s epistemic uncertainty, or uncertainty associated with having a lack of

data. This allows us to interpret the output as a distribution rather than a point es-

timate [8] and hence multiple forward passes are required for posterior and therefore

uncertainty inference. In this project, we apply Monte-Carlo Dropout to the Q-function

which allows us to probabilistically interpret the outputs of the network. In the rein-

forcement learning setting like ours, uncertainty information can be used as a guide for

exploration. While Gaussian Processes (GPs) are seemingly attractive by giving direct

access to uncertainty information, unlike MCDO they have the problem of scaling in

size with the amount of training data. In the case of co-adaptation of morphology and

controller, we are interested in training a Q-function which generalises well for a wide

range of designs (ξ) so that the agent can select the most effective design. In order to

generalise well across design space, it is crucial that designs which are associated with

Chapter 2. Background 10

high network uncertainty are evaluated, and thus their uncertainty collapsed.

2.4.3 Soft Actor Critic

We use the Soft Actor-Critic (SAC) algorithm [14] to train the Q-function and policy

π in lines 12 and 13 of Algorithm 1. This algorithm belongs to the class of off-policy

model-free actor-critic algorithms in which the critic estimates the Q-function, and the

actor decides actions based on the policy, and updates the policy in the direction sug-

gested by the critic. In particular, the SAC algorithm is a stochastic algorithm based on

the maximum entropy RL framework, and therefore is effective for continuous control

problems like ours. The SAC algorithm has two loss functions: the Q-loss and policy

loss which are used to update the Q-function and policy network respectively. These

losses are computed in alternating order, and are used to incrementally improve one

after the other. The original Q-loss in the SAC algorithm is computed as:

Q-Loss(B) =
1
|B| ∑

(s,a,r,s′,d)∈B
(Q(s,a,ξ)−Qtarget)

2 (2.4)

where B denotes the batch of tuples containing the state s, action a, reward r, the next

state s′ and whether the state s′ is terminal, denoted by d. Qtarget is the target Q-value

network, which acts as a target to which the Q-value function approaches in order to

improve its estimates. The Q-target is computed as:

Qtarget = r+ γ(1−d)(Qtarget(s′,a′,ξ)−αlogπ(a′|s′)), a′ ∼ π(s′) (2.5)

where Qtarget refers to the target network. The target network updates its parameters at

every training iteration as a weighted average of its current parameters and the Q-value

network wtarget ← (1− τ)wtarget + τwQ, where wQ and wtarget are the weights of the

Q and target networks respectively, and τ is a hyperparameter in the range (0,1] which

determines the rate that the target network moves at. The original SAC policy loss is:

Policy Loss(B) =
1
|B| ∑s∈B

(mini=1,2Q(s,a = π(s),ξ)−αlogπ(a|s)) (2.6)

where as in the Q-loss, min1,2 refers to the minimisation over the double Q-value net-

works. In this loss, the gradients travel through the Q-value function in order to update

the policy. Therefore, the policy bootstraps from the Q-value function and updates in

the direction that maximises the Q-value function.

Chapter 2. Background 11

2.5 Co-adaptation of morphology and controller

In this thesis, we build off work by Luck et al. [19], by making the Q-value function

probabilistic in order to improve the exploration strategy. We treat this work as a

baseline for our results, and therefore outline the work as follows.

This thesis focuses on the problem of co-adapting robot morphology and behaviour,

and the authors present an algorithm which includes the optimisation of design within

the reinforcement learning loop. This involves the use of population Q and policy

functions Qpop and πpop, as well as individual Q and policy functions Qind and πind .

The individual variants of the networks are specialists trained only on data collected

from the current design, and are therefore not required to generalise across designs,

while the population networks are trained on data collected from all designs which are

evaluated and therefore generalise across design space. The population Q-value net-

work Qpop is used to predict effectiveness of a design by evaluating the expected return

across n start states s0: Es∼s0[Q(s,a = πpop(s,ξ),ξ)]≈ 1
n ∑

sn
0

s=s1
0
Q(s,a = πpop(s,ξ),ξ).

The Q and π functions are deep neural networks and are trained with the Soft Actor-

Critic (SAC) algorithm [14] with data that is collected by the agent. There is a policy

and Q-loss which bootstrap from a target Q-value function and policy, respectively, in

order to make gradual improvements to both networks, described in Section 2.4.3.

The algorithm presented by Luck et al. [19], (shown in Algorithm 1) involves

first training the Q and π functions by evaluating 5 prespecified designs, ensuring that

the networks don’t overfit to too little data, as well as to ensure sufficient generalisa-

tion across the design space. After this, the design exploration-exploitation strategy

is instantiated, which alternates between exploration and exploitation phases. The ex-

ploration phase involves simply selecting a design completely at random, within the

range of possible values. The exploitation phase involves selecting the most effective

design is the one that satisfies argmaxξ
1
n ∑

sn
0

s=s1
0
Q(s,a = πpop(s,ξ),ξ) as estimated by

Qpop, which is computed with particle swarm optimisation [3]. The exploration phase

ensures the Q and π functions generalise well to different areas of the design space

by evaluating on a wide range of new designs, while the exploitation phase effectively

tests the model’s prediction of good designs by evaluating the ones which are expected

to perform well. Alternating between the two strategies ensures that morphology and

controller are co-adapted in a data-efficient way.

In lines 4 and 5 of Algorithm 1, we see that the individual variants of the Q and

π networks get initialised to the weights of the population networks. This gives a

Chapter 2. Background 12

jump start to the training and ensures that the individual networks are not too far from

convergence. Between lines 7-13, we see the reinforcement learning loop which trains

the population and individual variants of the Q and π functions. Since the individual

networks specialise on specific designs, and the population networks generalise across

design space, we see that the individual networks are trained with a quintuple which

does not contain the design ξ, whereas the population variants do. Finally, in lines

15-19 we see the alternation between the exploration and exploitation strategy.

In this approach, it is ultimately the inclusion of the design parameters in the state

description and thus the generalisation across design space that allows the data-efficient

co-adaptation of morphology and behaviour. This allows no time to be spent on areas

of the design space which are predicted to be unfavourable. This contrasts with other

methods, which instead focus on a more exhaustive search over design space, and ul-

timately depend on finding good design-behaviour pairs by using orders of magnitude

larger number of design evaluations [12] in simulation. This work is particularly im-

portant for co-adaptation in the real world, where there is a strict constraint on the

number of morphologies that can be produced. We will focus on using epistemic un-

certainty to make this design exploration even more efficient.

Algorithm 2: Pseudocode presented by Luck et al. [19]
1: Initialize replay buffers: ReplayPop.,ReplayInd.andReplays0
2: Initialize first design ξ

3: for i ∈ (1,2,...M) do
4: πind. = πpop.
5: Qind. = Qpop.
6: Initialise and empty ReplayInd.
7: while not finished optimising local policy do
8: Collect training examples (s0,a0,r1, ...sT ,rT) for design ξ and policy πind.
9: Add quadruples (si,ai,ri+1,si+1) to Replayind.

10: Add quintuples (si,ai,ri+1,si+1,ξ) to Replaypop.
11: Add start state s0 to Replays0
12: Train networks πInd. and QInd. with random batches from ReplayInd.
13: Train networks πPop. and QPop. with random batches from ReplayPop.
14: end while
15: if i is even then
16: Sample batch of start states sbatch = (s1

0,s
2
0, ,s

n
0) from Replays0

17: Exploitation: Compute optimal design ξ with objective function
maxξ

1
n ∑s∈sbatch QPop.(s,πPop.(s,ξ),ξ)

18: else
19: Exploration: Sample design ξ with exploration strategy
20: end if
21: end for

Chapter 3

Methodology

3.1 Problem Statement

We describe the problem of co-adapting robot design (morphology) and its controller

(policy) similarly to what is described by Luck et al. [19]. This optimisation can

be written as θ∗ = argmaxθR|θ, where R is the reward attained with variables θ =

[ξ,π], where ξ are the morphology or design parameters and π is the policy which the

agent uses to select actions. In this project, we extend the state space in the Markov

Decision Process (MDP) to include the design parameter ξ in addition to the observable

state that a robot finds itself in. Under this formulation, the transition probabilities

p(st+1|st ,at ,ξ) and therefore the attained reward r(s,a,ξ) is a function of the design

parameter ξ. The policy function π(s,ξ) is used to select actions to maximise the

expected future return for a particular design:

Eπ[
∞

∑
i=0

γ
ir(st+i+1,at+i+1,ξ)|st = s,ai = π(si),ξ)] (3.1)

where γ ∈ [0,1] is a discount factor, future states st+i+1 are produced by the transi-

tion function and actions at+i+1 are sampled from the policy. The goal is to learn a

Q-function and policy function π which in addition to generalising well across states-

action pairs, generalises well across the design space. Such a Q-value function can be

evaluated for start states for a particular design ξ, giving an output that can be inter-

preted as the expected future reward for the given design, thus this acts as a measure

of the general effectiveness of the design. A Q-value function that generalises well

across design space can therefore be used to select effective designs by the following

optimisation: argmaxξ(Es∈S0 [Q(s,a = π(s),ξ)]) where S0 denotes the set of possible

13

Chapter 3. Methodology 14

start states, and the policy π should select actions which lead this design to high future

return.

In our approach, we use the algorithm presented by Luck et al. [19], shown in

Algorithm 1 as a baseline. The main goal of the project is to improve on the design ex-

ploration/exploitation strategy, such that good designs are found earlier in training, and

given a limit to the number of design evaluations, we find θ = [ξ,π] parameters which

yield larger cumulative return. We aim to achieve this by making the Q-value function

certainty aware, and exploiting the certainty information to more efficiently explore the

design space. We will use Monte-Carlo Dropout (MCDO) as a method for variational

inference, which will provide certainty estimates used in the exploration/exploitation

strategy. While the previous method could end up evaluating designs which are similar

to ones that have already been tested, that is designs for which there is little uncertainty

about their effectiveness, we hope to make a strategy that will automatically select de-

signs which maximise the gained knowledge over design space in few iterations and

thus result in more effective designs with correspondingly effective policies.

