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Abstract

Recent work combining neural text-to-speech and probabilistic latent variable mod-

els has demonstrated efficacy in modeling the rich non-lexical information found in

speech. Variables such as pitch, energy, and duration are typically investigated. How-

ever, one critical attribute of speech that is under-explored in this context is vocal

effort. Using a novel dataset containing the full spectrum of vocal effort, we propose a

variational autoencoder text-to-speech system capable of modeling this attribute. We

explore the considerations of training such a model and discuss the appropriate level of

disentanglement for this task. We go on to demonstrate the ability to synthesize speech

across a wide range of vocal effort in a reliable and interpretable manner, smoothly in-

terpolating across this distribution.
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Chapter 1

Introduction

Speech synthesis is an essential component in human-computer interaction, assistive

technologies in healthcare, and increasingly, in media and entertainment. Human

speech communication relies on a rich flow of non-lexical information [1], and so for

speech synthesis to be effective in these domains, it must do more than simply recreate

an intelligible sequence of words. Indeed, text-to-speech (TTS) [2] can be considered

a one-to-many mapping problem, as there are many ways in which a given sequence of

text may be reasonably realized. This non-lexical variation in speech includes rhythm,

stress, and intonation and is broadly referred to as prosody [3, 4]. There is no formal

list of prosodic variables, but typically, acoustic features such as pitch, energy, and

phone duration are considered significant contributors.

One variable that is discussed less frequently in the context of TTS is vocal effort.

This attribute is most commonly defined as the way in which a speaker will modify

their speech as the speaker-listener distance changes [5, 6]. However, vocal effort is

also correlated to the level of background noise [7, 8], room acoustics [9, 10], and

emotional state [11, 12]. Whispering and shouting are examples of low and high vocal

effort, respectively. Vocal effort is a significant source of non-lexical variability in

speech, and yet there has been limited TTS research in recent years that attempts to

model this attribute in a probabilistic manner. We wish to address this paucity.

In the past, prosodic variation has been predominantly achieved by modeling pitch

and duration and using these values to drive unit selection in concatenative synthesis

[13] or vocoder parameters in statistical parametric synthesis [14]. However, the gen-

erated speech from both of these approaches suffers from a lack of naturalness. By

contrast, the advent of more modern neural network-based TTS systems has brought a

significant increase in naturalness [15–20]. Unfortunately, early attempts came at the
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Chapter 1. Introduction 2

cost of less prosodic control, as no mechanism was provided to model this information.

Equally problematic is that the optimization of these models has an averaging effect on

prosody [21]. One approach to alleviating this issue is to combine a neural TTS model

with a probabilistic latent variable model, such as a variational autoencoder (VAE) [22,

23]. Ideally, this model will learn a distribution of the residual non-lexical information

in the latent space from which we can sample at inference.

There have been several successful demonstrations of this approach [24–29]. How-

ever, these works have focused on modeling attributes such as pitch, energy, and speak-

ing rate [29], speaker identity and accent [24], and emotion [26]. A critical attribute of

speech that has not been explored in this context is vocal effort. This leads us to our

central question – can we model vocal effort in a latent variable TTS system?

One of the reasons vocal effort is an under-explored attribute in speech synthesis is

the lack of appropriate data. Typical TTS datasets are either constructed from existing

audiobook recordings [30–32], recorded to create neutral-sounding voice assistants or

designed for speaker adaptation or voice conversion research [33]. More naturalistic

datasets that have the potential to contain a wider range of vocal effort do exist. These

are typically gathered ‘in-the-wild’ from podcasts [34], videos [35], and other media

[36, 37]. However, these datasets tend to be challenging, given the lack of single

speaker data, the wildly varying channel conditions, and the lack of transcriptions.

There have been a small number of datasets recorded specifically for exploring vocal

effort. However, these tend to be limited in size and focus on a few discrete classes of

vocal effort rather than the entire spectrum [38–44].

For this work, we use a novel dataset containing over seventeen hours of highly ex-

pressive and naturalistic speech with a wide range of vocal effort. We use this dataset

in conjunction with a probabilistic latent variable TTS system in order to model the

vocal effort distribution and sample from it at inference. This approach contrasts with

the existing research that tends to model vocal effort with only two or three discrete

classes [38–44] and provides no probabilistic method for smoothly sampling from this

distribution. Prior work also typically focuses on the low-end of the vocal effort spec-

trum (whispered, normal, and Lombard speech) with the occasional exception [45].

Our core contributions are as follows:

• We demonstrate that a VAE-TTS system is capable of modeling vocal effort.

Through quantitative analysis and subjective listening tests, we show that we

can synthesize speech across a wide range of vocal effort in a reliable and inter-

pretable manner, smoothly interpolating across this distribution. To the best of
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our knowledge, this is the first time that this speech attribute has been modeled

in this manner.

• We provide insights into architectural and optimization considerations when

training such a VAE-TTS model. These include the impact of the latent space di-

mensionality on disentanglement and methods to avoid the collapse of the latent

space.

• We demonstrate that it is possible to train a TTS model using a dataset contain-

ing far more stylistic and vocal effort variation than typical datasets, albeit with

slightly less subjective naturalness.

• We show initial promising results that this model can also capture vocal effort

from a reference utterance and transfer this to a synthesized utterance.

The remainder of this dissertation is laid out as follows:

• Background and Related Work

A brief overview of the literature regarding vocal effort, TTS, and variational

autoencoders.

• Dataset

A description of the dataset we use in this project, how we prepared it, and

a comparison with a more typical TTS dataset.

• Method

A description of the approach taken in this work, including the models used,

the specific questions we choose to explore, and our criteria for success.

• Experiments and Results

Details of the experiments we ran and corresponding results.

• Discussion

An in-depth evaluation of our results and discussion in the context of the

broader literature.

• Conclusion

Closing remarks and a discussion of the limitations of our work and potential

areas for future work.
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Background and Related Work

2.1 Vocal effort

Vocal effort is dependent on the speaker-listener distance [5, 6], the level of background

noise (referred to as the Lombard effect) [7, 8], room acoustics [9, 10], and emotional

state [11, 12]. It is typically measured in physiological terms due to the corresponding

changes that take place in the voice production system [46, 47] (although some argue

that it should be considered a subjective psychological measure [48]).

Vocal effort also corresponds to a variety of acoustic measures. Sound pressure

level is perhaps the most notable, but several other variables such as fundamental fre-

quency (F0), phone duration, and spectral tilt are affected by changes in vocal effort.

A comprehensive review of the correlation between perceived vocal effort and these

acoustic measures can be found in [5].

In relation to emotion, vocal effort is most closely correlated to arousal [11]. For

example, high arousal states such as ‘angry’ and ‘excited’ correlate to high vocal effort,

and low arousal states such as ‘bored’ or ‘calm’ correlate to low vocal effort.

