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Abstract

Style transfer in the field of computer vision refers to preserving the general content

of an image while assigning a specific artistic style to it to achieve artistic outcome.

Nowadays, style transfer using deep neural network models is very popular, which

is called Neural Style Transfer (NST). In this dissertation, we aim to assign ordinary

photographs to the style of engravings in the Corson Collection, which illustrate Walter

Scott’s novels. However, most current research on NST is concentrated on works by

famous artists such as Van Gogh, Monet and Cézanne, and there are few researches on

the style of engravings, leave alone on Walter Scott’s engravings. In this paper, we will

study the engravings of Walter Scott and apply both IOB (Image-Optimisation-Based)

and MOB (Model-Optimisation-Based) approaches to achieve the effect of style trans-

fer by using CNN and GAN models respectively. And then, we collected a few images

that have similar content to the engraving images and transferred them into the stylised

images for comparison. We qualitatively evaluate the generated images through com-

parative analysis and quantitatively evaluate their effect using criteria such as PSNR,

SSIM and FID. Finally, we will conclude with the results of our experiments and give

suggestions and future improvements for Walter Scott Engravings style.
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Chapter 1

Introduction

1.1 Motivation

Walter Scott is a famous novelist, poet, historian and biographer who was born in Ed-

inburgh, Scotland in 1771, and this year is the 250th anniversary birth of Sir Walter

Scott. There are a number of fascinating engravings in his novels, which are provided

by the Colson Collection at the University of Edinburgh Research Collections. With

the help of these high-resolution images, we can study these engravings with the style

transfer technology to facilitate the study of Walter Scott.

Style transfer has not only attracted the attention of artists, but has been studied by

more and more computer researchers since the mid 1990s. Gatys et al. [9] first applied

neural networks for style transfer in 2015, their work demonstrated the superior per-

formance of neural networks for style transfer, following which a growing number of

researchers have worked on using neural network for style transfer, producing much

contributed work. Style transfer using neural networks has also become known as neu-

ral style transfer.

Nowadays, the application of neural style transfer methods in industry has also become

widespread [32], based on which many well-known industrial applications have been

popular all over the world, such as Prisma, Ostagram, and Deep Forger.

However, neural style transfer is a relatively new direction of research compared to

classic computer vision tasks such as object detection, object recognition and object

tracking, which have been studied for many years. Moreover, researchers have focused

more on the artworks of famous painters such as Van Gogh, Monet or Cézanne, which

means that there have not studied on style transfer for engraving style yet. As different

artworks have specific styles and features, we need to study the Engraving in order to

1



Chapter 1. Introduction 2

provide suggestions for generating engraving style images with better quality.

1.2 Objective and Contributions

In this dissertation, we will focus on the performance of two approaches in style trans-

fer for the engraving datasets, namely IOB-based style transfer and MOB-based style

transfer. In IOB method, we will use a photo as the content image and an engraving

image as the style image to generate a stylised image and seek ways to improve the

quality of the generated images, and in MOB method we will generate an engraving

stylised image with general dataset style using unpaired image-to-image translation

technology. We will also look at how to process the images in the dataset, and how to

select the data for training. After these, we will evaluate the performance, advantages

and disadvantages of both approaches by comparative analysis and quantitative evalu-

ation using different metrics.

For the two approaches in style transfer, one of our contributions is to validate the

effectiveness of IOB style transfer approach for engraving style, and to provide ex-

perimental optimisation for engraving style, providing references and suggestions for

generating better engraving stylised images. Our another contribution is to verify the

feasibility of using CycleGAN to transform the two domains between engraving im-

ages and realistic photographs. In addition, since there is no standard metric for the

style transfer task, we propose to use several metrics to measure the quality of the

style transfer and make suggestions for applying CycleGAN to the engraving style

task based on the evaluation results.

1.3 Outline of dissertation

In the first chapter, the motivation, objectives and contributions of our thesis are pre-

sented. In the second chapter, we provide a brief overview of relevant knowledge in the

dissertation, regarding Style Transfer, GAN and Image-to-Image Translation, where in

the style transfer section, we briefly described the work before neural networks and

style transfer with neural nets. In the third chapter, we present specific details of the

two methods used, IOB and MOB, in a rigorous and lively manner by combining

formulas and images. We begin the fourth chapter with a brief demonstration of the

collecting and cropping of the dataset, followed by experiments in the IOB method to

adjust and analyse the results obtained, and followed by a brief demonstration of the
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generated results of MOB method, and the we discussed and analysed the generated

results through qualitative and quantitative evaluation. Finally, in the last chapter, we

concluded the results of the experiment and proposed suggestions for improvements to

both approaches and what can be done in recent research.



Chapter 2

Background and Related Work

2.1 Style Transfer

Style Transfer (ST) refers to for a given photo as content image, preserving the general

content while assigning stylistic characteristics of another image (called style image),

thus generating a stylised image that integrates content and style.

In recent years, improvements in computer hardware, particularly in storage, CPU and

GPU performance, have made the application of neural networks possible, which are

playing an increasingly important role in computer vision related work. However,

research on style transfer started as early as the 1990s without neural networks. There-

fore, we will divide our section into two parts, style transfer before neural networks

and neural style transfer according to the different approaches to the study of style

transfer.

2.1.1 Style Transfer Before Neural Networks

Since the mid-1990s, the study of style transfer has attracted the interest of com-

puter scientists, deriving a new research direction called Non-Photorealistic Render-

ing (NPR) [54], which established the foundation of computer graphics. The study of

stylisation for 2D images or videos [42] is known as Image-Based Artistic Rendering

(IB-AR), which is a branch of Artistic Rendering (AR). In this section, we briefly de-

scribe these methods, dividing IB-AR-related studies into four sections, Stroke-based

rendering (SBR) [19], Region-based rendering, Example-Based Rendering and Im-

age Processing and Filtering, according to the classification criteria of Kyprianidis et

al.[29].

4



Chapter 2. Background and Related Work 5

The stroke based rendering (SBR) technique was first proposed by Haeberli [16] in

1990, it has been continuously improved and extended to produce stylised images with

different brushes, such as oil painting, pastel painting, line drawing etc. Stroke-Based

Rendering starts with a realistic photograph, uses the algorithm to extract the key fea-

tures and construct the parameters of the stroke model to generate the stroke primitive,

then determines the position of the primitive based on the features and positioning of

the image and draws a stylised image, finally evaluates the result, if it meets the re-

quirements then outputs the stylised image, otherwise draws the the next stroke until it

meets the requirements [20]. Finally the rendering produces a non-realistic image with

a specific artistic style. However, there is an obvious disadvantage that each specific

stroke style needs to be designed separately, which makes it inflexible and requires a

lot of effort to design the objective function.

With the development of SBR, there are a growing number of algorithms that segment

and parse images and render internal regions independently according to their content,

which is called region based rendering technique, by which different areas of the image

can be segmented so that different patterns can be rendered for separate areas. Based

on this technique, Collomosse & Hall [6] took ordinary photographs and generated

cubist-style paintings by geometrically distorting and rendering the images. However,

region-based rendering has the same drawback as SBR, which requires designing each

style individually.

Example-based rendering (EBR) is based on the image analogy method of Hertzmann

et al. [19], which is also mentioned in the following section of image to image trans-

lation. EBR aims to learn mapping relationships by supervised learning between paird

images and then rendering the desired image, it can be divided into two categories: per-

forming texture and colour transfer, where colour EBR learns mapping relationships

in the colour histogram of images to perform tasks such as colouring; texture EBR [7]

fills the image by seeking texture patches that are similar to each other in the image,

while facing problems like realism and coherence. Zhao & Zhu [59] implemented style

transfer for portraits by transferring brush strokes from portrait templates previously

drawn by the artist and rendering portraits from photographs. However the inadequacy

of the paired training dataset and only use the low-level features of the image limit the

performance of EBR technique.