3.2 SAC algorithm with probabilistic critic

The SAC algorithm already uses a stochastic actor, which helps the agent deal with

the continuous action space. The first method we attempt in this project is to also

convert the critic in the SAC algorithm into a probabilistic one. We do this by replacing

the Q-value function in the algorithm with a network with dropout applied to each

hidden layer, allowing each forward pass to be a stochastic sampling of the posterior

of network weights. With the addition of the probabilistic Q-value function, it is also

necessary to alter the two original loss functions Equation 2.4 and 2.6 in the SAC

algorithm to achieve stable learning and good performance. For the Q-loss, we want

to minimise the temoral difference (TD) loss as follows: E(s,a,r,s′,d)∈B
ω̄i∼Ω̄

[(Q(s,a,ξ, ω̄i)−

Qtarget)
2], however, we are free to select how the target Qtarget is computed and whether

we should sample different dropouts ω̄i for a particular batch B. The most general loss

function which is equivalent to this expected loss is as follows:

Q-Loss(B) =
1
|B| ∑

(s,a,r,s′,d)∈B

1
U

U

∑
u=1

(Q(s,a,ξ, ω̄u)−Qtarget(s,a,ξ, ω̄t))
2 (3.2)

Chapter 3. Methodology 15

In this equation, for each tuple (s,a,r,s′,d) in the batch B, we compute U different

forward passes through the Q-value function, and optimise the Q-value function in

order to best match Qtarget in each of the U forward passes. Computing just a single

forward and backward pass for any given tuple, as in Equation 2.4 corresponds to the

special case of U = 1, and is also a reasonable choice for this loss function. While

theoretically the choice of U should not change the convergence properties of the Q-

value function in isolation, we will later explore its effect on convergence given that the

Q-function is bootstrapped from by the policy network. With the addition of MCDO,

there is also some flexibility in how the Qtarget is computed. Crucially, the gradients

do not propagate through Qtarget , and only through the Q-value network. While in

the SAC algorithm Qtarget is originally computed as a moving average between the

current network and the target network, we will test periodically entirely copying the

parameters of the Q-value network to avoid the moving target problem [27]. We also

test computing the Qtarget in Equation 3.2 by averaging multiple forward passes as

in MCDO: 1
T ∑

T
t=1 Qtarget(s,a,ξ, ω̄t), or by a single forward pass through the network

with test variant of standard dropout, which involves the outputs of each layer being

scaled by 1
1−p in order to compensate for all hidden units being active when compared

to train time. With MCDO applied to the Q-value function, we also change the point

estimate Q value from Equation 2.6 in order to give the following policy loss:

Policy Loss =
1
|B| ∑s∈B

(mini=1,2(
1

W

W

∑
W=1

Q(s,a,ξ, ω̄t))−αlogπ(a|s))2 (3.3)

with the average of W forward passes through the Q-value function in order to

compute the monte-carlo estimate of the mean of the output distribution. Again, similar

to the Q-loss, we also have the choice to compute the Q-value with the test variant of

standard dropout. However, unlike in the Q-loss, the policy loss results in gradients

flowing backwards through the Q-value network in order to update the policy, so the

choice of W , or Qtest needs to be made not only based on the quality and stability of

the Q value estimate, but also the quality of the backward gradients, as this will also

affects the ability for the policy to improve.

Chapter 3. Methodology 16

3.3 Ensembling Q-value functions

One basic way of generating uncertainty estimates is to train multiple Q-value func-

tions in parallel like the baseline model in Algorithm 1. In this method, we take the

baseline Algorithm 1, but change line 13 from training one population Q-value func-

tion, to instead train N distinct Q-value functions in parallel. Where the policy boot-

straps from a Q estimate, we arbitrarily select any of the trained Q1
pop.,Q

2
pop., ...Q

N
pop.

to bootstrap from. Similarly, in line 5, where the Qind. network is initialised with

the weights of Qpop., we arbitrarily select any of the trained Qpop. networks to copy

weights from. The Q-value functions’ best estimate is computed as the mean of the N

Q-value function outputs 1
N ∑

N
n=1 Qn

pop.(s,a,ξ) corresponding to each of the networks,

and the uncertainty of the result is simply the standard deviation of the N outputs:√
∑

N
n=1(Qn

pop.− 1
N ∑

N
m=1 Qm

pop.(s,a,ξ))2/N.

The method of ensembling multiple neural networks method is well theoretically

justified, where given that training between each is uncorrelated, each neural network

is a true single sample of the posterior of weights. However, this method is compu-

tationally expensive, due to the requirement of training multiple Q-value networks.

Training a small number of networks results in unrepresentative samples from the pos-

terior and high variance or unreliable uncertainty estimates. In our tests, we have opted

to split the original batch of 256 samples into n equal parts, and feed each part to one

of the Qn
pop. networks for training. Although this likely affects the performance of any

given network, it makes training multiple networks more feasible due to the reduction

in computational time per network update.

3.4 Semi-probabilistic approach

In our final method, instead of making the critic in SAC algorithm inherently proba-

bilistic, we focus on a simplified problem which is sufficient for our purpose of design

exploration. We notice that the stochasticity of the Q-value function within the train-

ing of a single design is what results in instability during training. However, for the

exploration of design space, we are not interested in using uncertainty information that

spans state-action pairs, for a particular design, but more so uncertainty from design to

design in general. Therefore, we attempt to blend the original baseline model, which

has good convergence properties, with the SAC algorithm with a probabilistic critic

like we we describe in Section 3.2. Our main idea is to train the baseline model with

Chapter 3. Methodology 17

deterministic non-bayesian Q-network as described in [19], but to add on and train

an additional MCDO Q-network throughout the training procedure, which is only re-

sponsible for selecting designs between design evaluations. We call this Q-network

Q′.

Figure 3.1: Demonstration of the baseline model (left) and our idea (right). Red arrows denote
which networks boostrap from others, for example policy π bootstraps from a Q estimate.
Dotted lines denote copying model parameters from one model to another. In our new method,
since the policy does not bootstrap from the new probabilistic network Q′, it cannot directly
affect stability in training.

Figure 3.1 demonstrates how the addition of the probabilistic Q’, does not impact

training stability, as no model bootstraps from it. In the computational graph it does

not directly lead to the policy network. While this approach attempts to solve a simpler

problem than making the SAC algorithm probabilistic, such a treatment theoretically

captures all uncertainty information that is needed, and we therefore hypothesise that

this method could be workaround for the instability issues associated with making the

SAC algorithm a fully probabilistic algorithm.

While this method is more computationally expensive than the baseline model,

since we require the training of two Q-value networks, one which is used in estimating

across state-action, and one which is used across designs in our extended MDP defini-

tion, it is still cheaper than a full Q ensemble approach, which would require training

even more Q-value functions simulatenously. Furthermore, unlike ensembling Q-value

functions, this approach does not require using different batches across the two Q-value

networks, as they are not required to be uncorrelated like ensemble Q-value functions.

The full pseudocode for this algorithm is shown in Algorithm 3. There is only a

population variant of the Q′ network, since it is only used when selecting the following

design, and it gets trained in parallel with the other population networks as in line 13

of Algorithm 3. Unlike the original algorithm, sampling the start state replay buffer

in line 17 is required for both exploration and exploitation, since both are dependant

on uncertainty estimates. In the following section, we will explain how lines 18 to 25

of the algorithm use the uncertainty estimates from the Q′ network in the exploration-

exploitation strategy of designs.

Chapter 3. Methodology 18

3.5 Design exploration

After finishing training a particular design to convergence, the agent must decide on the

next design to train on and evaluate, with the overall goal of finding the most effective

design ξ∗. We take inspiration from the previous work [19] which used an exploration-

exploitation strategy, and hypothesise that a strategy which explicitly takes advantage

of model uncertainty estimates will allow us to reach better designs in fewer design

evaluations by avoiding exploring designs which are similar to previously attempted

ones, or designs which over of the posterior of model parameters is expected to perform

poorly. The use of uncertainty estimates allows us to instead focus valuable design

evaluations on promising designs which have high potential.

The key quantities which we use in our exploration-exploitation strategy are µQ

and σQ, which are the best point estimate of a design’s effectiveness and network

uncertainty of the effectiveness respectively. The point estimate µQ is computed as:

µQ(ξ) =
1
n

1
T ∑

s∈sbatch

i=T

∑
ω̄i∼Ω̄

Q′(s,πPop.(s,ξ),ξ, ω̄i) (3.4)

where T is the number of stochastic forward passes, and n is the number of sampled

start states from Replays0 . This point estimate is computed by evaluating the Q-value

for multiple start states, while σQ is the uncertainty for a design and is the standard

deviation across each stochastic forward pass, computed as follows:

σQ(ξ) =

√
∑

i=T
ω̄i∼Ω̄

(1
n ∑

j=n
s j∈sbatch

Q′(s j,a,ξ, ω̄i)−µQ(ξ))2

T
(3.5)

where in each forward pass we use an entire batch of start states to estimate the ex-

pected effectiveness of a design, 1
n ∑

j=n
s j∈sbatch

Q′(s j,a,ξ, ω̄i). The main strategy which

we attempted is shown in lines 18 to 25 of Algorithm 3, which shows the optimistic ex-

ploration strategy which finds the design with the highest potential: argmaxξ(µQ+σQ),

and the exploitation strategy which finds the design which the agent is most certain will

perform well, expressed as argmaxξ(µQ−σQ). These can be understood as a proba-

bilistic upper confidence bound of expected performance and probabilistic lower con-

fidence bound of expected performance, respectively. Practically, both strategies find

the optimal design according to the objective function using particle swarm optimisa-

tion [16], which fixes states selecte from the batch sbatch, and performs gradient ascent

Chapter 3. Methodology 19

in design space from 250 different initial random designs. The design that corresponds

to the maximum out of the 250 optimisations is chosen as the next design to be trained.