In the TTS research literature, vocal effort is somewhat under-explored. There

have been attempts to model vocal effort in concatenative synthesis [38, 39], statis-

tical parametric synthesis [40, 41, 45], and more recently in neural systems [42–44].

However, as mentioned in Chapter 1, these works have typically modeled only a few

discrete classes of vocal effort and have tended to focus on the lower end of the vo-

cal effort continuum. These classes are typically whispered, ‘normal’ and Lombard

speech (the Lombard effect describes the involuntary increase in vocal effort due to

background noise [7, 8]). However, there are occasional exceptions; [45] investigates

shouted speech, for example. There have also been efforts to model vocal effort in

4



Chapter 2. Background and Related Work 5

voice conversion [49–51], automatic speech recognition (ASR) [44, 52], and speaker

verification [53], although again, this is relatively under-explored.

2.2 Text-to-speech synthesis

A variety of approaches to speech synthesis have been developed over the years. These

include articulatory synthesis [54, 55], formant synthesis [56, 57], concatenative syn-

thesis [58, 59], and statistical parametric synthesis [60, 61]. However, since the advent

of deep learning, artificial neural network-based TTS has become the dominant ap-

proach [15–20]. These models typically tackle the sequence-to-sequence nature of

TTS using encoder-decoder architectures, inspired by those first proposed in machine

translation [62, 63]. While sometimes claiming to be ‘end-to-end’, these models typi-

cally convert text into a spectrogram that must then be vocoded into a waveform using

a separate model (a spectrogram is a two-dimensional representation of audio created

using the short-term Fourier transform that can be visualized as an image). These

vocoders are also typically neural networks, and a variety of approaches have been

employed. These include the use of autoregressive [64], adversarial [65], flow-based

[66], and diffusion [67] models.

The naturalness and intelligibility of neural TTS marks significant progress over

previous approaches. With sufficient training data, it has been demonstrated that arti-

ficial speech can be almost imperceptible to natural speech [16, 20]. However, it can

be argued that the ‘black-box’ nature of deep neural networks makes these models less

controllable and interpretable than previous approaches. With early neural TTS mod-

els, controlling even relatively simple attributes such as speaking rate was not possible.

Since then, significant effort has gone into regaining control mechanisms, and various

approaches to modeling the non-lexical variation in speech have been proposed [19,

24, 68, 69]. Among the most promising is the use of latent variable models such as the

variational autoencoder [22, 23].
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Observed data ReconstructionLatent representation

Figure 2.1: Visualization of a variational autoencoder.

2.3 Variational autoencoder

Generative models assume an underlying probability distribution is responsible for

the observed variation in the data and attempt to model this distribution. One such

generative model is the variational autoencoder (VAE) [22, 23]. Similar to regular

autoencoders, VAEs rely on a ‘bottleneck’ between the encoder and decoder to create

a lower-dimensional latent (or hidden) representation z in an unsupervised manner (see

Figure 2.1). However, instead of encoding data to individual unrelated points in this

latent space, VAEs use variational inference to model probability distributions.

We assume that a hidden variable z is responsible for the variation found in the

observable data x. Therefore, we wish to model p(z|x):

p(z | x) = p(x | z)p(z)
p(x)

(2.1)

However, computing the p(x) term is intractable. To circumvent this issue, we

use variational inference to provide an estimate. First, we approximate the true dis-

tribution p(z|x) with a learned distribution q(z|x). Typically we assume that p is an

isotropic zero-mean Gaussian. Then, to ensure that the learned distribution q is close

to the true distribution p, we use the Kullback–Leibler (KL) divergence to minimize

the differences between these distributions:

minKL(q(z | x)‖p(z | x)) (2.2)

This KL divergence loss ensures a well-regularized latent space with closely matched

p and q distributions. However, we also wish to recreate approximations x̂ that are as

similar as possible to x. To achieve this, we introduce a second loss term, the recon-

struction loss. Together, the full loss is:

L(x, x̂)+∑
j

KL
(
q j(z | x)‖p(z)

)
(2.3)



Chapter 2. Background and Related Work 7

where the reconstruction loss is the first term, the KL divergence is the second

term, and j is the dimension of the latent space. Further proof is provided in [22].

Initial demonstrations of variational autoencoders demonstrated their ability to dis-

entangle, or factorize, the axes of variation found in x to separate dimensions in the

latent space z without supervision [70]. Furthermore, the variational objective ensures

that these representations are well-formed and smoothly distributed.

2.4 VAE-TTS

Combining a VAE with a TTS model has been shown to be an effective approach to

modeling the non-lexical variation in speech [24–28, 71, 72]. Several variations on

this approach have been proposed. [24] uses a hierarchy of VAEs in a Gaussian mix-

ture model to model categorical and continuous variables separately. [26] proposes a

method that contrasts the typical unsupervised method of training VAEs with the use of

labeled data and a mechanism for semi-supervision. [72] explores the use of a learned

prior as opposed to the typical standard Gaussian. [27] proposes a method for modify-

ing the variational posterior to be closer to the true posterior and [29] demonstrates a

hierarchical conditional VAE that operates at the utterance, word and phone domains.

However, none of these works have attempted to model vocal effort.

One key advantage of VAE-TTS systems is the ability to sample from a distribution

of disentangled stylistic variables. This allows for smooth interpolation across these

variables in an interpretable manner. By contrast, this is not possible with simple refer-

ence encoders [73] or ‘Global Style Tokens’ [74] since they do not model probability

distributions.

A final consideration with VAE-TTS systems is the desired domain of disentan-

glement. Some work claims to achieve very effective disentanglement of low-level

acoustic attributes such as F0, energy, phone duration, or speaking rate [29]. However,

semantically meaningful measures of speech such as affect and vocal effort are highly

correlated to these acoustic variables [5]. We argue, therefore, that for the sake of cre-

ative control, we should focus on disentangling this semantically meaningful variation

as opposed to granular acoustic features (which we accept may remain entangled).



Chapter 3

Dataset

3.1 Description

We use a proprietary American English single-speaker dataset created as part of a

media entertainment project. This dataset contains a wide range of expressive and

naturalistic speaking styles, and the actor was directed to perform in a realistic manner

for a wide variety of life-like scenarios. The resulting corpus contains a full range

of emotion, vocal effort, sentence length, and speaking rates and also contains many

non-word sounds such as laughter, breaths, and grunts. This contrasts sharply with

typical speech datasets used for TTS. Figure 3.1 compares our dataset to the LJ Speech

dataset [75] (an audiobook dataset commonly used in TTS research) across a variety

of utterance-level statistics. One of the key challenges of our work is using a dataset

with this amount of variation for TTS.