Image processing and filtering is another traditional style transfer technique, but as fil-

ters are suitable for the image reversion and restoration rather than for simplification

in art makes there are not too many interesting results in this branch. It can be divided
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into grey scale or colour domain and gradient domain [1] depending on the domain

used of algorithms. Winnemöller et al. [55] generated cartoon effects using the differ-

ence between bilateral [50] and Gaussian filters [12]. However image processing and

filtering techniques did not been used much in the style transfer field.

The aforementioned style transfer algorithms before neural nets achieved some good

results in specific areas, however, most of these methods required manual modelling,

which means that for a new style, these methods could not be applied directly. There-

fore, with the development of style transfer techniques, neural networks have played a

significant role and have been improved to address the shortcomings of lack of gener-

alisation.

2.1.2 Neural Style Transfer

Gatys et al.[9] first applied neural networks for style transfer in 2015, their main idea is

to exploit the ability of generalised features (high-level semantic features) generated by

Convolutional Neural Network (CNN) to independently capture the content and style

of images for style transfer task, they built a new feature space based on Gram Matrix

statistics on a pre-trained CNN model (VGG19 [47]), which captures image style by

including multiple layers of feature correlation. Their work demonstrated the ability of

CNN to separate and reorganise the content and style of arbitrary images [23], showing

great superiority over traditional methods. Since then, using neural networks for style

transfer becomes popular in style transfer task, which is called neural style transfer

(NST).

NST can be divided into two procedures, style representation and image reconstruc-

tion. Style representation refers to how to extract features from an image, which is the

first and most important step in NST [25]. Image reconstruction refers to reconstruct-

ing the complete image from the extracted style representation, which is the opposite

process of style representation.

The style representation can also be referred to texture modelling, and the methods

of texture modelling are mostly based on either statistical summaries or Markov Ran-

dom Fields (MRFs). Texture Modelling with Summary Statistics approach focuses on

modelling textures as N-th order statistics, which was first proposed by Julesz in the

1960s [27], based on this, research such as [18], [41] and others have made outstanding

contributions in this area. The style representation in the method proposed by Gatys

et al. [10] is also belong to this approach. They use the Gram matrix for extracting
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styles, which is a second order statistic, more details of the Gram matrix can be found

in Methodology section. They used the Gram matrix to compute correlations from

feature maps in VGG19 to obtain style statistics, and their experiments demonstrated

that using the Gram matrix to extract the style of an image is valid for most textures

[8]. However the Gram matrix is not capable to capture texture with long-range sym-

metric structures. Berger and Memisevic [4] modified the Gram matrix from Gatys et

al. by computing the feature map F l with the transformed feature map T (F l), which

horizontally and vertically translate feature maps rather than computing co-occurrence

between multiple features in the map, allowing merging remote structures into image

generation and rendering images with various symmetry constraints, and their method

is effective in style transfer of seasons of images.

According the study by Li et al [32], style optimisation for the generated image is

equivalent to minimising the Maximum Mean Discrepancy (MMD) based on the second-

order kernel function between the statistical distributions of the two domains, which

means that the procedure of transferring the style to the generated image can be thought

as the process of making the second-order statistical distribution of the generated im-

age continuously close to the style image. While style representation is not limited to

second-order statistics, other methods such as first-order statistics, polynomial kernel

and Gaussian kernel can also be used for NST. Shen et al. [46] introduced meta-

learning to style transfer using the Hyper network method in meta-learning, which

uses a network to generate parameters for another network [15], dynamically generat-

ing parameters for a style transfer network by learning first-order statistics about the

distribution of features of the input style image. Jing et al. [24] propose a method

for arbitrary style transfer based on the MobileNet, which is a lightweight architecture

and introduces the Dynamic Instance Normalization (DIN) module to encode styles as

learnable convolutional parameters, combined with a light-weight content encoder for

fast style transfer.

Non-parametric texture modelling approach is based on MRFs, which assumes that

each pixel of texture in an image is characterised entirely by its spatial neighborhood

[25]. The method first divides the style image and the generated image into several

patches, and finds and approximates the closest style patch for each patch in the recon-

structed result image. Li Wand [30] combine MRF with CNN-based texture modelling

methods [8] to reduce the loss of high-level semantic information in content graphs,

and their algorithm preserves information such as local structure well.

After obtaining style representation, the next procedure of style transfer is to recon-
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struct image, which generates the stylised image based on the style features extracted.

Depending on the algorithms, we can classify the algorithms for image reconstruc-

tion into Image-Optimisation-Based (IOB) approach and Model-Optimisation Based

approach [25].

The IOB method extracts features from the given content image and the style image,

and then initialise a white noise image as generated image for iteratively optimisation,

reducing the error between the generated image and source content and style image to

deliver a stylised image with the original content and new style. Further details of the

steps will be explained in Methodology Chapter.

The optimisation strategies of the IOB-based style transfer algorithms are mostly sim-

ilar, their main difference lies in the style representation, where two aforementioned

different methods of texture modelling based on summary statistics or MRFS are used.

The method of Gatys et al. [10] falls under the IOB method using summary statistics

based texture modeling method.

Although the outcomes of IOB based algorithm demonstrate high perceptual quality,

an obvious limitation of their algorithm is that it requires high computational resources

and takes a long time to process the style transfer task, which is due to the fact that

their algorithm optimises the generated image from a white noise image by iteratively

minimising the loss. Essentially, this method does not have a model for the style trans-

fer task, the model can be thought of as the generated image, thus this method requires

each image generated to complete an iterative optimisation process, which cannot be

reused and thus appears to be time consuming and has no generalisation capability. In

addition to this, the time taken to generate the image takes more time as the image size

becomes larger.

The proposed MOB method solves the problem that the IOB method requires iterative

optimization for each generated image. The basic idea is to train and optimize a feed-

forward neural network for one or more stylized images, and then the model can di-

rectly generate the stylized image. Johnson et al. [26] proposed to train a feedforward

neural network with advanced feature-aware loss function for image style transfer,

which significantly improved the speed of achieving style transfer for real-time tasks

by three orders of magnitude over Gatys et al. [10]. Furthermore, their model is better

at dealing with image detail and edges and their work also includes high-resolution

image style transfer. Crucially, their work makes it possible to output a stylised image

after this feedforward neural network has been trained, requiring only the input content

image. Similar to Johnson et al., the texture network proposed by Ulyanov et al. [51]
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uses a multi-scale generative network for style transfer.

The MOB approach takes significantly less time to generate new stylised images after

the model has been trained, making the style transfer model much more reusable and

allowing the application of style transfer to be implemented in industry.

2.2 Generative Adversarial Network

Generative Adversarial Networks (GAN) was first proposed in 2014 by Goodfellow et

al. [13] and getting more and more popular in related artificial intelligence academia

since it was first proposed.

GAN is inspired by the zero-sum game in game theory, which means that the benefits

of both sides in the game are summed to zero, with one side gaining exactly what the

other side loses [11]. Following this idea, the two sides of GAN game are designed

as two players, a generator and a discriminator, which usually have different network

structures for different tasks. The generator first receives a random initialised noise

and generates a fake but looking real sample through the generative model to trick the

discriminator. Conversely, the discriminator uses a discriminative network to distin-

guish whether the input data is real or fake data that comes from the generator via the

discriminant network.

In order to win the game, the generator and the discriminator need to continuously

optimise to improve their generative and discriminatory abilities respectively, the dis-

criminator will try to give the maximum possible probability value to the real samples

and the minimum possible probability value to the generated samples, and the gener-

ator will generate samples as real as possible by the probability of generated samples

given by the discriminator and learning to capture the distribution of the real data con-

tinuously, this learning and optimisation process is called Minimax game.

