
Robustness of Machine

Translation for Low-Resource

Languages

Oliver Aarnikoivu

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2021



Abstract

It is becoming increasingly common for researchers and practitioners to rely on meth-

ods within the field of Neural Machine Translation (NMT) that require the use of an ex-

tensive amount of auxiliary data. This is especially true for low-resource NMT where

the availability of large-scale corpora is limited. As a result, the field of low-resource

NMT without the use of supplementary data has received less attention. This work

challenges the idea that modern NMT systems are poorly equipped for low-resource

NMT by examining a variety of different systems and techniques in simulated Finnish-

English low-resource conditions. This project shows that under certain low-resource

conditions, the performance of the Transformer can be considerably improved via sim-

ple model compression and regularization techniques. In medium-resource settings,

it is shown that an optimized Transformer is competitive with language model fine-

tuning, in both in-domain and out-of-domain conditions. As an attempt to further

improve robustness towards samples distant from the training distribution, this work

explores subword regularization using BPE-Dropout, and defensive distillation. It is

found that an optimized Transformer is superior in comparison to subword regulariza-

tion, whereas defensive distillation improves domain robustness on domains that are

the most distant from the original training distribution. A small manual evaluation is

implemented where the goal is to assess the robustness of each system and technique

towards adequacy and fluency. The results show that under some low-resource condi-

tions, translations generated by most systems are in fact grammatical, however, highly

inadequate.
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Chapter 1

Introduction

The field of Natural Language Processing (NLP) has seen exciting progress in re-

cent years due to advancements with deep learning architectures such as the encoder-

decoder [45] and most notably, the Transformer [49]. Such models have enabled im-

mense improvements in Machine Translation (MT), which has arguably become one of

NLP’s most successful and innovative application areas. Despite these improvements,

research shows that the vast majority of success corresponds to results achieved on

English and other high-resource languages [36]. Additionally, many of the modern ar-

chitectures and techniques primarily rely on extensive data in order to achieve notable

results. As a result, Neural Machine Translation (NMT) systems in low-resource set-

tings can underachieve even in comparison to Phrase-Based Statistical MT (PBMST)

and unsupervised translation [38, 19]. Consequently, low-resource NMT without sup-

plementary data has received far less attention.

Sennrich and Zhang [38] have shown that by optimizing the hyperparameters of

a Recurrent Neural Network (RNN), performance can be significantly improved un-

der low-resource conditions when translating from German → English without the

need of any supplementary data. However, model architectures and techniques have

since advanced, thus it is unclear whether their findings hold meaning in the current

landscape of NMT. Furthermore, it is unclear whether their findings are applicable to

languages that are much more morphologically complex than German. Therefore, this

work revisits their hypothesis which argues that poor results of NMT systems under

low-resource settings are primarily due to a lack of system adaptation. This work ex-

tends upon their research in many ways. First, the primary focus is on the Transformer,

which has become the de facto standard architecture within the field of NMT. Second,

this work investigates translation from English → Finnish, a highly morphologically
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Chapter 1. Introduction 2

complex language with similarities to truly low-resource Uralic languages. Thirdly, a

thorough evaluation is performed in both in-domain and out-of-domain conditions.

Another challenge in low-resource NMT is the inability for systems to general-

ize to samples that are outside of the training distribution. Müller et al. [28] find that

the Transformer has the tendency to hallucinate, meaning that it generates translations

that are grammatically correct but inadequate. They show that various methods can im-

prove domain robustness, namely subword regularization, defensive distillation, recon-

struction, and neural noisy channel reranking. This work extends upon their research

by examining the effectiveness of subword regularization and defensive distillation as

methods to further improve domain robustness of the Transformer under numerous

low-resource conditions in translation from English→ Finnish.

The experimental findings of this thesis show that under some low-resource con-

ditions, the performance of the Transformer can be considerably improved via simple

architecture modifications and optimization techniques. To gain an understanding of

where the Transformer stands in the current landscape of low-resource NMT, a com-

parison is made against an RNN and a pre-trained language model fine-tuned for MT.

It is found that under extreme low-resource settings, an RNN proves to be the better

alternative. In comparison to the pre-trained language model, it is shown that an op-

timized Transformer performs better on as little as 80,000 and 160,000 sentences of

parallel training data. Regarding techniques to improve domain robustness, the ex-

perimental findings show that while subword regularization is better in comparison to

the baseline system, it lacks in comparison to the optimized Transformer. However,

a small manual evaluation reveals that subword regularization tends to produce more

grammatical translations. Defensive distillation is found to be slightly effective in im-

proving domain robustness under some low-resource settings.

The structure of this dissertation is as follows: Chapter 2 covers background knowl-

edge relevant to understand the methods this work explores. Chapter 3 presents the

methods used in this work to improve performance and robustness of NMT systems in

in-domain and out-of-domain conditions under low-resource settings. A critical review

of relevant literature is jointly provided to strongly support the selection of methods.

Chapter 4 presents the setup used to carry experiments in this report. It describes the

data sets used, data preprocessing, how systems are implemented, the hardware used,

and how systems are evaluated. Chapter 5 provides a comprehensive analysis and

discussion on the results achieved using the chosen methods. Finally, the concluding

remarks along with a discussion of future work is provided by Chapter 4.



Chapter 2

Background

This chapter provides a high-level overview of background knowledge within the field

of NMT that is required to understand the methods that are used throughout this dis-

sertation. It begins by describing the key architectures that have advanced the field.

This is followed by a description of how best to represent text in standard and low-

resource NMT, the importance of language model pre-training and fine-tuning, and

how to evaluate NMT systems.

2.1 Neural Machine Translation

NMT is defined as a field in which neural systems are used to convert sequences of

words from a source language into a sequence of words in a target language. The field

primarily gained traction with the introduction of the encoder-decoder network, intro-

duced by Sutskever et al. [45]. In the encoder-decoder network, the encoder accepts

an input source sentence and produces a contextualized representation of it. This rep-

resentation is subsequently passed on to the decoder which generates a translation of

the source sentence in the specified target language. The encoder-decoder network is

flexible in that it can be modelled using numerous architectures, with the most notable

ones being RNNs, and Transformers.

2.1.1 Recurrent Neural Networks

RNNs are an attractive architecture for modelling the encoder-decoder network due

to having the ability to process sequences of arbitrary length using hidden states that

allow for the recognition of patterns across time [14]. In practice however, the vanilla
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RNN suffers from the vanishing and exploding gradient problem. This means that for

longer sentences, the gradient tends to get smaller as we back-propagate to the be-

ginning of the input sequence [29]. While this problem has been somewhat alleviated

with architecture modifications such as the long short-term memory (LSTM) and gated

recurrent unit (GRU) network, it is still difficult to guarantee that long distance depen-

dencies will be captured sufficiently [29]. Due to this, Bahdanau et al. [3] modified the

encoder-decoder network with the attention mechanism, which is a much more natural

way for solving the translation problem.

2.1.2 Attention

To better explain the attention mechanism, we can assume a source sentence x, and a

target sentence y with which the encoder-decoder can be formulated as a conditional

language model, where the decoder conditionally generates a probability distribution

over the translation given the source sentence and the previously generated word:

p(y|x) =
|y|

∏
t=1

p(yt |y<t ,x) (2.1)

where y<t = y1, ...yt−1. When using attention, the hidden state of the decoder st is

changed at each time step t using the previous hidden state st−1, the previously trans-

lated word yt−1, and the context vector ct , which is calculated using the attention mech-

anism αt :

st = RNN(st−1,yt−1,ct) (2.2)

ct =
|x|

∑
t=1

αtht (2.3)

αt = so f tmax( f (st−1,ht)) (2.4)

where f is a function which computes an attention score between the hidden states of

the encoder and decoder [1].

The attention mechanism αt is crucial since unlike with the standard RNN, we can

maintain vectors for each word in the source sentence and refer to them during decod-

ing. As a result, we can avoid the fixed hidden representation bottleneck of the and can

model sentences of varying lengths [3]. However, as shown by the above equations,



Chapter 2. Background 5

the encoder-decoder with the attention mechanism still relies on recurrent connections

which is problematic as it impedes the use of parallel computational resources [17].

This lead to the development of the Transformer [49], an architecture that eliminates

the need for recurrent connections by primarily relying on the attention mechanism.

2.1.3 The Transformer

While the Transformer itself contains a variety of small technicalities to make it work

efficiently, it can be argued that the key ingredient is the self-attention mechanism.

The self-attention mechanism enables the computation of attention over the input se-

quence, thus producing a hidden representation that captures various relationships be-

tween each word in the input sentence. More formally, in self-attention, the word xi in

the input sentence is used in three different ways:

• Query: xi is measured against every other word to compute attention weights for

its own output yi.

• Key: xi is measured against every other word to compute attention weights for

the outputs y j.

• Value: xi is used in a weighted sum for computing an output vector for every

word using these weights.

To make attention more powerful, Vaswani et al. [49] assume different trainable weights

for the query, key and value: Wq, Wk, and Wv respectively, each which have a dimen-

sionality of k× k where k is the dimensionality of x and y. Thus, attention in the

Transformer is computed as follows:

qi =Wqxi ki =Wkxi vi =Wvxi (2.5)

w
′
i j = qT

i k j (2.6)

wi = so f tmax(w
′
i) (2.7)

yi = ∑
j

wi jv j (2.8)

where w
′
represents the attention weight, and w the attention distribution [4, 12].
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Considering that words may have numerous different linguistic properties depend-

ing on the context in which they appear in, Vaswani et al. [49] found it beneficial to use

multiple self-attention mechanisms in parallel which they refer to as multi-head atten-

tion. This enables the model to jointly attend to different words in the input sentence.

Regarding the model architecture, the Transformer consists of Nx encoder and de-

coder stacks. Inputs are fed into the encoder as word embeddings along with positional

encodings which allow the model to make use of the order of the input sentence. Each

stack consists of two sub-layers where the first is the multi-head self attention mech-

anism, and the second a position-wise fully-connected feed-forward network. Each

sub-layer also passes through a residual connection followed by layer normalization.

The decoder is constructed similarly, however, it also has an additional sub-layer which

performs the multi-head attention mechanism over the output of the encoder. More-

over, the self-attention mechanism in the decoder is modified to prevent the model

from attending to future context.