3.2 Preparation

3.2.1 Cleaning

To prepare the dataset, we first removed utterances containing no words and only non-

word vocalizations such as breaths, grunts, or humming. We then trimmed any sections

of silence longer than 300ms. This was done to help the sequence-to-sequence part of

the model learn alignment while still allowing a reasonable amount of naturalness in

speaking rhythm and pauses. The resulting clean dataset contains 25,829 utterances

and is 17.2 hours long in total.

8
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Figure 3.1: Comparison of our dataset and LJ Speech.

3.2.2 Labeling and statistics

The dataset had already been labeled with discrete vocal effort classes for a previ-

ous vocal effort classification task. Aside from the split between unvoiced and voiced

speech, it could be argued that vocal effort should be considered as a continuous vari-

able. We agree with this assertion but decided to label using discrete classes for the

sake of simplicity and interpretability. There is sufficient precedence for discretizing

continuous speech attributes in the literature, such as using discrete labels in emotion

recognition [76] and quantized articulatory data in speech recognition [77, 78]. We

broadly follow the vocal effort labeling precedent set in the literature (see Section 2.1)

but add more classes to account for the wide range of vocal effort found in the dataset.

It is important to note that while these discrete classes are used for labeling the data,

we do not model discrete classes in the VAE-TTS system. We only use these labels

to provide feedback regarding how well vocal effort can be disentangled in the latent

space. Table 3.1 outlines these classes and their descriptions. We appreciate that these

classes are quantitatively ambiguous (except the split between whispered speech and

the other classes) and accept that any conclusions reached using these labels need to be

considerate of this ambiguity. We hope that as vocal effort becomes a speech attribute
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CLASS NAME DESCRIPTION

1 Whispered Unphonated quiet speech with low vocal effort

2 Normal low Normal phonated speech, lower vocal effort than class 3

3 Normal Normal speech with ‘average’ vocal effort

4 Lombard Speech with increased vocal effort but not shouted

5 Shouted Regular shouted speech

6 Shouted high Shouting and screaming with the very highest vocal effort

Table 3.1: A description of the vocal effort classes.

explored further in TTS, ASR, and voice conversion, the speech community can begin

to formalize labeling methods.

Six different listeners labeled the dataset, and it is worth noting that the labels

are relatively noisy. This is perhaps unsurprising; subjectively labeling a continuous

variable with categorical classes is prone to disagreement over edge cases. However,

this labeling noise is insignificant given the size of the dataset and the fact that we do

not use the labels during training. Perhaps more problematically, the distribution of

vocal effort classes is highly imbalanced, as shown in Figure 3.2.

To calculate utterance-level energy, duration, fundamental frequency (F0) mean,

and F0 variation, we used the Parselmouth library [79], a Python wrapper for PRAAT

[80]. We also calculated a crude ratio between phonated and unphonated speech by

comparing the durations of when the F0 tracker was and was not able to detect a funda-

mental frequency (silence removed first). Again, these statistics were not used during

training but did help to provide feedback for our experiments, as discussed in Chapters

5 and 6.

3.2.3 Transcription and conversion to phonemes

Approximately three-quarters of the dataset already contained transcriptions. To speed

up the process of transcribing the remaining quarter, we first fine-tuned a pre-trained

ASR acoustic model (Wav2Vec 2.0 [81]) on our dataset. After inference, any errors

in the resulting transcriptions were then manually fixed by hand. These clean tran-

scriptions were then normalized, a process where words such as ‘15’ are converted to

‘fifteen’. We then converted the transcriptions to phonemes using the CMU English

Pronouncing Dictionary [82], manually adding out-of-vocabulary words as required



Chapter 3. Dataset 11

1 2 3 4 5 6
Vocal effort

0

2000

4000

6000

8000

10000

12000

14000

C
ou

nt

Figure 3.2: Distribution of vocal effort labels.

rather than using a grapheme-to-phoneme model [83, 84]. We had hoped to anno-

tate any non-word vocalizations as part of this process, as this would likely help the

sequence-to-sequence model learn alignment between phonemes and acoustics. How-

ever, unfortunately, we did not have sufficient time.

Finally, we split the data into training (85%), validation (10%), and testing (5%)

sets, ensuring an equal distribution of vocal effort classes across each split.



Chapter 4

Method

4.1 Text-to-speech model

For the core of our system, we use Tacotron 2 [16], a recurrent encoder-attention-

decoder model (see Section 2.2 for further background). Tacotron 2 was initially pro-

posed with grapheme input sequences but can also use phoneme sequences, which are

often more effective, especially in the English language [85]. These grapheme/phoneme

input sequences are fed to a text encoder, and the embedding from this encoder is then

passed through three convolutional layers and a bidirectional [86] LSTM [87]. The re-

sulting representation is then passed to a location-sensitive attention network [88] from

which a fixed-length context vector is created. This context vector is then consumed

by the decoder, a recurrent autoregressive network that predicts mel-spectrograms from

these encodings (the Mel scale is a non-linear transform of the spectrogram that em-

phasizes the lower frequencies, typically more pertinent for speech synthesis). The

decoder contains a pre-net through which the prediction from the previous time-step is

passed. The output of this pre-net is concatenated with the context vector and passed

through two uni-directional LSTMs. The resulting output is concatenated with the

context vector and linearly transformed to predict the target mel-spectrogram frame.

Finally, a convolutional post-net is used to predict any remaining residual information.

Figure 4.1 provides on overview of this architecture.

There are several advantages and disadvantages associated with this model. Tacotron

2 has been shown to produce very natural sounding speech (when coupled with a

WaveNet vocoder) and is often held up as a baseline for more recent TTS models.

However, the autoregressive nature of Tacotron 2 means that it is slower to train and

slower at inference compared to more recent models. More crucially, the attention

12
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Figure 4.1: Overview of the Tacotron 2 architecture.

mechanism that operates between the text/phonemes and the mel-spectrograms can

often be imperfect, leading to skipped or repeated words at inference. More recent

approaches replace this attention mechanism with an explicit duration model, leading

to improved robustness [19, 69]. Models such as FastSpeech 2 [89] go further and

explicitly model pitch, energy, and duration.

However, this explicit modeling is precisely the reason we choose not to use a sys-

tem such as FastSpeech 2. For our model, we want the VAE to learn latent representa-

tions for pitch, energy, and duration, and their relationship to vocal effort, rather than

explicitly modeling them individually. In unpublished work by A. Sigurgeirsson et al.

(Edinburgh University), the authors find that augmenting a FastSpeech 2 model with

a prosody reference encoder [73] was ineffective. The variance predictors appeared

to model pitch, energy, and duration so effectively that the reference encoder encoded

little useful information. We wish to avoid this and allow the VAE to learn a rich and

smoothly regularized representation for vocal effort in an unsupervised manner.

