
The BERT architecture for

the prediction of

peptide presentation by

MHC class I proteins

Hans-Christof Gasser

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2021

Abstract

BERT

Pooling

Tokenizer

MHC

Protein DB

N-Flank C-Flank

PTPE IDE MHCMHCMHC

Deconvolution

Presentation Score

Figure 1: Graphical summary

One of the biggest obstacles faced in prolong-

ing human life expectancy in high income coun-

tries today is cancer. In addition, recent events

have highlighted that viruses still pose a seri-

ous threat. The major histocompatibility complex

(MHC) class-I pathway facilitates the detection of

both of these by the immune system. It presents

parts of proteins present inside a cell (peptides) on

its membrane surface. If visiting immune cells de-

tect non-self peptides, they can terminate the cell.

Being able to predict which peptides will get

presented and which not can help improve the effi-

ciency of certain therapies. Current state of the art

(SOTA) models mainly use ensembles of shallow

fully connected neural networks. In this thesis, we

explore the application of BERT to this task and

use modern interpretation frameworks to gain biological insights.

As can be seen in Figure 1 our model (ImmunoBERT) takes as input an amino

acid sequence consisting of several parts. The main one is the peptide for which we

want to predict presentation. The next one is the peptide’s surrounding in its source

protein - which is the result of mapping the peptide to a protein database. And finally,

we also input a representation of the MHC class I protein which potentially presented

the peptide. We use a novel representation for this sequence and feed it into a BERT

model. Based on experiments we chose a fitting pooling layer and feed its output into a

multilayer perceptron. The fact that there are up to six MHC proteins in each individual

is a complication that requires us to perform deconvolution.

Using motifs and a novel application of SHAP and LIME to this domain, we iden-

tify the most important parts of the input sequence. In particular, we find that amino

acids close to the N- and C-terminals of the peptides are highly important. Also, some

positions of MHC proteins (in particular in the A, B and F pockets) are often assigned

a high importance ranking. We also observe that the flanks have little importance and

this decreases with distance to the peptide.

i

Acknowledgements

This thesis would not have been possible without the support and understanding my

parents have provided throughout my life. Thank you for this - in particular for being

so accepting of my extraordinary career choices.

It would also not have been possible without Ajitha Rajan, Javier Alfaro and Georges

Bedran who have proposed this exciting area of research, were always happy to speak

about the project and through discussions jointly supervised the project. Thank you.

Also, I thank the PL-Grid and CI-TASK Infrastructure, Poland, for providing their

hardware and software resources.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Hans-Christof Gasser)