2.2 Byte Pair Encoding

MT is fundamentally an open vocabulary problem considering that many training cor-

pora contain millions of word types, and that for morphologically rich languages, word

patterns such as compounding and derivation may allow for the generation of unseen

words [35]. While it may sound feasible to simply ignore rare words and to replace

them with a special unknown token during inference, this is evidently a non-solution in

low-resource settings, as we can imagine that during inference, a significant proportion

of words will have been unseen during training. A crucial technique which addresses

the problem of rare words is Byte Pair Encoding (BPE) [40].

BPE is a word segmentation algorithm which begins on a computationally expen-

sive character-level representation, and then compresses the representation based on

the BPE algorithm from information theory. In order to specify the segmentation pro-

cedure, BPE constructs a merge table and a token vocabulary. At first, the token vocab-

ulary is initiated with the character-level vocabulary, and the merge table as an empty

table. The algorithm then repeatedly counts all pairs of tokens and merges the most

frequently occurring tokens into a single token, which the algorithm then adds to the

token vocabulary, whilst merge operations are added to the merge table [40, 34]. This

process is controlled by a hyperparameter which defines how large the vocabulary size

should be. What makes BPE so effective in addressing the open vocabulary problem is
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that the operations which BPE learns on a training set can be applied to unseen words.

Furthermore, since BPE repeatedly compresses frequently seen tokens into a single

token, this can drastically improve efficiency.

2.3 Language Models

The Transformer shifted the paradigm in NLP such that instead of training a model

from scratch, a model can be pre-trained with different language modelling objectives

on large amounts of monolingual data and then fine-tuned on task-specific data. The

aim of the language modelling objective during pre-training is to learn good contextual

representations of words that are representative across a variety of different tasks. This

procedure was first shown to be effective with the introduction of BERT (Bidirectional

Encoder Representations from Transformer) [9], which pre-trains a Transformer using

a Masked Language Modelling (MLM) objective. With MLM pre-training, a percent-

age of tokens in each sequence are randomly masked, and the task of the model is to

predict the masked words. Given their state-of-the-art results at the time, the MLM

procedure has since become the standard in NMT. However, a limitation with the typ-

ical MLM pre-training objective is that it can only be applied to a single language. In

NMT, we would ideally like to transfer the benefits of pre-training to numerous lan-

guages without having to train a separate model on each language of interest. This

is evidently problematic for low-resource languages and settings, where we often are

not able to leverage the benefits of pre-training considering the limited availability of

monolingual corpora. For this reason, it has become popular to train multilingual lan-

guage models (MLLMs) such as XLM [22], XLM-R [8], and mBART [26]. The aim of

the MLLM objective is to pre-train on a considerable amount of monolingual corpora

with the hope that low-resource languages may benefit from the genetic relatedness,

contact relatedness, and shared vocabulary of high-resource languages [10].

MLLMs, like other language models, are generally based on the aforementioned

Transformer architecture. They consists of three layers: (1) Input layer, (2) Trans-

former layer(s), and (3) Output layer. The input layer takes in a sequence of tokens

which is typically constructed using a subword vocabulary algorithm, as described in

Section 2.2. To ensure an unbiased representation in the vocabulary for different lan-

guages, separate vocabularies may be learned for languages or the input data can be

sampled using exponential weighted smoothing [7, 8]. The representation from the in-

put layer is then passed onto the Transformer layer(s) which for MLLMs are generally
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a stack of Nx Transformer encoder layers as described in Section 5.1. The output layer

makes use of a linear transformation followed by a softmax which takes in as input an

embedding representation of a word from the previous transformer layer, and outputs

a probability distribution over the words in the vocabulary [10].

2.4 NMT Evaluation

Evaluation in NMT is of great importance for deciding how to select the best perform-

ing system, for evaluating incremental changes to a system, and for deciding whether

a system is appropriate for a specific task. While researchers and practitioners eval-

uate MT systems on many different dimensions, two fundamental ones are adequacy

and fluency. Adequacy measures how well an output from an MT system conveys the

same meaning as the reference sentence, whereas fluency measures whether the sys-

tem generated translation is fluent and grammatical [43]. To evaluate such incremental

changes to a system, it makes most sense to use an automatic evaluation metric due to

the human cost associated with manual evaluation. For this reason, BLEU (Bilingual

Evaluation Understudy Metric) [32] has become the standard for system comparison in

literature and iterative system development. BLEU computes the precision for n-grams

of size 1 to 4 against numerous references, and penalizes system generated translations

if they are too short compared to an effective reference length:

BLEU = min(1,
out put length

re f erence length
)(

4

∏
n=1

precisioni)
1
4 (2.9)

While BLEU has shown to be reasonably correlated with human judgements in MT, the

metric can be a poor measure of adequacy and fluency [6]. This is primarily because

BLEU allows for a considerable amount of variation. For example, Callison-Burch

et al. [6] show that for an average hypothesis, there are multiple ways in which the

hypothesis could be permuted or substituted while maintaining the same BLEU score.

It is unlikely that these hypotheses would be judged as identical by human evaluators.

Due to the inability to differentiate between random variations for system generated

translations, if one understands the target language of translation, a more detailed view

of both a systems strengths and weaknesses can be revealed through manual evaluation.

This is crucial in low-resource and out-of-domain conditions as it can highlight the

multiple ways in which a model overfits to the training domain and fails to generalize

to an unseen data distribution [28].



Chapter 3

Methods for Low-Resource NMT

This chapter presents methods used in this work as an attempt to improve performance

and robustness of NMT systems in both in-domain and out-of-domain conditions under

low-resource settings. A critical review of relevant literature is jointly provided to

strongly support the selection of methods.

3.1 Parallel Data

The bulk of recent research has shown promising results in improving performance

for low-resource and out-of-domain NMT by making use of methods such as transfer

learning from related languages or from another high-resource language [52], monolin-

gual back-translation [39], and monolingual and multilingual pre-training [8, 26, 22].

While these methods have shown promising results, Sennrich and Zhang [38] and

Araabi and Monz [2] argue that instead of relying on large quantities of auxiliary data

to train, comparable performance can be achieved by simply adapting more simplistic

NMT systems to low-resource settings through architecture modifications and opti-

mization. For example, Sennrich and Zhang [38] experiment with numerous different

hyperparameters for an RNN on different amounts of IWSLT14 German-English train-

ing data, and show that without relying on any monolingual or multilingual data, their

optimized NMT system under an extreme low-resource setting (5K sentences) can

achieve a BLEU score of 16.57 in comparison to an unoptimized RNN, with a BLEU

score of 0. Similarly, in medium-resource settings (160K sentences), they show that

performance can be increased from 25.7 to 33.6 BLEU. They found that aggressive

forms of regularization such as hidden dropout, embedding dropout, word dropout and

label smoothing are particularly effective.

9
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While these results are encouraging, such a thorough optimization procedure has

not been widely applied to many languages, thus it is unclear how applicable their

findings are to different data sets and languages which may be more morphologically

complex than German. While Sennrich and Zhang [38] make a comparison to PBSTM

and Araabi and Monz [2] compare Transformer performance to an RNN, no compar-

isons are made with more modern techniques for low-resource NMT. Therefore, it is

unclear whether their findings hold much meaning in the current environment. Ad-

ditionally, it is unclear whether such optimization is able to improve performance in

out-of-domain conditions. This work extends upon their research using the Trans-

former architecture, as described in Chapter 2. The focus, however, is on translation

from English → Finnish, and a thorough evaluation is performed in both in-domain

and out-of-domain conditions.

3.2 Transfer Learning

As described in Chapter 2, it is becoming increasingly more common to leverage pre-

trained language models by fine-tuning them towards downstream tasks such as MT.

This is of particular importance for low-resource settings where the availability of par-

allel data is scarce. Recent research has shifted towards pre-training with the MLM

objective on numerous languages at once, instead of training a separate model for each

language of interest. One such model which has shown promising results is mBART

[26], a sequence to sequence denoising auto-encoder pre-trained on an immense mono-

lingual corpora using the BART [23] pre-training objective. The mBART model is

unique in that it can be directly fine-tuned on both supervised and unsupervised trans-

lation without any task-specific modifications. The model makes use of the standard

Transformer architecture, as described in Chapter 2, with 12 layers for both the encoder

and decoder, with a model dimension of 1,024 and 16 heads. The model is pre-trained

on a subset of 25 languages from the large-scale Common Crawl (CC) corpus.

Liu et al. [26] run numerous experiments with a range of models that use dif-

ferent levels of multilinguality during pre-training. These include: (1) mBART25 -

Model pre-trained on all 25 languages from the CC corpus, (2) mBART06 - Model

pre-trained on a subset of 6 European languages (Romanian, Italian, Czech, French,

Spanish, and English), and (3) - mBART02 - Bilingual model pre-trained on English-

German, English-Romanian, and English-Italian. They assess the effect of pre-training

mBART02 on different amounts of English-German bitext, and show that the pre-
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trained model is able to achieve up to 20 BLEU using only 10K training examples,

while the baseline system trained without pre-training scores 0 BLEU.

This work studies the effect of fine-tuning mBART25 under simulated low-resource

settings for English→ Finnish translation, and compares results to those achieved by

the Transformer trained only on parallel data, in both in-domain and out-of-domain

conditions. Considering that mBART25 has already been pre-trained on a substantial

amount of Finnish monolingual data (54.3GB), the expectation is that the fine-tuned

model will perform notably better under low-resource settings. However, it is sus-

pected that the fine-tuned model may be negatively affected by the numerous other

languages that are included during pre-training. Nonetheless, this simulates a more

realistic setting since it is likely infeasible to pre-train a bilingual mBART02 on a truly

low-resource language pair considering the short supply of monolingual data.

3.3 Methods for Improving Domain Robustness

Domain robustness is a relatively new research area in the field of NMT. Methods

which have shown to improve performance in robustness towards out-of-domain dis-

tributions in low-resource settings includes techniques such as subword regularization

[21, 34], reconstruction [48], neural noisy channel reranking [51], minimum risk train-

ing [50], and knowledge distillation [18, 28], among others.

3.3.1 Subword Regularization

Subword regularization is a regularization technique which trains a system using mul-

tiple subword segmentation’s that are probabilistically sampled during training [21].