4.2 VAE-Tacotron

To learn the distribution z (see Section 2.3), we first pass the ground-truth mel-spectrogram

through a reference encoder. This encoder is the same as the one introduced in [73] and

consists of six convolutional layers followed by a Gated Recurrent Unit (GRU) [90].

The outputs of this reference encoder are then passed to two fully connected layers to

create the mean and log variance of the distribution z. The dimensionality of z is a

hyperparameter that we explore as we seek to discover an appropriate balance between

interpretability and disentanglement. We then use the ‘reparameterization trick’ to cal-

culate z from this mean and log variance. This trick is required for backpropogation
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(see [22] for more details). To summarize briefly, to sample z from N
(
µ,σ2I

)
we

first sample ε∼N (0,I) and then calculate z = µ+σ� ε where � is the element-wise

product. Next, to ensure compatibility with the text/phoneme embedding produced by

the Tacotron encoder, we pass z through a fully connected layer with the same dimen-

sionality as this embedding. Then we concatenate these two embeddings together and

pass them to the location-sensitive attention network. The context vectors created from

this network are then passed to the decoder. Finally, the spectrograms created by the

decoded are then vocoded into a waveform using HiFiGAN [91]. We use this gener-

ative adversarial network (GAN) [92] vocoder as it is fast at inference and has been

demonstrated to yield high-quality audio on a par with autoregressive models such as

WaveNet [64]. Figure 4.2 provides an overview of the full VAE-Tacotron architecture.

We do not use the vocal effort labels during training, and the latent distribution z

is learned only from observing the mel-spectrograms. We made this decision because

we believe there is a risk of failing to learn the true distribution of the data if we rely

on discrete (and somewhat noisy) vocal effort labels. However, we accept that there

has been some success in conditioning VAE-TTS models in this way [26]. We also

do not condition the VAE on the text. We have less defense for this decision, as [27]

effectively argues that text does have an affect on the latent posterior. However, for the

sake of simplicity, we leave this to be explored in future work.
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(a) Typical VAE (b) VAE plus autoregressive decoder.

Figure 4.3: Decoder pathways.

4.3 KL weight and annealing schedules

With a traditional VAE, the reconstruction x̂ is only dependent on z (see Figure 4.3a).

By contrast, when we couple a VAE with an autoregressive decoder, x̂t is dependent

on z and x<t (Figure 4.3b). We can consider this as two separate pathways to the

decoder, as described in [93]. If the latent representations from z are over-regularized

and not rich in information, there is a risk that the decoder will begin to ignore this

path during training. This is known as posterior collapse [94] or KL vanishing [93]. In

this situation, the variational encoder always produces the same p(z) regardless of the

data x, and the decoder always produces p(x̂) regardless of z. To alleviate this issue,

the most common approach is first to introduce a hyperparameter β (or KL weight) to

control the amount of regularization applied to the KL term. Extending Equation 2.3

with this terms gives:

L(x, x̂)+β∑
j

KL
(
q j(z | x)‖p(z)

)
(4.1)

We start training with the KL weight β at 0, which means the encoder pathway is

fully open. This ensures that the latent representations are rich in useful information

for the decoder, making it less likely to ignore this path. This configuration is equiv-

alent to a standard autoencoder. To meet the variational objective, we then gradually

increase the KL weight over many training steps. By the time the latent space is fully

regularized, the representations contained in the latent space are much more likely to

be rich in information than if it had been fully regularized from the start, and the de-

coder is less likely to ignore this path. This annealing approach was introduced in

[95] and is a ubiquitous way to alleviate posterior collapse in VAE-decoder systems.

However, it is not the only method, and [93] introduces the idea of cyclic annealing of
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the KL weight. The authors argue that periodically fully re-opening the autoencoder

(by setting the KL weight to zero) can lead to even richer latent space representations

with improved disentanglement. Figure 5.1 shows a visual comparison of these two

annealing schedules. We believe that balancing these two pathways to the decoder is

crucial in our experiments and so we explore both of these schedules and a variety of

upper KL weight values. However, we do not conduct a deep investigation in this area

and appreciate that the techniques for controlling the latent space capacity proposed in

[27] would be worth exploring in future work.

4.4 Evaluation of vocal effort control

To evaluate the efficacy of our model, we are primarily concerned with the ability with

which we can model vocal effort across a single dimension in the latent space. We fo-

cus on this metric for the sake of interpretability and control. Disentangling vocal effort

to a single latent should allow us to sample from points across this latent distribution

in a simple manner with predictable outcomes. Given that various acoustic attributes

such as F0 mean and variation, energy, and phone duration are correlated with vocal

effort [5], we accept that pursuing this goal will result in these ‘lower level’ acoustic

variables being entangled. While this is not the typical approach taken with VAE-TTS

systems, we believe that for useable and interpretable control of semantically mean-

ingful styles of speech, especially vocal effort, accepting this level of entanglement is

appropriate.

Our secondary (and lower priority) evaluation of vocal effort modeling examines

how effectively we can transfer vocal effort from a reference utterance. This type of

style transfer has been demonstrated with VAE-TTS systems before [24, 28]. While

previous experiments have focused on affect, vocal effort transfer should also be pos-

sible. We accept that this secondary aim is quite different from our primary aim and

that the way in which we optimize for the primary aim may not be optimal for the

secondary. However, we still believe that this is a worthwhile line of investigation. If

the VAE is capable of modeling vocal effort, even if across a single latent variable, we

should expect that it can be also be used for transfer.

To evaluate vocal effort disentanglement and control, we perform various quanti-

tative and subjective evaluations, as detailed in Chapter 5. We also test the efficacy of

vocal effort transfer and compare the overall naturalness of our model compared to a

baseline.
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4.5 Limitations and other considerations

It should be noted that the VAE in this work operates at the utterance level rather than

the word, phone, or frame level [29]. We believe that this is a reasonable time domain

to model vocal effort, especially for short utterances. However, we do not provide

experimental results to back up this claim.

We also concede that this work is focused solely on modeling vocal effort, and

no attempt is made to model other important elements of prosody. For example, with

this approach, we cannot control whether an utterance has the intonation associated

with a question versus a statement. Unlike other work [24, 26, 29], we also do not

explore disentangled control of pitch, energy, or speaking rate and only consider these

variables in terms of how they relate to vocal effort.

Finally, while we aim to generate high-fidelity natural-sounding speech, we do not

focus on this task. We make no attempt to optimize our models for this metric, and for

the TTS element of our VAE-TTS system, we rely on the default configuration of the

Tacotron 2 model.



Chapter 5

Experiments and Results

5.1 Implementation details

For the following experiments, we modified an open-source VAE-Tacotron model [96],

implemented in PyTorch [97]. In each case, we trained the model to 300 epochs (265k

steps) using the Adam optimizer [98] with a learning rate of 10−3 and weight decay

of 10−6. We used a batch size of 24 and a single NVIDIA Quadro RTX 8000 per

experiment. Each complete training run took approximately 72 hours, and we ran

several experiments simultaneously on separate GPUs. We used an audio sampling

rate of 16kHz, which by today’s standards may be considered relatively low for TTS.