Through the adversarial training, the generator would maximize the probability of the

discriminator making mistakes until the discriminator cannot distinguish whether the

sample is from the real samples or the generated samples, that is, the output probabil-

ity of the discriminator is 0.5, resulting in a Nash equilibrium, which means that each

player’s strategy makes to reach the maximum of its desired benefit [3].
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2.3 Image-to-Image Translation

Image-to-image translation refers to translating an image from a source domain A to

another target domain B while preserving the content of the image [40]. It has a broad

range of applications in computer vision research like style transfer [60], [57], [37],

image segmentation [56], [14], [31], and image inpainting, [34], [58]. To achieve

this goal, we need to train the model to get the mappings in these two domains to

generate the translated images. Depending on the data required to train the model, in

the following we it into paired (also called supervised) image-to-image translation, and

unpaired (alternatively called unsupervised) image-to-image translation.

2.3.1 Paired Image-to-Image Translation

The idea of paired image translation first came from Hertzmann et al. [19] , as they

were inspired by work related to texture synthesis at the time [53], [2] and proposed

image analogy method based on simple multi-scale autoregression. The idea of their

method is to use paired images to train a model, and later using the trained filter in

the model on a new target image to achieve similar results as the paired images in the

training dataset. Following this, in order to find the semantic correspondences in paired

data, Liao et al. [33] proposed to integrate image analogy with neural network, that

is, matching and analogy of features extracted from convolutional neural networks, us-

ing a coarse-to-fine strategy to compute nearest neighbours to generate results, called

deep image category. Their work achieved relatively good results for work such as

style transfer, sketch-to-photo, but still failed to construct correct correspondences for

scenes that were semantically related but differed significantly in scale and perspec-

tive.

Significant progress has been made in CNN-based image-to-image translation, but the

methods using CNN require human effort to design an effective loss function, which

means that it is labor intensive and error prone. This problem is well addressed by

the proposal of generative adversarial networks, which do not require an artificially

designed style loss function for minimisation, which can be achieved by adversarial

training simply given a higher-level goal. Isola et al. [22] proposed applying GAN

to supervised image-to-image translation where supervised indicates that the training

data is paired, which is a classic paper known as pix2pix. The pix2pix approach uses

a conditional GAN to achieve the image translation task, which can control the kind

of the expected image by adding conditional information to the input and learning the
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mapping from the input image to the output image to get the specified output image.

Compared to unconditional GAN [13], it avoids the disadvantage that the generation

of images based on random noise is difficult to control.

The pix2pix algorithm is shown in Figure 2.2, where x is the sketch of the object

Figure 2.1: ConditionalGAN for Image-to-Image Translation

and y is the real image of the object paired with x. After giving the input image x to

the generator G, the generator will generate a fake image G(x), and then concat x with

G(x) and input it to the discriminator D. The discriminator determines whether the in-

put image is the paired real image and gives the corresponding probability value. The

discriminator is trained with true paired images x and y as input, with the goal of giv-

ing larger probability values for the true paired images and smaller probability values

for the false paired images. While the goal of the generator is to continuously improve

G(x) so that D gives the fake paired images with the higher probability value possi-

ble, in adversarial training, the generator G and the discriminator D are continuously

optimized to accomplish the goal.

2.3.2 Unpaired Image-to-Image Translation

Paired image-to-image translation can usually achieve relatively good style transfer

results, and if we could somehow find realistic photographs that correspond to the

engravings, it would greatly improve our efficiency and enhance the effect of style

transfer. However, finding the matching data is extremely difficult especially in this

case, as the engravings of Walter Scott do not represent the modern world, and the

landscapes and portraits do not exist in the current world, which makes it very difficult

to find realistic photographs of these scenes. Moreover, as there are only 1077 images

in Walter Scott dataset and some of them are not applicable as they are not engravings,

although we find a few similar images in the real world, these are not sufficient to

train a style transfer model that would work well, so paired image-to-image translation
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Figure 2.2: Paired and Unpaired Image-to-Image Translation

method is not possible for our style transfer task.

In contrast to paired image-to-image translation, unpaired image-to-image translation

approach is a good way for those tasks that do not have paired training data. It refers

to mapping between two piles of image styles, which essentially means finding the

common content contained in these two different piles of images and the differences

in their previous textures, colours etc. In our style transfer task, we have two different

style piles of images X and Y , where X is our engraving image dataset and Y is real-

world photograph dataset that they do not have a one-to-one correspondence. We wish

our style transfer model to learn the general style features from one pile of images to

another, such that they can be transformed into each other. In our task, after given a

realistic photograph, we expect our model to translate it into the style of engraving,

that is, it looks like an image in the engraving dataset, but in fact its content is still

that of our given photograph, where only the stylistic elements are changed, this is

the key to this image translation task as each pile of images has commonalities and

stylistic differences, we want the trained model to be able to find the common points

between these two different piles of images and keep these common elements and only

transfer these unique elements to each pile to learn the mapping between the two piles

of images.



Chapter 3

Methodology

In this chapter, we will introduce and explain the different two approaches used for

Walter Scott engravings style transfer. Image-Optimisation-Based method is applied

in the first section for the style transfer task, which takes a content image and a style

image as inputs. In the second part Model-Optimisation-Based method is applied,

which works on style transfer by training a generative neural network that can generate

a stylised image only using a normal photograph as input. In the last section, the

selection of the engraving dataset images and the realistic photo dataset are given a

review.

3.1 IOB Style Transfer

3.1.1 Image Representation

The performance of the VGG19 network for the neural style transfer task was well

demonstrated and proven, hence we used the pre-trained VGG19 model for the feature

representation of the images.

VGG networks is a deep neural network proposed by Visual Geometry Group of Ox-

ford [47], which are trained for object detection and localisation. It inherits the basic

idea of AlexNet, but instead of using the larger convolutional filters of AlexNet, such

as those of 5x5, 7x7 and 11x11 sizes, the VGG network uses multiple small 3x3 con-

volutional filters instead, making it to have a smaller number of parameters and a very

simple network structure, which allows it to increase the number of layers and thus

improve the performance of the model. The VGG network immediately became the

most popular convolutional neural network model of its time due to its simplicity and

13



Chapter 3. Methodology 14

practicality.

There are two types of VGG networks, VGG16 and VGG19, which only differ in net-

work depth. VGG16 contains 16 hidden layers with 13 convolutional layers and 3 full

connected layers, and VGG19 contains 19 hidden layers with 16 convolutional layers

and 3 full connected layers, the rest of the structure is the same, and the network struc-

ture of VGG is shown in Appendix A.1.

In CNN networks, lower level layer convolutional filters tend to capture more detailed

feature representations of the image, while higher level layer convolutional filers tend

to capture more overall feature representations of the image, therefore, for the style

transfer task, the style features and content features of the image are respectively rep-

resented using the lower level and higher level layers in VGG19 .

3.1.2 Content Representation

Content representation refers to the feature representation in the higher levels of the

CNN network structure. When a CNN model is trained, its lower-level convolutional

filters are sensitive to the exact pixel values of the image as they capture the represen-

tation such as edges, textures and other features. As the depth of the neural network

increases, the feature representation of the CNN becomes clearer, and the higher-level

convolutional kernels are able to capture the global representation of features such as

contours and content of the image, while not being sensitive to the exact pixel value of

the image content. Therefore, we first generate a white noise as the generative image,

which is initially generated randomly, and later reduce the loss between the genera-

tive image and the content image by iteratively using the gradient descent algorithm,

by calculating the loss at the specified convolution layer with the content image in

the VGG network, thus obtaining a similar content feature representation whose exact

pixel values are not the same as the content image. Here, we calculate the error be-

tween the generated image~x and content image ~p using squared-error loss function in

layer l:

Lcontent (~p,~x, l) =
1
2 ∑

i, j

(
F l

i j−Pl
i j

)2
(3.1)

where F l
i j and Pl

i j denote the activation of the ith filter at position j of specific layer l.

With the defined loss function, we can calculate the gradient by using standard error

back-propagation and iteratively update the resulting image.