The two most used subword regularization techniques include BPE-Dropout [34], and

SentencePiece segmentation [21]. This work explores BPE-Dropout as a method to

improve domain robustness in simulated low-resource settings for English→ Finnish.

BPE-Dropout is a subword regularization method which stochastically corrupts the

segmentation of the standard BPE algorithm, as described in Chapter 2, by randomly

dropping merges according to a probability p, while maintaining the original BPE

merge table. The algorithm is shown in Figure 3.1. When p = 0, the segmentation is

the same as standard BPE, and if p = 1, then the segmentation splits words into unique

characters. The values between 0 and 1 are used to control the amount of segmentation.

Provilkov et al. [34] argue that a limitation of standard BPE is its deterministic
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Figure 3.1: BPE-Dropout algorithm. Taken from [34].

behaviour, where it splits words into unique subword sequences meaning that a model

is only able to observe a single segmentation. By introducing the model to multiple

segmentation’s, the model is likely to be more robust towards morphologically com-

plex languages, rare words, and segmentation errors. They assess BPE-Dropout on

a wide range of languages and data sets with different corpora sizes. For English →
Vietnamese and English→ Chinese IWSLT15 parallel data with 133k and 209k sen-

tences, respectively, they show that performance can be increased from 31.78 to 33.27

BLEU and 20.48 to 22.84 BLEU, accordingly, in comparison to standard BPE. A thor-

ough search of relevant literature suggests that the effect under extreme low-resource

settings and out-of-domain conditions has not been widely studied. Müller et al. [28]

assess the effect of SentencePiece segmentation on numerous out-of-domain test sets,

and show that for low-resource conditions in German → Romansh (100k sentences),

subword regularization improves both in-domain and out-of-domain performance by

+1.2 BLEU.

3.3.2 Knowledge Distillation

Knowledge Distillation (KD) defines a class of techniques for training a smaller net-

work to perform better on a task by learning from a larger teacher network [5, 16].

Hinton et al. [16] suggest that we should be inclined to train a more complex model

if it means that training such a model makes it easier to distinguish patterns across
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data. Once the model has been trained, the knowledge learnt by the teacher can be

transferred to a smaller student network which is more suitable to a specific-task.

While the idea of KD is relatively foreign to NMT, one form of KD which has

shown to be beneficial in out-of-domain conditions is defensive distillation. Defensive

distillation differs from standard KD in that the the student network shares the same

architecture as the teacher, where the aim is to generalize to samples outside of the

training distribution [31]. This form of distillation is well documented in tasks that in-

volve robustness towards adversarial attacks [46], however, it has not been thoroughly

assessed in the field of NMT. Müller et al. [28] studied the effect of defensive distil-

lation on German-English, and German-Romansh. They apply defensive distillation

based on the Sequence-Level KD approach introduced by Kim and Rush [18], where

the student network is simply trained on translations generated by the teacher network

using beam search, while being initialized with the parameters of the teacher. They

showed that while in-domain performance is worsened, the average out-of-domain per-

formance increases slightly for both language pairs. Due to this, it is suspected that

defensive distillation applied to the Transformer under simulated low-resource settings

for English→ Finnish may further improve robustness towards samples outside of the

training distribution.

3.4 Research Questions

Now that the methods of this dissertation have been introduced, let us clearly define

the research questions that this work attempts to address:

1. Can the performance of the Transformer for English → Finnish under low-

resource settings be improved in both in-domain and out-of-domain conditions

via architecture modifications and optimization techniques?

2. Are results achieved by an optimized Transformer in low-resource settings com-

parable to other systems in NMT, namely against an RNN and language-model

fine-tuning?

3. Can robustness of the Transformer towards out-of-domain samples under low-

resource settings for English→ Finnish be improved with subword regulariza-

tion (BPE-Dropout) and defensive distillation?
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Experimental Setup

This chapter details the experimental setup for addressing the aforementioned research

questions. It begins by describing the data sets used for experimentation and how the

data is preprocessed and cleaned. This is followed by a description of the systems

and techniques that are used for carrying out the experiments. Subsequently, details

on the hardware and schedule used for running the experiments is provided. Finally,

the chapter concludes with a description on how the experiments are automatically and

manually evaluated.

4.1 Data Sets

The experiments carried out in this work make use of the following English-Finnish

parallel corpora provided by OPUS [47]: (1) Europarl - A parallel corpus extracted

from the European Parliament web site by Philipp Koehn (University of Edinburgh),1

(2) JRC-Acquis - A collection of legislative text of the European Union,2 (3) EMEA -

A parallel corpus made out of PDF documents from the European Medicines Agency,3

and (4) Bible (uedin) - A parallel corpus created from translations of the Bible.4 In

all experiments, Europarl is used as the in-domain training data set whereas the re-

maining 3 data sets are used as out-of-domain test sets. The data sets are defined as:

parliament, law, medical, and religion, respectively. While there is no specified mea-

sure of domain distance in NMT, the law domain is arguably the most similar to the

in-domain training corpus, whilst the medical and religion domains are relatively dis-

1https://opus.nlpl.eu/Europarl.php
2https://opus.nlpl.eu/JRC-Acquis.php
3https://opus.nlpl.eu/EMEA.php
4https://opus.nlpl.eu/bible-uedin.php
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tant. It is therefore expected that systems trained on the in-domain training corpus will

have stronger domain robustness towards the law domain in comparison to the other

out-of-domain data sets.

4.2 Preprocessing

4.2.1 Sampling

While Finnish is not a low-resource language, it is an extremely morphologically rich

language that has similarities to other truly low-resource Uralic languages. Therefore,

to be comparable to the work done by Sennrich and Zhang [38] and Araabi and Monz

[2], the full in-domain English-Finnish training corpus is randomly sub-sampled as a

means to simulate low-resource conditions. The assumption is that findings on Finnish

under low-resource conditions are applicable and transferable to truly low-resource

Uralic languages.

Out of the ≈ 2M Europarl English-Finnish sentence pairs, 164,000 sentence pairs

are randomly sampled from which the first 160,000 serve as the full in-domain training

corpus, and the final 4,000 sentence pairs are split evenly such that there are 2,000

validation and testing examples. Subsequently, the full in-domain training corpus is

repeatedly sub-sampled 5 times where half of the data is removed at each step. This

produces a total of 6 in-domain training corpora, as shown by Table 4.1. For each of the

out-of-domain test sets, 2,000 sentence pairs are randomly sampled for out-of-domain

evaluation. Each out-of-domain test set is deduplicated which results in 1,512, 1,701,

and 1,992 unique sentences for the law, medical, and religion domains, respectively.

It is worth mentioning that there is a tiny amount of duplicate observations in between

the in-domain training, validation and testing sets that were not removed, which has a

potential to add a small bias.5

4.2.2 Data Cleaning

Sentences for each dataset are normalized, tokenized, and truecased using Moses scripts

[20]. Truecasing is learned on the full 160,000 sentence pair in-domain training cor-

pus. With regards to the representation of words to the selected models, the simplest
5The duplicates were not found until later during experimentation. The proportion of duplicates

between the training, testing and validation set is approximately between 1% and 2% for each low-
resource setting. Since the proportion of duplicates is small, experiments were not repeated again on
deduplicated data.
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Sentences Tokens (EN) Tokens (FI) Types (EN) Types (FI) Avg. #words (FI)

160,000 4,421,317 3,143,203 39,767 180,639 158

80,000 2,211,623 1,572,961 30,922 122,712 -

40,000 1,105,019 786,405 23,613 82,070 -

20,000 552,264 392,632 17,930 54,501 -

10,000 278,343 197,346 13,387 35,440 -

5,000 136,239 97,190 9,781 22,371 -

Table 4.1: Training corpus statistics for each subset of the in-domain Europarl English

→ Finnish data. Average number of words per sentence is approximately the same for

each subset.

Domain Sentences Tokens (EN) Tokens (FI) Types (EN) Types (FI) Avg. #words (FI)

Law 1,512 38,472 26,443 3,714 7,113 149

Medical 1,701 25,238 20,685 4,552 6,609 87

Religion 1,992 58,402 43,410 4,474 10,085 144

Table 4.2: Corpus statistics for each out-of-domain test set.

case would be to represent words as atomic vocabulary items. However, as described

in Chapter 2, this is problematic in NMT as it is likely to lead to issues with handling

out-of-vocabulary words, and would be computationally demanding due to a large vo-

cabulary size. Table 4.1 and Table 4.2 display the number of word tokens and types

for each subset of Europarl English-Finnish data, and for each out-of-domain test set,

respectively. While the number of word tokens is consistently higher for each English

corpus, the number of word types is significantly greater for Finnish. This highlights

the morphological complexity of the Finnish language, where modelling such a lan-

guage on the word-level would not capture and enable such a rich combination of mor-

phemes [37]. Therefore, to counter these issues, BPE is applied using the subword-nmt

library.6 This work deviates from Sennrich and Zhang [38] in that a joint BPE and vo-

cabulary is learned on English and Finnish for each in-domain sub-corpus as opposed

to solely on the full in-domain training corpus. The expectation is that learning BPE

on sub-corpora is more indicative of truly low-resource settings, because in such con-

ditions there would evidently be no access to a larger training corpus. Following the

work of Sennrich and Zhang [38], the minimum frequency threshold is set to 10. This

means that any subword with a frequency of less than 10 is split into smaller units

or characters. Sennrich and Zhang [38] suggest that using such a small threshold in

6https://github.com/rsennrich/subword-nmt

https://github.com/rsennrich/subword-nmt
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low-resource settings leads to more aggressive segmentation, thus further reducing the

frequency of out-of-vocabulary tokens.

4.3 Systems

4.3.1 The Transformer

As described in Chapter 3, the primary architecture used for experimentation is the

Transformer. Most recent research no longer places focus on previous neural systems

such as RNNs and its variants such as the LSTM, and GRU. Instead, research in NMT

and NLP is predominantly focused on architectures that either build upon or make

use of the Transformer at the core. Therefore, the belief is that findings using the

Transformer architecture are more applicable to modern approaches. Following the

work of Sennrich and Zhang [38] and Araabi and Monz [2], multiple configurations of

the system are assessed, with a focus on regularization techniques and modifications

to the architecture. The Transformer is implemented using Fairseq, a sequence to

sequence toolkit that allows researchers and practitioners to develop custom models

for a variety of NLP-related tasks including translation [30].