However, we felt that the compromise in audio fidelity was worthwhile for the extra

experimentation time made possible by using this lower sampling rate. The remaining

Tacotron hyperparameters follow the original paper [16]. Similarly, the hyperparame-

ters for the reference encoder that parameterizes the VAE follow [73].

We initially used grapheme inputs but moved to phoneme inputs after witnessing

significant quality and alignment improvements. We also found alignment improve-

ments by pre-training a model on the LJ speech dataset [75]. We used these network

weights as a warm-start for our model training. To convert the spectrograms created

by the VAE-Tacotron model to audio, we used the HiFiGAN vocoder [91]. We trained

this vocoder on the ground-truth audio for 1.57 million steps on a single RTX 8000

GPU (14 days training time).

18
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Figure 5.1: Comparison of cyclic and logistic KL annealing schedules
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Figure 5.2: Distribution of latent dimensions

5.2 Results

We want to understand how effectively the latent space of the VAE can disentangle

vocal effort to a single latent dimension. In order to do so, we pass our dataset through

the trained VAE encoder and measure how correlated the means of the latent dimen-

sions are to the vocal effort labels. Unless specified, we only report the single latent

dimension with the highest absolute correlation and refer to this simply as ‘vocal effort

correlation’.

5.2.1 KL weight and annealing schedule

We experimented with various KL weights and annealing schedules. Figure 5.1 shows

the two primary annealing schedules that we used – logistic and cyclic (we also tried

a constant KL weight, i.e., no annealing, but found that the model performed poorly in

terms of disentanglement). Table 5.1 shows the vocal effort correlation achieved using

these annealing schedules and a variety of upper KL weights – that is, the weight at

the highest point in the annealing schedule. Using low KL weights can lead to a risk

that the latent space of the VAE is not appropriately regulated towards a Gaussian-like

distribution. Figure 5.2 shows the distribution of the latent dimensions in our final

model. For the remaining experiments, we used the cyclic annealing schedule and an

upper KL weight of 10−5.
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KL ANNEALING SCHEDULE KL UPPER WEIGHT VOCAL EFFORT CORRELATION

LOGISTIC 10−4 0.21

CYCLIC 10−4 0.33

LOGISTIC 10−5 0.46

CYCLIC 10−5 0.49

CYCLIC 10−6 0.45

Table 5.1: Vocal effort correlation with different KL annealing schedules and upper KL

weights (16-dimensional VAE).
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Figure 5.3: Absolute correlation between vocal effort labels and latent dimensions.

5.2.2 Latent space dimensionality

Figure 5.3 shows the vocal effort correlation across the latent dimensions for three

different latent space dimensionalities. Given our desire to control vocal effort with a

single latent, we used a 16-dimensional VAE for the remaining experiments. In this

case, dimension 0 has an absolute vocal effort correlation of 0.49. Figure 5.4 shows

the distribution of the different vocal effort labels across this latent dimension.
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Figure 5.5: F0, energy, and speaking rate correlation to vocal effort labels in the training

data and correlation to latent dimension 0 sampling point in the synthesized audio. The

upper x-axis is the vocal effort label in the ground truth data and the lower x-axis is the

sampling point for the synthesized audio.
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LATENT OFFSET CLASSIFIER PREDICTION SUBJECTIVE RATING

2σ 2.06 ±0.03 1.92 ±0.05

1σ 2.23 ±0.03 2.44 ±0.06

0 2.57 ±0.04 3.03 ±0.05

−1σ 3.53 ±0.06 3.89 ±0.05

−2σ 4.79 ±0.04 4.72 ±0.05

−3σ 5.14 ±0.03 5.36 ±0.05

Table 5.2: Vocal effort classifier predictions and subjective vocal effort ratings for stimuli

generated by sampling across latent dimension 0 (with 95% confidence intervals).
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Figure 5.6: Results from Table 5.2 presented visually.

5.2.3 Vocal effort control

With this model, we then explored how effectively dimension 0 could control vocal

effort when synthesizing speech. We first set the means of all the VAE dimensions

to zero, essentially enforcing a standard multivariate Gaussian across the latent space.

We then manipulated latent dimension 0 only, sampling at different standard deviations

from its mean. For each sampling point, we generated a sentence taken from the held-

out test set. This test set contains 1239 sentences and we sampled from six different

points, resulting in 7434 utterances. We then computed utterance-level F0, energy, and

speaking rate statistics from the resulting synthesized audio and compared them to

the same statistics computed from the ground-truth training set. Figure 5.5 shows the

results.

To provide another quantitative measure, we then ran these generated utterances

through a pre-trained vocal effort classifier (see Appendix A for more details). The
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Figure 5.7: Two spectrograms generated by sampling from different points along di-

mension 0. Sentence is: ‘I guess this is how things is done down here’.
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Figure 5.8: Heatmap showing absolute correlation between the latent dimensions and

various speech statistics.

results can be seen in Table 5.2.

Finally, we conducted a listening test to subjectively evaluate the vocal effort of the

synthesized audio. We first selected twenty sentences from the generated utterances

described above. Fifteen evaluators then listened to the six versions of each sentence

and were asked to rate each in terms of the perceived vocal effort on a continuous

scale from one to six. To help calibrate their choices, six reference utterances from

the ground-truth dataset were provided taken from the six vocal effort classes. The

evaluators are all audio domain experts and were instructed to wear headphones or use

a high-fidelity speaker system. Table 5.2 shows the results from this listener evaluation.

Figure 5.7 shows two example spectrograms synthesized by sampling from different

points on dimension 0 for one of the test sentences. Audio examples are provided in

the supplementary materials.

5.2.4 Naturalness

To ensure that the addition of the VAE element was not having a detrimental effect on

the Tacotron model, we trained a baseline model where the VAE element was removed

entirely. We then performed listening tests to evaluate the subjective naturalness of the

lines. The same fifteen participants were asked to rate a new set of twenty sentences.
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MODEL NATURALNESS

GROUND-TRUTH 4.69 ±0.07

GROUND-TRUTH VOCODED 3.88 ±0.09

VAE-TACOTRON 2.73 ±0.11

BASELINE 1.90 ±0.12

Table 5.3: Mean opinion scores for naturalness (with 95% confidence intervals).

In each case, they were presented with the ground-truth audio at 48kHz, ground-truth

at 16kHz passed through the vocoder, a version of the same sentence from the vanilla

Tacotron baseline system, and a version from the VAE-Tacotron model where the VAE

latent dimensions were set to zero. The participants were asked to give each utterance

a naturalness rating from 0 to 5, with 0 being ‘not at all human-like and/or noisy’ and

5 being ‘completely human-like and clear’. The mean opinion scores computed from

these ratings can be seen in Table 5.3.