The procedure for the content representation can be illustrated more obviously in

Figure 3.1, where the content image F and the generated image P are encoded by the
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Figure 3.1: Content Loss Function

pre-trained VGG19 model, and then the content representation is specified in a specific

convolutional layer ( conv4 2 in the figure, more information about VGG19 network

architecture can be found in Figure A.1 in the previous section), and the loss function is

computed on the same convolutional layer using squared-error loss function. nH ,nW ,nC

respectively refer to height, width and channel of the filter and i denote the ith filter.

3.1.3 Style Representation

The key to the style transfer task is the representation of style. Gatys et al. [10] suggest

that the style of an image can be represented by the correlation between channels, and

therefore they propose to use the Gram Matrix for style representation and extraction.

The Gram Matrix is a useful way to calculate whether two vectors are linearly corre-

lated in linear algebra, it can be thought of as the eccentric covariance matrix between

image features. In a feature map, each variable represents the strength of a particu-

lar feature, which is calculated by the convolution of a particular filter at a particular

location. As the Gram Matrix calculates correlations between features, allowing it

to derive the relationships between different features, such as preferring simultaneous

occurrences or preferring one over the other, etc. The diagonal elements of the Gram

Matrix are able to reflect the amount of each feature that appears in the image. Due

to these advantages, the Gram Matrix has proven to be useful for extracting the over-

all style of the style image. In our style transfer task, the Gram matrix is computed

by calculating the correlation between the original image and the corresponding filter

response of the generated image, following the mathematical formulation:

Gl
i j = ∑

k
F l

ikF l
jk (3.2)
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where i and j represent the i-th the j-th feature map of the layer l, and k is the k-th

term of the feature map.

The idea of style reconstruction is similar to that of content representation, where we

can use gradient descent to minimize the style loss which is calculated by mean-square

distance between the generated image and style image to get similar style representa-

tion, a point of difference from content reconstruction is that in the calculation of style

differences, the style gap is calculated as the difference in the Gram Matrix, rather than

the difference in the image.

In the l-th convolutional layer, there are Nl feature maps and their size is Ml , where Ml

is the height h of the feature map multiplied by its width w, we can get the style error

E between output image Gl and style image Al by the mathematical formula:

El =
1

4N2
l M2

l
∑
i, j

(
Gl

i j−Al
i j

)2
(3.3)

Since the style representation is pretty abstract which cannot be extracted and rep-

resented by a specific convolutional layer in the VGG19 network, we can combine

different layers at lower levels of the convolutional neural network for style represen-

tation and style reconstruction by giving specific weights w l to the different layers l

of the set of selected layers L. The total loss can then be calculated by summing the

results of each layer error El:

Lstyle (~a,~x) =
L

∑
l=0

wlEl (3.4)

Given the above formulations, we can then compute the derivatives of E for layer l

activation and use back propagation to update the resulting image to make it closer to

the style image:

∂El

∂F l
i j
=


1

4N2
l M2

l

((
F l)T (Gl−Al))

ji
if F l

i j > 0

0 if F l
i j < 0

(3.5)

Figure 3.2 shows the procedure of style representation more visually. The choice of

convolutional layers in the figure follows Gatys et al. by using ’conv1 1’, ’conv2 1’,

’conv3 1’, ’conv4 1’ and ’conv5 1’ in the pretrained VGG19 model. Depending on

the actual style image, the convolutional layer chosen for the style representation will

have a great impact on the style transfer results, thus we will discuss and analyse it in

the next chapter and choose the appropriate convolutional layer to achieve better style

transfer results.
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Figure 3.2: Style Loss Function

3.1.4 General Model Structure

As we have defined the content loss and style loss, all that we need to do is to integrate

the content loss and style loss and iterative optimise and update the output until it

produces the effect as expected. The total loss Ltotal of the generated image ~x with

respect to the source content image ~p and the source style image ~a can be obtained by

linearly integrate the content loss with weights α and style loss with β respectively:

Ltotal = αLcontent (~p,~x)+βLstyle (~a,~x) (3.6)

The general model architecture is more visually illustrated in Figure 3.3. At first a

Figure 3.3: Model Structure

white noise is initialised randomly, and then the content and style loss are calculated by

computing the difference in features respectively in the specific convolutional layer(s)

of the VGG19 pre-trained model, assigning them different weights and then summing

them together to get the total loss, and finally iteratively updating the generated image
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by back-propagation until the generated image has similar features to the content and

style image.

3.2 MOB Style Transfer

Although the IOB method is capable to transfer a normal photograph into the style of

a particular engraving image, each of the generated stylised images needs to be opti-

mised iteratively, which requires a lot of computational power and a long waiting time,

the MOB method mentioned previously solves these problems in the IOB method.

However, there is an issue that a single engraving image cannot represent the whole

set of images in the engraving dataset, and the generated stylised image is more like

the style of a particular image rather than the style of the concept of engraving. There-

fore, we need to build a model for the general engraving image that can extract the style

features of the engravings used in the dataset, and then apply this feature for style trans-

fer. Since we only have the engraving data without the realistic images corresponding

to these engraving images, we need to use unpaired image-to-image translation tech-

niques, Zhu et al. [60] proposed to add cycle-consistent in GAN for the task without

paired data, this network structure is called cycleGAN, which allows images from two

domains to be translated into each other with very satisfactory results. Therefore, in

the MOB approach, we will use the cycleGAN method proposed by Zhu et al. for style

transfer.

Essentially, CycleGAN is comprised of two mirror-symmetric GANs that form a cyclic

network, meaning that it contains two generators GP2E , GE2P and two discriminators

DE , DP, where GP2E represents the generator that converts a photograph into an en-

graving, GE2P represents the generator that converts an engraving into a photograph

and DE represents the discriminator that discriminates whether the received image is

an engraving or not, and DP represents the discriminator that discriminates whether

the received image is a photograph or not.

3.2.1 Cycle Consistency

In order to transfer the style between the images that comes from two domains while

ensuring the geometry and spatial relationships of the objects in the image remain un-

changed during the style transfer, we need to introduce the concept of cycle consistency

to train the model [38].
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Cycle consistency is a very important component in cycleGAN, which helps to trans-

fer uncommon style elements between two GANs, while maintaining general content.

Cycle consistency draws on the concept in machine translation, when translating a

sentence from language X to language Y and then translating back from Y to X, the

translated sentence should be the same as the source sentence.

In our task, cycle consistency means that given an image x that belonging to the realis-

tic photo domain, after translating it into the engraving domain ŷ, and then converting

it back into the realistic image x̂, x̂ should ideally be the same as the original image

x. However, it will be impossible even in the field of machine translation to guarantee

that a sentence will be identical to the original after it has been translated, let alone

image-to-image translation task. The reason for this is that the generator can only try

to generate an image that is as realistic as possible based on the features in the image

domain, and some of the feature information will be lost in the translation. Although

GANs can learn a mapping between two domains, if the network is large enough, they

are more likely to learn how to copy elements in thetarget domain to confuse the dis-

criminator rather than transform the image[60], therefore, an additional loss needs to

be added to guarantee the cycle consistency of translated image x̂ and ŷ which are

generated by B(A(x)) and A(B(y)).

Lcyc (A,B) = Edomain (x) [‖B(A(x))− x‖1]+Edomain (y) [‖A(B(y))− y‖1] (3.7)

The cycle consistency loss reduces the possible set of mappings that the network can

learn and forces A and B to perform the opposite transformation, which allows the

network to learn more meaningful mappings.

Figure 3.4: Cycle Consistency

3.2.2 Related Formulations

As a derivation of generative adversarial networks, CycleGAN also incorporates the

adversarial loss:

LGAN (A,DY ) = Edomain (x) [logDY (y)]+Edomain (y) [log(1−DY (A(x))] (3.8)
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where DY represents the discriminator that identifies whether an image is from the Y

domain, and A is the mapping from domain(x) to domiain(y).

Stability in the training of GAN is a serious problem, one source is the BCE loss used

as an adversarial loss, thus the design of the loss function is important. Zhu et al. [60]

in their paper mention that in the training process of cycleGAN, the Least Square loss

function is used instead of the negative loglikelihood objective. Least Square is an

important concept in statistics which is used to minimise the sum of residual squares.