4.3.1.1 Baseline

The baseline system closely follows the original implementation by Vaswani et al.

[49], thus making use of 6 layers, 8 attention heads, 512 hidden units, and 2,048 units

in the final feed-forward hidden unit-layer, for both the encoder and decoder. The

baseline system uses shared decoder input and output embeddings, Adam’s optimizer

with β1 = 0.9, β2 = 0.98 and a clip-norm of 0. Dropout is set to 0.1 with a weight

decay of 0.0001. Label smoothed cross entropy is used as the training criterion with

label smoothing set to 0.1. Batch size is set to 4,096 expressed in terms of the number

of tokens. The baseline system differs from the original implementation in that the

learning rate is set to 0.001 with an inverse square root scheduler and 4,000 warm-up

updates, and 30,000 BPE merge operations are used instead of 37,000.

4.3.1.2 Hyperparameter Tuning

It can be argued that the configuration of the baseline system is heavily over-parameterized

for low resource conditions, meaning that the system is likely to overfit to the train-
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ing data, and will have difficulties in generalizing to unseen in-domain and out-of-

domain test sets. To reduce the over-parameterization of the model, and to determine

an optimal model for each low-resource setting, modifications to the architecture of the

Transformer are first assessed by reducing the number of encoder and decoder layers,

encoder and decoder attention heads, and decoder feed-forward dimensions.

Along with the architecture modifications, various forms of regularization tech-

niques are examined, beginning with dropout, a form of regularization that randomly

drops units and their connections from the network during training [44]. Subsequently,

the effect of attention dropout, which regularizes the attention weights of the Trans-

former by randomly dropping elements from the softmax of the attention equation

[25]. Next, the effect of activation dropout, which randomly drops connections after

activation in the feed-forward-network of the Transformer. Consequently, LayerDrop

is assessed, which randomly drops layers from the Transformer [11]. Finally, different

values for label smoothing, a technique that regularizes the model and penalizes over-

confident predictions such that its outputs do not differ extensively from some prior

distribution [13].

Considering the long training times, it is difficult to optimize the Transformer using

well-known techniques such as grid-search. Therefore, a similar optimization proce-

dure to the authors Sennrich and Zhang [38] and Araabi and Monz [2] is followed, such

that a grid-search is performed for one hyperparameter at a time, and then the hyper-

parameter remains fixed for subsequent hyperparameter tuning. A detailed view of the

selection and order in which the hyperparameters are tuned is provided by Table 4.3.

4.3.2 RNN

While the Transformer has shown significant results in a variety of NLP-related tasks,

it is common consensus that Transformers are data hungry and can perform worse

in comparison to RNN-based models such as the LSTM under low-resource settings

[27]. As discussed in Chapter 3, Sennrich and Zhang [38] showed that an optimized

RNN under low-resource constraints for German can be competitive with other NMT

approaches that require the use of auxiliary data. Therefore, to determine whether their

findings are consistent with Uralic languages and whether an optimized Transformer

or RNN is more lucrative in low-resource settings, this experiment re-implements their

optimized RNN using the Nematus toolkit [41]. The performance of the optimized

RNN is compared compared against results achieved by the Transformer in both in-
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Order
ID Hyperparameter 1 2 3

1 Byte Pair Operations 30000 10000 2000

2 1 + Encoder/Decoder Layers 6 4 2

3 2 + Encoder/Decoder Attention Heads 8 4 2

4 3 + Encoder/Decoder Feed-Forward Dimension 2048 1024 512

5 4 + Dropout 0.1 0.3 0.5

6 5 + Attention Dropout 0.0 0.1 0.2

7 6 + Activation Dropout 0.0 0.1 0.2

8 7 + Encoder LayerDrop 0.0 0.1 0.2

9 8 + Decoder LayerDrop 0.0 0.1 0.2

10 9 + Label smoothing 0.1 0.3 0.5

11 10 + Learning Rate 0.001 - -

12 Beam Size 5 - -

13 Minibatch size #tokens 4096 - -

14 Optimizer Adam - -

Table 4.3: Selection and order in which hyperparameters are tuned using the Trans-

former NMT architecture for each in-domain sub-corpus. A ”-” indicates that the

hyperparameter remains unchanged.

domain and out-of-domain conditions. The reader is referred to the Table A.1 in the

appendix for a detailed view of the hyperparameters used by the RNN. Note that the

RNN is trained only up to 40K resource setting due to limitations in training time for

the remaining corpora sizes.

4.3.3 mBART25

The pre-trained mBART25 model, as described in Chapter 3, is fine-tuned on the in-

domain English → Finnish corpus for each low-resource setting, and performance is

compared against the Transformer in both in-domain and out-of-domain conditions.

The fine-tuning procedure is also implemented using the Fairseq toolkit.

Preprocessing mBART25 does not follow the same pre-processing procedure as

described above. Instead, sentences are tokenized using the mBART25 SentencePiece

model that has been learned on the full CC corpus monolingual data using 250,000

subword tokens [21]. No additional preprocessing such as normalization, tokenization



Chapter 4. Experimental Setup 20

and truecasing is applied.

Fine-tuning The same fine-tuning and decoding procedure as described by Liu

et al. [26] is followed. Thus, the multilingual pre-trained model is fine-tuned on En-

glish→ Finnish such that the pre-trained weights are loaded and trained with teacher

forcing. Training is done with dropout set to 0.3, label smoothing set to 0.2, 2500

warm-up updates, a maximum learning rate of 3e-05, and a maximum of 40K training

updates for all low-resource conditions.

Note that to better fit the large pre-trained mBART25 model into memory, the size

of the pre-trained model is reduced by pruning the word embeddings for fine-tuning.

In particular, a new vocabulary is obtained based on the in-domain English→ Finnish

bitext that fine-tuning is applied on. Using this new vocabulary, the corresponding

positions in the original mBART25 embedding matrix are located such that the original

mBART25 embedding matrix can be replaced with the new embedding matrix, while

keeping all other parameters unchanged.7

4.4 Setup for Domain Robustness Methods

4.4.1 Subword Regularization

This experiment applies and compares BPE-Dropout to results achieved by the Trans-

former in both in-domain and out-of-domain conditions. Initial experiments with BPE-

dropout applied to the optimized Transformer under each low-resource setting showed

poor results, therefore BPE-Dropout is applied on top of the baseline Transformer, as

described in Section 4.3.1.1, with 30,000 BPE merge operations. The procedure of

Kudo [21] and Provilkov et al. [34] is followed such that p = 0.1 in training time, and

p = 0 during inference. While Provilkov et al. [34] use BPE-Dropout on each new

batch separately, a similar effect can be achieved by copying the corpus various times

to achieve multiple segmentation’s for the same sentence.8 The latter is implemented

due its simplicity in integrating into the training procedure. BPE-Dropout also consists

of a hyper-parameter l which specifies how many segmentation’s should be produced

for each word. Once again, the work of Kudo [21] and Provilkov et al. [34] is followed

such that l = 64.
7https://github.com/pytorch/fairseq/issues/2120
8https://github.com/rsennrich/subword-nmt

https://github.com/pytorch/fairseq/issues/2120
https://github.com/rsennrich/subword-nmt


Chapter 4. Experimental Setup 21

4.4.2 Defensive Distillation

As an attempt to further improve out-of-domain performance of the Transformer, this

experiment applies defensive distillation on-top of the Transformer for each low-resource

setting. The procedure for applying defensive distillation to NMT is as follows: (1)

Train the teacher model, (2) Apply beam search over the training set using the teacher

network, (3) Train the student network on the translations generated by the teacher

network. In this experiment, for each low-resource setting, the optimized Transformer

is used as the teacher model. The training and validation sets are translated using the

teacher network with a beam width of 5. The student is trained on the translations of

the teacher network using the same optimized hyperparameters, and following Müller

et al. [28], the student network parameters are initialized using the parameters of the

teacher network.

4.5 Hardware and Schedule

The Transformer is primarily trained using 4 NVIDIA GTX1060 6GB GPU’s, how-

ever, for experiments involving the full in-domain training corpus, training is done

using a single NVIDIA V100 16GB GPU for which the update frequency is increased

from 1 to 8, and half-precision floating-point format is enabled to achieve faster train-

ing. Similarly, RNN training, mBART fine-tuning, and Transformer training with

BPE-Dropout, is implemented using a single NVIDIA V100 16GB GPU. For train-

ing involving BPE-Dropout, the batch size is increased from 4,096 to 12,288 for all

low-resource settings to incorporate for the increase in the size of the data sets.

4.6 Evaluation

4.6.1 Automatic

The performance of the selected models is assessed using BLEU, as described in Chap-

ter 2. For experiments involving the Transformer, an early stopping patience of 20 is

used for the 5K, 10K, and 20K in-domain training sub-corpora, whereas for the remain-

ing sub-corpora, an early stopping patience of 10 is used. Improvements are measured

in terms of the BLEU score using a beam width of 5 on the held-out in-domain valida-

tion set for which translation outputs detokenized, and BPE markers are removed. For

the RNN, and Transformer trained with BPE-Dropout, the early stopping patience is
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fixed at 10 for all training sub-corpora, and improvements are also measured in terms

of the BLEU score using a beam width of 5 on the held-out in domain validation set.

For mBART fine-tuning, improvements are measured based on validation likelihood.

For all systems, the final results are reported based on the BLEU score using sacre-

BLEU [33] on the held-out tests sets for which translation outputs are detruecased,

detokenized, and compared against the reference.9 For evaluation on the held-out test

sets, each system uses the best model checkpoint achieved on the validation set. Due

to variation in results from different training runs, reported results are the mean of 3

training runs, unless otherwise stated.

4.6.2 Manual

Due to BLEU’s unreliability with human judgement and the author’s fluency in Finnish,

a small manual evaluation is performed on both system generated in-domain and out-

of-domain translations, where the goal is to assess robustness towards adequacy and

fluency. For in-domain evaluation, 25 system generated translations are randomly

selected, and for out-of-domain evaluation, 8 system generated translations are ran-

domly selected from the law and medical domain, and 9 system generated translations

from the religion domain, resulting in 25 translations in total. This provides a general

overview of how each system performs on samples outside of the training distribution.