The exploration strategy helps explore new effective designs which are dissimi-

lar to what has previously been evaluated and therefore maximises knowledge, and

minimises the KL-divergence between the estimated and true distributions [7], hence

helping generalisation across design space. On the other hand, the exploitation strategy

can be seen as a pessimistic estimate, or a probabilistic lower bound of the expected

performance and helps the agent ensure that what it is certain will perform well, does

perform well, and therefore avoids the model from running into delusions. If the agent

is wrong about its certainty of the effectiveness of a design, evaluating the design in

the exploitation phase will force the Q′ to be updated to reflect this new knowledge.

Algorithm 4: Co-adaptation algorithm, with the addition of probabilistic Q’
for design exploration

1: Initialize replay buffers: ReplayPop.,ReplayInd.andReplays0
2: Initialize first design ξ

3: Initialise deterministic networks πpop. and Qpop.
4: Initialise Monte-Carlo Dropout network Q′
5: for i ∈ (1,2,...M) do
6: πind. = πpop.
7: Qind. = Qpop.
8: Initialise and empty ReplayInd.
9: while not finished optimising local policy do

10: Collect training examples (s0,a0,r1, ...sT ,rT) for design ξ and policy πind.
11: Add quadruples (si,ai,ri+1,si+1) to Replayind.
12: Add quintuples (si,ai,ri+1,si+1,ξ) to Replaypop.
13: Add start state s0 to Replays0
14: Train networks πInd. and QInd. with random batches from ReplayInd.
15: Train networks πPop.,QPop. and Q′ with random batches from ReplayPop.
16: end while
17: Sample batch of start states sbatch = (s1

0,s
2
0, ,s

n
0) from Replays0

18: if i is even then
19: Exploitation: Compute optimal design ξ with objective function

maxξ(µQ−σQ)

20: where µQ = 1
n

1
T ∑s∈sbatch ∑

i=T
ω̄i∼Ω̄

Q′(s,πPop.(s,ξ),ξ, ω̄i)

21: and σQ =
√

∑
i=T
ω̄i∼Ω̄

(1
n ∑

j=n
s j∈sbatch

Q′(s j,a,ξ, ω̄i)−µQ)2/T
22: else
23: Exploration: Compute optimal design ξ with objective function

maxξ(µQ +σQ)

24: where µQ = 1
n

1
T ∑s∈sbatch ∑

i=T
ω̄i∼Ω̄

Q′(s,πPop.(s,ξ),ξ, ω̄i)

25: and σQ =
√

∑
i=T
ω̄i∼Ω̄

(1
n ∑

j=n
s j∈sbatch

Q′(s j,a,ξ, ω̄i)−µQ)2/T
26: end if
27: end for

Chapter 4

Experiments

In this Chapter, we will first describe the experimental set-up which we used, and

then in Section 4.2 we present some analysis of the Q-value function as trained by

Luck et al. [19]. This will then lead into methods which explicitly model uncertainty

information, SAC algorithm (Section 4.3) with probabilistic critic, ensembling Q-value

functions (Section 4.4) and our novel merged approach, which uses both deterministic

and probabilistic Q-value functions (Section 4.5).

4.1 Experimental Setup

Figure 4.1: Cheetah agent
in the Half-Cheetah envi-
ronment. The agent learns
a policy that controls the
joint acceleration in order to
move horizontally.

Our experiments are completed in the PyBullet [6] Half-

Cheetah environment. As shown in Fig 4.1, this is a

simplified physics environment in which we learn the be-

haviour policy π for the stick-figure of a cheetah, which is

constrained to moving in a 2D plane perpendicular to the

flat floor. The state of the cheetah is described by a 17-

dimensional vector, in which the first 6 numbers describe

the position of the robot’s joints, the next 6 describe the

joint velocities and the final 5 describe the torso position.

In this project, where we extend the state-space to include the design parameters of

the robot ξ, the state-space includes an additional 6 dimensions (ξ1,ξ2, ...ξ6) which

describes the lengths of the robot’s 6 limbs. Each ξi is limited to the range [0.8,2.0],

where the final design is computed by (ξ1 ·0.29,ξ2 ·0.3,ξ3 ·0.188,ξ4 ·0.29,ξ5 ·0.3,ξ6 ·
0.188). The action that the robot takes is a 6-dimensional vector which gives the joint

acceleration values, mimicking the effect of muscle contraction in mammals. The goal

20

Chapter 4. Experiments 21

of this environment is to learn a policy π which allows the robot to effectively move

in the horizontal direction, and the reward is therefore defined at every timestep as the

amount moved in the right direction is r =max(∆x
10 ,0) where ∆x is the horizontal speed.

We keep the same Soft-Actor Critic set-up, as well as Q and policy architectures as

in [19]. All networks have 3 fully connected hidden layers, each with 200 hidden units

with ReLU activation applied to each layer. The policy also uses a tanh activation on

the final layer, in order to squash the outputs after the elementwise multiplication with

the sampled Gaussian. The output is a single unit for the Q-value functions, and a 6-D

action vector for the policy networks. The input size varies between the variants of

the policy and Q-value networks and are shown in Table 4.2. The population variants

have input sizes 6 greater than the individual networks, to account for the 6 design

parameters and the Q-value networks have input sizes 6 greater than policy, since they

take as input an additional 6-D action vector. We show the set of hyperparameters that

we used in the SAC algorithm in table 4.1.

Hyperparameter Value
Training iterations in pre-set designs 300
Training iterations in explored designs 100
Batch size in exploitation strategy 32
Batch size in training Q and policy 256
Steps per episode 1e3
Discount factor, γ 0.99
Copy weighting factor, τ 5e-3
Q-value function learning rate 3e-4
Policy learning rate 3e-4

Table 4.1: Set of hyperparameters used in our
experiments with the SAC algorithm [14].

Network Input size
Qpop. 29
Qind. 23
πpop. 23
πind. 17

Table 4.2: Input sizes of the 4
networks in this project. Each

network has 3 hidden layers with
200 units per hidden layer and ReLu

activation applied to each layer.

4.2 Variance over start-states for Q-value uncertainty

Before implementing a probabilistic neural network, we hypothesised that it may be

that the baseline model by Luck et al. [19] has already implicitely learned uncertainty

information, which could be extracted from the Q-value network by evaluating designs

over different start states s0. If this is the case, then this could be directly used to guide

a design exploration strategy without the use of probabilistic neural networks. If we

assume that there is some standard variance between the Q-values for different start

states, which remains below some threshold T for all designs ξ (see Equation 4.1),

then the Q-value network must be uncertain regarding designs ξ for which the model

Chapter 4. Experiments 22

estimates a variance greater than the threshold T .

Vs∼s0[Q(s,a∼ π(s,ξ),ξ)]< T ∀ ξ (4.1)

We motivate our hypothesis by the the fact that we expect - to a first order approxi-

mation - that only effectiveness, as measured by Es∼s0 [Q(s,a,ξ)], will vary with de-

sign, while the variance should remain similar. We generally expect favourable start

states - those which place the robot in a horizontal or forward leaning position (giv-

ing the robot a head start) to be associated with higher Q-values. On the other hand,

unfavourable start states - leaning backwards from the direction of motion to be as-

sociated with lower Q-values. However, in both cases we expect the magnitude of

variation to not be significantly dependant on design. If an agent finds itself in a very

undesirable start state s, it will likely achieve lower return Rt than the expected return

Es∼s0 [Q(s,a,ξ)], and the difference between the two ∆Q is mostly dependant on the

choice of unfavourable state s, not the design ξ as demonstrated in Figure 4.2.

Figure 4.2: Demonstration of our hy-
pothesis. The difference in Q values
∆Q between one start state and an-
other being primarily a function of the
two start states being compared, not
the design itself. The difference is the
same between the two start states for
Design A and B.

We tested our hypothesis by evaluating a

trained Q-function on two sets of designs, one

set being designs on which the Q-function has

been trained on, and another set which con-

tains previously unseen designs. Our hypothe-

sis would suggest that trained-on designs would

yield Q values with some typical spread that dif-

fers significantly to the spread for previously un-

seen designs. We compared the following set

of Q values for the two categories of designs

{ 1
T ∑

T
1 Q(s1

0,a ∼ πpop.(s),ξ), ..., 1
T ∑

T
1 Q(sN

0 ,a ∼
πpop.(s),ξ)}, which contains N elements, each corresponding to the evaluation of a

unique start state from the batch sbatch ∼ Replays0 (as shown in Algorithm 1). We used

a sample size of N = 500 and used the same batch of start states between the set of seen

and unseen designs. Since the policy is stochastic, for each start state, it is necessary to

average the Q values from T actions sampled from the learned population policy πpop.,

where we selected T = 50 to ensure low variance in the results. We used a Q-value

function which had been trained on 10 designs to ensure that it had not attained good

enough generalisation for all designs, that is, there is significant uncertainty variation

across design space, and it is still necessary to explore effectively.