The idea is to fit a line to several points so that the distance from these points to the

line is the minimum, therefore we can calculate the distance from the point to the line

and minimise it. For the GAN task, these points correspond to 1 (true) and 0 (false),

thus the adversarial loss in cycleGAN can be written as follows:

LGAN ((A,DY ) = Edomain (y)
[
(DY (y)−1)2]+Edomain (x)

[
DY (A(x))2]

+Edomain(x)
[
(DY (A(x))−1)2] (3.9)

Thus Least Square will only have flat gradient if the prediction is exactly correct, which

can helps avoiding vanishing gradients and mode collapse.

While the generator A is trying to generate an image A(x) that is similar to the data

domain Y, the discriminator DY is also trying to distinguish the generated image from

the original image. The target of the adversarial training process can be expressed by

the following equation:

min
A

max
DY

LGAN (A,DY ) . (3.10)

Since the cycleGAN contains two GANs, the adversarial loss of the second GAN map-

ping from Y to X is shown in the following equation:

LGAN (B,DX) = Edomain(x)
[
(DX(x)−1)2]+Edomain(y)

[
DX(B(y))2]

+Edomain(y)
[
(DX(B(y))−1)2] . (3.11)

The second adversarial training target can be expressed by the following equation:

min
B

max
DX

LGAN (B,DX) . (3.12)

And the general target of cycleGAN can be represent as follows:

A∗,B∗ = argmin
A,B

max
DX ,DY

L(A,B,DX ,DY ) . (3.13)

The aforementioned formula for cycle consistency loss is as follows:

Lcyc (A,B) = Edomain (x) [‖B(A(x))− x‖1]+Edomain (y) [‖A(B(y))− y‖1] (3.14)
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Next, summing the loss functions of these two GANs and adding the cyclic consistency

loss gives the whole loss function of cycleGAN:

L(A,B,DX ,DY ) = LGAN (A,DY right)+LGAN (B,DX)+λLcyc(A,B) (3.15)

where λ controls the relative importance of the two objects [60].

3.2.3 Model Architecture

The discriminator(s) of CycleGAN is based on the PatchGAN proposed by Isola et al.

[22] in pix2pix algorithm. PatchGAN is entirely composed of convolutional layers,

which can also be called fully convolutional GAN. The input image is first fed into the

PatchGAN, and after passing through the convolution layers it is mapped into a N×N

matrix, where each position (true or false) represents a small region of the original

image, called a patch, and all responses are averaged to get a discriminant value. This

allows PatchGAN to focus on more regions than the original GAN, which only outputs

a discriminant value.

The architecture of discriminator is shown in Figure 3.5. The discriminator consists

Figure 3.5: Discriminator Architecture

of five convolutional layers layers Conv1∼Conv5, where Conv1∼Conv4 are used to

extract features and Conv5 is used to convert them into a one-dimensional feature vec-

tor, and finally gets the discriminated result. Instead of using false images generated

directly during training, the training image is randomly selected among the generated

images and the 50 most recently generated images for the calculation of the loss func-

tion. Adam (Adaptive Moment Estimation) is used for optimisation in training, which

dynamically adjusts the learning rate of each parameter using first-order moment es-

timation and second-order moment estimation of the gradient, with the learning rate

having a defined range in each iteration, with advantages such as training smoothness

and low memory requirements.
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Figure 3.6: Generator Architecture

The generator consists of an encoder, a transformer and a decoder with a total of

4 convolutional layers, 9 residual network layers, and 2 deconvolutional layers. As

shown in Figure 3.6, the encoder on the left side of the figure extracts features from

the input image through a convolutional layer, which is transformed into a 64*64*256

size. The middle part is called the transformation module, which consists of 9 residual

network layers(ResNet1 to ResNet9), which preserves the integrity of the image better

and improves the problem of gradient disappearance in the deep network. The output

features of the encoder are transformed from X-domain features to Y-domain features

by the transform module. The decoder module is on the right side of the figure, it uses

the deconvolution layer to restore the low-level features of the image, and finally get

an image that matches the Y-domain features.

The complete model of CycleGAN is shown in Figure 3.7. In the mapping of photos

to engravings, an image is first input, GP2E transforms it into a generated engraving im-

age, which is then passed to the discriminator DE to determine whether the generated

image is from the same style as the engraving. Then GE2P reconverts the generated

engraving into the style of the real image to obtain the Regenerated photo, and the dis-

criminator DP determines whether the Regenerated photo is from the photo domain. A

comparison is made between the input photo and the Regenerated photo, which is used

to calculate the cyclic consistency loss. The mapping of engraving to the photo in the

other direction is its mirror, and will not be expanded upon here.

3.3 Dataset Overview

3.3.1 Engraving dataset

In this dissertation, we use the Walter Scott Image Collection as our engraving dataset,

which is primarily based on the images and materials contained in the Corson Col-

lection at the University of Edinburgh Library. The Walter Scott Image Collection
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Figure 3.7: CycleGAN Architecture

contains a total of 1077 images of engravings, etchings, lithographs, oil and water-

colour paintings, drawings, and photographs in a variety of styles.

Although we have many different categories of data, we need to select a specific style

for style transfer. The label categories in the Walter Scott Image Collection image in-

formation list include Engraving, Woodcut, Lithograph, Facsimile, Drawing, Painting,

Manuscript, and many others. However, there are too many labels for a dataset of only

1077 images, therefore we have classified the images in the dataset into five categories

based on their labels combined with subjective judgement of detail texture, including

Engraving, Woodcut, Lithograph, Facsimile and the rest (some images are not classi-

fied into corresponding categories based on their labels), as shown in Figure 3.8. We

chose Engraving as our dataset, which has the most images.

In addition, we divided the engravings into two parts, landscape and portrait according

to their content. Since most style transfer algorithms do not have a specific mechanism

for the specific content, to ensure the effect of style transfer, we chose as the dataset

engravings with architectural content, which contains approximately 400 images.
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Figure 3.8: Dataset Overview

3.3.2 Realistic Photos Dataset

We chose the Google-Landmarks Dataset [39] as our realistic photo dataset for com-

parison with the engravings dataset which features landscapes and architecture based

on our requirement for unpaired style transfer task. The Google-Landmarks Dataset

contains famous (and not-so-famous) landmarks, which contains over two million im-

ages depicting 30,000 unique landmarks from around the world, with different view-

points, weather and lighting, and further information can be found in Kaggle 1. How-

ever two million is too much for our style transfer task as we donnot have to many

engraving images, therefore we only selected around a thousand of these photos as

our realistic photos dataset. in order to allow our model to learn more, we manually

removed some of the photos from the dataset, including modern architecture, night

images and content that are too different from those in the engravings. In Appendix

A.2, we provide some examples of images in this dataset. For the Adam optimizer in

the IOB-based style transfer, we also found that increasing the number of iterations

and early stop did not improve the generated results obviously, although there was a

reduction in the value of the content and style loss.

1https://www.kaggle.com/google/google-landmarks-dataset

https://www.kaggle.com/google/google-landmarks-dataset
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Experiments and Results

Our experiments are mainly based on Pytorch, we use Google’s Colab platform for ex-

periments on style transfer, in addition we subscribe to Colab Pro for better computa-

tional resources. In our experiments, we used ’ Tesla P100-PCIE-16GB’ graphics card

from Colab, with NVIDIA-SMI version 460.32.03 and CUDA version 11.2, which has

16GB of memory and high computational power.