5.2.5 Vocal effort transfer

To test the model’s ability to transfer the vocal effort from a reference utterance, we first

selected 20 reference utterances per vocal effort class from the test set (120 in total).

Next, we passed each of these reference utterances through the VAE encoder to gather

its latent representation. These latent representations were then used to condition the

synthesis of 20 utterances (with different text content, also taken from the test set).

This resulted in 2400 generated utterances, 400 for each vocal effort class. We then

passed these utterances through the vocal effort classifier, and the results can be seen

in Figure 5.4.

5.2.6 Reproducibility

VAEs are formally non-identifiable, with the result that the latent representations of

the VAE may change from one training run to another. To ensure that the model we

chose for our evaluations was the not simply the product of random initialization, we

re-trained our best performing model with exactly the same hyperparameters. The

vocal effort correlation across the latent space can be seen in Figure 5.9 and can be

compared to Figure 5.3b.
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REFERENCE VOCAL EFFORT LABEL CLASSIFIER PREDICTION

1 2.66 ±0.11

2 2.22 ±0.05

3 2.44 ±0.08

4 3.38 ±0.11

5 4.27 ±0.11

6 4.11 ±0.13

Table 5.4: Vocal effort classifier predictions for utterances synthesized using the latent

representation of a reference utterance (with 95% confidence intervals).
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Figure 5.9: Absolute correlation between vocal effort labels and latent dimensions for

our evaluation model, re-trained.
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for the first 120 thousand training iterations.



Chapter 6

Discussion

6.1 TTS with a non-standard dataset

As discussed in Chapter 1, TTS models are typically trained with datasets containing a

limited range of stylistic variation, particularly in terms of vocal effort. Therefore, one

of our primary objectives was to successfully train a stable model using our dataset,

with its wide range of pitch, energy, speaking rate, and vocal effort (see Chapter 3).

While there is still room for improvement, this objective has been achieved (we en-

courage the reader to listen to the provided audio examples).

The most significant contributor to this success would appear to be the addition of

the VAE. As discussed in Chapter 1, text-to-speech is a one-to-many mapping problem

with many reasonable acoustic expressions of a single sentence of text. This problem

is exacerbated when using datasets with a wide range of stylistic variation. Without

a suitable mechanism, the vanilla Tacotron model has a single encoder-decoder archi-

tecture to model both the lexical and non-lexical information. With a standard loss

function, at best, this leads to ‘average’ prosody [21]. With the addition of the VAE,

the Tacotron encoder is free to model the explicit input text sequence, leaving the VAE

to model the residual non-lexical information [27]. This extra modeling capacity is

reflected in the naturalness MOS results comparing the baseline Tacotron model and

the VAE-Tacotron model (Table 5.3). We observe that the baseline has considerably

worse naturalness. Informally, we found that the baseline model typically produced

utterances either with ‘average’ vocal effort (but with poor intelligibility) or with ran-

dom jumps in vocal effort. The outputs would also typically have far more alignment

errors.

We also found that moving from grapheme inputs to phonemes significantly im-

26
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proved the model’s ability to learn alignment between these inputs and the audio.

The overall validation error also decreased significantly (see Figure 5.10). Although

Tacotron can map from graphemes to acoustics, the potential for a single grapheme to

have multiple phonetic expressions (particularly in the English language) makes the

task harder [85].

Other factors have likely contributed to the successful training of a stable model,

but these are harder to quantify with confidence. For example, we initialized the model

weights from models pre-trained on a standard TTS dataset (LJ Speech [75]). We

found that this sped up convergence and improved alignment, but we provide no quan-

titative analysis. Similarly, the fact that the dataset we are using is reasonably large

(17.2 hours) is almost certainly beneficial. However, again, we did not run experi-

ments with varying amounts of data to investigate this.

Despite the significant improvement of our VAE-TTS model over the baseline, the

subjective naturalness is not as high as has been demonstrated with similar systems

[24, 26]. We are not certain of the reason for this, but it could be that the highly di-

verse nature of the dataset is having a negative impact in this regard. We still witness

some alignment issues and anticipate improvements by providing richer annotation

in the input sequences, particularly regarding non-word vocalizations (breaths, grunts,

etc.). The dataset contains many such vocalizations, and appropriately annotating these

would likely help the model learn alignment between the input sequences and acous-

tics. In addition, including annotations for these vocalizations at inference time could

yield more naturalistic utterances. Another approach to solving these alignment issues

would be to use a different TTS model that does not require an attention mechanism.

However, as discussed in Section 4.1, this model would need to be selected carefully

to ensure the VAE can still model pitch and duration.

6.2 KL weight and annealing schedule

As discussed in Section 4.3, balancing the KL divergence term is critical to success-

fully training a VAE in conjunction with a strong autoregressive decoder. We wish to

avoid posterior collapse while still regularizing the latent space of the autoencoder to-

wards smooth Gaussian-like distributions. Informally, we found that using a high KL

weight did indeed lead to posterior collapse. Table 5.1 shows that KL weights much

lower than 1 were required for optimal vocal effort disentanglement, which was some-

what unexpected. However, following the assertions made in [27], we believe that this
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level of KL term regularization is simply the most appropriate in terms of the infor-

mation capacity for this task. The risk of a low KL weight is that the latent space is

not appropriately regularized to the prior. While the KL divergence in our case is quite

high, Figure 5.2 shows that the latent representations are still generally Gaussian-like.

It should also be noted that in [28], the authors update their KL divergence loss term

every k steps in order to avoid posterior collapse. We did not do this, and it may be

that much higher KL weights are appropriate when following this scheme.

The differences between the cyclic and logistic KL weight annealing schedules

were relatively minor. However, across all the models we trained, cyclic annealing

schedules did consistently lead to better vocal effort correlation in the latent space.

This supports the arguments made in [93], despite the authors working with text rather

than audio. It would appear that fully re-opening the autoencoder pathway (setting

the KL weight to zero) several times during training ensured that the decoder did not

ignore the information coming from this path and that these ‘restarts’ were beneficial

for disentanglement. Overall, while the balancing of the KL term was a crucial element

in our experiments, we accept the empirical nature of our results and would seek to

explore a more principled approach in the future (see [27]).