Fig 4.3 shows the Q-values for two designs, corresponding to the set described

above. As our next step, we computed such sets for 130 seen and unseen designs, and

Chapter 4. Experiments 23

Figure 4.3:
Example of Q-value distribution across start states sampled from sbatch from an evaluated

design (top) and previously unseen design (bottom).

analysed the mean and standard deviations across different designs. Figure 6.1 in the

Appendix, shows the distribution of means of Q values across start states for a set of

unseen designs as well as seen designs. As expected, the two distributions of means

differ significantly, since this is dependant on the designs in the untrained and trained

sets. On the other hand, Figure 4.4 demonstrates that the standard deviation across start

states does not vary significantly between the set of seen and unseen designs, despite

the sets of designs being different. In support of our hypothesis, we observe that for

trained designs, most designs (90%) fall below a threshold of 1.1, while there are a

significant number of untrained designs which have a standard deviation greater than

1.1. Furthermore, the average standard deviation for untrained designs is higher, at

1.11 versus 0.79 for trained designs.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
St. dev. of Q values across start states (untrained designs)

0

5

10

15

20

25

30

Co
un

t

average

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
St. dev. of Q values across start states (trained designs)
0

5

10

15

20

25

30

Co
un

t

average

Figure 4.4:
Histograms of standard deviation across start states computed as√

1
n ∑

j=n
s j∈sbatch

(Q(s j,a,ξ)− 1
n ∑

i=n
si∈sbatch

Q(si,a,ξ))2/n for untrained (left) and trained (right)
designs. We use N = 500, over a sample size of 130 designs. The right figure demonstrate that

there are certain characteristic standard deviations which are generally to be expected (less
than 1.1), while the left figure shows presence of all standard deviations, due to the networks

poorly extrapolating for designs which it hasn’t been trained on.

Re-running this analysis with different random seeds, as well as different trained

Q-value functions produces the same results, suggesting that our result is statistically

significant, which is due to the high number of sampled start states (N = 500). We

observe that to a large extent our hypothesis holds true, that designs with standard

deviation across start states above 1.1 are significantly more likely to be an untested

Chapter 4. Experiments 24

design. This is likely because there is high model uncertainty associated with these

designs, and the model by chance outputs Q-values for different start-states which

are overly varied. However, multiple issues arise regarding the use of the standard

deviation as a heuristic for model uncertainty.

Firstly, while an exploration strategy that selects designs with the largest standard

deviation would mostly select new designs, it would avoid selecting 55% of the new

designs which happen to have have lower standard deviations than 1.1. Secondly, we

see that there are outliers that do not conform to our hypothesis, in this case there

are seen designs with standard deviations of ∼ 1.8 across start states which would be

selected early in the exploration strategy, effectively wasting an evaluation. This is

due to our assumption that the variance of Q-values across designs depends only on

start states, and not on design, while in reality some designs may be particularly well

or poorly suited to certain start-states. Finally, it is also not clear that designs which

have higher standard deviations are ones which are associated with the most model

uncertainty. Therefore, such a heuristic makes for a brittle and flawed strategy which

would not optimise well for gaining the most knowledge in the fewest iterations. For

the remainder of the project, we focus our efforts instead on building a probabilistic Q

function which explicitly models uncertainty in order to explore the design space.

4.3 SAC algorithm with probabilistic critic

We altered the Q-value function to allow for a probabilistic interpretation of the ouputs,

within the Soft-Actor Critic [14] algorithm. This involved adding dropout to each of

the 3 hidden layers of the Q-network. We altered the Q-loss to the one shown in

Equation 3.2 and policy loss to Equation 3.3, to account for the stochasticity of the

outputs. We empirically found that T = 10 forward passes through the target network,

U = 10 updates to the Q-value network, and W = 1 Q evaluation in the policy loss

worked effectively. Our first goal is to achieve stable learning and similarly effective

policies to Luck et al. [19], which we will now refer to as the baseline model.

4.3.1 Dropout rate variation

As our first experiment, we varied the dropout rate p in the Q-value network and mea-

sured cumulative reward attained by the trained policy. Allowing for exploration of the

design space adds a lot of variation to the results and thus makes it difficult to investi-

Chapter 4. Experiments 25

gate the stability of learning, so we instead compared the MCDO variant of the SAC

algorithm to the baseline while training on 5 pre-selected designs. The same 5 designs

were chosen for both algorithms. This was set to be part of a single run, so that we rely

on the πpop. network to generalise in designs.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Designs

100

150

200

250

300

350

400

450

Cu
m

. E
pi

so
di

c
Re

wa
rd

p=0.01
p=0.1
p=0.2
p=0.3
p=0.4
Baseline, no dropout (p=0)

Figure 4.5: Cumulative reward attained by
models with varying dropout rate p. Increasing
the dropout rate decreases stability of the algo-
rithm and therefore reduces performance. Stan-
dard deviation is shown across 5 runs. p = 0
replicates the original baseline results.

Figure 4.5 shows the cumulative

episodic rewards attained by agents with

different dropout rates, with shaded re-

gions showing the standard deviation

across 5 runs. Firstly, we notice that the

baseline with no dropout is the most ef-

fective method across all of the 5 tested

designs and results in very little varia-

tion across the runs. On the other hand,

dropout rates ranging between 0.1 and

0.4 give successively worse and worse

performance and have higher variance between runs. We see that a very small dropout

rate of p = 0.01, which on average shuts off only 2 out of 200 hidden units per hid-

den layer, results very similar performance to the baseline which does not use dropout,

showing that the reduction in performance is continuous with respect to p. While we

are comparing the effectiveness of the learned policy and not the Q-value function,

the Q-value function is crucial in the training process as the policy boostraps from the

Q-value function through backpropagation in the policy loss.

4.3.1.1 Loss function analysis

Figure 4.6 shows some of the typical Q-loss and policy loss plots for various dropout

rates. The x-axis denotes which design is being trained on, with every design being

trained for 30,000 iterations. For the p = 0.1 experiment, we see similar Q and policy

loss to the baseline, except during the training of the 3rd design, where there is a di-

vergence in the both losses. This suggests that at some point during training, some Q

estimates became very far from the Q-target, resulting in large updates to the Q-value

network, which is naturally followed by large updates to the target Q-value network.

This begins a cycle of diverging Q values. This divergence results in astronomically

high Q-loss, and the policy loss plot shows the corresponding very large and negative

loss due to the selection of actions which result in unreasonably high Q estimates. Such

high Q estimates are not representative of actual performance, as the policy bootstraps

Chapter 4. Experiments 26

from the Q-function and therefore assumes that the Q-values are correct. The presence

of weight decay in our network is likely what eventually stops the model from diverg-

ing too far away, however by this point it is likely that much of what the network has

learned has been forgotten due to large variations in the weights, and the agent begins

learning from scratch. Such divergences don’t occur in the baseline model, pointing

towards dropout’s stochasticity making learning unstable. For higher dropout rates of

p = 0.3,0.4 we see a different problem emerge, whereby the Q-loss becomes much

smaller than the baseline’s throughout all of training, meaning the Q-value network al-

ways matches the target network’s outputs. This points towards an early convergence

problem in which the Q-value network and target-Q-value network are very similar,

therefore resulting in no updates to either network. In the policy loss plots we see

that the higher the dropout rate, generally the higher the loss that is achieved. Apart

from diverging cases, we see that the policy loss is generally stable, so the agent has

converged to sub-optimal policies. We expect that with stable training, baseline per-

formance should be achievable with a probabilistic Q-value function.

Figure 4.6:
Plots of Q-loss and Policy loss while training on 5 pre-determined designs, with

varying dropout rates p. These plots give us some insight into some of the
convergence problems associated with using a stochastic Q-value function.

These loss plots as well as the strong variation between runs suggest that the intro-

duction of dropout has caused instability in the learning process of the Q-value func-

tion, as well as potentially the policy. Even the addition of what is generally considered

a very low dropout rate of 0.1 [4] results in significantly lower performance. While

MCDO has been shown to result in stable learning in the literature [9], the difficulty

of our method is that we are integrating dropout with the SAC algorithm, an algorithm

which has three components: Q-value network, Q-target network, and policy network,

which bootstrap from each other. The Q-loss is computed with the Q-target, a network

which has its parameters move in the direction of the Q-value network, thus effectively

the Q-value function bootstraps from itself and relies on updates being stable. How-

Chapter 4. Experiments 27

ever, with a stochastic Q-value function, this can prevent the Q-value network itself

from converging as normal. Similarly, the policy update aims to update the policy in

the gradient direction that results in an action with the highest Q-value. If the policy

updates are heavily biased by the dropout mask in a particular forward pass, this can

result in a policy with subpar performance. In the following sections, we will describe

our attempts to resolve the instability to retain the high performance of the baseline,

while also having access to model uncertainty.

4.3.2 Improving stability through Q-loss and Q-target variation

Knowing that the stochasticity of the Q-function is what is causing the instability, it is

imperative alter the Q-loss function in an attempt to stabilise training of the Q-value

function. The Q-loss function which we have used up until now is shown in Equation

3.2. The parameter U in the Q-loss function determines the number of dropped out

forward passes that are done through the Q-value network. Having too few forward

passes results in too few weights in the network being trained to a datapoint, while

using too many forward passes makes the network overfit to a single datapoint by doing

multiple gradient steps to minimise its loss. Using too few forward passes U can result

in more noisy updates, which is acceptable in the supervised learning setting, however,

in our case since the policy bootstraps from the Q-value function at every iteration, it

is important that the Q-value function remains stable from iteration to iteration.

The Q-targets that are used in training the Q-value function are also a key factor

in the Q-loss which has the potential to destabilise training. Up until now, the target

Q-value network was set up to update in the same way as in the baseline [19], which

is to update at every iteration with τ = 0.005, as discussed in Section 2.4.3. With the

addition of MCDO to the Q-value network, it is significantly more likely for individual

gradient updates to the Q-value function to increase the overall loss of the Q-value

function with respect to the target, which is due to bias introduced by sampling only

some of the possible dropout masks ω̄i. A poor update, which on average increases

loss across all forward passes ω̄i, may also result in a poor policy update, as well as

a poor Q-target update which makes the following Q update also more unstable. We

only expect that MCDO will converge across multiple forward passes, so long as there

is a stable target, for example, in supervised learning where labels are stationary [9].