iii

Table of Contents

1 Introduction 1

2 Background 3
2.1 Biology . 3

2.1.1 Proteins . 3

2.1.2 The MHC class-I pathway 5

2.1.3 Experimental datasources 6

2.1.4 MHC proteins and peptide binding 7

2.2 Machine Learning . 9

2.2.1 Deconvolution . 9

2.2.2 Negative examples . 10

2.2.3 Imbalanced datasets and metrics 11

2.2.4 BERT . 13

2.2.5 Interpretable AI . 16

2.3 Current state of the art . 18

2.3.1 NetMHCpan . 19

2.3.2 MHCflurry . 20

2.3.3 BERTMHC . 21

2.3.4 Notable other approaches . 22

3 Method 23
3.1 Data . 23

3.1.1 Decoy generation . 24

3.1.2 Data splits . 25

3.2 Model Architecture . 27

3.2.1 Tokenization and Embedding 27

3.2.2 Encoder . 28

iv

3.2.3 Pooling . 29

3.2.4 Head . 29

3.3 Training . 29

3.4 Evaluation . 30

3.4.1 Evaluation on the test set . 30

3.4.2 Comparison to MHCflurry and NetMHCpan 30

3.4.3 Interpretation . 30

4 Results 32
4.1 Hyperparameter search and training 32

4.2 Evaluation on the test set . 34

4.3 Benchmarking . 34

4.4 Interpretation . 35

4.4.1 HLA-A*33:01 . 36

4.4.2 HLA-B*54:01 . 38

4.4.3 HLA-C*01:02 . 39

5 Conclusion and future work 40

6 Appendix 41
6.1 MHC split . 42

6.2 Tokenization example . 43

6.3 Hyperparameter search . 44

6.4 Interpretation . 44

6.4.1 HLA-A*33:03 . 45

6.4.2 HLA-A*36:01 . 45

6.4.3 HLA-A*74:01 . 46

6.4.4 HLA-B*37:01 . 46

6.4.5 HLA-B*46:01 . 47

6.4.6 HLA-B*58:01 . 47

6.4.7 HLA-B*58:02 . 48

6.4.8 HLA-C*15:02 . 48

6.4.9 HLA-C*17:01 . 49

v

Chapter 1

Introduction

The immune system defends the human body from a broad range of threats. Some of

these manifest inside the body’s own cells. For example viruses and cancer both utilize

the cell’s gene expression system to facilitate their own reproduction and spreading.

Cytotoxic T-lymphocytes (CTL), a special kind of T-cells, can detect affected cells and

terminate them. To do so, they require a way to ‘look inside’ the body’s cells. A sys-

tem revolving around the MHC proteins facilitates this in many higher vertebrates [1].

MHC proteins are also called Human Leukocyte Antigen (HLA) in humans. This thesis

focuses on the MHC class I (MHC-I) proteins and their antigen presentation pathway

which is active in all nucleated cells of the human body [2]. Proteins present in these

cells are constantly being fragmented into smaller pieces - so called peptides. These

then bind to the MHC proteins forming peptide:MHC protein complexes (pMHCs),

which are then transported to the cell membrane. There, the peptides get presented

on their ‘MHC pedestal’ to the outside world. The pMHC are antigens for the T-cell

receptors (TCRs). The exact part of the antigen where the TCR binds is also called an

epitope. [3, 4]

An infection by a virus or a cancer causing mutation, can both result in the pro-

duction of proteins that would otherwise not be present in a healthy cell. Eventually

this leads to the presentation of neo-antigens (non-self pMHC) to the outside world [5,

6]. Dependent on whether the CTL consider the peptides presented to them as self or

non-self, they decide to terminate the cell. The human body, therefore, already has the

ability to fight viruses and cancers. Many cancers, however, have evolved mechanisms

to circumvent the immune system. An example is tumor-induced immune suppres-

sion [7]. Check-point inhibitors are used to counter this. Peptide-based vaccines are

another tool that can be used to strengthen the immune response. Identifying which

1

Chapter 1. Introduction 2

peptides will most likely be presented by a cancerous cell and elicit an immune re-

sponse (immunogenic peptides [8]) is an important component in the development of

peptide-based vaccines [9]. One way to achieve this in silico, is by utilizing machine

learning (ML). The usage of the BERT model to predict the first part of this - peptide

presentation, is the topic of this thesis.

Although an important step, presenting foreign peptides (neo-antigens) is not suf-

ficient to elicit an immune response. For example, the presented peptide needs to bind

sufficiently strong to a TCR as well. This step is not part of our analysis. Another group

of models deals with this step (for example DeepImmuno [8]). Many other factors need

to be considered as well in vaccine development. For example, the MHC-I pathway is

typically only capable of presenting the cell’s endogenous protein fragments. Several

methods can be used to internalize the peptides from a vaccine. For example profes-

sional antigen presenting cells (e.g. dendritic cells) can internalize exogenous material

and then present it to the outside world via the MHC-I pathway. Glycans and other ad-

juvants might be required to facilitate the vaccine uptake [7]. This is an active research

area.

As stated above, this thesis explores the application of the BERT architecture to

the epitope presentation prediction via the MHC-I pathway in humans. To do so we

first develop a for this problem novel architecture based on a pretrained BERT model.