6.3 Latent space dimensionality

As seen in Figure 5.3, it is clear that a 16-dimensional latent space provides the clear-

est disentanglement of vocal effort to a single latent. While the 32-dimensional VAE

has strong vocal effort correlation in dimension 28, we can see that vocal effort is also

correlated across several other latent dimensions. The use of a 16-dimensional VAE

echoes the findings of [24], where the authors claim that a latent space of this dimen-

sionality provided the appropriate balance between disentanglement and interpretabil-

ity for their particular task. However, to be clear, our findings are almost certainly

dependent on numerous variables. These include the size and variation within our

dataset, the attribute of speech we seek to isolate and disentangle, and the KL weight

and annealing schedule. Unfortunately, at present, we are not aware of a principled

approach to selecting the appropriate latent space dimensionality without relying on

empirical experiments. It should also be noted that our primary aim was to control

vocal effort by sampling across a single latent. For our secondary task of vocal effort

transfer, our choice may not be the most optimal as we did not compare latent space

dimensionalities for this task. For example, in [28], they find that a 32-dimensional



Chapter 6. Discussion 29

latent space is effective for their task of style transfer.

6.4 Vocal effort control

Our results show that we can effectively model and control vocal effort at inference.

As hoped for, we can sample from points across a single latent variable and generate

speech with predictable vocal effort. Several different results provide evidence for this

claim.

Firstly, we compare various statistics across the ground-truth utterances from the

training set and generated utterances from the test set. Figure 5.5 shows the F0 mean

and variance, energy, and speaking rate across these two datasets. For the ground-

truth data, we plot these statistics against the vocal effort labels, and for the generated

utterances, we plot them against the dimension 0 sampling point. The figures show

a strong correlation between these two sets of statistics, particularly with F0 mean

and variance. In terms of energy, we see a strong correlation but at different overall

magnitudes. This could be due to the influence of the vocoder, which, depending on its

hyperparameters, is likely to produce audio at different amplitudes. Similarly, while

the speaking rate between the two datasets follows broadly the same pattern, it is higher

overall for the generated utterances. One likely cause is that we do not annotate pauses

in our phoneme sequences despite the training set containing such pauses (trimmed to

300ms as discussed in Section 3.2). We also see a lack of speaking rate correlation

at the extremes of the vocal effort range. However, the lack of training data at these

extremes (44 utterances with vocal effort class 6 and 204 at class 1) make it hard to

draw confident conclusions. Informally, we believe this is likely to be because the (very

few) vocal effort class 6 utterances in the training set tend to be very short sentences,

often single words. When generating high vocal effort utterances from our model, we

use the full range of sentence lengths found in the test set.

As well as comparing statistics across these two datasets, we can also reference the

comprehensive study on the acoustic effects of vocal effort found in [5]. The authors

report correlations between vocal effort and a variety of acoustic variables that are very

similar to our findings.

The second quantitative evidence we have for the efficacy of our model is the per-

formance of the vocal effort classifier. As seen in Table 5.2 and Figure 5.6, the classifier

monotonically predicts an increase in vocal effort class as we sample across latent di-

mension 0. To provide assurance of the efficacy of the classifier, Appendix A shows
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the per-class classification accuracy of this model on a human-labeled test set.

The vocal effort predictions from the classifier are supported by the subjective rat-

ings submitted in the listening test (also Table 5.2). Again, we see a monotonic increase

in perceived vocal effort class as we sample across dimension 0. The 95% confidence

intervals also remain small despite the relatively small number of listeners and evalu-

ation stimuli. The overall differences between the subjective ratings and the classifier

predictions are surprisingly slight, as shown in Figure 5.6.

A key observation is that the classifier and human evaluators rarely, if ever, label

an utterance as belonging to class 1 (whispered). This reveals a clear limitation in our

work. It would appear that the break between phonated and unphonated speech is not

modeled by this one latent dimension. Indeed, looking at Figure 5.8, we can see that

the ratio of voiced to unvoiced is correlated quite strongly to latent dimensions other

than dimension 0. We are not particularly surprised by this result; as discussed in Sec-

tion 3.2.2 we believe that while phonated vocal effort should perhaps be considered a

continuous variable, the break between phonated and unphonated speech should prob-

ably be considered a discrete variable. This limitation may also explain why we could

not sample at +3std from the mean on latent dimension 0 while we could sample at

-3std from the mean. Theoretically, we would expect that sampling at this point may

produce very low vocal effort or even whispered speech; in practice, the model was

unable to generate intelligible speech at this sampling point reliably. In future, we

hope to model the discrete break in phonated and unphonated speech using a different

approach. Potentials routes to explore include the use of a secondary VAE as part of a

GMM [24], a learned prior [72], or a hierarchical approach [29].

Another potential reason for this inability to model whispered speech is the lack of

training data; our dataset has a highly imbalanced vocal effort distribution (see Figure

3.2). Retraining a model on a smaller but more balanced dataset may reveal the validity

of this reasoning.

6.5 Disentanglement

As discussed in Section 2.4, recent research attempting to model expressive speech

often focuses on the ability to disentangle various acoustic attributes such as F0, energy,

and phone duration [29]. In our model, we observe that as we sample along dimension

0, F0 mean and variance, energy, and speaking rate co-correlate and are still very much

entangled. However, we argue that if the aim of a model is to creatively control a
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semantically meaningful ‘higher level’ speech attribute such as vocal effort or affect,

we must accept and indeed pursue the appropriate level of entanglement. In natural

speech, vocal effort and affect are strongly correlated to a wide range of ‘lower level’,

or more granular, acoustic variables [5, 11]. It follows that we would expect the same

behavior from our models. Perhaps the most critical consideration when designing

latent variable models is to be explicit about the desired attribute to disentangle and

then ensure a method is in place to measure success. In our case, while the vocal effort

labels were not used during training, they did provide valuable feedback in this regard.

6.6 Vocal effort transfer

Vocal effort transfer was not our primary aim, and this is reflected in our limited evalua-

tion. Referring to Table 5.4, it would appear that the model has some ability to transfer

vocal effort from a reference utterance to a synthesized utterance. However, the ambi-

guity of the results, especially at the lower end of the vocal effort spectrum, suggests

that further work is required. Also, we do not compare these vocal effort classifier

results to subjective listening test results (our listening test was already a significant

length). In informal listening tests, we found that the overall quality (and alignment)

was lower than our vocal effort control experiments. This could result from certain

latent dimensions corresponding to attributes particular to the reference text sequence

that do not match the generated text sequence. (By contrast, in the vocal effort control

experiments, we sample from the mean of a normal Gaussian for all dimensions except

dimension 0). For example, in Figure 5.8, utterance duration is strongly correlated in

dimensions 1 and 2. If there is a significant length mismatch between the reference and

generated text, this could be problematic. As mentioned in Section 4.2, [27] suggests

that the VAE can be conditioned on the text as well as the audio. Implementing this

change may yield improvements for this task. We also anticipate that modifying the

model architecture (for example, latent space dimensionality) and optimization (for

example, KL weight) for this specific task will likely yield more robust results.

