
The Evaluation of Unsupervised

Representation Learning

Methods

Rodrigo Morales Flores

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2021

Abstract

We develop a broad task-based benchmark to evaluate unsupervised representation

learning methods. Our benchmark allows a thorough evaluation of a method’s capac-

ity along different tasks categories ranging from high-level semantic classification to

low-level visual features prediction. We enforce a single evaluation pipeline across

the different tasks of the benchmark where we hold fixed the constituent elements,

such as the image distribution (ImageNet [48]), encoder architecture (ResNet-50 [28]),

downstream model (logistic regression), and optimization algorithm (L-BFGS [39]).

In particular, to guide the choice of optimizer, we perform a study to examine the opti-

mization performed by Stochastc Gradient Descent (SGD) [47] compared to L-BFGS

in linear evaluation of representations. In this context, we find that depending on the

degree of linear separability of the data, the solution found by SGD varies: in a more

(linearly) non-separable regime, it can reproduce the results of a robust optimizer (L-

BFGS), whereas in a more (linearly) separable case it performs implicit regularized

optimization. Moreover, this is highly dependent on the values of the initial learning

rate and mini-batch size. Finally, we showcase our benchmark by evaluating thir-

teen state-of-the-art unsupervised representation learning methods revolving around

the contrastive learning framework. Our results suggest three main conclusions: the

use of protoypes (clusters centers) for the contrastive task enhances the representation’s

capacity in high-level semantic tasks, but hinders it in lower-level tasks; the use of a

non-linear projection head in combination with strong data augmentation can improve

the performance in all the tasks categories; while these elements allow to learn repre-

sentations that are robust to noise, they do not appear to improve their data efficiency,

which remains an important area of opportunity for future research.

i

Acknowledgements

I would like to thank my supervisor, Amos Storkey, for introducing me to this topic, for

the guidance throughout the project, and, especially, for providing insight and clarity

when the abundance of potential approaches to inspect the results felt overwhelming.

I would also like to thank Luke Darlow, whose advice was also crucial for the comple-

tion of the project. In particular, the foundational idea behind the project and a draft of

the benchmark’s broad structure was fully theirs.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Rodrigo Morales Flores)

iii

Table of Contents

1 Introduction 1

2 Background and related work 3
2.1 Optimization in Machine Learning 3

2.2 Unsupervised representation learning 5

2.2.1 Current approaches . 6

2.2.2 Evaluation of unsupervised representation learning 9

3 SGD optimization for linear evaluation 10
3.1 Experimental setup . 10

3.2 Solutions comparison. 13

3.3 SGD optimizes in the linearly non-separable case 14

3.4 SGD regularizes in the linearly separable case 15

3.5 Conclusions . 17

4 Representation learning benchmark 19
4.1 Design principles . 19

4.2 Tasks categories . 20

4.3 Representations . 22

4.4 Evaluation protocol . 23

4.5 Outcome . 24

5 Evaluation results 25
5.1 Methods evaluated . 25

5.2 Informative and correlated tasks . 27

5.3 Representations performance . 30

5.3.1 Baselines . 31

5.3.2 Instance contrast vs protoype contrast 32

iv

5.3.3 Projection heads and augmentation schemes 34

5.3.4 Scarcity and robustness . 34

5.4 Conclusions . 37

6 Discussion 39

Bibliography 41

A Additional results from the optimization study 48
A.1 Similarity metrics to compare optimizers’ solutions 48

A.2 SGD and implicit regularization in the non-linearly separable case . . 51

A.3 SGD without learning rate schedule in the linearly separable case . . . 52

B Implementation details and class distribution of tasks 56
B.1 Tasks details . 56

B.2 Class distributions . 58

C Evaluation results at the task level 62

v

Chapter 1

Introduction

Representation learning is concerned with finding a representation of the data which

is useful to solve a task of interest. Deep learning has achieved outstanding results

in this domain by automatically learning hierarchical representations from the data

that allow to solve complex perceptual tasks [5]. Until recently, most of this success

for visual representation learning has occurred in the supervised domain, where labels

providing the target values for the task of interest are known and can be used by the

method to learn a representation. However, in many settings the acquisition of large

amounts of labelled data may prove costly or even unfeasible. Motivated by this issue,

the development of methods for learning visual representations without access to such

labels has received increased attention [32].

A crucial missing component to foster progress in this field is an adequate bench-

mark to evaluate the representations learned by the methods. The main difficulty in

the development of such benchmark is the choice of evaluation task. While in the su-

pervised domain the objective task (associated with the given labels) is clear, this is

not the case in the unsupervised setting where learning more general-purpose features

is desirable. Previous work ([22], [33], [2], [60], [17]) have borrowed common eval-

uation tasks from the supervised domain for evaluating unsupervised methods. While

this line of work has proved useful to track progress in this particular kind of tasks, we

argue that a more comprehensive tasks set specifically designed to evaluate the content

of diverse features in the representations is necessary to encompass the full objective

of unsupervised representation learning. The main contribution of this work is the

development of this type of benchmark.

We develop a representation learning benchmark with 29 tasks grouped into 7 dif-

ferent categories. Its distinctive feature is the broadness of tasks, specifically designed

1

Chapter 1. Introduction 2

to assess the presence of diverse features in the representation learned by a method. In

particular, we do not only consider the commonly used semantic classification tasks,

but also robustness, data efficiency, lower-level visual tasks and tasks with random tar-

get labels. These allow to have a more comprehensive evaluation of a representation’s

capacity.

Additionally, we enforce a single linear evaluation protocol for all the tasks in the

benchmark which addresses common inconsistencies in the evaluation performed by

different methods. In particular, we hold fixed constituent elements that can affect the

results of the evaluation, like the image distribution [17], encoder architecture [33],

[22], and optimizer. The optimization algorithm used in linear evaluation is an under-

studied design choice. To address this, we perform an optimization study of Stochastic

Gradient Descent (SGD) [47] for linear evaluation of representations. Our results in-

dicate that the convergence properties of SGD depend crucially on the degree of linear

separability of the data and the hyperparameters values. In particular, for linearly non-

separable data and specific values of the initial learning rate and mini-batch size, SGD

can reproduce the solution of L-BFGS, a quasi-Newton algorithm with strong conver-

gence guarantees in convex problems [39]; however, when the data is highly linearly

separable, for some hyperparameter values, SGD performs implicit regularization.

Finally, we showcase our benchmark by evaluating thirteen state-of-the art meth-

ods for unsupervised representation learning revolving around the contrastive learning

framework. Our results suggest that contrasting protoypes (cluster centers) and in-

stances can enhance the performance of the representations in high-level tasks, but

hinders it in low-level ones. This is not the case for the use of a non-linear projection

head and strong data augmentation which can improve the performance in all tasks

categories. Finally, we note that while these enhancements have allowed unsupervised

methods to learn representations which are robust to noise in the visual data, there is

an important room for improvement in terms of data efficiency. Our hope is that our

work enables further experimentation in these topics to foster the progress of the field.

The thesis is structured as follows: Chapter 2 provides the technical background

for the rest of the chapters and reviews related work, Chapter 3, describes the opti-

mization study of SGD for linear evaluation of representations, Chapter 4 explains the

design of the benchmark we developed, Chapter 5 presents the results of evaluating

the state-of-the-art unsupervised representation learning methods with our benchmark,

and Chapter 6 concludes.

Chapter 2

Background and related work

In this chapter we provide the technical background for the rest of the thesis. In partic-

ular, we provide an overview of the optimization algorithms used for the experiments

of Chapter 3; we review the fundamental elements of some state-of-the-art unsuper-

vised representation learning methods, with special emphasis on the ones evaluated in

Chapter 5; finally, we outline the previous efforts done to evaluate representations, and

the difficulties which our benchmark, described in Chapter 4, addresses.

2.1 Optimization in Machine Learning

Optimization plays a central role in Machine Learning. Numerous learning problems

can be formulated as optimization problems. More formally, given a training dataset

D = {xi,yi}N
i=1 consisting of N training examples composed of an input vector xi and

a target value yi, the goal of a machine learning algorithm is to leverage D to find a

predictive function hθ, parametrised by θ, which can effectively predict a target value,

y∗, given a test input, x∗, not contained in D .

A common approach to find effective parameters for this task is to define a loss

function `(ŷ,y) which measures the loss incurred by predicting ŷ = hθ(x) for an input

x when its target value is y. Then, to find adequate parameters θ one can minimise this

loss averaged over all the training examples. This is, one can minimise the function:

J(θ) = 1
N ∑

N
i=1 `(hθ(xi),yi) = ∑

N
i=1 `i, with respect to θ.

Gradient-based algorithms [7] are a common choice to solve such optimization

problem, provided that ` is chosen to be differentiable. These methods iteratively

update the parameters in a direction that reduces the value of J(θ) using the slope

information provided by the gradient.

3

Chapter 2. Background and related work 4

One way to categorise gradient-based method is according to the order of the

derivatives used to perform the parameters update [54]. First-order methods utilize ex-

clusively information of the first derivatives, while higher-order methods also involve

the use of higher-order derivatives. Higher-order methods are typically second-order

methods utilizing the Hessian matrix of second derivatives (e.g. Newton’s method) or

an approximation of it (e.g. quasi-Newton methods like the BFGS algorithm [8], [18],

[20], [49]). A different way of categorizing gradient-based methods is according to

the amount of data used to compute the update. Batch methods utilize the full training

dataset to compute the gradient of the objective function with respect to the parame-

ters, whereas stochastic methods use only a sub-sample of the data to approximate the

gradient, and use this approximation to update the parameters.

In this work, we focus on Stochastic Gradient Descent (SGD) [47], a stochastic,

first-order method, which is the cornerstone of optimization in deep learning [7], [54].

SGD approximates the gradient ∆J
θ
(θ) using only the gradient of the loss on a (ran-

dom) example ∆
`i
θ
(θ). Using this direction to update the parameters, on expectation,

decreases the value of the objective function J(θ). In this way, SGD can update the

parameters without the need to make a full pass on the training set. Crucially, this

property allows SGD to scale to large datsets, which is one of the main reasons of its

widespread use in deep learning [7]. However, using only one sample to approximate

the gradient can induce a large variance in the direction of the updates [54]. In practice,

it is more common to use a batch (also called mini-batch) of B examples for the ap-

proximation. In the limit where B = N, mini-batch SGD becomes (full-batch) Gradient

Descent (GD).

SGD, and first-order methods in general, do not leverage information of the cur-

vature of the loss surface; this omission can lead to ineffective search directions [7].

Moreover, their updates are not scale invariant which means that scaling all the pa-

rameters by a constant factor will scale the size of the update [7]. The learning rate

effectively re-scales the steps to an adequate size making it a critical parameter for

the convergence of the algorithm. In particular, an adequate schedule for its trajectory

along the optimization process is crucial for convergence [54].

L-BFGS [39] is a method which approximates the Hessian matrix (a so-called

quasi-Newton method) by using the values of the gradients and parameters from past

iterations. The approximations of the Hessian often result in dense matrices which im-

pose a large storage overhead limiting the scale of the methods. This issue is addressed

by L-BFGS with a limited memory scheme that avoids the computation and storage of

Chapter 2. Background and related work 5

explicit matrices sequences, but only requires the recent history of gradients and pa-

rameters values. In convex problems, it offers strong convergence guarantees [39] [7].

This obervation is crucial for the experimental design of Chapter 3. L-BFGS is a batch

method and thus does not scale well to very large datasets, although some stochastic

variants have been recently proposed [42], [6].

A distinctive feature of learning problems is that the ultimate objective is not to

minimise J(θ), but rather to correctly predict the target value of unseen inputs not

contained in the training set. In some instances, the parameters minimising J(θ) can

lead to poor predictive performance on data not contained in the training set (a problem

known as overfitting). Thus, the lower convergence guarantees of SGD compared

to higher-order methods may not necessarily be a disadvantage in machine learning

problems. In fact, previous work has observed implicit regularization performed by

SGD in certain settings [50], [4], [51] [31] [26]. The most relevant for our purpose

is the theoretical work from [53], which finds that in the logistic regression problem

without a bias vector and with linearly separable data, for a small enough learning rate,

(full-batch) GD provides an implicit regularization equivalent to L2 weight decay. Our

empirical work from Chapter 3 extends this result to SGD and a non-homogeneous

problem (with a bias vector) in the context of linear evaluation of representations.

2.2 Unsupervised representation learning

Representation learning is concerned with finding features in the data that are useful to

solve some arbitrary learning task. In a supervised context, the task to solve is given by

the target values, yi. However, in an unsupervised setting we assume that such target

values are not accessible for the method to learn a representation.

We can describe an (unsupervised) visual representation learning task by assuming

that we are given a dataset of inputs images D = {Xi}N
i=1. The goal is to learn a

mapping, φ, (typically a convolutional network [37]) from the input images into feature

vectors, zi = φ(Xi), that allow to predict arbitrary target values yt associated with a task

t. It is important to stress that this target values are unknown to the method and cannot

be used to learn the mapping φ. Thus, a desirable property of unsupervised methods is

that they learn representations which are useful for a variety of tasks.

Chapter 2. Background and related work 6

2.2.1 Current approaches

Pretext tasks. A recent literature called self-supervised learning has attracted in-

creasing attention due to its capacity to learn useful high-level features from visual

data without labels [32]. These methods construct surrogate tasks (often called pretext

tasks) for which labels can be automatically derived from the input images. Then, they

train a convolutional network to solve this pretext task. For instance, [43] learns rep-

resentations by solving Jigsaw puzzles. [19] consists in rotating images by a random

factor of 90 degrees and then training a network to predict this factor. The pretext task

must be designed in a way that the features learned in the process prove useful to solve

a downstream task of interest (e.g. image classification); this often requires domain

knowledge. For a comprehensive survey of this literature see [32].

Clustering. Another approach consists in the iterative application of two steps: a

clustering step in which the representations encoded by φ are clustered and a learning

step in which the network parameters are updated to predict the cluster assignments

from the clustering step. This is precisely the approach followed by DeepCluster-V1

[10], which uses a standard clustering algorithm (K-means) and then updates the pa-

rameters of the network using a cross-entropy loss on the cluster assignments. A more

principled method called the SeLA algorithm [2] integrates the two steps (clustering

and learning) into a single framework in which both steps contribute to minimise a

single loss function. This is, they learn both the network parameters and the labels

assignment from the same loss signal. The labels assignment (clustering) is done with

the Sinkhorn-Knopp algorithm [15].

Contrastive learning. Most of the recent methods for unsupervised representation

learning revolve around the contrastive learning framework. It can be seen as a contin-

uation of the pretext tasks literature where the task to solve is an instance discrimina-

tion task [58]. This task consist in training a network to discriminate between instances

(examples in the dataset). To achieve this in a tractable way, the task is formulated as

Noise Contrastive Estimation (NCE) [24]. The methods must generate different views

of the images, and then train a network to distinguish among pairs of views taken from

the same image (positive pairs) and pairs taken from distinct images (negative pairs).