The moving target problem [28] is a typical problem in the RL setting, although

in the case of a stochastic Q-value function like ours, it may be that the target needs

Chapter 4. Experiments 28

to be even more slow-moving than the current τ = 0.005 configuration. We attempt to

improve on the stability by updating the Q-target network every N iterations by entirely

copying the weights from the Q-value network (equivalent to τ = 1). Locally, between

target-Q-value network updates the target network is entirely stationary, giving the Q-

value function a better chance to improve before the target is updated. Finally, we test

the targets being produced by the target network as set in inference mode in standard

dropout as originally proposed by [26], which results in no stochasticity in the output

of the network, with the goal of achieving a stable target. For these experiments, we

use p= 0.1 since this is considered to be a low dropout rate [4], which sets a low bound

for required stability within our algorithm to achieve uncertainty estimates.

U=1 U=5 U=10
 (Control)

U=20
350

300

250

200

150

100

50

 R
 (A

ch
ie

ve
d

Re
wa

rd
 -

Ba
se

lin
e

re
wa

rd
)

=0.005
 N=1

 (Control)

Test
 Dropout

=1
 N=50

=1
 N=100

=1
 N=200

=1
 N=400

350

300

250

200

150

100

50

 R
 (A

ch
ie

ve
d

Re
wa

rd
 -

Ba
se

lin
e

re
wa

rd
)

Figure 4.7:
Decrease in attained reward per design when compared to baseline, across 5 runs

(each with 5 designs). We see that all of our dropout variations are negative, meaning
they average lower performance than baseline. On the left, we see variations to U ,
number of forward passes in the Q-loss, and on the right, we see variations to the
target-Q-value network. U = 5 and a slow moving target τ = 1,N = 200 achieves

highest performance as well as least variance, while also entirely avoiding
divergences, demonstrating improvements in stability of learning.

4.3.2.1 Analysis of Q-loss variation

Figure 4.7 shows the performance across 25 designs for different number of Q evalu-

ations compared to the baseline model. We see that 1 evaluation in the loss function

appears to do significantly worse than 5, 10 and 20 evaluations, which is as expected

due a significant number of weights not being updated through the network, approxi-

mately (1− p)2, or 81% of all model parameters. On the other hand, it appears that U

from 5 up to 20 evaluations are similarly effective, with U = 5 leading to the best per-

forming policies, with the highest average return, most closely matching the baseline,

Chapter 4. Experiments 29

as well as the lowest variance, suggesting that this setting has incrementally stabilised

training. U > 5 likely performs worse due to the larger number of performed gradient

steps. The Q and policy losses in Appendix Figure 6.2 don’t significantly vary between

U = 5,10 and 20.

4.3.2.2 Anaylsis of Q-target variations

Changes to the way in which the Q-target is computed are shown in Figure 4.7 (right),

with absolute performance for each design is shown in Appendix Figure 6.4. We see

that using the test/inference mode of dropout as originally proposed by [26] performs

very poorly. Although this method is often used in practice and typically works ef-

fectively, we note that there is no theoretical justification for the different use of the

network at test time [9]. In our case where the target network is updated as a weighted

average of itself and the Q-value network, we observe that dropout in test mode breaks

down and results in very poor performance. On the other hand, we observe that copy-

ing the network parameters from the Q to target Q-value network (τ = 1) instead of

using a weighted average, appears to significantly improve the mean reward, while

also reducing the variance, which again suggests that the training is becoming more

stable. The most effective learned policy resulted from copying the network param-

eters every 200 steps. The stabilisation of the Q-value function results in the policy

also attaining more stable updates during the bootstrap. While making the Q-target

more slowly moving improves the stability, this comes at the cost of requiring more

iterations to converge to a similarly effective policies, due to slower Q convergence,

hence the worse performance attained by N = 400. The attained losses are shown in

Appendix Figure 6.7, and demonstrate that our changes have removed divergences.

Appendix Figure 6.4 shows our attempts to stabilise the target further by using 50 for-

ward passes through the target network. We see no difference in the results, suggesting

that 10 forward passes is a large enough sample size to produce a stable target.

Based on these results, it appears that some of our changes have incrementally

stabilized training, and we have achieved more consistent and higher results with a

similar set-up. However, we note that even with these changes the final performance is

still significantly lower than the baseline model, on average, achieving approximately

100 lower reward per design. In the next experiments, we continue with U = 5 forward

passes in the Q-loss function, and a slow moving Q-target updating every 200 steps.

Chapter 4. Experiments 30

4.3.3 Alternative stabilisation strategies

In Section 4.3.2, we discovered that through some changes to the Qloss function, it is

possible to achieve more stable learning, avoid divergences, and therefore learn more

effective policies. In this section, we will try experiments to stabilise training further.

Increasing iterations and removing dropout from the final layer: We attempt in-

creasing the number of training iterations on the 5 initial designs, since it is possible

that a stochastic critic in the SAC algorithm simply needs more training time before

convergence. Secondly we test stabilising the SAC algorithm further by removing

dropout from the final hidden layer of the Q-value function. While this makes MCDO

a worse approximation to the Deep Gaussian process [9], it may give us some sta-

bility at the cost of less accurate uncertainty estimates. In Appendix Figure 6.5, we

see that increasing the iterations gives a significant improvement up to 600 iterations

(compared to 300 in the baseline). In Appendix Figure 6.6 we show the effect of re-

moving dropout from the final layer. We see significantly higher performance overall,

although surprisingly, we still achieve high variance between runs, and pay the price

of getting inaccurate uncertainty estimates. We continue our future experiments with

600 iterations of training, and dropout applied to all layers.

Policy Loss variations: Similarly to the Q-loss, in the policy loss (Equation 3.3), we

have the choice to vary W , the number of dropout forward passes through the Q-value

function. However, it is important to note that unlike the Q-loss, where we train the Q-

value function such that each of the forward passes matches the target, the policy loss

instead attempts to maximise the average Q value across the W forward passes, based

on the selected action. While using more W forward passes improves the accuracy

of the Q estimate, as it is equivalent to taking more samples of the posterior, this can

introduce an optimisation problem whereby some of the Q evaluations result in domi-

nant backward gradients, which may have the effect of diminishing the gradients from

other forward passes. Paradoxically, using more forward passes can therefore result in

more bias from individual sampled dropout masks ω̄ ∼ Ω̄, rather than smoothing out

any bias introduced by any particular ω̄i. We will investigate the effect of this param-

eter, as well as using the test mode of dropout in the Q-value function within only the

policy loss. While in section 4.3.2 we found that this did not work effectively for the

target Q-value network due to the way it is updated, in the policy loss the test mode of

Chapter 4. Experiments 31

dropout is applied directly to the Q-value function. While backpropagating gradients

through dropout in test mode has not been described in the literature (hence the name

test), it is particularly appealing to test in the policy loss for two reasons. Firstly, it

may reduce bias introduced by the selection of any particular mask ω̄i, and secondly it

avoids using multiple forward passes through the Q-value function, and hence avoids

the problem of dominating gradients.

1 2 3 4 5
Designs

100

150

200

250

300

350

400

450

Cu
m

. E
pi

so
di

c
Re

wa
rd

W=1 (control)
W = 5
W = 10
Test Dropout
Baseline, no dropout (p=0)

Figure 4.8: Variations of the number of
forward passes through the policy loss
(W), as well as dropout in test mode in the
policy loss. W = 5,10, and dropout in test
mode all achieve similarly high results.

In Figure 4.8, we see the effects of these

variations, with more detailed results shown

in in Appendix Figure 6.8. We observe that

there is no significant difference between any

of these settings. It appears that W = 5,10, as

well dropout in test mode achieve similarly

high results, although we note that there is

still significant variation between runs. The

small changes to the results from varying the

policy loss suggests that the policy updates

are not a limiting factor, leaving instability in the Q updates as the major bottleneck,

preventing us from achieving higher and more stable performance. Despite our at-

tempts to stabilise training, the performance is still consistently lower than what is

achieved by the baseline, by ∼ 50 reward per design. In the following sections, we ex-

plore other methods for achieving uncertainty estimates while keeping training stable.

4.4 Uncertainty estimates from ensembling Q functions

In this section, we take a detour from our previous approach making the critic in the

SAC algorithm probabilistic, and instead focus on a simpler method of acquiring un-

certainty estimates. We alter the baseline algorithm to train multiple Q-value functions

in parallel, with each model acting as a sample from the posterior. Unlike our previous

approach which made the critic a probabilistic network, with this method we can guar-

antee convergence due to the training occuring exactly the same as in the baseline, only

with additional Q-value networks. The exploration-exploitation strategy alternates be-

tween argmaxξ(µQ +σQ) and argmaxξ(µQ−σQ), as described in Section 3.5.

We attempt an ensemble of 3 Q-value networks, as shown in Figure 4.9. We see

that the exploration is more effective in the ensemble model than the baseline in early

designs, with an average cumulative reward of 450 achieved by design 8 which is only

Chapter 4. Experiments 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Designs

200

250

300

350

400

450

500

Cu
m

. E
pi

so
di

c
Re

wa
rd

Ensemble of 3 Q functions - Exploitation
Ensemble of 3 Q functions - Exploration
Baseline, no dropout (p=0) - Exploitation
Baseline, no dropout (p=0) - Exploration

Figure 4.9: The baseline model refers to work by Luck et al. [19], which uses an exploration
strategy that selects designs at random, and an exploitation strategy that selects the design
with the highest expected reward over start states: 1

n ∑
sn

0
s=s1

0
Q(s,a = πpop(s,ξ),ξ). Our model

(red) relies on uncertainty estimates attained by ensembling multiple Q-value functions, with
an optimistic exploration strategy that selects argmaxξ(µQ +σQ) and exploitation strategy that
selects argmaxξ(µQ−σQ).

reached by the baseline by design 12. However, we see that the ensemble method

quickly levels off in cumulative reward and is matched by the baseline, albeit with

less variance. While this is a positive result, we will later learn in Section 4.5 that

significantly higher reward is attainable in fewer steps, with higher quality uncertainty

estimates. In Section 4.5 we will also further describe the baseline results in a more in-

depth comparison of results. Since the ensemble method is well theoretically justified,

we conclude that its inability to achieve better design-policy pairs is down to the high

variance associated with computing the mean or standard deviation of 3 samples, as

well as the required reduction in batch size. Since the variance in uncertainty estimates

scales with 1√
n , where n is the number of ensembled Q-value functions, it is infeasi-

ble to train enough functions to attain stable uncertainty estimates. In the following

section we will instead attempt a new method in which we aim to generate uncertainty

estimates in a way that is computationally cheaper, with lower variance.