4.1 Data Processing

4.1.1 Dataset Images Downloading

Based on the list of image information provided by Digital Library Development Sys-

tems of the University of Edinburgh, we can access these images based on their URLs

to build our dataset. Our initial approach is to go to the Walter Scott Image Collection

webpage and find the image url by analysing the HTML code that makes up the web-

page, for example by opening the webpage of an image and searching for the HTML

code that contains the ’.jpg’ element, we can get the following HTML code that con-

tains ’.jpg’ element:

<meta property = "og:image" content="https://images.is.ed.ac.uk/

MediaManager/srvr?mediafile=/Size4/UoEwal-1-NA/1001/0030028d.jpg">

and we can easily find the image url: https://images.is.ed.ac.uk/MediaManager/

srvr?mediafile=/Size4/UoEwal-1-NA/1001/0030028d.jpg, where 0030028d is

the ID of the image, so we are able to download the image by entering the ID of the

image. However, there are some images whose links do not conform to this rule, which

require us to look for new patterns in these images, making downloading the engraving

25

https://images.is.ed.ac.uk/MediaManager/srvr?mediafile=/Size4/UoEwal-1-NA/1001/0030028d.jpg
https://images.is.ed.ac.uk/MediaManager/srvr?mediafile=/Size4/UoEwal-1-NA/1001/0030028d.jpg
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dataset a tedious task.

Thanks to the guidance of Digital Library Development Systems of the University of

Edinburgh, there is a simpler way to access the original images by using the Interna-

tional Image Interoperability Framework (IIIF) [48] of the University of Edinburgh to

download images. Following the guidelines, we can obtain the original engraving links

by modifying the given URL in the information list. For example, for the URL https:

//images.is.ed.ac.uk//luna/servlet/detail/UoEwal˜1˜1˜58112˜100356, re-

placing the ’detail’ item to the ’iiif’ item and add ’/full/full/0/default.jpg’ to the suffix,

we will get the URL of the original image, which is https://images.is.ed.ac.uk/

/luna/servlet/iiif/UoEwal˜1˜1˜58112˜100356/full/full/0/default.jpg.

As each image download procedure is time-consuming, which is network-intensive

IO and disk-intensive IO that involves a lot of waiting time. In order to speed up the

downloads of images, a multi-threaded script was developed. The script first puts the

processed source image URL into a queue, and then constructs several sub-threads to

read the image URL from the queue and call the download function, so that we can

finish downloading the images in the dataset in less than a minute.

4.1.2 Images Cropping

As the original images(on the left of Figure 4.1) contain not only the content of the

engravings but also a border of the image with information about the author, content ,

etc. In order to get better outcomes for style transfer task, we need to crop the source

image to get the content(on the right of Figure 4.1) . However, cropping by hand is

very time consuming and tedious, hence we chose to use OpenCV to crop the original

image, which is capable of many traditional computer vision tasks. We can divide the

automatic cropping algorithm into the following four steps:

1. Setting the threshold. It can be easily noticed that most of the engravings are

rectangular and there is a clear difference between the content area and the bor-

der area of the background. We can thus set a threshold to initially separate the

content area from the border. The image is first transformed into a grey-scale im-

age and then smoothed using the median filter, which sets the grey-scale value

of each pixel point to the median of the grey-scale values in a certain neighbour-

hood window pixels at that point, and then transforms the image into a binary

image according to the set threshold.

2. Erosion and dilation. As there is no fixed value for the content and background

https://images.is.ed.ac.uk//luna/servlet/detail/UoEwal~1~1~58112~100356
https://images.is.ed.ac.uk//luna/servlet/detail/UoEwal~1~1~58112~100356
https://images.is.ed.ac.uk//luna/servlet/iiif/UoEwal~1~1~58112~100356/full/full/0/default.jpg
https://images.is.ed.ac.uk//luna/servlet/iiif/UoEwal~1~1~58112~100356/full/full/0/default.jpg
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of the image, the image we separate using the threshold has a lot of speckles.

Thus we try to remove these spots by repeating erosion and dilation operations,

where the erosion operation will erode the white pixels in the image to remove

the small spots and the expansion operation will expand the remaining white

pixels and grow them back to avoid removing the content of the image.

3. Edge detection and contouring. We use the Canny function in OpenCV for edge

detection and then extract the contours. Although there are less spots in the

processed image, this does not mean that we will get only one contour, so we

use the contourArea function to calculate the area of the contours and sort them

to select the largest contour, and then we use the approxPolyDP function to get

a strict rectangle.

4. Get coordinates to crop the image. We use the convexHull function of OpenCV

to detect the Convex Hulls of the maximum contour and then obtain the coordi-

nates of the rectangle vertices and crop the image by calculating the position.

Figure 4.1: Cropping Process

After application, our cropping algorithm is effective in cropping most of the images

where the content and background are distinct, but it has limitations in cropping some

images where the content is integrated into the background.

4.2 IOB Style Transfer

In our IOB based style transfer experiments, we reproduced the work of Gatys et al.

[10] by referring to the code in the pytorch tutorial. Following the results of their ex-

periments, we choose ’conv1 1’, ’conv2 1’, ’conv3 1’, ’conv4 1’ and ’conv5 1’ layers
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from VGG19 for the extraction of style features and ’conv5 1’ for the content represen-

tation (specific information about the network structure can be found in the previous

section) and set β/α = 1e3(1000) for content weight and style weight.

For initialisation, we choose different types of images for iterative optimisation, a ran-

domly initialised white noise and the content image, which is chosen because it may

be able to preserve the content information better and reduce the image optimisation

process. The generated results are shown in Figure 4.2, where the second image on the

right is initialised with white noise and the first image on the right is initialised with a

content image.

From the figure we can observe that the image starting from white noise does not

Figure 4.2: Comparison of the generation for different initialised images

achieve a good result, it only retains the contours of the content image but the style dif-

fers significantly from the style image. Whereas the image initialised from the content

image retains most of the content information and is relatively close to the style image,

although the effect of style is not obvious. We find from the results that changing the

Figure 4.3: Comparison of the generation for different ratios

ratio of α and β has a greater effect on the generated stylised image, and by increasing

the weights, the tone of the stylised image can be made more towards the tone of the

engraving. However, this does not mean that increasing the weight of the style will

always improve the quality of the generated image, as we can observe from the two
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generated results on Figure 4.3 that excessive weights can have an effect on destroying

the overall structure of the image and thus blurring parts of the image. Smaller weight

ratios on the other hand do not have a significant impact on the generated image ini-

tialised with the content image. Therefore, after experimentation, we consider that a

ratio of β and α up to 1e4(1000) and 1e5(10000) will produce better results.

Although the range of β/α was determined, the generated image was only more simi-

(a) Results with Higher Layers (b) Results with Lower Layers

Figure 4.4: Results for different style represent layers

lar to the engraving style image in terms of image tone, but still differed considerably in

terms of image detail. Thus we then try different style represent layers to achieve a bet-

ter effect. Although the results of Gatys et al. [10] are effective in many style transfer

tasks, their choice of convolutional layers may not give good results for the engraving

style, where the textures are more towards the pixel level whereas the ’conv4 1’and

’conv5 1’ layers in the VGG network refer to higher level convolutional layers that are

difficult to capture at lower levels and thus cannot produce a better result. Therefore,

we chose to use lower level convolutional layers like ’conv1 1’, ’conv1 2’, ’con2 1’,

’conv2 2’ and ’conv3 1’ in VGG network for style layer representation in order to be

more similar to engraving style.

Furthermore, as our generated images are initialised with the content image, which

means that we do not need to optimise the content loss too much, instead of using

the high level convolutional layer ’conv5 1’ for the representation of content features,

which would make the content image abstract by negative optimisation and not match

the clearer content in the engraving style. In experiment, we found that using the

’conv3 1’ layer gives better results. With all other parameters identical, the results of

our choice of new content and style representation layers ( Figure 4.4(b)) and the re-

sults of using the Gatys et al. representation layers (Figure 4.4(a)).
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The mean and standard deviation of images provide a good overview of the informa-

tion and features of the images, where the mean is the average of a set of data, and

the standard deviation represents the dispersion of the data. And by using these two

data for normalisation, the gradient acts on each image equally, which means there is

no proportional mismatch, avoiding the inability of the gradient operation to take into

account the downward trend of different features in different dimensions at different

levels, which makes the loss oscillate. When dealing with realistic images in general,

we generally use calculations based on those derived from millions of images in Ima-

geNet. However, there are large differences between prints and photographs, and for

better style transfer results, we calculated the standard deviation and mean values for

the Engraving dataset, which are shown in Table 4.3:

where the values are in [ R, G, B ] format for the red, green and blue channels.