6.7 Naturalness

As seen in Table 5.3, our proposed model generates speech with a reasonable level

of naturalness. It was worth observing the result in light of the drop in naturalness

from the original ground-truth data to the resampled and vocoded ground-truth data.
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This shows that it is likely that the naturalness of our model is compromised simply by

the lower acoustic fidelity introduced by the low sample rate and imperfect vocoder.

However, we accept that this by no means accounts for the full difference in natural-

ness between our model and the ground-truth audio. In particular, we found that in

informal listening tests, the model particularly struggled with unphonated sections of

speech. These less tonal sections tended to sound metallic and ‘robotic’. As discussed

in Section 4.5, optimizing the model for naturalness and high-fidelity audio was not

our primary aim in this work. We expect that simple changes such as increasing the

sample rate and training the vocoder for a longer period would improve this result.

There are also likely to be a variety of hyperparameter changes we could explore in the

Tacotron model, along with the transcript annotation changes discussed earlier in this

chapter.

6.8 Other considerations

Our VAE encoding operates at the utterance level, while other approaches attempt to

model at the word or phoneme-level [29]. We may find that modeling at these lower

time domains yields beneficial results. However, we would argue that the utterance

level is the most appropriate for an attribute such as vocal effort, especially when gen-

erating short utterances. Also, we would possibly need to incorporate an autoregres-

sive prior across the utterance’s VAE encodings to ensure stability and consistency, as

proposed in [99].

While we defend the argument in Section 4.2 not to use the vocal effort labels

during training, we admit that further investigation is required. The authors of [26]

argue that providing supervision (or semi-supervision) during the training of VAE-

TTS models can help with reproducibility. Formally, VAEs are non-identifiable [100],

and therefore, it can be difficult to predict how the latent representations will form for

each training run. Some form of supervision can help to ensure that we can reliably

disentangle the relevant speech attributes. However, in our experiments, re-training

the evaluation model from scratch resulted in a similar level of vocal effort disentan-

glement (Figure 5.9). While this does not constitute a thorough investigation, we are

satisfied that our model is not simply the product of random initialization.

We also stand by our decision to use a VAE for learning latent representations

rather than a simple reference encoder [73] or Global Style Token [74]. Neither of

these approaches offers a sampling method that allows smooth interpolation across a
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latent attribute, and the level of disentanglement is harder to analyze.

Finally, we accept that this work has taken a machine-learning approach to model-

ing the non-lexical variation in speech. This ‘black-box’ negative definition of prosody

is perhaps overly simplistic and ignores much of what we do know about speaking

styles. In future, we would seek the valuable contributions of others in the speech

research community to help interpret these models.



Chapter 7

Conclusion

In this work, we have demonstrated the ability to model and control vocal effort in a

latent variable TTS system. To the best of our knowledge, this is the first time that this

speech attribute has been modeled in this manner.

We have shown that it is possible to utilize a dataset containing a significant amount

of stylistic and acoustic variation compared to the typical datasets used in research,

especially in terms of vocal effort. It would appear that the use of a VAE is highly ben-

eficial in modeling this range of variation and that vanilla TTS systems are unlikely to

suffice. Crucially, using a VAE has enabled us to model vocal effort in the latent space,

allowing us to easily and effectively generate speech with a wide range of this attribute

in an interpretable manner. This interpretability comes at the cost of entanglement of

‘lower-level’ acoustic variables such as pitch and energy. However, we argue that this

trade-off is appropriate for the sake of creative control. As a secondary benefit to our

VAE-Tacotron model, we have demonstrated that this approach shows promise in the

task of transferring vocal effort from a reference utterance.

7.1 Limitations and future work

Despite these results, there are some significant limitations with the work we have

presented. Perhaps the most pertinent is that the dataset we have used is not publicly

available. Given the lack of similar datasets, this will make it hard to reproduce our

results. To this end, one key direction of future work is to develop a publicly available

speech dataset with a wide range of vocal effort. Given the costs of developing such a

dataset, it is unlikely to be as large as the one used in this work. However, recording a

more balanced vocal effort dataset may mean that a smaller size will suffice. Coupled

34
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with insights from the field of low-resource TTS [101–103], we are hopeful that it

should be possible to replicate and build on our results.

Another clear limitation to our work is the inability to model whispered speech.

In the future, we would wish to explore different approaches to modeling this discrete

split in phonation. Promising directions to explore include the use of GMMs [24],

hierarchical VAEs [29], and learned priors [72]. As part of this work, we would also

seek to explore multi-speaker modeling and a more thorough investigation into the

most appropriate time domain for the VAE. Our model operates at the utterance level,

but the phoneme or frame level may be more appropriate.

Furthermore, our work also makes no attempt to model or explain any feature of

prosody beyond vocal effort. While this attribute is an important source of variation in

speech, a robust TTS system would require interpretable control over a range of other

prosodic variables.

Our model also still suffers from alignment issues. As discussed in Section 6.1,

annotating non-word vocalizations is one possible route to improvement. Another so-

lution is to experiment with systems that do not rely on attention mechanisms and in-

stead explicitly model duration. However, vocal effort is highly correlated to variables

such as pitch, energy, and duration. As discussed in Section 4.1, explicitly modeling

these attributes out-with the VAE will make it harder, if not impossible, for the latent

space of the VAE to encode meaningful vocal effort representations. Thus, we believe

that designing robust latent variable TTS systems is still an open research question.

Our vocal effort transfer results are promising but not conclusive. However, given

that [28] has demonstrated the ability to transfer prosodic attributes using VAE-TTS

models, we expect that we could achieve a similar level of robustness for vocal effort

with architectural and optimization modifications.

Although we have attempted to provide a light evaluation of reproducibility across

multiple training runs, a lack of predictability is still inherent in training VAEs. While

we have argued the case for not using labels during training, providing some form of

light supervision as proposed in [26] may alleviate this issue. Likewise, we would wish

to investigate a more principled approach to the choice of latent space dimensionality,

KL weight, and KL annealing schedule [27].

Despite these limitations, we believe this work represents a valuable contribution

to the field of expressive speech synthesis. We hope that exploring vocal effort in this

context, along with other domains such as ASR and voice conversion, will continue to

grow into an active area of research.
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Appendix A

Vocal effort classifier

For a previous vocal effort classification task, we trained a vocal effort classifier on a

corpus of over 30 thousand labeled utterances. Initially, we used a ResNet architec-

ture [104] operating on the spectrograms coupled with the data augmentation method

SpecAugment [105]. However, we witnessed significant improvements by instead

using embeddings extracted from a pre-trained self-supervised model, TRILL [106].

These embeddings were then passed through a simple linear classifier. The per-class

results for a held-out test set can be seen in Table A.1.

VOCAL EFFORT CLASS ACCURACY (%)

1 79.7

2 89.5

3 84.3

4 67.1

5 83.2

6 96.2

OVERALL 81.6

Table A.1: Per-class vocal effort classifier accuracy on a held-out test set.
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