The representation learned by this network is then used to solve a downstream task of

interest.

For training the network, the methods use a contrastive loss [25]. A common choice

Chapter 2. Background and related work 7

is the InfoNCE loss [44] which for a positive pair of encoded views, (vi,v j), is given

by:

`i, j =− log(
exp(sim(vi,v j))/τ

∑k 6=i exp(sim(vi,vk))/τ
) (2.1)

Where i, j is a positive pair, vk is the encoded vector of view k, τ is the temperature

hyperparameter, and sim(vi,vk) is the cosine similarity between vi and vk, given by:

sim(vi,vk) =
vi·vk

||vi||2||vk||2 .

The minimisation of this loss encourages representation vectors of positive pairs to

be close to each other when projected into a high-dimensional unit sphere and those of

negative pairs to be far apart from each other.

Although most contrastive learning methods share this general framework, they are

differences in some of their constituent elements. In particular, we highlight two:

1. Projection head. Representation vectors from the views, zi, are projected by a

head, h, into a lower-dimensional space to compute the contrastive loss. This is,

vi = h(zi). Some contrastive methods, like InstaDis [58], MoCo-V1 [27], and

PIRL [41], use a linear projection head (a fully-connected layer). More recent

methods, like InfoMin [56], SimCLR-V1 [12], and MoCo-V2 [14], use a non-

linear one: a multi-layer perceptron (MLP) with 1 hidden layer. In Table 5.1 we

specify the projection head used by the different methods evaluated in Chapter 5.

2. Image augmentations. To produce the views for the contrastive task, the meth-

ods rely on a set of image augmentations , T . There are different choices of

transformation groups ,T , in the literature, but most share some common ele-

ments. For instance, most methods use random cropping and colour distortions.

We distinguish between two broad augmentation schemes: one that we refer to

as “Strong” which follows the one proposed by the SimCLR-V1 method and is

used by many others (e.g. BYOL [23], MoCo-V2 [14], SimCLR-V2 [14]); it

includes Gaussian blur in T along with stronger parameters for the other trans-

formations (e.g. stronger colour distortions); the second one, which we term

“Weak”, is the one followed by methods like MoCo-V1 [27] and InsDis [58]

which use weaker transformation parameters and do not include blurring. In

Table 5.1 we categorise into these schemes the augmentations followed by the

methods evaluated in Chapter 5.

Chapter 2. Background and related work 8

There are more elements in which methods may differ (e.g. the use of a momentum

encoder [27] or a memory bank [58]) but in this work we only focus on the ones

outlined above, since previous work has found them to be determinant for performance

[12], [14], [45] [56]. In Section 5.3.3 we show that our results strongly support this

claim.

Combining contrastive learning and clustering. Recent work has shown strong

performance on semantic classification tasks by combining the contrastive learning

and clustering frameworks. The motivation for this approach is that the contrastive

loss from Equation 2.1 encourages the separation of views from different instances

irrespective of their semantic similarity [38]. However, if the contrastive task is done

between instances and protoypes of groups of instances (i.e. clusters centers), rather

than between individual instances, the methods may learn more general features shared

by similar instances clustered together.

PCL-V1 and PCL-V2 [38] leverage this idea by enhancing the contrastive frame-

work from MoCo [27] with a simple algorithm (K-means) for clustering the repre-

sentations. However, unlike DeepCluster-V1, for the learning step, the task is not to

predict the cluster assignments, but a contrastive task defined by the ProtoNCE loss

[38], which is composed of two terms: the InfoNCE loss to contrast between encoded

instance views (Equation 2.1) and a very similar term which contrast between encoded

instance views and cluster centers. In this way, the loss not only encourages the rep-

resentation of views from the same images to be similar between them, but also to the

protoype from their cluster. The only difference between PCL-V1 and PCL-V2 is that

the enhanced version (V2) follows SimCLR [12], and uses the Strong augmentation

scheme to generate the views along with a non-linear projection head.

DeepCluster-V2 [11] follows a similar approach but removes altoghether the instance-

level InfoNCE term and performs the contrastive task exclusively between instance

views and clusters centers. SeLA-V2 [11] follows the same approach, but within the

SeLA framework [2] for labels assignment. SwAV [11], uses the SeLA framework but

it keeps the soft-assignments produced by the Sinkhorn-Knopp algorithm instead of

discretizing them into cluster assignments. Additionally, for their learning step they

use a swapped contrastive task where the goal is to predict the soft assignment (called

code) of a view given a different view of the same image.

Chapter 2. Background and related work 9

2.2.2 Evaluation of unsupervised representation learning

A comprehensive benchmark for evaluating unsupervised representation learning meth-

ods remains an open problem. The main difficulty is that it is not clear which is the

correct task or set of tasks to evaluate the methods. The currently most used task is the

ImageNet-1k classification task from ILSVRC 2012 [35]. This has been the task of

choice in studies attempting to benchmark representation learning methods [33], [3],

and of individual methods to showcase their capacity ([12], [27], [11], [38], [23], etc.).

Evaluation on this task is commonly done by following a linear evaluation protocol

[33], [61] where a linear model is trained using as input the frozen representations

learned by the methods.

Some previous studies have extended the evaluation to include other related tasks.

For instance, [22] evaluates methods using 5 common visual tasks (e.g. image clas-

sification, object detection). In the evaluation, they fine-tune the encoder network, φ,

pre-trained by the representation learning method appending to it a specialised archi-

tecture for the task being considered. [17] performs a transfer study where they test

the capacity of a representation learned on a specific image distribution (ImageNet) to

generalise to different distributions and tasks. For some of their tasks, they also append

a specialised architectures to the pre-trained encoder and fine-tune it for the respective

task.

Additionally to the tasks used to benchmark representations, an important question

is the protocol used. In this regard, there is not consensus in the literature. For instance,

some evaluations use a linear protocol, whereas other fine-tune with specialised archi-

tectures. Moreover, even within the linear protocol there are many different design

choices. Some linear evaluations use logistic regression [33], [23] [12], but others use

a linear SVM [22], [38]); some use L-BFGS [33], while most use SGD [12], [27],

[58]). Even within those using SGD, there is a very diverse choice of hyperparameters

settings. For instance, some use a relatively large learning rate (e.g. 30 [27], [55]),

while others use smaller ones (e.g. 1.6 [12], 0.3 [2]).

Our contributions to the evaluation of representations are three: We show empiri-

cally, within the linear protocol, some of the different optimization behaviours of SGD

depending on the linear separability of the data; we develop a broad task-based bench-

mark with a unified evaluation protocol where the variation comes exclusively from

the tasks; using such benchmark, we evaluate some of the methods that have achieved

state-of-the-art performance on the ImageNet-1k classification task.

Chapter 3

SGD optimization for linear evaluation

The most common approach to evaluate unsupervised representation learning methods

consists in using the learned representation as fixed input data to train a linear model

for a given downstream task (e.g. image classification). However, the implications

of the choice of optimization algorithm to fit such linear model has received little

attention. Stochastic Gradient Descent (SGD) [47] has been the most widely used

optimizer for this kind of evaluation. In this Chapter, we show empirically that this

choice has different implications depending on the degree of linear separability of the

evaluation task and the hyperparameters configuration. Specifically, in the context of

linear evaluation of representations, we address the following questions:

1. Can the choice of optimizer and hyperparameters have a significant effect on the

outcome of the evaluation?

2. Can we find some configurations of SGD which are able to reproduce the solu-

tion found by an optimizer with strong convergence guarantees (L-BFGS [39])?

3. In the cases where SGD cannot reproduce such solution, can its solution be

viewed as the solution of a regularized optimization problem?

The answer to these questions provides guidance on when one can expect SGD to

fully optimize the specified loss function and when it should be treated as an implicit

regularizer.

3.1 Experimental setup

Dataset. As mentioned in Section 2.2.2, the ImageNet dataset [48] is the most com-

mon choice to train and evaluate visual representation learning methods. Therefore, we

10

Chapter 3. SGD optimization for linear evaluation 11

use it for our optimization experiments. However, fitting a model with L-BFGS for the

full ImageNet dataset is computationally intractable; thus, we sample a training subset

consisting of 64000 samples. This subset is class-balanced with respect to the image

classification task from ILSVRC 2012 [35] (ImageNet-1k). Specifically, we sample 64

images from each class of this task to construct the training set. We denote this image

dataset as D = {(Xi)}N
i=1, where each Xi is a 224×224 RGB image1. We encode these

images into representation vectors: zi = φ(Xi), where φ : R3×224×224 7→ R2048 is the

ResNet-50 (truncated after the last convolutional block) mapping the i−th RGB image

into a representation vector zi of size 2048. Specifically, we consider the ResNet-

50 pre-trained with the ImageNet-1k classification task. We use this particular en-

coder because it is the supervised baseline used in most unsupervised representation

learning evaluations. We then use the dataset composed of the representation vectors,

D ′
= {zi}N

i=1, as input data for a softmax logistic regression model (also called multi-

nomial logistic regression).

Tasks. We train a separate instance of this model for two different tasks chosen for

the different degrees of linear separability that they impose on the feature vectors. The

first task is the ImageNet-1k classification task. When labelled with the classes from

this task, The representation vectors from distinct classes can be separated very well

by linear decision boundaries. This is revealed by the train accuracy obtained by the

logistic model fitted with L-BFGS (shown in Table 3.1). We refer to this as the linearly

separable task. We construct a second task from the image data, D , which consists

in predicting the image region (among 5 disjoint patches) with the highest luminosity

value (See section 4.2 for details). Applying this class labels to the corresponding

feature vectors from D ′
induces a low degree of linear separability among the different

classes, as revealed by the low accuracy in the training set (Table 3.1). Thus, we refer

to this as the linearly non-separable task.

Loss function For each task, t, with Ct classes, we denote the (one-hot encoded)

target vector of example i from class k as yt
i. Then, the the cross-entropy loss for this

example is given by: `i =−yi,k log(So f tmaxi,k), where yi,k = 1 is the k−th element of

yt
i, So f tmaxi,k is the k−th element of the softmax output: So f tmax(Wzi +b). W is a

Ct×2048 weights matrix and b is a bias vector of size Ct . These are the parameters to

be learned, which is done by minimising the loss function averaged over all the training

1We center crop the original images to a 224×224 size

Chapter 3. SGD optimization for linear evaluation 12

Task Train Accuracy

Image classification 99.97%

Brightest Region 44.26%

Table 3.1: Accuracy in the training set obtained by the logistic model fitted with

L-BFGS. The classes from the Image classification tasks are well separated by lin-

ear decision boundaries. This is not the case for the task consisting in predicting the

brightest region of the image.

examples:

J(W,b) =− 1
N

N

∑
i=1

Ct

∑
c=1

yi,c log(So f tmaxi,c) (3.1)

This loss function turns out to be convex. In the linearly non-separable case, there is

a unique minimum yielding a finite minimum value. In the perfectly linearly separable

case, the objective function has an infimum at zero which is not attainable by finite

parameter values [53]. The brightness prediction task corresponds to the former case,

whereas image classification is closer to the latter.

Optimization settings. For each task, we train separate logistic regression models.

One by minimising Equation 3.1 with the L-BFGS [39] algorithm and others by doing

the minimisation with different hyperparameters configurations of SGD [47]. As noted

in Section 2.1, L-BFGS provides strong convergence guarantees for convex problems;

hence, it will serve as the optimization baseline to compare with SGD.

For L-BFGS, we setup the algorithm with the default settings recommended by the

implementation used2. We allow the algorithm to run for a maximum of 5000 iterations

to ensure convergence. In practice, this restriction was largely non-binding as in every

case convergence was achieved in a much smaller number of iterations (195 for the

linearly separable case and 267 for the non-separable one).

For SGD, we use the simplest version (described in Section 2.1) without momen-

tum and train the model for 5000 epochs. The only enhancement to the SGD algorithm

that we apply is a multi-step schedule for the learning rate, since theoretical analysis

2For L-BFGS, we used the implementation from scikit-learn. For SGD, We implemented the logistic
regression model as a single-linear layer network with cross-entropy loss in PyTorch.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://pytorch.org/

Chapter 3. SGD optimization for linear evaluation 13

has shown that it is crucial for the convergence of the algorithm [54] [7]. For schedul-

ing, we set three milestones at the 1500-th (30% of training), 3000-th (60% of training),

and 4000-th epochs(80% of training). At each milestone, the learning rate is decayed

by a factor of 0.1. In this case, there are two hyperparameters to tune: the initial learn-

ing rate and the mini-batch size. Different linear evaluations of representations using

SGD for the ImageNet-1k task have used a very wide range of optimal initial learning

rates and mini-batch sizes obtained by a grid-search (see Section 2.2.2). Therefore, it

is difficult to know in advance on which range sensible values for these hyperparam-

eters are. Then, we test various values covering a wide range. For the initial learning

rate, we consider the values: 0.01, 0.1, 1, 10, 100, 1000 and for the batch-size: 6400,

12800, 19200, 25600, 32000, 64000. We use larger batch-sizes (e.g. 64000) than those

reported by previous work, since we are also interested in the behaviour of the algo-

rithm in the limit of full-batch GD to assess if removing the stochastic element (see

Section 2.1) will enhance the convergence of the algorithm.

3.2 Solutions comparison.

Assessing whether both optimizers find the same solution is not straightforward. A

direct element-wise comparison of the parameters values learned by the two optimiz-

ers is not meaningful, since we are not interested in having identical parameters, but

equivalent models; this is, models which make the same probabilistic predictions. In

particular, the probabilities predicted by the logistic model are scale-invariant in the

parameters: if we scale all the parameters values by a constant factor K, then the pre-

dictions remain identical. A direct comparison of the training loss from Equation 3.1

can also be misleading, especially in the more linearly separable case, since there could

be different solutions with a very small training loss. Moreover, we are especially in-

terested in the generalisation performance of the models, this is, how they predict for

data outside the training set.

A good measure to indicate whether the models are equivalent in terms of their

probabilistic predictions is the test loss. This is, the loss from Equation 3.1, but aver-

aged across the test set rather than the training set. This metric takes into consideration

the probabilistic predictions of the models in unseen data which is our main interest.

Moreover, the difference between this loss computed with two different parameters sets

(one trained with SGD and on with L-BFGS) can be interpreted as the average log odds

ratio of the two models probability prediction for the correct classes. Specifically, if

Chapter 3. SGD optimization for linear evaluation 14

we consider the parameters learned with SGD, (Wsgd,bsgd), and the ones learned with

L-BFGS, (Wlb f gs,blb f gs), then the difference in the test loss is given by:

Jtest(Wsgd,bsgd)− Jtest(Wlb f gs,blb f gs) =−
1

Ntest

Ntest

∑
i=1

Ct

∑
c=1

yi,c log(
So f tmaxsgd

i,c

So f tmaxlb f gs
i,c

) (3.2)

Thus, it is clear that if the models make the same probabilistic prediction on every

test example, the difference will be zero. However, even small differences are signif-

icant, for instance a difference of 0.1 implies an average odds ratio of 1.1, this is, the

probability assigned by the SGD-fitted model to the correct class is on average 10%

larger than the one assigned by the L-BFGS-fitted model.