To evaluate for adequacy, the author simply judges whether the translation is adequate,

partially adequate, or inadequate, in comparison to the reference. For evaluation of flu-

ency, the author is only shown the system generated translation and judges whether the

translation is fluent, partially fluent, or not fluent. To visualize the results from man-

ual evaluation, the work of Müller et al. [28] is followed such that individual fluency

values are computed as follows:

1.0×n f ×0.5×np +0.0×nn (4.1)

where n f , np, and nn are the number of fluent, partially fluent, and not fluent transla-

tions, respectively. Adequacy values are computed identically. Manual evaluation is

performed on translations generated by the best performing model in terms of BLEU

from 3 training runs.

9sacreBLEU signature: BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1
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Results and Discussion

5.1 Transformer

This section addresses the first research question, which examines if performance of

the Transformer can be improved in low-resource settings for Finnish through archi-

tecture modifications and hyperparameter tuning. The optimal hyperparameters and

BLEU scores for the Transformer under each low-resource setting are shown by Ta-

ble 5.1 and Table 5.2, respectively.

5.1.1 Degree of Subword Segmentation

The results highlight the importance of using a lower amount of merge operations un-

der low-resource settings. We see that for each sub-corpora, with the exception of the

80K and 160K training corpus, the best results are achieved using 10K merge opera-

tions. Under medium-resource settings (80K & 160K), we see that better performance

is obtained using only 2K merge operations. Less variation in results is observed in

extreme low-resource settings, however, in the 80K and 160K setting, the difference

in results is much more noticeable. For example, from Table 5.3, we can see that the

baseline system which uses 30K merge operations, achieves an average BLEU of 13.90

under the 80K setting, which is 2.43 BLEU less in comparison to using 2K merge op-

erations. This suggests that for English→ Finnish, the Transformer is more sensitive

to the BPE vocabulary size as the amount of bitext increases. These results correlate

with Araabi and Monz [2] who also report a similar number of merge operations for the

10K, 20K, and 40K sub-corpora, however, in medium-resource settings, they find that

better results are achieved by increasing the BPE vocabulary size. Interestingly, results

23
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Sub-corpus
Hyperparameter 5K 10K 20K 40K 80K 160K

Byte Pair Operations 10K 10K 10K 10K 2K 2K

Encoder/Decoder Layers 2 2 2 2 6 6

Encoder/Decoder Heads 2 2 2 2 2 4

Encoder/Decoder FFN Dimension 2048 2048 1024 2048 1024 2048

Dropout 0.5 0.5 0.5 0.3 0.3 0.3

Attention Dropout 0.0 0.0 0.0 0.0 0.0 0.1

Activation Dropout 0.1 0.2 0.0 0.1 0.0 0.1

Decoder LayerDrop 0.1 0.0 0.0 0.0 0.0 0.0

Encoder LayerDrop 0.0 0.0 0.0 0.0 0.0 0.0

Label Smoothing 0.5 0.5 0.5 0.3 0.1 0.1

Table 5.1: Optimal hyperparameters of the Transformer trained on English→ Finnish

for each low-resource setting.

from Haddow et al. [15] suggest that as you increase the size of the bitext, the effect

of vocabulary size on translation quality is relatively small. Therefore, in this case it

is suspected that lower amounts of merge operations result in better performance due

to the aggressive segmentation caused by setting the minimum frequency threshold of

subword units to 10.

5.1.2 Architecture Effect

The results suggest that compressing the Transformer by reducing the number of lay-

ers and number of attention heads is beneficial under each low-resource setting. For all

sub-corpora with the exception of the 80K and 160K training corpus, the most notable

performance increases are attained by reducing the number of layers and number of

attention heads from 6 to 2. The largest increase is observed in the 40K setting, where

decreasing the number of layers from 6 to 2 results in +0.70 BLEU, and decreasing the

number of attention heads from 8 to 2 results in another +1.43 BLEU. Similarly, while

reducing the number of layers does not improve performance in the 80K and 160K

setting, reducing the number of attention heads results in +1.43 and +0.44 BLEU,

respectively. The results show that further compression by decreasing the encoder and

decoder feed-forward network dimension is not beneficial for most low-resource set-

tings, however, it results in small improvements for the 20K and 80K setting. Overall,

these results confirm that the baseline Transformer is heavily over-parameterized, and
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Sub-corpus
Hyperparameter 5K 10K 20K 40K 80K 160K

Byte Pair Operations 4.37±0.17 5.50±0.14 7.33±0.12 9.67±0.19 16.33±0.12 20.63±0.12

Encoder/Decoder Layers 4.56±0.09 5.97±0.12 7.57±0.09 10.37±0.21 - -

Encoder/Decoder Heads 4.83±0.05 6.13±0.05 8.17±0.12 11.80±0.30 17.76±0.25 21.07±0.29

Encoder/Decoder FFN Dimension - - 8.33±0.21 - 17.90±0.16 -

Dropout 5.50±0.14 8.03±0.09 10.67±0.12 14.57±0.09 19.80±0.24 22.13±0.37

Attention Dropout - - - - - 22.40±0.36

Activation Dropout 5.57±0.17 8.10±0.14 - 15.03±0.25 - 22.80±0.16
Decoder LayerDrop 5.70±0.22 - - - - -

Encoder LayerDrop - - - - - -

Label Smoothing 5.80±0.43 8.67±0.17 11.22±0.44 16.00±0.22 - -

Table 5.2: English→ Finnish BLEU scores of Transformer using optimal hyperparam-

eters reported in Table 5.1 for each low-resource setting. Mean and standard deviation

of 3 training runs reported.

that the effect of overfitting to the training set is somewhat minimized by reducing the

number of parameters in the model.

5.1.3 Regularization Effect

Regularization provides the largest gains for each low-resource setting. Under the

5K, 10K, 20K, and 40K low-resource settings, dropout and label smoothing prove

to be the most effective regularization techniques, which correlates with the results

attained by Sennrich and Zhang [38]. While dropout proves to be effective in the 80K

and 160K setting as well, label smoothing provides no additional improvements. The

results of other regularization techniques are mixed. Attention dropout only shows a

slight improvement in the 160K setting, and no improvements for the remaining low-

resource settings. Activation dropout appears to be more effective as the size of the

training corpus increases, where in particular it results in +0.46 and +0.40 BLEU in

comparison to the previous hyperparameter in the 40K and 160K setting, respectively.

Decoder LayerDrop only shows to be slightly effective in the 5K setting (+0.13 BLEU)

and provides no benefit for the other low-resource settings. Encoder LayerDrop proves

to be ineffective under each low-resource setting.

5.1.4 Baseline Comparison

Table 5.3 shows the difference in BLEU scores obtained by the baseline Transformer

using 30K BPE merge operations, and the optimized Transformer for each low-resource
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Sub-corpus T. Base T. Optim ∆

5K 3.97±0.04 5.80±0.43 +1.83

10K 5.07±0.09 8.67±0.17 +3.60

20K 7.10±0.08 11.22±0.44 +4.12

40K 9.50±0.22 16.00±0.22 +6.50

80K 13.90±0.33 19.80±0.24 +5.90

160K 19.40±0.14 22.80±0.16 +3.40

Table 5.3: English→ Finnish BLEU scores of the baseline Transformer (T. Base) and

optimized Transformer (T. Optim). Mean and standard deviation of 3 training runs

reported.

setting. We see that there is a much smaller difference between the scores in the ex-

treme low-resource conditions (5K & 10K) with a difference of +1.83 and +3.60 be-

tween the baseline and optimized system, accordingly. Similarly, we see a smaller dif-

ference between the baseline and optimized system for the full 160K training corpus,

however, this is not surprising considering that model compression and regularization

is less effective in higher-resource settings. The large differences between the baseline

and optimized system in the 20K, 40K, and 80K resource settings suggest that the sys-

tem in such resource conditions is much more sensitive to hyperparameter changes. It

is suspected that in such conditions, there is enough data for the model to be able learn

about the idiosyncrasies of the Finnish language, whereas in the extreme low-resource

setting (5K), the size of the bitext is simply too small for architecture modifications

and regularization to be effective.

5.1.5 Effect of Translation Direction

Araabi and Monz [2] report a noticeable difference in results between translating from

German→ English and English→German, under each low-resource setting. To assess

whether their findings are consistent with Finnish, the baseline and optimized Trans-

former are trained with the source and target languages switched. Note that the opti-

mized Transformer for each low-resource setting uses the same optimal hyperparame-

ters achieved on English→ Finnish as shown in Table 5.1. The results are reported in

Table 5.4. By comparing the differences between the baseline and optimized system

between Table 5.4 and Table 5.3, we see that the effect of hyperparameter tuning is

effective when decoding both into Finnish and English, however, the hyperparameter

changes appear to be notably more sensitive when decoding into English. With both
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Sub-corpus T. Base T. Optim ∆

5K 5.8 10.3 +4.5

10K 8.6 13.9 +5.3

20K 12.4 16.9 +4.5

40K 14.9 23.0 +8.1

80K 19.9 28.0 +8.1

160K 26.1 31.2 +5.1

Table 5.4: Finnish→ English BLEU scores of the baseline Transformer and optimized

Transformer. Reported results are from a single training run.

the baseline and optimized system, we see consistently larger differences in BLEU

scores under each low-resource setting. While results are not directly comparable to

Araabi and Monz [2] considering that this experiment makes use of a different data

set, and different preprocessing techniques, they achieve significantly larger gains un-

der each low-resource setting. For example, in the 5K setting for English→ German,

they report BLEU scores of 6.4 and 11.3 for their baseline and optimized Transformer,

respectively. Not only does their baseline system perform considerably better, how-

ever, their architecture modifications and optimization results in +4.9 BLEU, whereas

for the same 5K setting in translation from English → Finnish, model compression

and regularization only results in +1.83 BLEU, as shown by Table 5.3. This clearly

highlights the challenge for a modern NMT system to decode into a morphologically

complex language such as Finnish, that is substantially distant from the source lan-

guage.