Mean Standard Deviation

ImageNet [ 0.485, 0.456, 0.406 ] [ 0.229, 0.224, 0.225 ]

Engraving [ 0.489, 0.480, 0.417 ] [ 0.190, 0.178, 0.169 ]

Table 4.1: Mean and standard deviation for different dataset

By normalising the mean and standard deviation calculated in our engraving dataset,

the generated result is significantly improved. As shown in Figure 4.6, it can be noticed

that the stylised image generated by using the standards parameters for normalisation

has a distinctly prominent patch in the image with unusual colours and no texture,

while the stylised result of the normalisation calculated using the engraving data is not

only more consistent in overall colour, close to the colour of the engraving, but the

corresponding graphic block has the same texture as the stylised image. The choice

Figure 4.5: Comparison of the generation for different normalization
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of optimizer also greatly affects the effect of style transfer. Many papers have shown

that using L-BFGS gives better outcomes [10] [43] [36], while Adam is more stable

and less memory intensive when trained with a larger style weight [28], hence we tried

to use L-BFGS and Adam as optimizers for style transfer respectively. Maintaining

(a) Result with L-BFGS (b) Result with Adam

(c) Loss of LBFGS (d) Loss of Adam

Figure 4.6: Comparison of the results and loss for different optimiser

the other parameters as constant (except for iteration times), the results are shown in

Figure 4.6. We can find that using L-BFGS as the optimiser enables the content loss

and style loss of the image to drop quickly, while Adam as a comparison, its style

loss quarter drops very slowly and the generated image does not differ much from the

content image ( as we choose to optimise the content image as the initial image rather

than a white noise image). In order to better check the effect of using Adam, we tried

to keep increasing the iteration times, and the image generated after 5000 iterations

is shown in Figure 4.6(b), compared to the result after 500 iterations using L-BFGS

as the optimiser. This shows that using L-BFGS for 500 iterations provides a better

result than using Adam for 5000 iterations. We have also tried setting a larger learning

rate for Adam to speed up the training, whereas using larger values of the learning rate

can indeed enhance the texture, but tends to over suppress the content. The generated
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images for different learning rates using Adam as the optimizer are shown in Appendix

B.1.

As a very important factor in style transfer, iteration times have an important impact

and too many iterations will greatly reduce the efficiency, therefore, based on the ex-

perimental results, we choose to use L-BFGS as the optimizer for better results and

faster training time.

Meanwhile, there are limitations in our IOB-based results. Although the optical and in-

formational result is acceptable as ”engraving-like”, the results are sometimes blurred-

grey but not finely chiselled engraving lines. One possible reason for this is that in

order to minimise computational power consumption, we chose to pre-process the im-

age to transform it into the size of 512×512, which causes the detailed textures to be

blurred and and lost as the image is compressed, and therefore our stylised image does

not produce finely engraved lines in the details of the texture. Another possible reason

is that we chose to initialize the generated image with the content image instead of the

white noise image in order to make it more coherent, which largely reduces the times

of optimization and therefore the optimisation of detailed textures is not sufficient.

Therefore, we attempted to use high-resolution images for style transfer rather than

compressing image quality to reduce the optimisation process. It should be noted

that generating stylised images with high resolution suffers from training instability,

thus we reduced the times of optimisation to reduce the probability of this occurrence,

and the generated results can be found in Appendix B.2. Based on the results we

can observe that the aforementioned experimental parameters are still valid for high-

resolution image style migration and that the generated textures are more similar to the

finely chiselled engraving lines. However, the speed of the generated results is signifi-

cantly reduced compared to the image with 512 × 512 size.

In our experiments of IOB based style transfer, we experimented with different ini-

tialised images, style and content weights, iteration times, the effect of normalisation

, optimisers and other features on the effect of style transfer that need to be selected

manually, analysing and discussing these results in relation to the relevant features of

the engravings, and from this our IOB based method is able to generate better results.

4.3 MOB Style Transfer

In the MOB-based style transfer, we use the cycleGAN approach since we do not have

paired photographs corresponding to Walter Scott Engravings whereas cycleGAN is
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capable of unpaired image style transfer. We need to prepare two domain datasets,

one is the Google-Landmarks Dataset photograph dataset and the other is the Engrav-

ing dataset, which crops down the content by previous method (without cropping cy-

cleGAN would capture border feature feature and the generated images would carry

straight lines ).

As cycleGAN training consumes extensive time while the parameters and structures

involved cannot be adjusted incrementally based on the results as in the IOB method,

we chose default parameters to train the network, where the learning rate was set to

2e−4(0.0002) and the learning rate was kept constant for the first hundred training

rounds and dynamically adjusted for the second hundred rounds. The generative ad-

versarial network was set to lsgan, which uses Least Square as the loss function.

Figure 4.7 shows some examples of transforming photographs into engravings. We can

see that after 200 training epochs, the generator is able to nicely transform photographs

into engravings, which are very similar to those in terms of colour. Since cycleGAN

Figure 4.7: Results of photographs to engravings

contains two mirror-structured GANs, there is another generator that we can use to

transform the engraving into a photograph, which is generally referred to as image

restoring. We can see that our model does a good job of removing specific textures and

tones from the engravings and restoring the colours of the sky, trees and grass. Some

examples of restoring engravings to photographs are shown in Figure 4.8: The training

loss of the generators, discriminators and cycle consistency from both engravings and

photographs sides are shown in Appendix B.3. Where GE2P represents the generator
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Figure 4.8: Results of engravings to photographs

that transforms engravings into photographs and GP2E is the opposite. DP represents

the discriminator that determines whether an image is photograph and DE represents

the discriminator that determines whether it is an engraving.

From these loss changes, we can observe that the losses of both generators and dis-

criminators sides are continuously changing and fluctuating, which is a game-playing

process, and the fluctuation of their losses is becoming smaller, which means that

their ability to capture features is improving. In addition, we can see that the cycle

consistency losses are converging, which imply that our model is improving for the

interconversion between the two domains, thus we validate the two cycles : photo to

engraving and back to photo (as shown in Appendix B.4), and engraving to photo and

then back to engraving ( Appendix B.5). We can notice form the results that cycleGAN

is able to retain the information well for this cycle process, and the difference between

the transformed image and the original image is very small.

4.4 Comparison, Evaluation and Discussion

Based on the location information contained in the Walter Scott Engravings dataset, we

collected a few photographs that are similar to the content of the engravings for evalu-

ation. We use the collected photographs as our content images and the corresponding

engravings as our style images to generate stylised images based on the IOB approach,
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and we also use the photographs as realistic images to generate engraving style images

through the MOB approach, and we will then explore the advantages and disadvan-

tages of these two different images through qualitative and quantitative analysis.

The generated example is shown in Figure 4.9, where the first column is the realistic

photographs similar to those in the engravings, the 1nd column is the engravings, the

3rd column is the result of the IOB approach and the fourth column is the result of the

MOB approach.

By comparing the results, it is easy to find that the style of the IOB results are more

Figure 4.9: Results of different methods

similar to that of the corresponding engravings with similar content, as they are op-

timised using the corresponding engravings as the style images. Furthermore, as our

IOB method uses the content image as the initial image for optimisation, it retains the
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content better than the MOB method. There are also some problems with the IOB

method, for example the sky of the image in Sample 3 has a serious cluttered textures.

While the MOB method produces more consistent and coherent results, but the con-

tours of the content in the image are blurred and the overall tone is darker than the IOB

method results and the engraving examples.