We must note however, that this constitutes only an approximation of our metric

of interest, since we are interested in assessing whether the two models will make the

same probabilistic prediction for any possible input, but our test set is finite. Addition-

ally, the difference from Equation 3.2 only compares the probabilistic prediction of the

two models for the correct class of each example. We address these concerns by con-

sidering a class-balanced (see Appendix B) and relatively large (50000 examples) test

set for each task coming from the ImageNet validation set which we held out from the

training sampling. Additionally, in Appendix A.1 we consider alternative similarity

measures which support our main conclusion.

3.3 SGD optimizes in the linearly non-separable case

The first question we address is whether we can found some hyperparameters configu-

ration for which SGD can converge to the same solution as L-BFGS in the two settings

we consider regarding linear separability. For this, we focus the analysis on the case

with the multi-step schedule for the learning rate, but the results without schedule are

similar and reported in Appendix A.3.

As shown in Figure 3.1, SGD cannot reproduce the L-BFGS solution in the linearly

separable case with any of the tested hyperparameter configurations. In all cases, the

magnitude of the difference is above 6.5, indicating an average odd ratio of more than

665. For the non-linearly separable task, with a learning rate of 0.1 and a mini-batch of

6400, SGD arrives at the same solution as L-BFGS as revealed by a small difference

in test losses (below 0.01 indicating an average odds ratio very close to 1). In both

cases when the learning rate is large (100, 1000), for all the mini-batch sizes, we

Chapter 3. SGD optimization for linear evaluation 15

observe large differences in test loss. In the non-linearly separable case, for all learning

rates, the smallest mini-batch size (6400) is the one with the lowest difference, and in

particular lower than 64000 corresponding to full-batch GD. Thus, in this case the

stochasticity of SGD does not hinder its convergence.

64
00

12
80

0

19
20

0

25
60

0

32
00

0

64
00

0

Mini-batch Size

0.01

0.1

1.0

10.0

100.0

1000.0

In
iti

al
 le

ar
ni

ng
 ra

te

-8.11 -8.1 -8.08 -8.05 -7.97 -7.69

-7.87 -7.97 -8.01 -8.04 -8.07 -8.11

-7.48 -7.6 -7.65 -7.7 -7.76 -7.87

-6.64 -6.76 -6.81 -7.27 -7.34 -7.47

15 10 15 10 14 14

240 188 236 190 229 227

Linearly separable case

10

5

0

5

10

64
00

12
80

0

19
20

0

25
60

0

32
00

0

64
00

0

Mini-batch Size

0.01

0.1

1

10

100

1000

In
iti

al
 le

ar
ni

ng
 ra

te

0.03 0.15 0.29 0.48 0.93 2.09

0.0 0.01 0.02 0.02 0.01 0.03

0.01 0.03 0.11 0.2 0.32 0.43

0.01 0.09 0.85 2.57 5.33 8.08

0.17 0.65 12 34 61 92

9.37 12 140 348 643 942

Linearly non-separable case

10

5

0

5

10

Figure 3.1: Difference between the L-BFGS and SGD test loss for various hyper-

parameters configurations. Each value* is the difference: Jsgd−Jlb f gs where the loss

is averaged over the test set (See Equation 3.2). In the linearly separable case, SGD

cannot reproduce the solution from L-BFGS for any of the configurations tested. With

an initial learning rate of 0.1 and a mini-batch size of 6400, SGD reproduces the solu-

tion of L-BFGS in the linearly non-separable case.

* Values were rounded to three significant figures

Alternative similarity metrics support our main conclusion (As shown in Appendix A.1).

3.4 SGD regularizes in the linearly separable case

Figure 3.1 shows that, in the linearly separable case, for initial learning rates below

100, the test losses from SGD are consistently lower than the one of L-BFGS. This sug-

gests that SGD yields a model with better generalization performance. We now inves-

tigate whether this implicit regularization done by SGD is consistent with other forms

of explicit regularization on the linearly separable task (the linearly non-separable case

is treated in Appendix A.2).

Chapter 3. SGD optimization for linear evaluation 16

Weight decay. We consider a common form of regularization referred to as weight

decay [36]. Specifically, we consider a modified loss function that penalises the squared

L2 norm (also called Frobenius norm) of the weight matrix, W . In the specific imple-

mentation we use, the new objective of L-BFGS is to minimise the following loss:

Ĵ(W,b;λ) =
1
2
||W ||22−λJ(W,b) (3.3)

Where J(W,b) is the loss from Equation 3.1, ||W ||2 is the L2-norm of the weights

matrix and λ is a coefficient that regulates the relative importance of the loss and the

norm terms. Note that a higher value of λ implies a lower relative importance of the

penalty term, and, hence, a weaker regularization. For this, we also test a wide range

of values of λ (0.001, 0.01, 0.1, 1, 10, 100).

To assess the degree to which SGD emulates the solution of this regularized prob-

lem, we optimize the regularized loss with L-BFGS and compare the solution with the

unregularized results from SGD with the same settings described in Section 3.1. Here

we focus on SGD with a learning rate schedule but the results without schedule are

similar and can be seen in Appendix A.3.

In Figure 3.2, we compare the test loss from SGD (without regularization) with the

one of L-BFGS with different values of λ. An important precision is that this test loss

is computed with the unregularized loss function of Equation 3.1 averaged over the test

set, since we are exclusively interested in comparing the models probabilistic predic-

tions for which the weights magnitude and, hence, the norm term from Equation 3.3 is

irrelevant.

For reference, the test loss obtained by L-BFGS without regularization is 9.18, and

the losses with initial learning rates of 100 and 1000 are, for every mini-batch size,

above 19, so we focus the analysis on the smaller ones (0.01, 0.1, 1, 10). We note that

indeed for those initial learning rates and some mini-batch size, there is a value of λ for

which the test losses match (difference of less than 0.01). There does not appear to be

a direct correspondance between the different values of λ and either the initial learning

rate or the mini-batch size. Thus, it appears that both of the SGD hyperparameters

modulate the implicit regularization in a non-trivial way.

Early stopping. We perform a similar comparison to another form of regularization

called early stopping [26]. For this, we restricted the iterations performed by L-BFGS

in the minimisation of Equation 3.1 to a fraction of the iterations it took to converge

Chapter 3. SGD optimization for linear evaluation 17

(when the limit of 5000 iterations was non-binding). Specifically, we consider 1%,

3%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 80% and 90% of the required iterations.

We then compare the test loss of L-BFGS at these milestones with the final solution

(after the 5000 epochs) of SGD. Under specific hyperparameters values (initial learning

rate of 0.01 and batch size of 25600) SGD arrives at the same solution than a very

early (3%) stage of L-BFGS. Thus, for some hyperparameters regimes, the implicit

regularization of SGD resembles L2 weight decay and for others, an early milestone

of L-BFGS.

3.5 Conclusions

In the context of linear evaluation of representations, we find that in a linearly non-

separable problem, for a specific initial learning rate (0.1) and mini-batch size (6400),

SGD with a multi-step schedule for the learning rate can match the solution obtained

by a robust optimizer (L-BFGS). This is not the case in a highly linearly separable

problem, where the solution found by SGD is more akin to a regularized solution. The

implicit regularization from SGD leads to solutions equivalent to explicit L2 weight

decay with some hyperparameters values and to early stopping of L-BFGS with others.

Our results show that the choice of optimizer for linear evaluation of representa-

tions can have relevant implications, since depending on the degree of linear separabil-

ity and the hyperparameters values SGD can learn distinct models. Additionally, the

implicit regularization which SGD can induce may be confounded with the capacity of

the representation to enhance the generalisation performance. We leave for future work

extending these experiments for the full ImageNet dataset. However, as the dataset in-

creases we would expect that the linear separability of the problem decreases; thus,

SGD could be better-suited as an unregularized optimizer for large scale problems. A

difficulty for verifying this is to find a good optimization baseline, since it is intractable

to naively scale L-BFGS for a dataset of that size. Promising approaches for this are

the recently-proposed stochastic versions of L-BFGS [42], [6].

Chapter 3. SGD optimization for linear evaluation 18

6400 12800 19200 25600 32000 64000
Mini-batch size

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Te
st

 L
os

s

= 0.001

= 0.01

= 0.1

= 1

= 10

= 100

L-BFGS at 3% of training
L-BFGS at 5% of training

L-BFGS at 10% of training

Initial learning rate
0.01
0.1
1
10

Figure 3.2: Comparison of the (unregularized) loss in the test set between SGD

and regularized solutions of L-BFGS for the linearly separable case. For regular-

izing the objective loss of L-BFGS we use L2 weight decay with different values of λ.

A lower value of λ implies stronger norm penalty. We also consider early stopping of

L-BFGS at different milestones of training *. All the values are computed with the unreg-

ularized loss (Equation 3.1) on the test set **. For some hyperparameters values, SGD,

without explicit regularization, finds solutions which are very similar to the regularized

solutions of L-BFGS.

* For clarity in the chart, we ommit the case λ = 0.0001, a very early milestone (1%)

and later ones (20% and above) since these configurations have a test loss above 3.

** For reference the test loss obtained with L-BFGS without regularization is 9.18.

Chapter 4

Representation learning benchmark

In this chapter, we describe the design of our proposed benchmark to evaluate repre-

sentation learning methods. We outline the principles that guided the design choices,

the tasks categories included, and the evaluation protocol followed. Finally, we ex-

plain how all the elements are integrated into an evaluation pipeline that can be used

to evaluate any representation learning method.

4.1 Design principles

The core principle for our benchmark is that a good representation should encode use-

ful features to solve a wide variety of tasks. This is specially relevant in an unsuper-

vised context where the labels associated with the tasks of interest are unknown to

the method. Thus, the objective is to learn general-purpose representations that are

well-suited for a variety of tasks. Following this principle, broadness of tasks is the

distinctive property of our benchmark.

Additionally, we design tasks that are complementary to each other, this is, that al-

low to evaluate distinct aspects of a representation’s capacity. For instance, some tasks

should require that the representation encodes high-level visual features, while others

should require lower-level features; we also consider tasks that test the flexibility of

the representation to enable the prediction of arbitrary (random) targets, its robustness

to noise in the visual data, and its data efficiency.

Finally, we enforce a single evaluation protocol for the different tasks, thus holding

constant the core elements, like the encoder, optimizer, image distribution, and down-

stream model. In this way, all the variability in the benchmark comes from the tasks

themselves characterised by their sets of target labels. We design the full evaluation

19

Chapter 4. Representation learning benchmark 20

pipeline in a way that any method learning a representation from visual data can be

evaluated with our benchmark. None of the design choices were made for a particular

method or even group of methods.

4.2 Tasks categories

The benchmark consist of 29 different tasks grouped into 7 categories. All tasks are

formulated as classification tasks in order to use a single evaluation protocol (see Sec-

tion 4.4). For generating these tasks, we used a fixed training set of images sam-

pled from ImageNet [48]. Specifically, we sample 64000 training examples, where 64

examples were taken from each class of the ILSVRC 2012 image classification task

(ImageNet-1k) [35]. We do not consider a larger subset due to computational con-

straints which are further described in Section 4.4. We then leverage these sampled

images to create a variety of tasks to evaluate the representations learned by the differ-

ent methods. Specifically, we consider the following tasks categories:

1. Semantic tasks. These are image classification tasks with semantic class la-

bels. In this category we include the ImageNet-1k classification task, which

is the most commonly used in the literature to evaluate representation learning

methods (see Section 2.2.2). In this work, we refer to it as the fine-grained clas-

sification task. Additionally, we leverage the hierarchical structure of the Word-

Net database [40] to perform relabellings of the synsets from the original 1000

classes. Using hyponymy relations, we create a coarse-grained classification task

with superclasses of the classes from the fine-grained classification task. With

meronymy relations, we also create a parts classification task consisting in clas-

sifying whether the object of a given image has a certain part. To successfully

discriminate between these semantic classes, the representation should encode

relevant high-level features with various levels of granularity.

2. Colour tasks. These are 3-way classification tasks consisting in identifying the

dominant colour (red, green, or blue). We consider a task at the image level

(identifying the dominant colour of the image) and local tasks consisting in iden-

tifying the dominant colour at particular pixel locations (e.g. the central pixel, a

corner pixel, a random pixel). These tasks require the representation to encode

colour information.

Chapter 4. Representation learning benchmark 21

3. Luminosity tasks. These tasks consist in detecting luminosity as measured by

the perceived luminosity equation [46]: L = 0.299R+0.587G+0.114B, where

R,G,B are the pixel values at the red, green, and blue channels respectively. Here

we also consider a task at the image level consisting in predicting the brightest

region of the image among five equally-sized, disjoint crops (central and corners)

(this is the linearly non-separable task from Chapter 3). We also consider tasks

at the pixel level consisting in predicting the (integer) luminosity value of a pixel

at a specific location (e.g. central, corner, random). These tasks test the degree

to which the luminosity values are preserved in the representation learned by a

given method.

4. Low-level visual features tasks. For this tasks, we rely on the detection of low-

level visual features (edges and corners). To generate them, we take five equally-

sized, disjoint regions of the image (centre and corners) and use conventional

computer vision algorithms to detect the presence of low-level features in them

(we use the Canny algorithm [9] for edge detection and the FAST algorithm [57]

for corner detection). The classification tasks are then based on predicting the

presence of these features in the distinct image patches. These tasks could be

considered an intermediate point between the image statistics tasks (colour and

luminosity categories) and the high-level semantic tasks.

5. Random Neural Networks tasks. To generate the targets for these tasks we use

Multilayer perceptrons (MLP) (with one hidden layer and Batch Normalization

[30]) with random weights. Specifically, the class label of a given example image

flattened into a vector xi is given by:

argmaxMLP(xi)

Where MLP is the multilayer perceptron and the maximization is over the output

vector. We sample the weights of the networks from Gaussian distributions with

mean 0 and different variances. We also vary the number of classes (output units

of the MLP). These tasks test the degree to which the representation can tar-

get arbitrary class labels produced by random non-linear mappings. We choose

this specific architecture for simplicity. However, in future work, an interesting

extension of this category could be to use specialised architectures, e.g. convo-

lutional or recurrent networks to assess the degree to which the representations

can target the specific inductive bias of each architecture [21].

Chapter 4. Representation learning benchmark 22

6. Scarcity tasks. These are N-way K-shot tasks. We sample K random examples

from N random classes from the full ImageNet dataset to construct them. Specif-

ically, we consider all the combinations of N = {10,20,50} and K = {1,5,10},
since these are some of the common values used in the few-shot literature [52].

These are roughly sub-tasks of the fine-grained classification task, since their

classes are a subset, but the training samples are not. The purpose of these tasks

is to test the data efficiency of the representations, this is, the degree to which

they allow to solve a standard image classification task with few training sam-

ples.