5.1.6 Out-of-domain Performance

Table 5.5 displays the results of the optimized Transformer on each out-of-domain test

set for each low-resource setting, while also showing the gap to the baseline system

results. The reader is referred to Table B.1 in the appendix for a detailed view of out-of-

domain results by the baseline Transformer. Unsurprisingly, the translation quality of

both the optimized and baseline system is poor. Nevertheless, the results provide some

indication that the architecture modifications and optimization is not completely in-

domain specific, since the overall average out-of-domain BLEU improves considerably

under some low-resource settings. For example, under the 40K setting, we see that the

average out-of-domain BLEU increases from the baseline by +3.51, and similarly in

the 80K setting by +3.62. The best out of-domain performance is consistently obtained
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In-domain Out-of-domain
Sub-corpus Parliament Law Medical Religion OOD Average

5K 5.80 1.43 (+0.86) 0.83 (+0.53) 0.87 (+0.50) 1.04 (+0.63)

10K 8.67 2.90 (+2.03) 1.67 (+0.94) 1.33 (+0.63) 1.97 (+1.20)

20K 11.22 4.33 (+2.26) 2.60 (+1.80) 1.50 (+0.70) 2.81 (+1.59)

40K 16.00 7.87 (+5.14) 5.40 (+3.63) 2.77 (+1.74) 5.35 (+3.51)

80K 19.80 11.03 (+5.60) 6.23 (+3.43) 3.63 (+1.83) 6.96 (+3.62)

160K 22.80 14.33 (+4.53) 8.20 (+2.83) 4.43 (+1.33) 8.99 (+2.90)

Table 5.5: English → Finnish BLEU scores of the optimized Transformer on out-

of-domain test sets. Average in-domain parliament BLEU results provided for com-

parison. The gap in comparison to the baseline Transformer is shown for each low-

resource setting

on the law domain, which was expected considering that the in-domain parliament text

is more similar to the law domain than it is to the other out-of-domain test sets. In such

low-resource conditions, it is likely that such poor generalization to unseen domains

is due to a vocabulary that the Transformer has not observed during training [28].

Additionally, Section 5.5 reveals that under such conditions, translations generated by

the Transformer are for the most part completely inadequate. This suggests that while

the above-shown architecture modifications and regularization techniques are able to

increase generalization to the in-domain test set, the system heavily overfits to the

peculiarities of the training domain, and fails to generalize to samples outside of the

training distribution.

5.2 In Comparison to Other Systems

This section addresses the second research question, which investigates whether an

optimized Transformer in low-resource settings for Finnish is competitive with other

systems in NMT, namely against an optimized RNN using many of the optimal settings

found by Sennrich and Zhang [38], and language model fine-tuning. Results are visu-

alized by Figure 5.1. A detailed view of results in table format is provided by Table 5.6

and Table 5.7 for the RNN and mBART25, accordingly.
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Figure 5.1: Left: In-domain BLEU comparison between the optimized Transformer

(green), RNN (yellow), and mBART25 (red). Right: Average out-of-domain BLEU

comparison between the optimized Transformer (green), RNN (yellow) and mBART25

(red).

5.2.1 RNN

In-domain and average out-of-domain performance of the the RNN is noticeably bet-

ter in the extreme low-resource scenarios (5K, 10K and 20K), however, at the 40K

setting, performance of the RNN begins to diminish, scoring −0.47 in comparison to

the optimized Transformer on the in-domain test set, and −0.60 and −0.20 on the law

and religion out-of-domain test sets, respectively. Although the RNN is only trained

up until the 40K setting, the dip in performance on the majority of held-out test sets

suggests that the Transformer would perform better in comparison to the RNN as the

size of the bitext increases. It is worth noting that Sennrich and Zhang [38] train the

RNN with a maximum sequence length of 200, whilst the RNN used for comparison

in this experiment is trained with a maximum sequence length of 100 due to memory

constraints. The Transformer, on the other hand, has no constraints on the sequence

length, thus results may not be directly comparable. This may explain why the RNN

continuously performs better on the medical domain considering that the average sen-

tence length in the medical domain is far less in comparison to the other out-of-domain

test sets, as shown by Table 4.2. These results are in line with Araabi and Monz [2]

who make a comparison of Transformer performance to an RNN as well, and show that

RNN performance on German→ English is better in comparison to the Transformer

up until the 20K low-resource setting.
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In-domain Out-of-domain
Sub-corpus Parliament Law Medical Religion OOD Average

5K 6.83 (+1.03) 1.70 (+0.27) 1.06 (+0.23) 1.06 (+0.19) 1.27 (+0.23)

10K 10.30 (+1.63) 3.63 (+0.73) 2.97 (+1.30) 1.67 (+0.34) 2.76 (+0.79)

20K 13.43 (+2.21) 5.83 (+1.50) 4.70 (+2.10) 2.30 (+0.80) 4.28 (+1.47)

40K 15.53 (-0.47) 7.27 (-0.60) 6.20 (+0.80) 2.57 (-0.20) 5.35 (±0)

Table 5.6: English→ Finnish BLEU scores of the optimized RNN. The gap in com-

parison to the optimized Transformer is shown for each low-resource setting.

5.2.2 mBART25

Unsurprisingly, the performance of the fine-tuned mBART25 improves as the size of

the bitext increases. However, in comparison to the optimized Transformer, the gap

in performance appears to reduce considerably in medium-resource settings (80K &

160K). As expected, mBART25 performs significantly better under the majority of ex-

treme low-resource settings, which is likely due to the fact that the system has already

been pre-trained on an immense amount of Finnish monolingual data, as mentioned in

Chapter 4. Surprisingly, however, we see that as the size of the bitext increases, the op-

timized Transformer trained only on parallel data performs better on the 80K and 160K

setting. From Table 5.7, we can see that in terms of the average BLEU score achieved

on the in-domain test test, mBART25 scores −0.77 and −3.03 on the 80K and 160K

setting, respectively, and −0.98 on the 160K setting in terms of the average out-of-

domain BLEU score. This suggests that when a sufficient amount of parallel data is

available, instead of relying on a more ”mainstream” method in the current landscape

of NLP and NMT (fine-tuning a pre-trained language model on a downstream task),

better performance can be achieved by optimizing and training a more simplistic NMT

system on the available bitext.

From Table 5.7 we can see that while performance consistently improves as the

size of the bitext increases for the law and religion domain, the correlation between

the number of available sentence pairs and performance is not linear for the medical

domain. We can see that in the 10K setting, mBART25 scores 4.97 BLEU, whereas in

the 20K setting, performance decreases to 3.23 BLEU. Similarly, in the 40K setting,

mBART25 scores 5.70 BLEU, and in the 80K setting, performance decreases to 5.50

BLEU. Table 5.8 shows the out-of-domain out-of-vocabulary (OOV) rate for each low-

resource setting produced by mBART25 preprocessing. While the OOV rate decreases

as the size of the bitext increases, it is believed that the instability in results on the
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In-domain Out-of-domain
Sub-corpus Parliament Law Medical Religion OOD Average

5K 12.20 (+6.40) 6.73 (+5.30) 3.16 (+2.33) 2.07 (+1.20) 3.99 (+2.95)

10K 14.27 (+5.60) 8.80 (+5.90) 4.97 (+3.30) 2.47 (+1.14) 5.41 (+3.44)

20K 16.23 (+5.01) 8.87 (+4.54) 3.23 (+0.63) 2.80 (+1.30) 4.97 (+2.16)

40K 17.83 (+1.83) 11.00 (+3.13) 5.70 (+0.30) 3.17 (+0.40) 6.62 (+1.27)

80K 19.03 (-0.77) 12.83 (+1.80) 5.50 (-0.73) 3.47 (-0.16) 7.27 (+0.31)

160K 19.77 (-3.03) 13.50 (-0.83) 6.97 (-1.23) 3.57 (-0.86) 8.01 (-0.98)

Table 5.7: English → Finnish BLEU scores of mBART25 fine-tuning. The gap in

comparison to the optimized Transformer is shown for each low-resource setting

Sub-corpus Law Medical Religion OOV Average

5K 2.61% 10.80% 4.73% 6.05%

10K 2.28% 9.07% 3.67% 5.01%

20K 1.83% 7.84% 2.74% 4.14%

40K 1.57% 6.68% 2.25% 3.50%

80K 1.28% 5.40% 1.42% 2.70%

160K 1.01% 4.23% 1.08% 2.11%

Table 5.8: mBART25 out-of-domain out-of-vocabulary (OOV) rates for each low-

resource setting.

medical domain is primarily due to the fact that the percentage of words that are not

seen during training is considerably higher in comparison to the other out-of-domain

test sets. One possible technique to remedy the large OOV rates is to construct a new

vocabulary based on both the in-domain and out-of-domain data as opposed to only

the in-domain text. However, this does not simulate realistic low-resource conditions.

It is also possible that the fine-tuning configuration provided by Liu et al. [26] is not

the most optimal for such scarce resource conditions. Perhaps a hyperparameter grid-

search applied to mBART25 fine-tuning could stabilize performance on the medical

domain, however, this is left for future work.

5.3 Attempts to Improve Domain Robustness

This section confronts the final research question, which examines whether robustness

towards samples outside of the training distribution in various low-resource settings

can be improved through subword regularization (BPE-Dropout), and defensive distil-
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Figure 5.2: BLEU scores of the optimized Transformer (green), baseline Transformer

(blue), and Transformer trained with BPE-Dropout (T. Base + SR) (cyan) on each out

of-domain test set. Left = law, middle = medical, and right = religion.

lation. The reader is referred to Table C.1 and Table C.2 in the appendix for a detailed

view of results in table format.

5.3.1 BPE-Dropout

Figure 5.2 compares performance of the Transformer trained with BPE-Dropout (T.

Base + SR) against the baseline and optimized Transformer from Section 5.1, on

each out-of-domain test set. In comparison to the baseline Transformer, BPE-Dropout

achieves a consistently better BLEU score, which in terms of automatic evaluation

suggests that BPE-Dropout is an effective method for improving robustness towards

samples outside of the training distribution in low-resource conditions. However, in

comparison to the optimized Transformer, BPE-Dropout performs worse under each

low-resource setting. We can see that performance is comparable with the optimized

Transformer on the law domain up until the 80K setting, and performs only slightly

worse under each low-resource setting on the religion domain. Surprisingly, however,

BPE-Dropout performs noticeably worse than the optimized Transformer on the medi-

cal domain. These results strongly indicate that subword regularization alone is not as

effective in improving out-of-domain robustness in comparison to simple regulariza-

tion and architecture modifications of the Transformer itself.