4.5 Semi-probabilistic approach

Having attempted multiple different strategies to stabilise training probabilistic critic

in the SAC algorithm, we realise that the problem is very challenging, and there is no

simple solution that will immediately make the SAC algorithm into a stable certainty

aware algorithm for exploration. Furthermore, while our attempts still resulted in rea-

sonably effective policies, our goal is to lose as little performance as possible, in return

Chapter 4. Experiments 33

for a design certainty-aware model. To address these problems, as well as the com-

putational expense of training an ensemble of Q-value functions like in Section 4.4,

we use Algorithm 3 to achieve stable learning like in the baseline model, with quality

uncertainty estimates using MCDO applied to the Q′ network. In this method we only

use uncertainty information in regard to selecting the next design, ensuring stability

during the training process.

In the following experiment, we trained the Q′ probabilistic Q-value function as

described, and used it during the design selection process. We use an exploration-

exploitation strategy where exploration selects the design with the highest optimistic

Q-value estimate across start states: argmaxξ(µQ+σQ) where µQ, σQ are the network’s

best point estimate and uncertainty respectively, as described in Section 3.5, and are

computed across multiple stochastic passes through Q′. The goal of the exploration

phase is to evaluate designs which have high potential. In most cases, the agent will

learn that the design was less optimal than the optimistic estimate suggested, but this

strategy helps to ensure a wide variety of the state-space is explored, particularly areas

that show promise based on the Q’ function generalisation. The exploitation phase

selects a design according to the following objective function: argmaxξ(µQ−σQ) and

ensures that the designs which the agent is certain are effective, are as effective as

expected. This also gives the agent a chance to realise if it is overconfident, in which

case it will continue to explore more of the design space in the next exploit phase.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Designs

200

250

300

350

400

450

500

550

Cu
m

. E
pi

so
di

c
Re

wa
rd

Q', (Q-prime), p=0.2 - Exploitation
Q', (Q-prime), p=0.2 - Exploration
Q', (Q-prime), p=0 - Exploitation
Q', (Q-prime), p=0 - Exploration
Baseline, no dropout (p=0) - Exploitation
Baseline, no dropout (p=0) - Exploration

Figure 4.10: Lines in green (our novel approach) achieves the highest cumulative reward in
the fewest design evaluations, when compared to using a dropout rate of 0 (purple) and the
baseline model (blue). Appendix Figure 6.9 shows the Q′ (q-prime) compared to baseline, up
to the 50th design evaluation, and shows that our model converges to a higher reward than what
is attained by the baseline model. All models are compared across 5 runs.

Q′ with p = 0.2: In Figure 4.10 we see the cumulative episodic reward attained by

three different algorithms. The first 5 designs are the same 5 preset designs that we

Chapter 4. Experiments 34

have used thus far for testing, but after these designs each algorithm begins its own

exploration/exploitation strategy, with dotted lines denoting the exploration and solid

lines exploitation. We see the baseline model’s exploitation (in solid blue) gradually

increase until 450 reward, after which point the performance largely saturates. The

dotted blue line, its exploration strategy performs much worse on average because it

selects designs from the design space entirely at random, which typically results in

ineffective designs. In green, we see our novel proposed Q′ model, which uses un-

certainty estimates from MCDO in the exploration/exploitation , with p = 0.2. As

expected, the exploration (dotted green line) performs much better than the baseline’s

exploration, because the agent purposely selects designs with high potential. This re-

sults in gaining more relevant knowledge at a much more rapid rate, resulting better

designs even very early on before the 10th design evaluation. Our method not only

explores more effectively, resulting in design-policy pairs that achieve higher return

earlier on, but manages to achieve a reward of 510 by the 14th design evaluation,

which is not surpassed by the baseline model, even in 50 design evaluations, as shown

in Appendix Figure 6.9. In Appendix Figure 6.9, we see our Q′ method continue to

increase performance even after 50 design evaluations, at which point it reaches reward

of 550. Our approach also has low variance across runs, showing that the uncertainty

estimates are reliable enough to repeatedly use as a heuristic for exploration. In Ap-

pendix Figure 6.10, we see that our method also performs better than the baseline in

the Walker2 environment, demonstrating the universality of our method, although we

note that the difference in performance between the baseline and our novel approach

is smaller likely due to the design space being only 5-D, instead of 6-D, making it

significantly easier for the baseline’s random exploration strategy.

Control experiment with p = 0: In purple we show another control experiment,

which uses the same Q′ model set-up, but has a dropout rate of p = 0. With p = 0, the

model is certainty-unaware, and results in σQ = 0 for all designs. With this in mind, the

exploration and exploitation strategy both maximise the same quantity argmaxξ(µQ),

which is equivalent to the (blue) baseline model running a simple exploitation-only

strategy. While this model sometimes achieves very high reward, almost reaching that

reached by the Q′ model, it does so very rarely and exhibits very high variance across

runs. This likely occurs because without a true exploration strategy, the knowledge that

is gained by the agent is highly dependant on the design trajectory, and the agent com-

monly ends up with knowledge gaps. The agent, unaware of its certainty will often be-

Chapter 4. Experiments 35

lieve it is repeatedly selecting the best design, but unknowingly is missing out on many

designs which are in actuality more effective. Since the model with p = 0 performs

significantly worse to the model with p = 0.2, we conclude that it is the uncertainty

estimates attained by Monte-Carlo Dropout that allows the agent to effectively explore

and quickly converge to good design-policy pairs. In the following sections we will

further analyse our results and gain more insight about these uncertainty estimates.

4.5.1 Uncertainty and design selection analysis

0.25 0.00 0.25 0.50 0.75 1.00 1.25
1st PC

0.4

0.2

0.0

0.2

0.4

0.6

0.8

2n
d

PC

11

22

33

44

55

66

7
89

10

Predefined design
Exploration phase
Exploitation phase

9.44

10.88

12.32

13.76

15.20

16.64

18.08

19.52

20.96

22.40

Figure 4.11:
Expected Q value computed by the trained Q′ network as the mean over 10 forward

passes across 256 start states as follows 1
10

1
256 ∑

i=10
ω̄i∼Ω̄

∑
j=256
s j∼s0 Q(s j,a,ξ, ω̄i). This

quantity is a measure of the expected effectiveness of the design, also called µQ and is
used in both the exploration and exploitation phases to compute optimistic and

pessimistic estimates.

In Figure 4.11, we get some insight into what the Q-value function looks like. This

figure shows a contour plot of the Q values on a 2-D plane in the 6-D design space,

which is the plane that best best fits the 30 selected designs by the Q′ model with p =

0.2. The Q-value shown is the expected Q-value based on 10 forward passes across 256

start states for designs that fall on the plane. Figure 4.12 instead shows the uncertainty

estimate, computed as the standard deviation for the same Q estimates on the same

plane. In both plots, blue denotes low values and red denotes high values. The first 5

black arrows show the transition to preset designs which are not part of the exploration-

exploitation strategy, which are intended to give the agent a head-start and give the Q-

value functions some level of generalisation. Yellow arrows show exploitation steps,

and cyan arrows show exploration. We see that the algorithm has largely narrowed

Chapter 4. Experiments 36

down its preferred design within the first 12 steps, which is consistent with Figure

4.10 and Appendix Figure 6.9, beyond which the reward improves very slowly. It’s

important to note that our visualisation does not fully show the design trajectory, since

the real design traversal is in 6 dimensions, outside of the plotted plane. As expected,

we see the exploration strategy tend to make bigger, bolder steps, for example from

design 7 to 8, 10 to 11, which is where the agent at that time saw high potential based

on its optimistic view of the Q′ function. On the other hand, the exploitation steps

(yellow) tend to be more incremental changes to the design after large design changes,

for example, 7 to 8, 9 to 10, due to the agent’s pessimistic view.

0.25 0.00 0.25 0.50 0.75 1.00 1.25
1st PC

0.4

0.2

0.0

0.2

0.4

0.6

0.8

2n
d

PC

11

22

33

44

55

66

7
89

10

Predefined design
Exploration phase
Exploitation phase

0.630

0.735

0.840

0.945

1.050

1.155

1.260

1.365

1.470

1.575

Figure 4.12:
Estimated uncertainty by Monte-Carlo Dropout, known as σQ, computed by the

trained Q′ network as the standard deviation over 10 forward passes across 256 start

states, as follows:
√

∑
i=10
ω̄i∼ω̄(

1
256 ∑

j=256
s j∼s0 Q(s j,a,ξ, ω̄i)−µQ)/10. It describes the model

unceratainty for a design based on an approximation of the posterior. σQ is added to
or subtracted from µQ in order to give the optimistic and pessimistic design

effectiveness estimates respectively.