7. Robustness tasks. For these tasks, we follow the noise generation processes

from [29]. The training set is the same as the one of the fine-grained classi-

fication, but the images from the test set are corrupted with different types of

noise (Gaussian, shot, and speckle). We then evaluate the models trained on the

fine-grained classification task on these corrupted test sets. It is important to

precise that the noise is applied directly to the image (before being encoded into

a representation vector), since the objective is to evaluate the degree to which

representations are robust to the introduction of nuisances in the visual data [1].

Finally, we remark that only the fine-grained classification task and those from the

robustness and scarcity categories are perfectly class-balanced by construction. All

the others have various class distributions. These distributions along with additional

implementation details of the tasks construction can be found in Appendix B.

4.3 Representations

Using the tasks described in Section 4.2, we can evaluate the representation learned

by a given method. Specifically, we can test the degree to which such representation

contains the necessary features to solve the different tasks in the benchmark. For this

purpose we need to first encode the visual data into representation vectors with a con-

volutional network pre-trained with the specific method we desire to evaluate. These

representation vectors are then the input data used to solve a given task (as further

explained in Section 4.4).

Previous work ([33], [22]) has found that that the choice of training data, encoder

architecture, representation size, and the layer at which the encoder is truncated can

Chapter 4. Representation learning benchmark 23

have a significant effect on the evaluation results. For this reason, we hold these el-

ements fixed. Specifically, as the backbone encoder we choose the ResNet-50 [28]

truncated after the last convolutional block which renders a representation vector of

size 2048. This architecture should be pre-trained with the method to evaluate using

the ImageNet dataset. We select these particular settings (architecture and dataset) be-

cause they are the most common choice in the literature (e.g. [33], [17], [12], [23],

[27], [58], [2], etc.).

More formally, if we desire to evaluate method, m, on task t, we require the ResNet-

50 encoder pre-trained with m on the ImageNet dataset: φm : R3×224×224 7→ R2048.

Then, we use it to generate the representations dataset: D ′
m = {zm,i = φm(Xi)}N

i=1,

where Xi, i = 1, ...,N, are the images sampled for the training set. Then, D ′
m in combi-

nation with the set of target vectors, {yi,t}N
i=1, constitute the training set for task t

4.4 Evaluation protocol

For evaluating the representations from the different methods, we follow a linear eval-

uation protocol [33] [61]. Specifically, using D ′
m and {yi}, we train a softmax logistic

regression model (also called multinomial logistic regression) for each task.

We optimize the respective unregularized cross-entropy loss function (Equation 3.1)

using L-BFGS [39] as the optimization algorithm. We select this optimizer for two rea-

sons: it offers strong convergence guarantees to a unique solution in a convex problem

like the logistic regression problem (see Section 2.1), independently of hyperparameter

choices and initial conditions; this avoids the need to tune any hyperparameter which

would be impractical given the number of tasks in the benchmark; moreover, this pro-

vides determinism to our results, since they are independent of minor settings (e.g. the

random seed used). Additionally, as noted in Chapter 3, this optimizer does not pro-

vide implicit regularization as SGD, and then any enhancement in generalization per-

formance can be attributed exclusively to the representation, instead of the optimizer.

However, a downside of this choice is that it is computationally expensive to scale to

large datasets. Therefore, we consider a 64000-samples, class-balanced (with respect

to the ImageNet-1k task) subset from ImageNet and leave for future work scaling the

protocol the full dataset.

After training each logistic regression model, we evaluate it using as test set the

full ImageNet validation set of 50000 samples (using the same preprocessing as for

the training data). We use the accuracy in this test set as the score of the represen-

Chapter 4. Representation learning benchmark 24

tation in each task. Finally, contrary to previous work doing multi-task evaluation of

representations [22], [17], we hold this protocol constant across tasks.

4.5 Outcome

The benchmark is designed in a way that any representation learning method can

be evaluated with it. Following the guidelines established above and summarised in

Figure 4.1, the outcome of the evaluation allows a comprehensive assessment of the

method along different tasks categories. We encourage the users of the benchmark to

consider the results of each category independently instead of summarising them, since

this allows a more comprehensive assessment of the representation’s capabilities. We

showcase this in our evaluation exercise from Chapter 5

ResNet-50
(pre-trained) {𝒛!}

Logistic
regression L-BFGS

Test Set
(𝒛∗, 𝒚∗")

{𝒚#𝒕 }

accuracy

Figure 4.1: Overview of the evaluation. To evaluate a given method (characterised

by its pre-trained ResNet-50 encoder) we encode the images of the training set into

representation vectors, zi, we then use these as input data to train a logistic regression

model to solve each task t using the corresponding target labels yt . We fit the models

using L-BFGS as optimizer. Finally, after training a logistic model for the given task, we

evaluate it on the held-out test set and use the test accuracy as the score. The outcome

of this is an assessment of the representation’s performance along the different axes

(categories) of evaluation.

Chapter 5

Evaluation results

In this chapter, we showcase the benchmark we developed, as described in Chapter 4,

by evaluating thirteen of the current state-of-the art unsupervised representation learn-

ing methods. With the results from this evaluation, we examine some properties of the

benchmark itself. In particular, we assess how informative the different tasks are, in the

sense of how well they differentiate between the different methods’ performance. We

also inspect groups of correlated tasks for which the ranking of the methods is similar.

Finally, we examine the performance of the methods and analyse particular compo-

nents which appear to contribute to the observed differences. The main objective of

the chapter is to demonstrate how our benchmark can be used to provide a thorough

evaluation of representation learning methods along different categories of evaluation,

and how this, in turn, can reveal particular strengths and areas of opportunity for future

research in the field.

5.1 Methods evaluated

A fully comprehensive evaluation covering all the methods from the literature is not

feasible. Therefore, we focus on the contrastive learning framework [12], which is the

currently dominant one around which most current methods revolve (as discussed in

Section 2.2.1). We are also interested in the very recent line of research incorporating

clustering and protoypes into this framework [38], [11] (as explained in Section 2.2.1).

Our selection also has practical considerations, since we require methods pre-

trained on the ImageNet dataset [48]. The recent study in transfer learning from [17]

has followed a similar reasoning for their selection; thus, we evaluate the thirteen state-

25

Chapter 5. Evaluation results 26

of-the-art unsupervised methods considered in it1. The summary of these is presented

in Table 5.1, but a more thorough description is provided in Section 2.2.1.

Model Contrastive Learning Clustering Augmentation Projection head

InsDis [58] Instance None Weak Linear

SimCLR-V1 [12] Instance None Strong MLP (1 hidden layer)

SimCLR-V2 [13] Instance None Strong MLP (2 hidden layers)

MoCo-V1 [27] Instance None Weak Linear

MoCo-V2 [14] Instance None Strong MLP (1 hidden layer)

BYOL [23] Instance None Strong MLP (1 hidden layer)

InfoMin [56] Instance None Strong MLP (1 hidden layer)

PIRL [41] Instance None Weak. Linear

SeLA-V2 [11] Protoype Sinkhorn-Knopp Strong MLP (1 hidden layer)

PCL-V1 [38]. Instance and Protoype K-means Weak Linear

PCL-V2 [38]. Instance and Protoype K-means Strong MLP (1 hidden layer)

DeepCluster-V2 [11] Protoype K-means Strong MLP (1 hidden layer)

SwAV [11] Protoype Sinkhorn-Knopp Strong MLP (1 hidden layer)

Table 5.1: Unsupervised models evaluated. Here we focus only on specific elements

that differentiate the methods and that previous work ([12], [14], [38] [11]) has shown

to be relevant for their performance: data augmentation, projection head, and the use

of prototypes (clusters centers) in the contrastive task. Details of these elements are

provided in Section 2.2.1.

For comparison, we consider two baselines: the supervised ResNet-50 [28] pre-

trained with the fine-grained classification from the benchmark on the full ImageNet

dataset. This baseline has proven strong generalization capabilities in different seman-

tic tasks [34] thus, it provides a good reference for these tasks categories. Addition-

ally, it is the most commonly used baseline for measuring the progress of unsupervised

representation learning. However, this representation discards irrelevant features for

the fine-grained classification task [16] which are important for performance in other

categories in the benchmark. Thus, as a second baseline, we consider: an untrained

ResNet-50 (with random parameters). The spatial bias inherent in this architecture,

allows a strong performance in some visual tasks even without training [10] [21]. In

particular, this network can encode low-level features which may be discarded in the

process of training.

1To obtain the pre-trained networks we borrow (with permission) the imple-
mentation from [17], publicly available at: https://github.com/linusericsson/ssl-
transfer/blob/main/download and prepare models.py

https://github.com/linusericsson/ssl-transfer/blob/main/download_and_prepare_models.py
https://github.com/linusericsson/ssl-transfer/blob/main/download_and_prepare_models.py

Chapter 5. Evaluation results 27

All the methods and the baselines are evaluated following the protocol described

in Chapter 4 and summarised in Figure 4.1.

5.2 Informative and correlated tasks

To assess the degree to which the different tasks are informative of differences in rep-

resentations’ performance, we inspect how varied is the test accuracy obtained by the

different models in them. We acknowledge that this measure has its caveats. For in-

stance, if all the models perform equally well in a task is not that the tasks is not

revealing anything about the methods (it reveals that all the representations are well-

suited for solving such task), but at a more global level it makes it difficult to discern

the specific elements which account for the good performance. On the other side, a

task with large variability allows to inspect which components may be contributing

to the differences in performance (as shown in our analyses from Section 5.3.2 and

Section 5.3.3).

Figure 5.1 shows boxplots of the test accuracy obtained by the different represen-

tations in each task. In most of the tasks there is an outlier which typically corresponds

to the untrained baseline. For this reason, throughout the analysis, we use the median

and the inter-quartile range (IQR) as measures of central tendency and variability of

the different models performance in a given task.

Informative and uninformative tasks. The robustness tasks and the scarcity tasks

are the most informative of differences in performance. In particular, the three 1-

shot tasks exhibit the highest IQRs (19, 22, and 29 percentage points). However, as

the data availability increases, the IQR decreases (as revealed by the 5 and 10-shot

tasks). This suggest that data efficiency is an important domain of differentiation of

the representations capacity. This is analysed in Section 5.3.4

The semantic tasks also have a relatively large accuracy variability. In this case,

the fine-grained task is not only a harder task (as revealed by the median accuracy),

but also induces greater differences in performance compared to the coarse-grained

and parts classification tasks. This might indicate that some models are particularly

well-suited (relative to others) at capturing finer high-level features, but most have a

similar capacity to encode coarser features.

On the other side, the colour and, especially, the luminosity tasks2 at the pixel level

2The test accuracy for all methods in this task was poor because of strong overfitting.

Chapter 5. Evaluation results 28

fin
e-

gr
ai

ne
d

cl
as

si
fic

at
io

n
co

ar
se

-g
ra

in
ed

 c
la

ss
ifi

ca
tio

n
pa

rts
 c

la
ss

ifi
ca

tio
n

ce
nt

ra
l p

ix
el

 c
ol

ou
r

co
rn

er
 p

ix
el

 c
ol

ou
r

ra
nd

om
 p

ix
el

 c
ol

ou
r

im
ag

e
co

lo
ur

ce
nt

ra
l p

ix
el

 lu
m

in
os

ity
co

rn
er

 p
ix

el
 lu

m
in

os
ity

ra
nd

om
 p

ix
el

 lu
m

in
os

ity
br

ig
ht

es
t r

eg
io

n
re

gi
on

s
w

ith
 c

or
ne

rs
re

gi
on

 w
ith

 m
os

t e
dg

es
st

an
da

rd
 n

or
m

al
 -

10
 c

la
ss

es
st

an
da

rd
 n

or
m

al
 -

10
0

cl
as

se
s

no
rm

al
(0

, 1
.5

) -
 1

0
cl

as
se

s
no

rm
al

(0
,2

) -
 1

0
cl

as
se

s
10

-w
ay

-1
-s

ho
t

10
-w

ay
-5

-s
ho

t
10

-w
ay

-1
0-

sh
ot

20
-w

ay
-1

-s
ho

t
20

-w
ay

-5
-s

ho
t

20
-w

ay
-1

0-
sh

ot
50

-w
ay

-1
-s

ho
t

50
-w

ay
-5

-s
ho

t
50

-w
ay

-1
0-

sh
ot

G
au

ss
ia

n
no

is
e

sh
ot

 n
oi

se
sp

ec
kl

e
no

is
e

0%

20%

40%

60%

80%

100%

Te
st

 a
cc

ur
ac

y

S
em

an
tic

C
ol

ou
r

Lu
m

in
os

ity

Lo
w

-le
ve

l

R
an

do
m

 n
et

w
or

ks S
ca

rc
ity

R
ob

us
tn

es
s

Baseline
Supervised
Untrained

Figure 5.1: Boxplots of the test accuracy obtained by the different representations

in each task. The tasks from the semantic, robustness, and scarcity categories are the

most informative of the different methods’ performance. Tasks at the pixel level (in the

colour and luminosity categories), the random networks tasks and the low-level tasks

do not exhibit large differences in performance.

are mostly uninformative with all methods having similar performance (IQRs below 3

percentage points). However, The tasks from these categories at the image level, i.e.

the image colour and brightest region tasks, exhibit a larger variability in performance

with IQRs of 7 and 10 percentage points respectively. This seems to indicate that all

the models are (roughly) equally capable of retaining basic visual statistics at the pixel

level, but some are better than others at retaining information at the image level.

Finally, the low-level and random networks tasks also exhibit low variablity in

performance (IQRs below 3 and 2 percentage points repsectively). For the random

networks tasks, neither the number of classes nor the standard deviation of the Gaus-

sian distribution used to initialise the weights of the MLP used to generate the labels

has a substantial effect on performance variability.