Table 5.9 compares in-domain performance of the Transformer trained with BPE-

Dropout to the baseline and optimized Transformer. We see that the Transformer

trained with BPE-Dropout scores +0.23 BLEU in comparison to the optimized Trans-
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Sub-corpus T. Base T. Optim T. Base + SR ∆

5K 3.97 5.80 4.33 -1.47

10K 5.07 8.67 6.53 -2.14

20K 7.10 11.22 11.13 -0.09

40K 9.50 16.00 16.23 +0.23
80K 13.90 19.80 19.10 -0.70

160K 19.40 22.80 20.72 -2.08

Table 5.9: In-domain BLEU scores of the Transformer trained with BPE-Dropout. The

baseline and optimized Transformer in-domain scores are provided for comparison.

former in the 40K setting, and performance is comparable in the 20K and 80K set-

ting. This provides some indication that (at least in terms of in-domain performance)

subword regularization can be a better alternative than performing an extensive grid-

search of numerous Transformer hyperparameters. It is suspected that a combination of

Transformer compression, regularization, and subword regularization may further im-

prove domain robustness. However, considering that subword regularization increases

training duration heavily, it would be an expensive process to find an optimal system.

5.3.2 Defensive Distillation

Figure 5.3 compares out-of-domain performance of the optimized Transformer to the

same Transformer trained on distilled training data (T. Optim + D). We see that de-

fensive distillation is detrimental towards out-of-domain robustness in extreme low-

resource settings (5K, 10K, 20K), and performance is comparable to the optimized

Transformer in the 40K setting. In medium-resource settings (80K & 160K), distilling

the training data proves to be slightly effective in improving out-of-domain robustness.

The student system achieves scores of +0.04, +0.20, and +0.10 on the 80K setting

in comparison to the optimized Transformer on the law, medical, and religion domain,

accordingly, and +0.17 on the medical domain in the 160K setting. The poor results

in extreme low-resource conditions are not surprising considering that the translations

generated by teacher network (optimized Transformer) are for the most part completely

inadequate and ungrammatical, as shown in Section 5.5. Thus, distilling the training

data in very scarce data conditions likely adds an unnecessary amount of noise. Im-

provements found from distillation are mostly empirical, and a thorough search of

relevant literature suggests that not much is known about its properties in improving

domain robustness [28, 24]. In this case, it is suspected that since translations gener-
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Figure 5.3: BLEU scores of the optimized Transformer (green), and Transformer

trained on distilled training data (T. Optim + D) (purple) on each out of-domain test

set. Left = law, middle = medical, and right = religion.

Sub-corpus T. Optim T. Optim + D ∆

5K 5.80 4.90 -0.90

10K 8.67 6.77 -1.90

20K 11.22 8.73 -2.49

40K 16.00 15.30 -0.70

80K 19.80 19.37 -0.43

160K 22.80 22.43 -0.37

Table 5.10: In-domain BLEU scores of the Transformer trained on distilled training

data. The optimized Transformer scores are provided for comparison.

ated in medium-resource settings are at least partially fluent and adequate, this enables

the system to be more robust to examples which are further from the original training

distribution. The results show evidence of this considering that the largest gains are

attained on the most distant domains (medical and religion).

Table 5.10 shows the in-domain results of distillation. Similar to Müller et al. [28],

who found that in-domain performance suffers in German→ English translation (1.1M

sentence pairs), in-domain performance on English→ Finnish decreases in comparison

to the teacher network. Performance decreases quite significantly in extreme low-

resource settings, however, in the 40K, 80K, and 160K setting, in-domain performance

remains comparable.
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Sub-corpus T. Base T. Optim RNN mBART25 T. Base + SR T. Optim + D

5K 3.97 5.80 6.83 12.20 4.33 4.90

10K 5.07 8.67 10.30 14.27 6.53 6.77

20K 7.10 11.22 13.43 16.23 11.13 8.73

40K 9.50 16.00 15.53 17.83 16.23 15.30

80K 13.90 19.80 - 19.03 19.10 19.37

160K 19.40 22.80 - 19.77 20.72 22.43

Table 5.11: Summarized in-domain results by each system for each low-resource set-

ting.

Sub-corpus T. Base T. Optim RNN mBART25 T. Base + SR T. Optim + D

5K 0.41 1.04 1.27 3.99 0.50 0.82

10K 0.77 1.97 2.76 5.41 1.12 1.28

20K 1.22 2.81 4.28 4.97 2.44 2.05

40K 1.84 5.35 5.35 6.62 4.81 4.98

80K 3.34 6.96 - 7.27 6.50 7.08

160K 6.09 8.99 - 8.01 8.19 8.80

Table 5.12: Summarized average out-of-domain results by each system for each low-

resource setting.

5.4 Summary of Results

To summarize the results from automatic evaluation and to compare each system against

each other, the in-domain and average out-of-domain results of all systems are reported

in Table 5.11 and Table 5.12, respectively. As can be seen, out of all systems used,

mBART25 performs significantly better in terms of both in-domain and average out-of-

domain BLEU under all extreme low-resource settings. In medium-resource settings

(80K & 160K) the optimized Transformer trained only on parallel data proves to be

the best performing system based on in-domain performance. Interestingly, we can see

that the baseline Transformer trained with BPE-Dropout and optimized Transformer

trained on distilled training data, also shows better in-domain performance in com-

parison to mBART25 in the 80K and 160K setting, and out-of-domain performance

in the 160K setting. Overall, these results suggest that in extremely scarce condi-

tions, for morphologically rich languages such as Finnish, it is worth leveraging large

pre-trained language models. It appears that only in medium-resource settings does it

become worth it to investigate alternative methods for improving domain robustness.
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5.5 Manual Evaluation

Results from in-domain and out-of-domain manual evaluation are shown in Figure 5.4

and Figure 5.5, respectively. The reader is referred to Appendix D for a detailed view

of relevant results in table format.

5.5.1 In-domain

Unsurprisingly it can be seen that in extreme low-resource settings, translations gen-

erated by the majority of systems are completely inadequate and ungrammatical. The

only exception is mBART25, which is an obvious outlier in terms of both adequacy

and fluency up until the 80K and 160K setting.

Comparing the baseline and optimized Transformer, the results highlight that opti-

mization is at least somewhat successful in improving both the fluency and adequacy

of system generated translations. For example, in the 80K setting, all system gener-

ated translations by the optimized system are classified as at least partially fluent in

comparison to 88% by the baseline system. Similarly, 72% of the optimized Trans-

former translations are deemed at least partially adequate in comparison to 40% by

the baseline system. Following the definition of hallucination by Müller et al. [28]

(sentences that are both not adequate and at least partially fluent), it is found that

even though the optimized Transformer appears to generate translations that are more

adequate and fluent than the baseline system, the optimized system does not tend to

reduce the amount of hallucinations. At the 160K setting, we can see that all systems

generally tend to match the fluency of the reference translations at a comparable level,

however, adequacy remains somewhat low. These results are consistent with the find-

ings of Koehn and Knowles [19], which suggests that inadequacy continues to be a

challenge in low-resource settings when using modern NMT systems and methods.

Regarding techniques used as an attempt to improve domain robustness, the results

indicate that up until the 40K setting, defensive distillation generates the most inade-

quate and ungrammatical content, which would explain why distillation consistently

reduces in-domain BLEU score in comparison to the optimized Transformer, as shown

in Section 5.3.2. Comparing subword regularization to the baseline system, evalua-

tion in the 20K setting suggests that subword regularization has a bias towards fluency

considering that the proportion of at least partially fluent translations is higher in com-

parison to the baseline system while adequacy is lower. However, as the corpus size

increases, we can see that performance between both the baseline system and subword
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Figure 5.4: In-domain manual evaluation of adequacy and fluency for English →
Finnish. Marker columns in the legend indicate different systems.

regularization is comparable.

5.5.2 Out-of-domain

Similar to in-domain evaluation, mBART25 consistently generates translations that

are both much more fluent and adequate in comparison to all other systems. We can

see that under extreme low-resource settings, the majority of translations generated by

mBART25 are in fact fluent, however, adequacy is low. This would suggest that the

poor BLEU scores on out-of-domain test sets are primarily due to made up content.

Comparing the optimized Transformer to the baseline system, we can see that opti-

mization results in both better adequacy and fluency under most low-resource settings.

With regards to subword regularization, we can see that there is a strong bias towards

fluency, which correlates with the findings of Müller et al. [28]. In the 5K, 10K and

20K low-resource settings, 36%, 68%, and 52% of translations are found to be at least

partially fluent, respectively. Comparing these to the baseline Transformer (32%, 32%,

and 40%) and optimized Transformer (16%, 40%, and 48%), we see that the difference

is quite significant. It is also worth mentioning that the vast majority of the partially
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Figure 5.5: Out-of-domain manual evaluation of adequacy and fluency for English→
Finnish. Marker columns in the legend indicate different systems.

fluent and fluent translations generated by both the baseline and optimized Transformer

in low-resource settings comes from the law domain, whereas with subword regular-

ization, the proportion is generally more spread across all domains. For example, in

the 40K setting, out of the optimized Transformer translations that are classified as at

least partially fluent, 50% are from the law domain, 17% from the medical domain,

and 33% from the religion domain, whereas for subword regularization, 35% are from

the law domain, 35% from the medical domain, and 30% from the religion domain.