In Figure 4.12, we see that in general the uncertainty is the lowest for regions which

are near the explored designs. The overall range of uncertainty in the chosen 2-D plane

is between 0.45 and 1.35. While we may expect close to 0 uncertainty in the bottom

left region where many designs are evaluated, all evaluated designs do not directly lie

on the 2D plane, and therefore the Q-value function is relying on some level of gener-

alisation to evaluate points on the plane, leading to non-negligible uncertainty. As the

agent converges to its preferred design in the bottom left region (after design 10), we

see that there are regions with high uncertainty (in red) above and below it. However,

looking at the same regions in Figure 4.11, we see that the expected Q value there is

Chapter 4. Experiments 37

significantly lower. As a result of this, the agent avoids these designs, since even an op-

timistic estimate is lower than what the agent is currently exploring. This leads to the

agent’s convergence in design. To further verify that the uncertainty estimates behave

as expected, we plot the difference between uncertainty estimates for a design before

and after training on each of the designs across 3 runs in Figure 4.13. As expected,

we see that the vast majority of the time (85%) the uncertainty for a design decreases

after training and we conclude that the uncertainty estimates work as expected. In

some cases the uncertainty increases, which could be due to the design having com-

pletely different effectiveness to its expected value µQ, or equivalently contradicting

information from generalisation across design space.

0.1 0.0 0.1 0.2 0.3
 Q, Design Uncertainty before training - after training

0

5

10

15

20

Co
un

t

average = 0.104

Figure 4.13: Difference in estimated uncer-
tainty for a design σQ before and after train-
ing on the design. The bias for positive values
shows that uncertainty decreases after training.

We show each of the visited designs

from Figure 4.11 and 4.12 using the Q′

method in Figure 4.14. The even de-

signs are designs chosen by the exploita-

tion strategy, while the odd designs are

ones chosen by the exploration strategy.

As consistent with the asymptoting of re-

ward in Figure 4.10, as well as the con-

vergence in Figure 4.11, we see that most

of the exploration and thus improvements

occur in the first 20 designs. Most de-

signs after 20 appear very similar. Typically, we see the odd numbered designs to be

quite novel and unique design choices, for example design 19 with long hind legs. Even

number designs generally appear similar to ones that have previously been evaluated

(8 is similar to 7, 10 is similar to 9).

Figure 4.14: Designs selected during the exploration/exploitation strategy, after the initial 5
pre-set designs are trained on. These designs correspond to the ones selected in Figure 4.11
and 4.12. Even numbered designs are ones selected by the exploitation strategy, while odd
numbered designs are ones selected by the exploration strategy.

Chapter 5

Conclusions

5.1 Summary

The main hypothesis that has motivated this project can be summarised as follows:

Is it possible to improve on the design exploration-exploitation strategy pre-

sented by Luck et al. [19] using neural network uncertainty estimates, in a way

to achieve more data-efficient co-adaptation of design and controller?

We began to address this hypothesis by performing some analysis on the outputs of

the Q-value function as trained in [19], in order to assess whether the existing model

had implicitely learned uncertainty information which could be extracted for the pur-

pose of an exploration strategy. While we found some correlations between the varia-

tion in Q-values across start-states and novelty of a design, we found it to be unreliable

and brittle for the purposes of design exploration.

In our next method, we attempted to explicitely model uncertainty estimates by

making the critic in the SAC algorithm [14] probabilistic with the use of Monte-Carlo

Dropout in the Q-value network, and by altering the loss functions of the algorithm.

However, we found that the addition of stochasticity to the output of the Q-value

network resulted in instabilities during the training process and convergence to sub-

optimal policies. We attempted multiple strategies to stabilise training, such as by

using a more slowly moving Q-target network, tuning the correct number of stochastic

forward passes in our loss functions and removing dropout from the final hidden layer.

Some of our changes showed signs of stabilisation, achieving lower variance results

and increasing performance, while also fixing our diverging Q-value function prob-

lem. However, despite the improvements to the stability, our algorithm still converged

38

Chapter 5. Conclusions 39

to significantly worse performing policies, by approximately 50 reward per design,

which is a price not worth paying to generate uncertainty estimates.

As our next step, we trained an ensemble of Q-value functions as an approximation

of sampling the posterior, and used the agreement between Q-value functions to model

output certainty. While this method showed some positive results, demonstrating that

exploration in design space can be done in a slightly more data-efficient manner, the

computational expense of the method as well as the high variance in the uncertainty

estimates ultimately limited us from scaling our algorithm and achieving even higher

cumulative reward from better design-controller pairs.

To address these problems with training an ensemble of Q-value functions, as well

as the stability issues which we struggled with when training the SAC algorithm with a

probabilistic critic, we came up with a novel semi-probabilistic approach which trains

a probabilistic Q-value function which is used in design exploration, in parallel with

the original deterministic baseline as in [19], allowing us to keep the benefits of both

the ensemble and probabilistic critic approaches. With this approach, we achieved

significantly more data-efficient exploration of design space than the baseline model,

while also finding highly effective designs in few design evaluations (less than 18)

which were not matched by the baseline model even in over 50 designs. We achieved

a cumulative reward of 555 in the Half-Cheetah environment, while still increasing

after the 50th design evaluation, while the baseline converged to 505. Furthermore, we

have analysed some design trajectories, and shown that the agent’s design decisions are

reasonable and are an efficient method to rapidly converge to effective designs. Finally,

we analysed the properties of the uncertainty estimates, and confirmed that they have

properties of epistemic uncertainty, and are reasonable grounds for design exploration.

Our data-efficient design exploration shows great promise for deploying and co-

adapting morphology and controller in robots in real-life, with morphology changes

that are well motivated by a neural network’s uncertainty estimates, due to the fewer

morphologies that would need to be produced. This would effectively bring the RL

loop out of simulation and into the real world, allowing us to entirely avoid the simulation-

to-reality gap.

5.2 Future Work

While we have addressed the main hypothesis behind this project, there is more work

to be done to further improve our method.

Chapter 5. Conclusions 40

One such example is the implementation of Concrete Dropout [10] within the Q′

network. Concrete dropout is a relaxation of the dropout, and is designed for use with

Monte-Carlo Dropout, such that the dropout rate p can be tuned during training through

an extra term in the loss function. Apart from this saving time on hyperparamter tuning,

such a set-up allows to seamlessly tune separate dropout rates for each layer, something

which we have not attempted in this project. Doing this in an automatic way has the

potential to increase the accuracy of the uncertainty estimates and therefore further

improve on the exploration strategy.

Another interesting direction to further improve on the data efficiency of the

exploitation-exploration strategy, is to attempt only exploring, without an exploitation

strategy. In the baseline model by Luck et al. [19], exploitation is necessary to en-

sure that the agent prevents delusions, whereby it believes a design is highly effective

when in reality it is not. Testing such a design in the exploitation phase challenges the

agent’s beliefs and updates its knowledge. However, with the addition of uncertainty

estimates, this is theoretically unnecessary, since designs which the agent is wrong

about, should also be tied to high uncertainty, and therefore would be selected by an

exploration strategy regardless. This approach could prevent wasting design evalua-

tions when the agent is certain of a design in the exploitation phase. Such a set-up,

with only exploration lends itself well to how exploration is presented in the Free En-

ergy Principle [7], in which exploration is the maximisation of knowledge. We already

have some preliminary results in Appendix Figure 6.11 which demonstrates that an

agent which selects two exploration steps for every one exploitation step, performs

similarly well, or even slightly outperforms our previous best model, which alternates

between one exploration and one exploitation step, suggesting that an exploration only

approach is a promising direction.

Finally, testing such a system on real robots, where every successive robot is printed

and trained in the real world, would be of scientific interest, and would also demon-

strate what shortfalls our approach has when applied outside of simulations. It would

also demonstrate how reliable uncertainty estimates can be in another setting setting,

given our current set-up, and whether the data-efficiency of our approach carries over

to the real world.

Chapter 6

Appendix

0 2 4 6 8 10
Mean of Q values across start states (trained designs)
0

2

4

6

8

10

Co
un

t

average

0 1 2 3 4 5 6 7
Mean of Q values across start states (untrained designs)
0

2

4

6

8

10

Co
un

t

average

Figure 6.1:
Histogram of mean of Q-values across start states, computed as 1

n ∑
i=n
si∈sbatch

Q(si,a,ξ), for
trained designs (left) and untrained designs (right). These distributions differ significantly, as

they are a function of the choice of designs in both sets.

0.0

0.5

1.0
U=1

0.0

0.5

1.0
U=5

0.0

0.5

1.0
U=10

1 2 3 4 5
Design number

0.0

0.5

1.0
U=20

Q
lo

ss

1 2 3 4 5
Design number

35

30

25

20

15

10

5

0

Po
lic

y
Lo

ss

U=1
U=5
U=10
U=20

Figure 6.2:
Q-loss and policy loss for differing numbers of forward passes U through the Q-value

function in the Q-loss.

41

Chapter 6. Appendix 42

1 2 3 4 5
Designs

100

150

200

250

300

350

400

450

Cu
m

. E
pi

so
di

c
Re

wa
rd

 = 1, N = 50, p = 0.1
 = 1, N = 100, p = 0.1
 = 1, N = 200, p = 0.1
 = 0.005, N = 1, Test Dropout
 = 1, N = 400, p = 0.1

Baseline, no dropout (p=0)

Figure 6.3:
Cumulative reward for 5 runs of 5 pre-set designs with different Q target

configurations. All experiments are run with p = 0.1.

10 target forward passes 50 target forward passes
350

300

250

200

150

100

50

 R
 (A

ch
ie

ve
d

Re
wa

rd
 -

Ba
se

lin
e

re
wa

rd
)

Figure 6.4:
Variation of number of forward passes through the target Q-value network to pass

through before setting the mean as the target for the Q-value function. We see that 50
forward passes performs no better than 10 forward passes, suggesting that 10 is a

sufficient sample size to achieve a stable target.

Chapter 6. Appendix 43

1 2 3 4 5
Designs

100

150

200

250

300

350

400

450

Cu
m

. E
pi

so
di

c
Re

wa
rd

300 iterations (control)
600 iterations
900 iterations
Baseline, no dropout (p=0)

300 iterations 600 iterations 900 iterations

250

200

150

100

50

 R
 (A

ch
ie

ve
d

Re
wa

rd
 -

Ba
se

lin
e

re
wa

rd
)

Figure 6.5:
Investigation of number of training iterations on convergence of the probabilistic SAC
algorithm. We see that increasing iterations improves the performance to a point, with
most benefits being gained at 600 iterations. Statistics shown over 5 runs, of 5 designs

each.