Chapter 5. Evaluation results 29

The correlation of tasks. The benchmark was designed in a way intended to eval-

uate complementary aspects of a representation’s capacity. Measuring this in a direct

way is not trivial. Therefore, as a proxy, we inspect the correlation of the ranking of

the methods in the different tasks. In particular, if two tasks have a high ranking cor-

relation it indicates the the same methods perform well (relative to the others) in both

tasks. Then, it can be argued that both tasks are evaluating similar aspects of the repre-

sentations capacity and, therefore, are not complementary to each other. We consider

the ranking correlation instead of the accuracy correlation between tasks, because we

are particularly interested in assessing if the same models are the best-performing ones

in the different tasks, independently of the accuracy obtained.
fin

e-
gr

ai
ne

d
cl

as
si

fic
at

io
n

co
ar

se
-g

ra
in

ed
 c

la
ss

ifi
ca

tio
n

pa
rts

 c
la

ss
ifi

ca
tio

n
ce

nt
ra

l p
ix

el
 c

ol
ou

r
co

rn
er

 p
ix

el
 c

ol
ou

r
ra

nd
om

 p
ix

el
 c

ol
ou

r
im

ag
e

co
lo

ur
ce

nt
ra

l p
ix

el
 lu

m
in

os
ity

co
rn

er
 p

ix
el

 lu
m

in
os

ity
ra

nd
om

 p
ix

el
 lu

m
in

os
ity

br
ig

ht
es

t r
eg

io
n

re
gi

on
s

w
ith

 c
or

ne
rs

re
gi

on
 w

ith
 m

os
t e

dg
es

st
an

da
rd

 n
or

m
al

 -
10

 c
la

ss
es

st
an

da
rd

 n
or

m
al

 -
10

0
cl

as
se

s
no

rm
al

(0
, 1

.5
) -

 1
0

cl
as

se
s

no
rm

al
(0

,2
) -

 1
0

cl
as

se
s

10
-w

ay
-1

-s
ho

t
10

-w
ay

-5
-s

ho
t

10
-w

ay
-1

0-
sh

ot
20

-w
ay

-1
-s

ho
t

20
-w

ay
-5

-s
ho

t
20

-w
ay

-1
0-

sh
ot

50
-w

ay
-1

-s
ho

t
50

-w
ay

-5
-s

ho
t

50
-w

ay
-1

0-
sh

ot
G

au
ss

ia
n

no
is

e
sh

ot
 n

oi
se

sp
ec

kl
e

no
is

e

fine-grained classification
coarse-grained classification

parts classification
central pixel colour
corner pixel colour

random pixel colour
image colour

central pixel luminosity
corner pixel luminosity

random pixel luminosity
brightest region

regions with corners
region with most edges

standard normal - 10 classes
standard normal - 100 classes

normal(0, 1.5) - 10 classes
normal(0,2) - 10 classes

10-way-1-shot
10-way-5-shot

10-way-10-shot
20-way-1-shot
20-way-5-shot

20-way-10-shot
50-way-1-shot
50-way-5-shot

50-way-10-shot
Gaussian noise

shot noise
speckle noise

Tasks rank correlation

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.2: Rank correlation between the different tasks. We consider a ranking

matrix where each entry is the ranking of a method (row) on a given task (column). The

plot shows the correlations between the columns of such matrix. The names of the tasks

from the same category are shown in the same colour. Roughly, The representations

that perform better than the others in the high-level and colour tasks perform worse in

the low-level, luminosity, and random networks tasks and viceversa.

As shown in Figure 5.2, there is complementarity in the benchmark as revealed by

Chapter 5. Evaluation results 30

the negative correlations across some tasks rankings. This is, representations that are

among the best-performing in some tasks, are among the worst-performing in other

ones. Morever, the rank correlations reveal two main tasks groups: the first group is

composed of the high-level tasks (semantic, robustness, and scarcity categories) and

the colour tasks, which surprisingly are more correlated with them, than with the other

low-level tasks; the second group is composed of the low-level, luminosity, and random

networks tasks which are correlated among them, but decorrelated from the others.

5.3 Representations performance

We assess the performance of the different representations at the category level by tak-

ing the average test accuracy across the individual tasks of a given category. Here, we

take the mean instead of the median, since we desire that the performance in every task

contributes to the score in the category. Some granularity is lost while summarising at

the category level, although Figure 5.2 suggests that tasks within the same category are

correlated among them, hence not much information is lost in the summary. However,

we display the full results at the task level in Appendix C. The average test accuracy in

the different categories along with the ranking (according to this average) are displayed

in Table 5.2.

Semantic Colour Luminosity Low-level Random networks Scarcity Robustness

Model Accuracy Ranking Accuracy Ranking Accuracy Ranking Accuracy Ranking Accuracy Ranking Accuracy Ranking Accuracy Ranking

Supervised 83.3% 1 72.4% 1 9.9% 14 43.1% 10 54.4% 14 91.5% 1 57.2% 1

SeLA-V2 79.4% 2 71.5% 5 10.4% 13 41.4% 14 54.5% 12 74.6 8 50.7% 2

DeepCluster-V2 79.3% 3 72.3% 3 11.2% 11 41.9% 12 55% 11 82.3% 2 49.9% 3

SwAV 79.2% 4 72.4% 2 10.4% 12 41.9% 13 54.5% 13 81.3% 3 49% 5

InfoMin 78.6% 5 69.8% 10 12.8% 6 43.7% 9 56.3% 4 80% 6 49.8% 4

MoCo-V2 77.8% 6 70.5% 9 14% 3 45.7% 2 57.4% 2 80.6% 4 47.7% 6

BYOL 76.2% 7 71% 7 11.8% 10 44.1% 7 55.5% 10 77.8% 7 46.4% 7

SimCLR-V2 75.8% 8 72.2% 4 12.8% 7 44.5% 5 56.3% 5 72.8% 9 45.4% 9

SimCLR-V1 75% 9 70.7% 8 12.3% 8 45.2% 3 55.8% 8 69.8% 10 42.2% 10

PCL-V2 74.9% 10 69.7% 11 12.3% 9 42.6% 11 55.6% 9 80.3% 5 46.0% 8

PCL-V1 71.3% 11 65.0% 14 9% 15 39.5% 15 53.4% 15 64.1% 12 40% 11

PIRL 67.2% 12 66.1% 13 13.1% 5 43.9% 8 56.2% 6 64.5% 11 19.6% 13

MoCo-V1 66.1% 13 65% 15 13.4% 4 44.2% 6 56.1% 7 63.1% 13 21.1% 12

InsDis 64.7% 14 66.2% 12 14.1% 2 45% 4 56.8% 3 62.7% 14 18% 14

Untrained 20.4% 15 71.2% 6 20.1% 1 49.7% 1 66.7% 1 12% 15 1.2% 15

Table 5.2: Methods performance in the different categories. The accuracy in this

table is the average test accuracy across the tasks from the category*.

* We display the values rounded to three significant figures, but for breaking ties in the

rankings we consider additional precision.

We make four overall observations which are dissected in the following subsec-

tions:

Chapter 5. Evaluation results 31

1. In every category, one of the baselines, either the supervised or untrained one,

outperforms all the unsupervised methods (see Section 5.3.1).

2. A method doing contrastive learning with prototypes (e.g. DeepCluster-V2,

SeLA-V2) is the best-performing in every high-level category (semantic, scarcity,

and robustness), but have a degraded performance in some lower-level ones (low-

level, luminosity, and random networks); the opposite is true for some methods

doing contrastive learning only between instances (e.g. MoCo-V2, InsDis) (see

Section 5.3.2).

3. There is not a single representation that outperforms all others in every category,

but there are some strictly dominated models; for instance, PCL-V2 outperforms

PCL-V1 in all categories; similarly, MoCo-V2 outperforms MoCo-V1 and PIRL

(see Section 5.3.3).

4. Data scarcity and noise affect unsupervised models to very different degrees; for

instance, SeLA-V2 is the best unsupervised model in the semantic and robust-

ness categories, but ranks 7th in scarcity, whereas DeepClustering-V2 is among

the best three methods in these three categories (Section 5.3.4).

5.3.1 Baselines

We are interested in evaluating how the unsupervised methods perform compared with

the two baselines: the supervised and the untrained networks. To make this compar-

ison, we take all the unsupervised models as a group, and for each task, we consider

their highest test accuracy and average these across the task of each category. We refer

to these averages of best scores as the best unsupervised model, although we stress that

it does not corresponds to an actual single model. We compare these with the baselines

in Figure 5.3.

The unsupervised models performance lie between the two baselines in every cat-

egory. In the high-level categories (semantic, robustness, and scarcity), all the unsu-

pervised models are outperformed by the supervised baseline. The difference in the

colour category is negligible (0.1 percentage points). On the other side, the best unsu-

pervised model outperforms the supervised baseline in all the other categories, but in

turn is outperformed by the untrained network. Overall, the best unsupervised scores

are closer to the supervised baseline (as revealed by the shapes in Figure 5.3)

Chapter 5. Evaluation results 32

semantic

colour

luminosity

low-level random networks

scarcity

robustness

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

supervised
untrained
best unsupervised

Figure 5.3: Comparison of the best unsupervised performance with the baselines.

The radar chart measures the average test accuracy in the tasks from each category.

The plot of the best unsupervised model is constructed by taking the best test accuracy

achieved by an unsupervised model in each task and averaging these across the tasks

from each category. The supervised baseline outperforms the unsupervised models

in the high-level categories. The untrained baseline outperform them in the luminosity,

low-level, and random networks categories. The differences in the colour category are

negligible

5.3.2 Instance contrast vs protoype contrast

All the methods we evaluate revolve around the contrastive learning framework (See

Section 2.2.1); however, an important difference is that some construct the contrastive

task between instances, while others do it between instances and prototypes i.e. clus-

ters centers (see Table 5.1). We investigate the different performance profiles of these

types of models. For this, we group the representations according to whether they were

learned using protoype-based or instance-based contrastive learning 3. On each task,

we take the median test accuracy of each group and average these medians across the

tasks within a category. The results of this are compared in the left panel of Figure 5.4.

3For this comparison we ommit the PCL-V1 and PCL-V2 models which use both types of contrastive
learning, but including them in either group does not affect the conclusions.

Chapter 5. Evaluation results 33

The MoCo-V1 and PCL-V1 methods are identical in many design aspects (aug-

mentations, momentum encoders, projection head), but PCL-V1 enhances the MoCo

framework with the addition of protoype-based contrastive learning [38]. Thus, a com-

parison between these two methods can provide additional evidence for the difference

in performance from using protoypes for contrastive learning, as shown in the right

panel of Figure 5.4.

semantic

colour

luminosity

low-level random networks

scarcity

robustness

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

prototype
instance

semantic

colour

luminosity

low-level random networks

scarcity

robustness

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

pcl-v1
moco-v1

Figure 5.4: Instance-based and prototype-based contrastive learning compared.

Left: Comparison of the group of methods using a contrastive task between protoypes

and instances with the group using a constastive task between instances only. For

each group, we take the median test accuracy in each task and average these across

the tasks within a category. Right: Comparison of MoCo-V1 and PCL-V1. PCL-V1 en-

hances the MoCo-V1 framework by incorporating contrastive learning between clusters

centers and instances (See Section 2.2.1). Protoype-based contrastive learning en-

hances performance in the high-level categories (especially in robustness), but hinders

it in the luminosity, low-level, and random networks ones.

Overall, both comparison allow a common conclusion: performing protoype-based

contrastive learning allows better performance on the high-level categories (semantic,

robustness, and scarcity), but hinder performance in most of the others (luminosity,

low-level, and random networks). The evidence is less clear regarding the colour cate-

gory.

Chapter 5. Evaluation results 34

5.3.3 Projection heads and augmentation schemes

As noted in previous work (e.g. [12], [14]), using a non-linear projection head and

stronger augmentation in the contrastive task can boost the performance of the methods

when evaluated in the fine-grained classification task. This has encouraged various

frameworks to incorporate these elements. We investigate if this claim holds in the

more comprehensive evaluation of our benchmark.

In Figure 5.5, we perform four comparisons: we compare two methods enhanced

exclusively with these elements (MoCo-V2 and PCL-V2) with their V1 counterpart.

Additionally, we compare SimCLR-V1 with SimCLR-V2 which both use the same

augmentations set and a non-linear projection head, but the V2 model has it one layer

deeper, and finally, we compare the median test accuracy averaged across tasks within a

category (similar to the procedure done in Section 5.3.2) between the group of models

using stronger augmentation and a non-linear projection head with the group using

weaker augmentation and linear projection (see Table 5.1).

Our results provide further evidence to the claim that stronger augmentation in

combination with a non-linear projection head greatly enhances the performance of

the methods, since we note an improved accuracy in all the categories for the models

having these enhancements. In particular, with these enhancements, we observe signif-

icantly stronger performance in the high-level and colour categories, without a degrade

in the other ones (and in some cases like PCL also improvement in them). However, an

additional layer to an already non-linear head appears to make only a marginal differ-

ence as revealed by the comparison between SimCLR-V1 and V2. Our results do not

allow to determine to which of the two enhancements (or both) can the performance

improvement be attributed. More controlled experiments can leverage our benchmark

for further investigation of this.

5.3.4 Scarcity and robustness

The tasks from the scarcity and robustness categories provide the greatest variability in

performance as shown in Figure 5.1. We inspect this in more detail. In particular, we

are interested in measuring the decrease in performance coming from the introduction

of noise and data scarcity.

The robustness tasks are a direct adaptation of the fine-grained classification task

(see Section 4.2). Thus, we use this as a baseline of performance and compute the

accuracy reduction that the noise impose on each representation. For each method, we

Chapter 5. Evaluation results 35

semantic

colour

luminosity

low-level random networks

scarcity

robustness

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

moco-v1
moco-v2

semantic

colour

luminosity

low-level random networks

scarcity

robustness

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

pcl-v1
pcl-v2

semantic

colour

luminosity

low-level random networks

scarcity

robustness

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Weak, Linear
Strong, Non-linear

semantic

colour

luminosity

low-level random networks

scarcity

robustness

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

simclr-v1
simclr-v2

Figure 5.5: Strong augmentation and a non-linear projection head enhance per-

formance. Top: the two plots on the top row show methods enhanced exclusively with

a non-linear projection head and strong data augmentation. Bottom-left: we group the

models into those using non-linear projection head and strong augmentation and those

with a linear head and weak augmentation (see Table 5.1), for each group, we take

the median test accuracy in each task and average them within categories. Bottom-

right: SimCLR-V2 adds an additional hidden layer to the non-linear projection head of

SimCLR-V1.

Chapter 5. Evaluation results 36

compute the difference in test accuracy between the fine-grained classification task and

each of the different noise tasks, we then average these differences and consider this

as a measure of accuracy reduction induced by the presence of noise in the visual data

(shown in the left panel of Figure 5.6).

We emphasise that this only measures the accuracy reduction due to the noise. For

instance, it could be that a representation has a poor performance in the fine-grained

classification task and it remain equally poor (but not worse) in the robustness tasks.

Then, this representation suffers from a low accuracy reduction. In general, the un-

supervised methods have a smaller accuracy reduction than the supervised baseline.

However, the models without a non-linear projection, with weak augmentation, and

performing only instance-based contrastive learning (see Table 5.1), are more strongly

affected by the presence of noise.

For assessing the accuracy reduction due to data scarcity we follow a similar ap-

proach. However, here we do not use the performance in the fine-grained classification

task as the baseline, since although similar, the scarcity tasks are not exact variations

of this one (they have a different number of classes and different training examples).

Rather we take the N-way-10-shot tasks as the reference for each N = 10,20,50. Then,

for each value of N, we take the difference between the 10-shot task and the 5-shot and

1-shot tasks respectively. We then average these two sets of differences across the val-

ues of N. We can interpret this measure as the accuracy reduction from losing 5 and

9 training samples per class respectively. The results from this are shown in the right

panel of Figure 5.6.