Similar to results from in-domain evaluation, distillation results in the most in-

adequate and ungrammatical content under extreme low-resource settings. However,

as the size of the bitext increases, distillation tends to produce translations that are

both more fluent and adequate in comparison to the optimized Transformer. This at

least partially explains why the Transformer trained on distilled training data achieves

higher BLEU scores in comparison to the optimized Transformer on the law, medical,

and religion domain under the 80K setting, and on the religion domain under the 160K

setting, as shown in Section 5.3.2.
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Conclusions and Future Directions

This work studies the effects of numerous different techniques in improving the perfor-

mance and domain robustness of the Transformer for English→ Finnish in simulated

low-resource conditions. The experiments confirm that the performance of the Trans-

former can be significantly improved via simple model compression and optimization

techniques. Under some low-resource conditions, the Transformer is sensitive to mod-

ifications such as the encoder and decoder layers, encoder and decoder heads, and reg-

ularization methods such as dropout and label smoothing. To gain an understanding of

where the Transformer stands in the current landscape of systems used in low-resource

NMT, a comparison is made to a RNN and mBART25. The results demonstrate that un-

der extremely scarce conditions, an optimized RNN is the better option. In comparison

to mBART25, the results suggest that on as little as 80,000 and 160,000 sentence pairs,

an optimized Transformer can perform better in both in-domain and out-of-domain

conditions. This has relevance for the current field of NMT considering that it is be-

coming increasingly common for researchers and practitioners to fine-tune pre-trained

language models on downstream tasks such as MT. The results indicate that simply

optimizing and training an NMT system on the available bitext can prove to be the

better alternative. Unsurprisingly, the results suggest that domain robustness contin-

ues to be a major challenge in low-resource NMT. Motivated by Müller et al. [28],

this work explores subword regularization and defensive distillation as methods to im-

prove domain robustness. Regarding subword regularization, the results highlight that

simple architecture modifications and regularization of the Transformer itself is supe-

rior. Defensive distillation is found to be detrimental under extreme scarce conditions,

which is not surprising considering the poor performance of the teacher network in

such low-resource settings. However, under medium-resource settings, it is shown that

39
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defensive distillation slightly improves performance on the domains that are the most

distant from the in-domain training corpus.

The findings from this work are not without limitations. First, this project has sim-

ulated low-resource conditions using English and Finnish, two languages that are in

reality high-resource. While an assumption can be made that findings are applicable

to truly low-resource Uralic languages that share similarities with Finnish, this has

not been empirically assessed. It is possible that findings on legitimate low-resource

languages can lead to different conclusions and insights. In future work, it would be

interesting to assess the validity of results on low-resource Uralic languages such as

Northern Sami. However, this would eliminate the possibility of a thorough manual

evaluation considering the author’s unfamiliarity with the language. Another limita-

tion in this project is that the mBART25 model word-embeddings are pruned for fine-

tuning. This drastically reduces the size of the model parameters which can possibly

have a slight adverse affect on performance. Practitioners have reported that pruning

can reduce BLEU by approximately 0.4 points.1 Perhaps the results from compari-

son between the optimized Transformer and mBART25 may change to some extent

were this project to use the original model, however, considering that the difference in

scores is quite significant, it is believed that this would not be the case. Furthermore,

this work has only assessed domain robustness using 3 different domains of which one

(law) is relatively similar to the in-domain training corpus. It would be interesting to

assess the systems and techniques used in this work on more domains that are distant

from the training corpus.

Finally, manual evaluation reveals that the proposed NMT systems and techniques

in this work show a stronger bias towards fluency. Therefore, it is encouraged for

future work to explore methods which address inadequacy under low-resource settings.

Existing research which has attempted to address this problem include Tu et al. [48],

who incorporate a reconstructor to the encoder-decoder network which reconstructs the

input source sentence from the hidden layer of the output target sentence. They argue

that source instead of target representations have a larger impact on adequacy. Shi et al.

[42] propose a method to improve adequacy by transferring semantic information from

bilingual sentence alignment learning. Perhaps investigating these techniques in low-

resource conditions can prove to be a viable direction for future research. To conclude,

it is hoped that the work provided by this thesis will be considered by researchers

working within the field of low-resource NMT and used for future work.

1https://github.com/pytorch/fairseq/issues/2120

https://github.com/pytorch/fairseq/issues/2120
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Appendix A

RNN Hyperparameters

Hyperparameter #

Hidden layer size 1024

Embedding size 512

Encoder depth 1

Encoder recurrence transition depth 2

Decoder depth 1

Decoder recurrence transition depth (base) 2

Tie decoder embeddings Yes

Layer normalization Yes

Hidden dropout 0.5

Embedding dropout 0.5

Source word dropout 0.3

Target word dropout 0.3

Label smoothing 0.2

Max. sequence length 100

Mini batch size (# tokens) 4,000

Learning rate 0.0005

Optimizer Adam

Early stopping patience 10

Validation interval (5K/10K/20K/40K) 50, 100, 400, 1000

Beam width 5

Table A.1: Configuration for the optimized RNN discussed in Chapter 4.

.
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Appendix B

Baseline Transformer Results

In-domain Out-of-domain
Sub-corpus Parliament Law Medical Religion OOD Average

5K 3.97 0.57 0.30 0.37 0.41

10K 5.07 0.87 0.73 0.70 0.77

20K 7.10 2.07 0.80 0.80 1.22

40K 9.50 2.73 1.77 1.03 1.84

80K 13.90 5.43 2.80 1.80 3.34

160K 19.40 9.80 5.37 3.10 6.09

Table B.1: English→ Finnish BLEU scores of the baseline Transformer.

51



Appendix C

Attempts to Improve Domain

Robustness

In-domain Out-of-domain
Sub-corpus Parliament Law Medical Religion OOD Average

5K 4.33 (+0.36) 0.90 (+0.33) 0.33 (+0.03) 0.27 (-0.10) 0.50 (+0.09)

10K 6.53 (+1.46) 1.97 (+1.10) 0.73 (± 0) 0.67 (-0.03) 1.12 (+0.35)

20K 11.13 (+4.03) 4.17 (+2.10) 1.83 (+1.03) 1.33 (+0.53) 2.44 (+1.22)

40K 16.23 (+6.73) 7.90 (+5.17) 3.93 (+2.16) 2.60 (+1.57) 4.81 (+2.97)

80K 19.10 (+5.20) 10.83 (+5.40) 5.13 (+2.33) 3.53 (+1.73) 6.50 (+3.16)

160K 20.72 (+1.32) 13.13 (+3.33) 7.13 (+1.76) 4.30 (+1.20) 8.19 (+2.10)

Table C.1: English→ Finnish BLEU scores of the baseline Transformer trained with

BPE-Dropout. The gap in comparison to the baseline Transformer is shown for each

low-resource setting.

In-domain Out-of-domain
Sub-corpus Parliament Law Medical Religion OOD Average

5K 4.90 (-0.90) 0.97 (-0.46) 0.77 (-0.06) 0.73 (-0.14) 0.82 (-0.22)

10K 6.77 (-1.90) 1.97 (-0.93) 1.03 (-0.64) 0.83 (-0.50) 1.28 (-0.69)

20K 8.73 (-2.49) 3.13 (-1.20) 1.90 (-0.70) 1.13 (-0.37) 2.05 (-0.76)

40K 15.30 (-0.70) 7.40 (-0.47) 5.03 (-0.37) 2.50 (-0.27) 4.98 (-0.37)

80K 19.37 (-0.43) 11.07 (+0.04) 6.43 (+0.20) 3.73 (+0.10) 7.08 (+0.12)

160K 22.43 (-0.37) 14.10 (-0.23) 7.70 (-0.50) 4.60 (+0.17) 8.80 (-0.19)

Table C.2: English→ Finnish BLEU scores of the optimized Transformer trained on

distilled training data. The gap in comparison to the optimized Transformer is shown

for each low-resource setting.

52



Appendix D

Manual Evaluation

Sub-corpus T. Base T. Optim RNN mBART25 T. Base + SR T. Optim + D

5K 28% 24% 40% 80% 36% 12%

10K 40% 36% 44% 96% 44% 32%

20K 56% 68% 68% 100% 76% 48%

40K 72% 88% 68% 100% 76% 52%

80K 88% 100% - 96% 100% 88%

160K 100% 96% - 96% 100% 100%

Table D.1: Proportion of in-domain translations found to be at least partially fluent
for each low-resource setting.

Sub-corpus T. Base T. Optim RNN mBART25 T. Base + SR T. Optim + D

5K 16% 4% 8% 64% 8% 0%

10K 12% 16% 16% 60% 4% 4%

20K 40% 24% 16% 72% 8% 12%

40K 32% 36% 44% 80% 52% 36%

80K 40% 72% - 84% 48% 52%

160K 76% 52% - 76% 60% 76%

Table D.2: Proportion of in-domain translations found to be at least partially ade-
quate for each low-resource setting.
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Sub-corpus T. Base T. Optim RNN mBART25 T. Base + SR T. Optim + D

5K 32% 16% 20% 88% 36% 8%

10K 32% 40% 36% 80% 68% 12%

20K 40% 48% 40% 80% 52% 36%

40K 36% 44% 56% 96% 52% 52%

80K 52% 88% - 96% 80% 80%

160K 64% 76% - 96% 88% 84%

Table D.3: Proportion of out-of-domain translations found to be at least partially
fluent for each low-resource setting.

Sub-corpus T. Base T. Optim RNN mBART25 T. Base + SR T. Optim + D

5K 0% 4% 4% 36% 0% 4%

10K 8% 12% 16% 52% 4% 0%

20K 4% 4% 12% 36% 12% 8%

40K 8% 16% 8% 36% 12% 16%

80K 12% 36% - 60% 20% 44%

160K 32% 52% - 64% 28% 52%

Table D.4: Proportion of out-of-domain translations found to be at least partially
adequate for each low-resource setting.
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T. Base

Sub-corpus Law Medical Religion

5K 12% 50% 38%

10K 25% 37% 38%
20K 40% 30% 30%

40K 56% 22% 22%

80K 54% 23% 23%

160K 44% 18% 38%

T. Optim

Sub-corpus Law Medical Religion

5K 50% 25% 25%

10K 40% 20% 40%
20K 42% 33% 25%

40K 50% 17% 33%

80K 36% 32% 32%

160K 37% 26% 37%

T. Base + SR

Sub-corpus Law Medical Religion

5K 22% 22% 56%
10K 35% 24% 41%
20K 46% 31% 23%

40K 35% 35% 30%

80K 35% 25% 40%
160K 36% 28% 36%

T. Optim + D

Sub-corpus Law Medical Religion

5K 0% 50% 50%
10K 33% 0% 67%
20K 44% 22% 34%

40K 46% 23% 31%

80K 35% 25% 40%
160K 38% 24% 38%

RNN

Sub-corpus Law Medical Religion

5K 20% 20% 60%
10K 67% 11% 22%

20K 50% 30% 20%

40K 50% 36% 14%

mBART25

Sub-corpus Law Medical Religion

5K 36% 32% 32%

10K 40% 30% 30%

20K 35% 35% 30%

40K 29% 33% 38%
80K 33% 29% 38%
160K 33% 33% 33%

Table D.5: Proportion of translations classified as at least partially fluent from each

domain out of the total amount of translations classified as at least partially fluent for

each low-resource setting.
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