1 2 3 4 5
Designs

100

150

200

250

300

350

400

450

Cu
m

. E
pi

so
di

c
Re

wa
rd

Dropout on each layer (control)
No dropout on final layer
Baseline, no dropout (p=0)

Dropout on all layers Dropout on all bust last layer

250

200

150

100

50
 R

 (A
ch

ie
ve

d
Re

wa
rd

 -
Ba

se
lin

e
re

wa
rd

)

Figure 6.6:
Here we compare using dropout on all layers to all but the final layer. We observe

significant improvements to stability when removing dropout from the final layer, but
interestingly, we still cannot achieve baseline performance. Statistics shown over 5

runs, of 5 designs each.

0

1
 = 1, N = 50, p = 0.1

0

1
 = 1, N = 100, p = 0.1

0

1
 = 1, N = 200, p = 0.1

0

1
 = 1, N = 400, p = 0.1

1 2 3 4 5
Design number

0

1
 = 0.005, N = 1, Test Dropout

Q
lo

ss

1 2 3 4 5
Design number

35

30

25

20

15

10

5

0

Po
lic

y
Lo

ss

 = 1, N = 50, p = 0.1
 = 1, N = 100, p = 0.1
 = 1, N = 200, p = 0.1
 = 1, N = 400, p = 0.1
 = 0.005, N = 1, Test Dropout

Figure 6.7:
Q-loss and policy loss for differing Q-target configurations. We see healthy Q-losses
for all but the test mode of dropout variant of our experiment. We also not that our

changes have removed the diverging loss problem.

Chapter 6. Appendix 44

W=1 (control) W=5 W=10 Test Dropout

250

200

150

100

50

 R
 (A

ch
ie

ve
d

Re
wa

rd
 -

Ba
se

lin
e

re
wa

rd
)

Figure 6.8:
Policy loss changes, where W is the number of forward passes through the Q-value
function in the policy loss. We see that W = 5,10, as well as using the test variation

of dropout all achieve similar results, although with significant variance between the 5
runs of 5 designs each.

10 20 30 40 50
Designs

200

250

300

350

400

450

500

550

Cu
m

. E
pi

so
di

c
Re

wa
rd

Q' (Q-prime), p=0.2 - Exploitation
Q' (Q-prime), p=0.2 - Exploration
Baseline, no dropout (p=0) - Exploitation
Baseline, no dropout (p=0) - Exploration

Figure 6.9:
Here we see our Q′ method which combines deterministic Q-value function with a

Monte-Carlo Dropout probabilistic Q-value function for design exploration, in green.
The baseline model is in blue. We see that after 50 design evaluations the baseline
appears to have completely converged to a reward of ∼ 505, while our approach

reaches 555, and appears to still be gradually increasing. Both models are compared
over 5 runs each.

Chapter 6. Appendix 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Designs

200

250

300

350

400

450

500

Cu
m

. E
pi

so
di

c
Re

wa
rd

baseline - Exploitation
baseline - Exploration
Q' p=0.2 - Exploitation
Q' p=0.2 - Exploration

Figure 6.10:
Demonstration of the baseline model and our Q′ method in a different environment,

known as Walker2. In this environment, a walking stick figure is rewarded for
learning effective policies allowing it to walk in a 2-D plane. Like in the

Half-Cheetah environment, our method is more data-efficient than the baseline,
although we note that the difference is smaller between the two models likely because

of the reduction in the number of design dimensions, thereby making even the
baseline’s random exploration strategy relatively effective.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Designs

200

250

300

350

400

450

500

550

Cu
m

. E
pi

so
di

c
Re

wa
rd

Q' method, 1 explore/1 exploit - Exploitation
Q' method, 1 explore/1 exploit - Exploration
Q' method, 2 explore/1 exploit - Exploitation
Q' method, 2 explore/1 exploit - Exploration
Baseline, no dropout (p=0) - Exploitation
Baseline, no dropout (p=0) - Exploration

Figure 6.11:
Demonstration of our Q′ method, in which we learn a probabilistic Q′ in addition to a

deterministic Q-value function, but where we explore twice for every exploitation
step, instead of once as in the baseline. We achieve very competitive results with this
set-up, possibly beating the 1 to 1 strategy, suggesting an exploration only set-up may

be effective as potential future work.

Bibliography

[1] Rinaldo C Bertossa. Morphology and behaviour: functional links in development

and evolution, 2011.

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.

Weight uncertainty in neural network. In International Conference on Machine

Learning, pages 1613–1622. PMLR, 2015.

[3] Mohammad Reza Bonyadi and Zbigniew Michalewicz. Particle Swarm Opti-

mization for Single Objective Continuous Space Problems: A Review. Evolu-

tionary Computation, 25(1):1–54, 03 2017.

[4] Andrea Cini, Carlo D’Eramo, Jan Peters, and Cesare Alippi. Deep reinforcement

learning with weighted q-learning. arXiv preprint arXiv:2003.09280, 2020.

[5] Francesco Corucci, Marcello Calisti, Helmut Hauser, and Cecilia Laschi.

Novelty-based evolutionary design of morphing underwater robots. In Proceed-

ings of the 2015 annual conference on Genetic and Evolutionary Computation,

pages 145–152, 2015.

[6] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simula-

tion for games, robotics and machine learning. 2016.

[7] Karl Friston. The free-energy principle: a unified brain theory? Nature reviews

neuroscience, 11(2):127–138, 2010.

[8] Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge,

2016.

[9] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning. In international conference on

machine learning, pages 1050–1059. PMLR, 2016.

46

Bibliography 47

[10] Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. arXiv preprint

arXiv:1705.07832, 2017.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[12] Agrim Gupta, S. Savarese, S. Ganguli, and Li Fei-Fei. Embodied intelligence via

learning and evolution. ArXiv, abs/2102.02202, 2021.

[13] David Ha. Reinforcement learning for improving agent design. Artificial life,

25(4):352–365, 2019.

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning with a stochas-

tic actor. In International conference on machine learning, pages 1861–1870.

PMLR, 2018.

[15] Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947–

954, 1960.

[16] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceed-

ings of ICNN’95-international conference on neural networks, volume 4, pages

1942–1948. IEEE, 1995.

[17] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. Crossing the re-

ality gap in evolutionary robotics by promoting transferable controllers. In Pro-

ceedings of the 12th annual conference on Genetic and evolutionary computation,

pages 119–126, 2010.

[18] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. The transferability

approach: Crossing the reality gap in evolutionary robotics. IEEE Transactions

on Evolutionary Computation, 17(1):122–145, 2012.

[19] Kevin Sebastian Luck, Heni Ben Amor, and Roberto Calandra. Data-efficient co-

adaptation of morphology and behaviour with deep reinforcement learning. In

Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura, editors, Proceedings

of the Conference on Robot Learning, volume 100 of Proceedings of Machine

Learning Research, pages 854–869. PMLR, 30 Oct–01 Nov 2020.

http://www.deeplearningbook.org

Bibliography 48

[20] Kevin Sebastian Luck, Joseph Campbell, Michael Andrew Jansen, Daniel M

Aukes, and Heni Ben Amor. From the lab to the desert: Fast prototyping and

learning of robot locomotion. arXiv preprint arXiv:1706.01977, 2017.

[21] Scott McLachlan, Kudakwashe Dube, Graham A Hitman, Norman E Fenton, and

Evangelia Kyrimi. Bayesian networks in healthcare: Distribution by medical

condition. Artificial Intelligence in Medicine, 107:101912, 2020.

[22] Tønnes F Nygaard, Charles P Martin, Eivind Samuelsen, Jim Torresen, and Kyrre

Glette. Real-world evolution adapts robot morphology and control to hardware

limitations. In Proceedings of the Genetic and Evolutionary Computation Con-

ference, pages 125–132, 2018.

[23] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-

sentations by back-propagating errors. nature, 323(6088):533–536, 1986.

[24] Charles Schaff, David Yunis, Ayan Chakrabarti, and Matthew R Walter. Jointly

learning to construct and control agents using deep reinforcement learning. In

2019 International Conference on Robotics and Automation (ICRA), pages 9798–

9805. IEEE, 2019.

[25] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual confer-

ence on Computer graphics and interactive techniques, pages 15–22, 1994.

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfit-

ting. The journal of machine learning research, 15(1):1929–1958, 2014.

[27] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. A Bradford Book, Cambridge, MA, USA, 2018.

[28] Andrew Trask. Grokking Deep Learning. Manning Publications Co., USA, 1st

edition, 2019.

[29] Ronald J Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine learning, 8(3):229–256, 1992.

	Introduction
	Motivation
	Related Work
	Objectives
	Report Structure

	Background
	Deep Learning
	Reinforcement Learning
	Probabilistic Neural Networks
	Dropout and Monte-Carlo Dropout
	Monte-Carlo Dropout Training
	Monte-Carlo Dropout Inference
	Soft Actor Critic

	Co-adaptation of morphology and controller

	Methodology
	Problem Statement
	SAC algorithm with probabilistic critic
	Ensembling Q-value functions
	Semi-probabilistic approach
	Design exploration

	Experiments
	Experimental Setup
	Variance over start-states for Q-value uncertainty
	SAC algorithm with probabilistic critic
	Dropout rate variation
	Improving stability through Q-loss and Q-target variation
	Alternative stabilisation strategies

	Uncertainty estimates from ensembling Q functions
	Semi-probabilistic approach
	Uncertainty and design selection analysis

	Conclusions
	Summary
	Future Work

	Appendix
	Bibliography