Contrary to the robustness case, here the performance of the supervised model is

much less affected by the scarcity of data. On the other side, all the unsupervised mod-

els suffer a greater accuracy reduction in both cases (reduction by 5 and 9 samples per

class). For many models the accuracy reduction is quite significant in the 9 samples

case, reducing their accuracy by more than 30 percentage points. This indicates that

there is great room for improvement in terms of the data efficiency of the unsuper-

vised methods representations that the common enhancements used so far (non-linear

projection head, stronger augmentation, protoype-based contrastive learning) have not

provided.

Chapter 5. Evaluation results 37

m
oc

o-
v1

m
oc

o-
v2

by
ol

sw
av

de
ep

cl
us

te
r-

v2

se
la

-v
2

in
fo

m
in

in
sd

is pi
rl

pc
l-v

1

pc
l-v

2

si
m

cl
r-

v1

si
m

cl
r-

v2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
cc

ur
ac

y
re

du
ct

io
n

(p
er

ce
nt

ag
e

po
in

ts
)

Supervised baseline

Noise

m
oc

o-
v1

m
oc

o-
v2

by
ol

sw
av

de
ep

cl
us

te
r-

v2

se
la

-v
2

in
fo

m
in

in
sd

is pi
rl

pc
l-v

1

pc
l-v

2

si
m

cl
r-

v1

si
m

cl
r-

v2

0

10

20

30

40

50

A
cc

ur
ac

y
re

du
ct

io
n

(p
er

ce
nt

ag
e

po
in

ts
) Scarcity

Supervised - 9 samples
5 samples
9 samples

Figure 5.6: Accuracy reduction by the introduction of noise (left) and data scarcity

(right)*. A higher value implies a greater reduction in accuracy. Methods with weak aug-

mentation, linear projection, and only instance-based contrast are shown in red (see Ta-

ble 5.1). Unsupervised methods are robust to noise, but not data-efficient. Strong data

augmentation, a non-linear projection head, and prototype-based contrastive learning

appear to provide enhanced robustness to noise, but not data efficiency.

* The reduction in accuracy of the supervised baseline from losing 5 training samples

per class is negligible and is not shown.

5.4 Conclusions

Our evaluation results highlight some relevant aspects of the benchmark we devel-

oped. Some tasks are extremely informative of differences in performance and allow

to examine particular elements contributing to such differences, while others were un-

informative in the sense that the performance of the different methods was uniform.

Moreover, our benchmark has decorrelated tasks in terms of how they rank the meth-

ods. In this sense, there appear to be two broad groups of tasks: the higher-level group

(semantic, robustness, and scarcity categories) and the lower-level group (low-level,

luminosity, and random networks categories). Interestingly, the colour tasks are more

correlated with the tasks from the high-level group. This is a counter-intuitive result,

since colour information at arbitrary locations is usually lost while learning high-level

features for semantic tasks [12], [45]. We leave for future work to discern the reasons

behind this correlation.

In terms of the models’ performance, we note that the unsupervised methods lie

between the two baselines (supervised and untrained), although they resemble more

closely the supervised one. Additionally, our results suggest that protoype-based con-

trastive learning enhances the representations capacity in the higher-level tasks, par-

Chapter 5. Evaluation results 38

ticularly in the robustness ones, but hinders it in the lower-level ones. This appears to

provide evidence to support the claim from [38] that clustering allows to capture com-

mon features shared between instances with semantic similarity which enhances the

performance in semantic clssification tasks. Our results also provide further evidence

of the importance of including a non-linear projection head and strong data augmen-

tation in contrastive learning frameworks. In particular, we find that these elements

combined can enhance the performance of the methods in every category. Finally,

our results indicate that these elements (protoype-based contrast, non-linear head, and

strong data augmentation) enhance the representations’ robustness to noise, but they do

not make them more data-efficient. This is the domain in which unsupervised methods

appear to be most strongly lagging behind the supervised baseline, as also suggested

by the results from [17].

The results obtained serve to highlight the type of comprehensive evaluation that

our benchmark enables and the insights it can reveal. We acknowledge that more

controlled experiments should follow up to strengthen the evidence of our claims. We

hope that future work will leverage our benchmark for this purpose.

Chapter 6

Discussion

Our work focuses on the evaluation of unsupervised representation learning methods.

We perform a study on the optimization behaviour of SGD in the context of linear

evaluation of representations. For the non-linearly separable case, the solution found

under some hyperparameter configurations is equivalent to the one found by L-BFGS,

a quasi-Newton method with strong convergence guarantees. However, for a highly

linearly separable case we find that this is not the case; in this case, SGD performs

regularized optimization that for some hyperparameter regimes is akin to L2 weight

penalty and for others to early stopping of L-BFGS. The implications of these findings

are three-fold: the choice of optimization algorithm can have a significant effect on

the outcome of the evaluation; SGD can provide implicit regularization which may be

confounded with the representation’s capacity to enhance generalization performance;

when using SGD for linear evaluation, the degree of linear separability of the evalua-

tion task and the hyperparameters chosen must be taken into consideration. We leave

for future work the scaling of our analysis to larger datasets; the challenge in this is to

find a strong optimization baseline that can scale to them.

We develop a broad task-based benchmark to evaluate representation learning meth-

ods. Our benchmark allows a multi-category evaluation of the representations learned

by any arbitrary method. Ours is, arguably, the most comprehensive tasks set designed

for the evaluation of representations. However, it can still be extended in meaningful

ways. For instance, a relevant addition could be semantic tasks with labels unrelated

to the standard classes from ImageNet-1k (e.g. elements like clouds or buildings in

the background); these kind of tasks could evaluate the presence of distinct high-level

visual features not evaluated by the original labels and the related relabellings that

we constructed. The development of this kind of tasks could borrow ideas from the

39

Chapter 6. Discussion 40

multi-labelling done by [59] or the multi-factor tasks from [56]. The benchmark could

also be extended within the existing categories by producing additional similar tasks;

however, one must be careful with the tradeoffs between complexity and additional

information imposed by additional tasks. In particular, the benchmark should not be-

come prohibitive to use for future work with limited computational resources.

By evaluating thirteen of the current state-of-the-art contrastive learning methods

with our benchmark we found that some of its tasks are highly informative of dif-

ferences in performance. On the other side, in some tasks all the methods have a

very homogeneous performance. Future enhancements to the benchmark could con-

sider replacing these tasks for more informative ones. Additionally, we observe com-

plementarity among the tasks in the sense that they highlight different strengths and

weaknesses of the methods.

The supervised and untrained baselines seem to be an adequate reference point for

the tasks selected. Of particular interest is to track the gap between the unsupervised

models and the supervised baseline in the high-level tasks, especially in the scarcity

ones, and the degree to which the reduction of this gap increases the one with the

untrained baseline in the lower-level tasks.

Finally, the results from our evaluation suggest that prototype-based contrastive

learning enhances the performance in high-level tasks, especially the robustness to

noise of the representations. However, this come at the cost of reducing performance

in the low-level tasks. A non-linear projection head and strong data augmentation can

improve the performance of the methods in all the tasks categories. Unsupervised

methods have achieved strong robustness to noise; however, there is still much room

for improvement regarding data efficiency. We acknowledge that our findings require

the support of additional evidence from more controlled experiments designed specif-

ically to discern these claims, but we showcase how future work could leverage our

benchmark for this purpose.

Bibliography

[1] Alessandro Achille and Stefano Soatto. Emergence of invariance and disentan-

glement in deep representations. The Journal of Machine Learning Research,

19(1):1947–1980, 2018.

[2] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via

simultaneous clustering and representation learning. In International Conference

on Learning Representations, 2019.

[3] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. A critical analysis

of self-supervision, or what we can learn from a single image. In International

Conference on Learning Representations, 2020.

[4] David Barrett and Benoit Dherin. Implicit gradient regularization. In Interna-

tional Conference on Learning Representations, 2020.

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

[6] Albert S Berahas, Jorge Nocedal, and Martin Takáč. A multi-batch L-BFGS

method for machine learning. In Proceedings of the 30th International Confer-

ence on Neural Information Processing Systems, pages 1063–1071, 2016.

[7] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-

scale machine learning. Siam Review, 60(2):223–311, 2018.

[8] Charles G Broyden. The convergence of a class of double-rank minimization

algorithms: 2. the new algorithm. IMA journal of applied mathematics, 6(3):222–

231, 1970.

[9] John Canny. A computational approach to edge detection. IEEE Transactions on

pattern analysis and machine intelligence, (6):679–698, 1986.

41

Bibliography 42

[10] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep

clustering for unsupervised learning of visual features. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 132–149, 2018.

[11] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and

Armand Joulin. Unsupervised learning of visual features by contrasting clus-

ter assignments. In Thirty-fourth Conference on Neural Information Processing

Systems (NeurIPS), 2020.

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-

ple framework for contrastive learning of visual representations. In International

conference on machine learning, pages 1597–1607. PMLR, 2020.

[13] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geof-

frey E Hinton. Big self-supervised models are strong semi-supervised learners.

Advances in Neural Information Processing Systems, 33:22243–22255, 2020.

[14] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines

with momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[15] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport.

Advances in neural information processing systems, 26:2292–2300, 2013.

[16] Luke Nicholas Darlow and Amos Storkey. What information does a resnet com-

press? arXiv preprint arXiv:2003.06254, 2020.

[17] Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-

supervised models transfer? In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 5414–5423, 2021.

[18] Roger Fletcher. A new approach to variable metric algorithms. The computer

journal, 13(3):317–322, 1970.

[19] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised represen-

tation learning by predicting image rotations. In International Conference on

Learning Representations, 2018.

[20] Donald Goldfarb. A family of variable-metric methods derived by variational

means. Mathematics of computation, 24(109):23–26, 1970.

Bibliography 43

[21] Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-

level cognition. arXiv preprint arXiv:2011.15091, 2020.

[22] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and

benchmarking self-supervised visual representation learning. In Proceedings of

the IEEE/CVF International Conference on Computer Vision, pages 6391–6400,

2019.

[23] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-

han Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Remi

Munos, and Michal Valko. Bootstrap your own latent - a new approach to self-

supervised learning. In Advances in Neural Information Processing Systems,

volume 33, pages 21271–21284, 2020.

[24] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new

estimation principle for unnormalized statistical models. In Proceedings of the

thirteenth international conference on artificial intelligence and statistics, pages

297–304. JMLR Workshop and Conference Proceedings, 2010.

[25] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by

learning an invariant mapping. In 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages 1735–

1742. IEEE, 2006.

[26] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Sta-

bility of stochastic gradient descent. In International Conference on Machine

Learning, pages 1225–1234. PMLR, 2016.

[27] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momen-

tum contrast for unsupervised visual representation learning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

9729–9738, 2020.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

Bibliography 44

[29] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robust-

ness to common corruptions and perturbations. In International Conference on

Learning Representations, 2018.

[30] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International conference

on machine learning, pages 448–456. PMLR, 2015.

[31] Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonsepa-

rable data. In Conference on Learning Theory, pages 1772–1798. PMLR, 2019.

[32] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep

neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2020.

[33] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-

supervised visual representation learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages 1920–1929, 2019.

[34] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models

transfer better? In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 2661–2671, 2019.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural information

processing systems, 25:1097–1105, 2012.

[36] Anders Krogh and John A Hertz. A simple weight decay can improve general-

ization. In Advances in neural information processing systems, pages 950–957,

1992.

[37] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[38] Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi. Prototypical contrastive

learning of unsupervised representations. In International Conference on Learn-

ing Representations, 2020.

Bibliography 45

[39] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large

scale optimization. Mathematical programming, 45(1):503–528, 1989.

[40] George A Miller. Wordnet: a lexical database for english. Communications of

the ACM, 38(11):39–41, 1995.

[41] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-

invariant representations. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 6707–6717, 2020.

[42] Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent

stochastic L-BFGS algorithm. In Artificial Intelligence and Statistics, pages 249–

258. PMLR, 2016.

[43] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representa-

tions by solving jigsaw puzzles. In European conference on computer vision,

pages 69–84. Springer, 2016.

[44] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with

contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[45] Massimiliano Patacchiola and Amos Storkey. Self-supervised relational reason-

ing for representation learning. Advances in Neural Information Processing Sys-

tems, 2020.

[46] C Ridpath and W Chisholm. Techniques for accessibility evaluation and repair

tools, w3c working draft, 26 april 2000, 2009.

[47] Herbert Robbins and Sutton Monro. A stochastic approximation method. The

annals of mathematical statistics, pages 400–407, 1951.

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

Imagenet large scale visual recognition challenge. International journal of com-

puter vision, 115(3):211–252, 2015.

[49] David F Shanno. Conditioning of quasi-newton methods for function minimiza-

tion. Mathematics of computation, 24(111):647–656, 1970.

Bibliography 46

[50] Samuel Smith, Erich Elsen, and Soham De. On the generalization benefit of noise

in stochastic gradient descent. In International Conference on Machine Learning,

pages 9058–9067. PMLR, 2020.

[51] Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of

implicit regularization in stochastic gradient descent. In International Conference

on Learning Representations, 2020.

[52] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-

shot learning. In Proceedings of the 31st International Conference on Neural

Information Processing Systems, pages 4080–4090, 2017.

[53] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan

Srebro. The implicit bias of gradient descent on separable data. The Journal of

Machine Learning Research, 19(1):2822–2878, 2018.

[54] Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimization

methods from a machine learning perspective. IEEE transactions on cybernetics,

50(8):3668–3681, 2019.

[55] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding.

In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, Au-

gust 23–28, 2020, Proceedings, Part XI 16, pages 776–794. Springer, 2020.

[56] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and

Phillip Isola. What makes for good views for contrastive learning? Advances in

Neural Information Processing Systems, 2020.

[57] Miroslav Trajković and Mark Hedley. Fast corner detection. Image and vision

computing, 16(2):75–87, 1998.

[58] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature

learning via non-parametric instance discrimination. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 3733–3742, 2018.

[59] Sangdoo Yun, Seong Joon Oh, Byeongho Heo, Dongyoon Han, Junsuk Choe, and

Sanghyuk Chun. Re-labeling imagenet: from single to multi-labels, from global

to localized labels. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 2340–2350, 2021.

Bibliography 47

[60] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos

Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann,

Alexey Dosovitskiy, et al. A large-scale study of representation learning with the

visual task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.

[61] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization.

In European conference on computer vision, pages 649–666. Springer, 2016.

Appendix A

Additional results from the

optimization study

In this Appendix we provide additional results of the optimization study for linear

evaluation of representations from Chapter 3.

A.1 Similarity metrics to compare optimizers’ solutions

Training loss. In Section 3.2, we argue that the difference in test losses from Equa-

tion 3.2 is a sensible metric to determine the equivalence of the models learned with

the different optimizers. Here we report additional similarity metrics as a robustness

check for our results.

In particular, we compare the solutions from SGD with the different hyperparame-

ters configurations and the one of L-BFGS in the tasks described in Section 3.1.