In order to further analyse the generated results objectively, we use two evaluation

metrics, Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM),

to analyse the generated results quantitatively [21]. PSNR is the ratio of the maximum

signal power to the noise power affecting the signal accuracy, and is also the top of the

arrival noise ratio, which is calculated as follows:

PSNR = 10 · log10

(
2552

MSE

)
(4.1)

Where 255 is the maximum pixel value of the image I. And MSE is calculated as

follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)−K(i, j)]2 (4.2)

where I is the image of size m×n and K is the noise image.

The higher the PSNR value indicates the lower the distortion and the higher the quality

of the image reconstruction [21]. And SSIM measures the luminance, contrast and

structure of the images [52], which is calculated as follows:

SSIM(x,y) =
(2µxµy +C1)(2σxσy +C2)(

µ2
x +µ2

y +C1
)(

σ2
x +σ2

y +C2
) (4.3)

Where µx, µy, σx, σy, σ2
x , σ2

y are the mean, variance and covariance of image x and

image y respectively. C1 and C2 are constants used to avoid the formulation divid-

ing by zero. A Higher SSIM value indicates that the structure of the two images is

more similar. The results are shown in Table 4.2. The data in the table shows that the

PSNR values using the IOB method are lower than that of the MOB method, which

indicates that the IOB generates images with better quality. While the data for sample

3 is the opposite, with IOB having a higher PSNR value than the other IOB methods

and higher than the MOB method, suggesting that the same parameters and structure

in the IOB method cannot generate good results for all engraving style images, and

that means it needs to be adapted for each content image and style image. Whereas the

data from the MOB method shows more stability, indicating that cycleGAN produces

a more uniform image after training. The data in SSIM also shows that using the con-

tent image as the initial image retains the features of the image better compared to the
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Metrics IOB PNSR MOB PNSR IOB SSIM MOB SSIM

Sample1 14.832 17.475 0.569 0.500

Sample2 13.425 16.954 0.536 0.560

Sample3 20.809 14.792 0.667 0.518

Sample4 13.974 17.003 0.542 0.522

Average 15.760 16.556 0.579 0.525

Table 4.2: Evaluation results of samples for IOB and MOB methods generation

dataset IOB MOB

Sample Engravings 151.472 218.711

General Engravings 400.029 350.903

Table 4.3: FID score for different methods

MOB method, however similar to the data in PSNR, the IOB method is also unstable

in terms of image structure, while the MOB method generates images with a slightly

lower SSIM than the IOB method, but the results are very stable.

As the colours of the images generated by the MOB method are somewhat different

from the corresponding engravings, we suspect that one possible reason for this is that

the colour features captured in the cycleGAN is more of a darker tone similar to that

of the generated images, which comes from the entire dataset we used for training.

Therefore, we use Fréchet Inception Distance (FID) for evaluation, which calculates

the distance between the generated samples and the real samples in the feature space,

which is closer to the real human perception [35]. Lower FID means higher quality

and variety of images

FID extracts features through the Inception network [49], which concatenates convo-

lutional kernels with different sizes and pooling layers instead of the manually de-

termined the fixed size of filters in traditional CNNs and let the network learn the

parameters by itself [44]. Then using Gaussian models for modelling the feature space

to calculate the distance between the image features of two sample sets, which is often

used in the evaluation of GAN-generated results, we use the Pytorch-based version

published by Maximilian Seitzer on GitHub [45] to calculate FID. We can find from

the data in the table that the FID for the sample engravings using the IOB method are

lower than that of the MOB method, which means that the images generated by IOB

are closer to the style of the sample engravings. However, we also find that for the en-
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tire engraving dataset, the FID values using the IOB method are greater than the MOB

method, which means that the images generated by the IOB method are only better for

the sample engravings, but are not as close to the characteristics of the entire engraving

dataset as the images generated by the MOB method.



Chapter 5

Conclusion and Future Work

We studied Neural Style Transfer for engravings based on the IOB and MOB ap-

proaches. Based on our experimental results, we found that in the IOB approach,

selecting lower-level CNN layers based on the features of the engravings and opti-

mising with the content image as the initial image can produce a stylised image that

combines the specified style features and retains the content well. For the whole con-

cept of ”engravings”, the CycleGAN method we use in MOB is a good solution that

allows style transfer without paired images, which can find the mapping between real-

istic images and engravings in non-paired images. After training, our model is able to

generate stylised images with overall feature relationships in the engraving dataset in

a very short time.

Through qualitative and quantitative evaluation, we can conclude that for a given con-

tent image and a style image, IOB is more suitable for specifying the style image of

the style image, and more effective if the content image is similar to the overall content

of the style image, however this takes longer time to optimise. In contrast, for the fast

style transfer task, MOB approach is able to generate stylised images quickly, with

image features that are closer to those of the whole dataset rather than specific content

features.

However, our methods have their shortcomings. The quality of the images generated

by the IOB method is unstable and is closely related to the choice of content and style

expression layers, the number of optimization iterations, and the weighting of style

and content, etc. Wrong selections cannot achieve the expected results, although our

experiments have produced good results for more engraving style images, there are

still some problems with generated images, such as over-optimisation of incorrect tex-

tures and lack of texture in some blocks. While in our MOB method, the contours of

39
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the generated images appear distorted, differing from the contours in the engravings,

which are more clearly outlined, and for the architectural image, there are differences

in colour between the generated images and the corresponding architectural images.

For future work, we talk in terms of two methods, the IOB method and the MOB

method. For the IOB method, we can improve it in the direction of semantic segmen-

tation, for example by using specific textures and parameters for different objects to

optimise them, which can lead to more effective results. Furthermore, VGG19 is not

the only option, we can also choose other pre-trained models for style transfer, such as

ResNet [17]. Furthermore, we can also fine-tune the pre-trained model for the engrav-

ing dataset in order to better capture features. For the MOB approach, it can be further

divided into two perspectives: data and model. For the data, due to the small size of the

engraving sets, we only separate those engravings with obvious textural differences,

but as shown in our results, there are still differences in colour and texture for spe-

cific content, hence we can expand our dataset by segmenting the training data more

specifically and doing some data augmentation work. As for the model, CycleGAN

can only transfer between two domains, but not for multiple domains. For the different

styles in our dataset we need to train separately for one or two of the domains, whereas

StarGAN proposed by Choi et al. [5] can achieve transformation between multiple

domains. For our experimental results, the content of the object appears distorted and

smeared, and we can add the SSIM metric used for evaluation to the loss function to

make it optimised for the content of the object. In addition, the cycle consistency loss

used by CycleGAN requires the assumption of a bidirectional mapping between the

two domains, which is usually too strict. Park et al. [40] improved it by maximising

the mutual information between the input image and the corresponding patch in the

target domain based on the idea of contrast learning, which is able to retain the content

information of the image well and improve the speed of training significantly.

The engravings vividly illustrate the work of Walter Scott, which depicts the contra-

dictions and social life of Scotland, England and Europe from the Middle Ages to the

bourgeois revolution. We hope that through our study on style transfer of his works,

we can make Walter Scott more accessible to a wider audience and promote the study

of his work.
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Appendix A

Related Materials

A.1 VGG19

Figure A.1: VGG19 Model Structure
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A.2 Google-Landmarks Dataset

Figure A.2: Photos in Google-Landmarks Dataset



Appendix B

Experiment results

B.1 IOB Results with Adam optimiser

(a) lr = 0.05 (b) lr= 0.2

(c) lr = 0.5 (d) lr = 1

Figure B.1: Results with different learning rate with Adam optimiser
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B.2 IOB high-resolution generation results

Figure B.2: High-resolution IOB results
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B.3 MOB CycleGAN Traing losses

(a) G E2P (b) G P2E

(c) D P (d) D E

(e) Cycle P (f) Cycle E

Figure B.3: Training losses of cycleGAN
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B.4 MOB Cycle consistency results

Figure B.4: Results from photographs to engravings to photographs

Figure B.5: Results from engravings to photographs to engravings
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