In Figure A.1, we show the difference in training loss (Equation 3.1) between the

parameters learned with different configurations of SGD and L-BFGS. In both cases,

we observe that for some hyperparameter values, the difference is negligible. However,

as argued before, this is not sufficient to conclude that the models learned are equiv-

alent, especially in the linearly separable case, since there may be distinct parameters

values yielding an arbitrary small loss in the training set.

Cosine similarity. Of particular interest is to assess the equivalence of the parameters

learned; however, as argued in Chapter 3 an element-wise comparison is not meaning-

ful, and in particular, the magnitude of the parameters is not determinant in the logistic

regression model. For this reason, we leverage the cosine similarity from Equation 2.1

48

Appendix A. Additional results from the optimization study 49

64
00

12
80

0

19
20

0

25
60

0

32
00

0

64
00

0

Mini-batch Size

0.01

0.1

1.0

10.0

100.0

1000.0

In
iti

al
 le

ar
ni

ng
 ra

te

0.27 0.42 0.49 0.56 0.69 1.05

0.03 0.06 0.09 0.11 0.16 0.27

0.0 0.01 0.01 0.01 0.02 0.03

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

Linearly separable case

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

64
00

12
80

0

19
20

0

25
60

0

32
00

0

64
00

0

Mini-batch Size

0.01

0.1

1.0

10.0

100.0

1000.0

In
iti

al
 le

ar
ni

ng
 ra

te

0.06 0.18 0.33 0.52 0.97 2.12

0.0 0.01 0.02 0.02 0.02 0.06

0.0 0.01 0.06 0.1 0.17 0.23

0.01 0.04 0.54 1.77 3.72 5.63

0.01 0.3 9.09 25 44 66

7.19 8.19 103 255 468 680

Linearly non-separable case

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure A.1: Difference between the L-BFGS and SGD train loss (Equation 3.1) for

various hyperparameters configurations. Each value* is the difference: Jsgd−Jlb f gs

where the loss is averaged over the training set.

* Values were rounded to three significant figures

which only considers similarity in direction to compare the weight matrices learned

with each optimizer. In particular, we consider two weight matrices, one learned with

SGD, Wsgd , and one with L-BFGS, Wlb f gs. Each row of these matrices serves to dis-

criminate a given class from the others in the model learned by each optimizer (see

Section 3.1). Thus, as a way to compare the predictive equivalence between the two

models we take the cosine similarity between each of the corresponding rows of Wsgd

and Wlb f gs. This yields Ct similarity values (one for each class), we average this and

report them in Figure A.2.

This metric supports the conclusions from Chapter 3: SGD arrives at more similar

solutions to L-BFGS in the linearly non-separable case. In particular, we note that the

SGD configuration that matched the test loss of L-BFGS (initial learning rate of 0.1

and mini-batch size of 6400) also has a very high average cosine similarity with respect

to the L-BFGS weights. The fact that this similarity is 0.99 instead of exactly 1 can be

attributed to the fact that we are reporting a summary statistic (the average). We note

that the distribution of the differences is skewed in the sense that most of the weight

vectors have a similarity of 1 and a few individual weights with lower similarity skew

the average. However, this high average allows to conclude that the parameters indeed

are equivalent.

Appendix A. Additional results from the optimization study 50

64
00

12
80

0

19
20

0

25
60

0

32
00

0

64
00

0

Mini-batch Size

0.01

0.1

1

10

100

1000

In
iti

al
 L

ea
rn

in
g

ra
te

0.58 0.48 0.45 0.41 0.37 0.29

0.82 0.78 0.75 0.72 0.68 0.58

0.89 0.88 0.87 0.86 0.85 0.82

0.91 0.9 0.9 0.9 0.9 0.89

0.82 0.82 0.8 0.82 0.79 0.78

0.83 0.83 0.8 0.82 0.78 0.77

Linearly separable case

0.0

0.2

0.4

0.6

0.8

1.0

64
00

12
80

0

19
20

0

25
60

0

32
00

0

64
00

0

Mini-batch Size

0.01

0.1

1

10

100

1000

In
iti

al
 L

ea
rn

in
g

ra
te

0.94 0.84 0.75 0.69 0.58 0.4

0.99 0.99 0.94 0.96 0.98 0.94

0.97 0.97 0.91 0.92 0.95 0.97

0.86 0.94 0.82 0.81 0.87 0.95

0.05 0.15 0.74 0.78 0.87 0.95

0.04 0.1 0.75 0.79 0.87 0.95

Linearly non-separable

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.2: Average cosine similarity between the weight vectors of each class

(rows of W) learned with SGD and L-BFGS A higher value indicates higher similarity.

The highest possible value is 1.

Prediction similarity. A more direct metric to assess whether the models are equiv-

alent in terms of their predictions is to simply compare their predictions in the test set.

We inspect the proportion of those predictions coincide between the models learned

with the different optimizers. This is shown in Figure A.3. These also support the con-

clusions from Chapter 3, but we stress that the test loss difference from Equation 3.2

is a more comprehensive measure since not only considers the predicted class, but also

the probability associated.

Mistakes similarity. An issue with only comparing the predictions is that in general

models that fit the data well (e.g. in the linearly separable case) can have a high accu-

racy also in the test set. Thus, they will make the same correct predictions. However,

an alternative is to consider the mistakes made, since the two models making the same

mistakes can provide stronger evidence of equivalence. We assess this using a metric

which we refer to as mistakes similarity, for shortness. This metric indicates the num-

ber of matching incorrect predictions between the models learned with the different

optimizers as a proportion of the number of mistakes made by the model fitted with

L-BFGS. The results of this comparison are shown in Figure ??. These also support

the main conclusion from Chapter 3

Overall the alternative similarity metrics considered support the main conclusion

from Chapter 3: in the linearly non-separable case, SGD with an initial learning rate of

Appendix A. Additional results from the optimization study 51

64
00

12
80

0

19
20

0

25
60

0

32
00

0

64
00

0

Mini-batch Size

0.01

0.1

1.0

10.0

100.0

1000.0

Le
ar

ni
ng

 ra
te

0.83 0.81 0.8 0.79 0.78 0.76

0.86 0.86 0.85 0.85 0.85 0.83

0.86 0.86 0.86 0.86 0.86 0.86

0.85 0.85 0.85 0.86 0.86 0.86

0.8 0.79 0.78 0.79 0.78 0.78

0.8 0.79 0.78 0.79 0.78 0.78

Linearly separable case

0.0

0.2

0.4

0.6

0.8

1.0

64
00

12
80

0

19
20

0

25
60

0

32
00

0

64
00

0

Mini-batch Size

0.01

0.1

1.0

10.0

100.0

1000.0

In
iti

al
 le

ar
ni

ng
 ra

te

0.88 0.78 0.71 0.67 0.61 0.52

0.99 0.99 0.85 0.89 0.95 0.88

0.99 0.94 0.79 0.79 0.79 0.8

0.96 0.86 0.68 0.66 0.67 0.71

0.9 0.72 0.61 0.63 0.66 0.71

0.45 0.54 0.61 0.62 0.66 0.71

Linearly non-separable case

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.3: Prediction similarity: the proportion of coinciding predictions in the

test set between the model learned with SGD and L-BFGS A higher value indicates

higher prediction coincidence. The highest possible value is 1.

0.1 and a mini-batch size of 6400 can reproduce the solution of L-BFGS. In the linearly

separable case, this does not happen for any of the hyperparameters configurations

considered.

A.2 SGD and implicit regularization in the non-linearly

separable case

In Section 3.4, we analysed the implicit regularization of SGD in the linearly separable

case. In this Appendix, we report the results of the same comparison in the non-linearly

separable case, as shown in Figure A.5.

In this case, for specific hyperparameter values (e.g. initial learning rate of 10

with a mini-batch size of 6400 and initial learning rate of 0.1 with a mini-batch size

of 32000) have a very similar loss than weight decay with λ = 0.0001. There are not

close matches with the early milestones of L-BFGS that we considered. However,

in this case one must be cautious with the conclusions drawn, since in this case the

effect of the explicit regularization are not very significant, since there is not overfitting

in the data given that the linear model cannot fit it very well in the first place (the

data is linearly non-separable). Thus, it is not meaningful to say that SGD provides

implicit regularization in this case, since the explicitly regularized solution is not very

Appendix A. Additional results from the optimization study 52

64
00

12
80

0

19
20

0

25
60

0

32
00

0

64
00

0

Mini-batch Size

0.01

0.1

1.0

10.0

100.0

1000.0

Le
ar

ni
ng

 ra
te

0.55 0.5 0.47 0.46 0.43 0.39

0.62 0.61 0.6 0.6 0.59 0.55

0.62 0.62 0.62 0.62 0.62 0.62

0.61 0.61 0.61 0.63 0.63 0.62

0.48 0.48 0.46 0.47 0.45 0.45

0.49 0.48 0.46 0.47 0.45 0.45

Linearly separable case

0.78

0.80

0.82

0.84

64
00

12
80

0

19
20

0

25
60

0

32
00

0

64
00

0

Mini-batch Size

0.01

0.1

1.0

10.0

100.0

1000.0

Le
ar

ni
ng

 ra
te

0.87 0.75 0.68 0.64 0.57 0.48

0.99 0.99 0.83 0.88 0.94 0.87

0.99 0.94 0.78 0.78 0.78 0.8

0.96 0.85 0.66 0.64 0.66 0.7

0.89 0.71 0.6 0.61 0.65 0.7

0.43 0.52 0.59 0.61 0.65 0.7

Linearly non-separable case

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.4: Mistakes similarity: the number of matching mistaken predictions in

the test set between the model learned with SGD and L-BFGS as a proportion of

the number of mistakes made by L-BFGS A higher value indicates higher prediction

coincidence. The highest possible value is 1.

distinct than the unregularized one. For reference, the test loss of L-BFGS without

regularization in this case is close to 1.44.

A.3 SGD without learning rate schedule in the linearly

separable case

All the results reported in Chapter 3 considered a multi-step schedule for the learning

rate. However, our results from the experiments without using a schedule in the linearly

separable case allow for similar conclusions. In particular, as shown in Figure A.6,

without a learning rate schedule, in the linearly separable case, SGD cannot reproduce

the L-BFGS solution for any hyperparameter configurations among the ones we tested.

Additionally, as shown in Figure A.7, even without a learning rate schedule, SGD

still provides implicit regularization similar to L2 weight decay for some hyperparam-

eters and to early stopping for others.

Overall, even without a learning rate schedule, the conclusions for the linearly

separable case in Chapter 3 hold.

Appendix A. Additional results from the optimization study 53

6400 12800 19200 25600 32000 64000
Mini-batch size

1.40

1.42

1.44

1.46

1.48

1.50

1.52

1.54

Te
st

 L
os

s

= 0.0001

= 0.001

= 0.01

= 0.1
= 1

1%

3%

5%

10%

20%

Initial learning rate
0.01
0.1
1
10
L2 weight decay
Early milestones of L-BFGS

Figure A.5: Comparison of the (unregularized) loss in the test set between SGD

and regularized solutions of L-BFGS for the linearly non-separable case.* All the

specifications are identical as in Figure 3.2. For reference the test loss obtained with

L-BFGS without regularization is close to 1.44.

* For clarity in the chart, we ommit the values of λ and the early L-BFGS milestones

which are not relevant for comparison (have significantly different test loss than any

SGD configuration).

Appendix A. Additional results from the optimization study 54

64
00

12
80

0

19
20

0

25
60

0

32
00

0

64
00

0

Mini-batch Size

0.01

0.1

1.0

10.0

100.0

1000.0

Le
ar

ni
ng

 ra
te

-8.03 -8.1 -8.1 -8.11 -8.11 -8.05

-7.69 -7.81 -7.85 -7.89 -7.94 -8.03

-7.27 -7.4 -7.46 -7.5 -7.57 -7.69

-6.47 -6.6 -6.66 -7.06 -7.13 -7.26

15 10 15 10 14 14

240 188 236 190 229 227

Difference in test loss

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure A.6: Difference in the test loss between L-BFGS and SGD, without a learn-

ing rate schedule, for various hyperparameters configurations in the linearly sep-

arable case. Each value* is the difference: Jsgd−Jlb f gs where the loss is averaged over

the test set (See Equation 3.2). The specifications are the same as in the left panels of

Figure 3.1, except that here we do not use a schedule for the learning rate.

* Values were rounded to three significant figures

Appendix A. Additional results from the optimization study 55

6400 12800 19200 25600 32000 64000
Mini-batch size

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Te
st

 L
os

s

= 0.001

= 0.01

= 0.1

= 1

= 10

= 100

L-BFGS at 3% of training
L-BFGS at 5% of training

L-BFGS at 10% of training

Initial learning rate
0.01
0.1
1
10

Figure A.7: Comparison of the (unregularized) loss in the test set between SGD

without a learning rate schedule and regularized solutions of L-BFGS for the lin-

early separable case.* All the specifications are identical as in Figure 3.2. For refer-

ence the test loss obtained with L-BFGS without regularization is 9.18

* For clarity in the chart, we ommit the values of λ and the early L-BFGS milestones

which are not relevant for comparison (have significantly different test loss than any

SGD configuration).

Appendix B

Implementation details and class

distribution of tasks

In this Appendix, we provide further implementation details of the different tasks com-

posing the benchmark. Additionally, we present the class distribution of each task.

B.1 Tasks details

Supervised Tasks:

1. Fine-grained Classification. The standard image classification task of the the

ILSVRC 2012[35].

2. Coarse-grained Classification. An image classification tasks for which the classes

were relabelled into one of 25 super classes (hypernyms) of the original classes

in the fine-grained classification task. If some original class was not a subclass

of the 25 superclasses considered all of its samples were discarded for this task.

Some examples of superclasses are: dog, musical instrument, furniture, fruit,

car.

3. Parts Classification. An image classification task for which the classes were re-

labelled into one of six new classes constituting a part (meronym) of the original

object. The six distinct parts were chosen so that they are mutually exclusive

and objects which do not have them were discarded. Some examples of the new

parts classes are: handle, piano keyboard, shelf.

Colour Tasks:

56

Appendix B. Implementation details and class distribution of tasks 57

1. Image colour. Predicting the dominant colour of the image defined as the channel

(R,G, or B) for which the average pixel intensity of the whole image is highest.

2. central/corner/random pixel colour. 3-way classification tasks consisting in pre-

dicting the dominant colour of the centre, one of the four corner pixels (chosen

at random), and a random pixel respectively. The dominant colour is the channel

(R,G, or B) for which the pixel intensity at the given location is highest.

Luminosity Tasks:

1. central/corner/random pixel luminosity. 256-way classification consisting in pre-

dicting the (integer) luminosity value of the centre, one of the four corner pixels

(chosen at random), and a random pixel respectively. The luminosity was com-

puted with the perceived luminosity equation: L = 0.299R+ 0.587G+ 0.114B

[46].

2. Brightest region. Predict the region of an image with the greatest average lu-

minosity (computed as above). In particular, five equally-sized disjoint regions

were considered: the central crop and the four corners.

Low-level Tasks

1. Regions with corners. Predict which of the five regions of the image mentioned

above (the centre and corner crops) has corner peaks (detected with the FAST

algorithm [57]). In this way, there are 25 = 32 classes corresponding to all the

combinations of regions with corners.

2. Region with most edges. Predict which of the five regions (centre and corners)

has the greatest number of edges (detected with the Canny algorithm [9]).

Random Neural Networks tasks.

1. Gaussian networks. The targets for these tasks are generated by a MLP one hid-

den layer of 100 hidden units, a batch normalization layer, and 10 output units.

The target label for each example is simply the index of the output unit with the

maximal value for that input. The weights were initialized from a Gaussian dis-

tribution with zero mean and standard deviation of 1, 1.5, and 2 respectively for

each task. For the standard normal initialisation we considered also a task with

100 classes (output units).

Appendix B. Implementation details and class distribution of tasks 58

Scarcity Tasks:

1. N-way-K-shot tasks. Image classification tasks with N classes with K samples

chosen at random from the ImageNet dataset [48]. We considered the nine com-

binations of N = 10,20,50 and K = 1,5,10.

Robustness Tasks:

1. Noise tasks. Variations of the fine-grained classification task but with the in-

put images from the test set corrupted with noise for evaluation. In particular,

we used three types of noise: Gaussian noise with a standard deviation of 0.04,

shot/Poission noise with a rate of 250, and speckle noise with a standard devia-

tion of 0.15. These values were taken from the least severe noise category from

[29]

B.2 Class distributions

Figures B.1, B.2, B.3 show the class distributions of the training and test sets for the

different tasks of the benchmark.

Appendix B. Implementation details and class distribution of tasks 59

0 5 10 15 20
Class

0

1000

2000

3000

4000

5000

6000

7000
S

am
pl

es

coarse-grained classification
Train set
Test set

0 250 500 750
Class

0

10

20

30

40

50

60

fine-grained classification
Train set
Test set

0 1 2 3 4 5
Class

0

50

100

150

200

250

300

350

400
parts classification

Train set
Test set

semantic

0 1 2
Class

0

5000

10000

15000

20000

25000

30000

35000

40000

S
am

pl
es

image colour
Train set
Test set

0 1 2
Class

0

5000

10000

15000

20000

25000

30000

35000

40000

central pixel colour
Train set
Test set

0 1 2
Class

0

5000

10000

15000

20000

25000

30000

35000

corner pixel colour
Train set
Test set

0 1 2
Class

0

5000

10000

15000

20000

25000

30000

35000

random pixel colour
Train set
Test set

colour

0 1 2 3 4
Class

0

2000

4000

6000

8000

10000

12000

14000

16000

S
am

pl
es

brightest region
Train set
Test set

0 50 100 150 200 250
Class

0

250

500

750

1000

1250

1500

1750

2000

corner pixel luminosity
Train set
Test set

0 50 100 150 200 250
Class

0

50

100

150

200

250

300

350

400
central pixel luminosity

Train set
Test set

0 50 100 150 200 250
Class

0

100

200

300

400

500

600

700

random pixel luminosity
Train set
Test set

luminosity

Figure B.1: Class distributions of the training and test sets for the tasks of the

semantic, colour, and luminosity categories.

Appendix B. Implementation details and class distribution of tasks 60

0 1 2 3 4
Class

0

5000

10000

15000

20000

S
am

pl
es

region with most edges
Train set
Test set

0 5 10 15 20 25 30
Class

0

5000

10000

15000

20000

25000

30000
regions with corners

Train set
Test set

low-level

0 1 2 3 4 5 6 7 8 9
Class

0

5000

10000

15000

20000

25000

30000

35000

40000

S
am

pl
es

normal(0, 1.5) - 10 classes
Train set
Test set

0 25 50 75
Class

0

2000

4000

6000

8000

10000

12000

14000

16000

standard normal - 100 classes
Train set
Test set

0 1 2 3 4 5 6 7 8 9
Class

0

5000

10000

15000

20000

25000

30000

35000

40000

normal(0,2) - 10 classes
Train set
Test set

0 1 2 3 4 5 6 7 8 9
Class

0

5000

10000

15000

20000

25000

30000

35000

40000

standard normal - 10 classes
Train set
Test set

random networks

Figure B.2: Class distributions of the training and test sets for the tasks of the

low-level and random networks.

Appendix B. Implementation details and class distribution of tasks 61

0 5 10 15
Class

0

10

20

30

40

50

S
am

pl
es

20-way-1-shot
Train set
Test set

0 1 2 3 4 5 6 7 8 9
Class

0

10

20

30

40

50

10-way-1-shot
Train set
Test set

0 5 10 15 20 25 30 35 40 45
Class

0

10

20

30

40

50

50-way-10-shot
Train set
Test set

0 1 2 3 4 5 6 7 8 9
Class

0

10

20

30

40

50

S
am

pl
es

10-way-10-shot
Train set
Test set

0 5 10 15 20 25 30 35 40 45
Class

0

10

20

30

40

50

50-way-1-shot
Train set
Test set

0 5 10 15
Class

0

10

20

30

40

50

20-way-10-shot
Train set
Test set

0 1 2 3 4 5 6 7 8 9
Class

0

10

20

30

40

50

S
am

pl
es

10-way-5-shot
Train set
Test set

0 5 10 15
Class

0

10

20

30

40

50

20-way-5-shot
Train set
Test set

0 5 10 15 20 25 30 35 40 45
Class

0

10

20

30

40

50

50-way-5-shot
Train set
Test set

scarcity

Figure B.3: Class distributions of the training and test sets for the tasks of the

scarcity. The class distributions of the robustness tasks are not displayed, since these

are identical to the fine-grained classification task.

Appendix C

Evaluation results at the task level

Tables C.1, C.2, C.3, C.4, C.5, C.6, and C.7 show the evaluation results for each

task of the different categories.

Model fine-grained classification coarse-grained classification parts classification

Supervised 67.95% 88.82% 93.00%

Untrained 1.22% 27.78% 32.25%

MoCo-V1 39.51% 76.90% 81.88%

MoCo-V2 55.07% 86.72% 91.62%

BYOL 55.72% 84.16% 88.62%

SwAV 58.50% 87.37% 91.62%

DeepCluster-V2 59.86% 87.04% 91.00%

SeLA-V2 58.40% 87.54% 92.38%

InfoMin 57.91% 87.63% 90.25%

InsDis 38.37% 74.83% 80.88%

PIRL 40.71% 77.60% 83.38%

PCL-V1 47.18% 82.23% 84.50%

PCL-V2 52.86% 84.66% 87.25%

SimCLR-V1 53.43% 84.17% 87.50%

SimCLR-V2 55.58% 84.36% 87.38%

Table C.1: Test accuracy in the semantic tasks

62

Appendix C. Evaluation results at the task level 63

Model central pixel colour corner pixel colour random pixel colour image colour

Supervised 70.21% 66.39% 67.65% 85.51%

Untrained 70.08% 63.66% 66.63% 84.46%

Moco-V1 64.91% 60.34% 61.86% 72.78%

Moco-V2 69.54% 64.90% 66.02% 81.68%

BYOL 70.19% 64.70% 66.23% 82.98%

SwAV 70.47% 66.75% 67.36% 84.99%

DeepCluster-V2 70.57% 66.56% 67.10% 84.86%

SeLA-V2 69.50% 66.74% 66.55% 83.08%

InfoMin 68.86% 64.35% 65.66% 80.18%

InsDis 65.87% 61.40% 62.52% 74.82%

PIRL 65.65% 61.63% 62.60% 74.68%

PCL-V1 65.74% 59.66% 62.21% 72.54%

PCL-V2 68.26% 64.82% 65.30% 80.45%

SimCLR-V1 69.93% 64.17% 65.97% 82.67%

SimCLR-V2 71.22% 66.22% 66.85% 84.52%

Table C.2: Test accuracy in the colour tasks

Model central pixel luminosity corner pixel luminosity random pixel luminosity brightest region

Supervised 0.71% 2.00% 0.78% 36.19%

Untrained 1.18% 1.98% 0.94% 76.29%

MoCo-V1 0.85% 2.10% 0.81% 49.65%

MoCo-V2 0.81% 2.10% 0.78% 52.19%

BYOL 0.78% 1.89% 0.76% 43.82%

SwAV 0.72% 2.37% 0.92% 37.75%

DeepCluster-V2 0.81% 2.29% 0.81% 40.81%

SeLA-V2 0.83% 2.24% 0.89% 37.64%

InfoMin 0.85% 1.86% 0.80% 47.88%

InsDis 0.86% 2.29% 0.86% 52.29%

PIRL 0.89% 2.21% 0.91% 48.38%

PCL-V1 0.70% 1.45% 0.73% 33.08%

PCL-V2 0.72% 2.01% 0.81% 45.82%

SimCLR-V1 0.87% 2.17% 0.90% 45.45%

SimCLR-V2 0.87% 2.13% 0.88% 47.47%

Table C.3: Test accuracy in the luminosity tasks

Appendix C. Evaluation results at the task level 64

Model regions with corners region with most edges

Supervised 45.94% 40.17%

Untrained 47.82% 51.76%

MoCo-V1 45.76% 42.56%

MoCo-V2 47.03% 44.28%

BYOL 45.42% 42.79%

SwAV 44.40% 39.42%

DeepCluster-V2 44.05% 39.80%

SeLA-V2 43.80% 38.91%

InfoMin 46.28% 41.08%

InsDis 46.47% 43.46%

PIRL 45.80% 41.91%

PCL-V1 41.97% 37.03%

PCL-V2 44.11% 41.10%

SimCLR-V1 46.54% 43.82%

SimCLR-V2 46.03% 42.92%

Table C.4: Test accuracy in the low-level tasks

Model standard normal - 10 classes standard normal - 100 classes normal(0, 1.5) - 10 classes normal(0,2) - 10 classes

Supervised 63.06% 28.83% 62.85% 63.06%

Untrained 74.94% 44.67% 72.30% 74.94%

MoCo-V1 65.02% 30.64% 63.61% 65.02%

MoCo-V2 66.63% 32.27% 64.03% 66.63%

BYOL 63.96% 30.87% 63.03% 63.96%

SwAV 63.08% 29.40% 62.60% 63.08%

DeepCluster-V2 63.61% 29.66% 63.11% 63.61%

SeLA-V2 63.31% 29.07% 62.62% 63.31%

InfoMin 65.10% 31.43% 63.59% 65.10%

InsDis 65.62% 31.76% 64.10% 65.62%

PIRL 64.96% 31.33% 63.74% 64.96%

PCL-V1 62.51% 26.28% 62.49% 62.51%

PCL-V2 64.44% 30.42% 63.21% 64.44%

SimCLR-V1 64.21% 31.52% 63.42% 64.21%

SimCLR-V2 65.04% 31.36% 63.60% 65.04%

Table C.5: Test accuracy in the random networks tasks

Appendix C. Evaluation results at the task level 65

Model 10-way-1-shot 10-way-5-shot 10-way-10-shot 20-way-1-shot 20-way-5-shot 20-way-10-shot 50-way-1-shot 50-way-5-shot 50-way-10-shot

Supervised 89.40% 97.40% 96.80% 84.90% 96.80% 96.40% 78.08% 91.08% 92.32%

Untrained 17.00% 18.40% 23.00% 8.10% 11.10% 13.50% 4.04% 5.48% 7.36%

MoCo-V1 48.20% 79.40% 86.00% 41.60% 74.80% 81.60% 34.44% 56.36% 65.16%

MoCo-V2 76.40% 92.20% 92.80% 68.40% 89.40% 91.80% 59.00% 75.56% 79.60%

BYOL 63.80% 90.60% 93.00% 60.90% 88.90% 92.40% 52.56% 76.48% 81.76%

SwAV 75.40% 92.60% 93.40% 67.60% 92.40% 93.60% 55.72% 78.64% 82.24%

DeepCluster-V2 80.40% 90.80% 92.40% 67.70% 91.90% 93.60% 57.44% 80.88% 84.28%

SeLA-V2 38.20% 92.00% 91.20% 55.60% 89.20% 91.40% 55.72% 77.24% 80.76%

InfoMin 70.00% 90.40% 91.80% 69.30% 87.70% 89.90% 61.44% 76.92% 82.12%

InsDis 50.40% 82.40% 85.40% 46.30% 72.30% 78.00% 32.04% 54.36% 62.80%

PIRL 53.20% 81.60% 87.20% 45.90% 74.50% 81.30% 34.96% 56.44% 65.08%

PCL-V1 25.40% 76.20% 84.00% 26.40% 86.00% 88.40% 42.80% 71.92% 75.44%

PCL-V2 70.40% 92.80% 92.60% 67.20% 89.40% 91.80% 60.16% 77.44% 80.72%

SimCLR-V1 38.60% 88.40% 90.40% 43.90% 85.20% 87.20% 46.20% 71.32% 77.12%

SimCLR-V2 53.00% 90.20% 92.00% 48.40% 86.80% 90.00% 44.80% 72.56% 77.84%

Table C.6: Test accuracy in the scarcity tasks

Model Gaussian noise shot noise speckle noise

Supervised 61.11% 60.45% 50.01%

Untrained 1.19% 1.21% 1.07%

MoCo-V1 24.72% 24.14% 14.33%

MoCo-V2 50.23% 49.87% 42.98%

BYOL 49.97% 49.40% 39.71%

SwAV 52.30% 51.74% 42.90%

DeepCluster-V2 53.40% 52.85% 43.38%

SeLA-V2 53.40% 53.10% 45.51%

InfoMin 52.67% 52.33% 44.48%

InsDis 21.87% 20.64% 11.36%

PIRL 24.06% 22.68% 11.96%

PCL-V1 42.94% 42.22% 34.81%

PCL-V2 47.74% 48.18% 42.10%

SimCLR-V1 46.40% 45.66% 34.54%

SimCLR-V2 48.30% 48.37% 39.82%

Table C.7: Test accuracy in the scarcity tasks

	Introduction
	Background and related work
	Optimization in Machine Learning
	Unsupervised representation learning
	Current approaches
	Evaluation of unsupervised representation learning

	SGD optimization for linear evaluation
	Experimental setup
	Solutions comparison.
	SGD optimizes in the linearly non-separable case
	SGD regularizes in the linearly separable case
	Conclusions

	Representation learning benchmark
	Design principles
	Tasks categories
	Representations
	Evaluation protocol
	Outcome

	Evaluation results
	Methods evaluated
	Informative and correlated tasks
	Representations performance
	Baselines
	Instance contrast vs protoype contrast
	Projection heads and augmentation schemes
	Scarcity and robustness

	Conclusions

	Discussion
	Bibliography
	Additional results from the optimization study
	Similarity metrics to compare optimizers' solutions
	SGD and implicit regularization in the non-linearly separable case
	SGD without learning rate schedule in the linearly separable case

	Implementation details and class distribution of tasks
	Tasks details
	Class distributions

	Evaluation results at the task level