The resulting model achieves competitive performance to current SOTA models on an

independently curated benchmark set. In addition, a motif analysis confirms that our

model has indeed learnt MHC allele dependent peptide specificities. In a novel step

we then apply SHAP and LIME to find the parts of the peptide, MHC protein and

surrounding flanks of the peptide, that are particularly relevant for presentation.

Chapter 2 presents the relevant biological and ML concepts before lining out the

current SOTA in T cell epitope prediction. Then Chapter 3 introduces the datasets

and methodology we used. The results achieved and the interpretation are presented

in Chapter 4. We finish with a small discussion and suggestion for future research in

Chapter 5.

Chapter 2

Background

A solid understanding of the underlying biology is required to design a model capable

of predicting the peptides presented by a cell. So, this is introduced before the relevant

ML concepts.

2.1 Biology

Our discussion of the biology begins with a subsection about proteins, which also lines

out why peptide presentation is a suitable mechanism to transfer information about

a cell’s state of health to the outside world. Then we present the MHC-I pathway

that implements the presentation process. The experimental datasources used for its

examination in the context of presentation prediction are discussed then. Finally, we

will introduce the MHC protein and its naming convention.

2.1.1 Proteins

Proteins play a central role in the human body. They consist of amino acids (AAs)

chained together via peptide bonds [10]. In general, an AA consists of an amino group

a central carbon (with a hydrogen atom), an AA specific side chain and on the opposite

side to the amino group, there is a carboxyl group [11]. During the formation of the

peptide bond, the carboxyl group of one AA is connected to the amino group of the next

one. The end of the chain with the amino group is called N-terminus the end with the

carboxyl group is called C-terminus. There are 20 AAs encoded by the genetic code

[10]. Each of them can be represented by a letter. Once joined together by peptide

bonds, we refer to the single AAs as residues. Short chains of residues are referred to

3

Chapter 2. Background 4

as peptides, while longer ones are referred to as polypeptides.

The blueprints for the proteins produced by a cell are stored in deoxyribonucleic

acid (DNA) molecules. These are chains of nucleotides. Each nucleotide contains one

of four bases. Parts of these very long DNA molecules can be transcribed (copied) into

shorter messenger ribonucleic acid (mRNA) molecules. Dependent on the bases, ribo-

somes then translate groups of three mRNA nucleotides into AAs that get appended to

a protein in production [10].

While peptides behave like flexible strings, longer polypeptide chains and proteins

typically adopt a 3D molecule structure due to the features of their residues (e.g. hy-

drophobic and hydrophilic regions) and bonds forming between them. We distinguish

four levels of protein structure - with the lower levels influencing the emergence of the

higher ones [11]. Primary structure refers to the polypeptide’s sequence of AAs. It can

be represented as letters (one per AA), written from N to C-terminus. Due to hydrogen

bonds forming between distant AAs in the polypeptide a secondary structure emerges.

This could be structural features like α-helices and β-sheets. These secondary struc-

tures can get packed to form regions of defined 3D shape - tertiary structures like

β-barrels or coiled coils. Eventually, several of these (then called domains or subunits)

can combine - referred to as quaternary structure [11].

In eukaryotic proteins, one domain often corresponds to one exon (translated area

of the gene code, interrupted by introns - not translated ones). Similar exons coding

for similar domains are often found at distant parts of the genome. They are like

”modules” that can be used in several proteins. The genes coding for these typically

share a common ancestor. Such a relationship is referred to as homology and they are

often similar on a functional level but may differ in AA sequence [10, Chapter 3]. This

makes splitting up the dataset into train, test and validation set to assess generalization

capability more complex (see Subsection 3.1.2).

Proteins perform tasks as diverse as breaking up nutrition into its components,

muscle movement and sustaining cell structure. Because of the wide range of func-

tions they can perform, controlling which proteins are present in a cell is so important.

For example, cancer is essentially a set of DNA mutations (and/or epigenetic changes)

that change cell behaviour by causing changes to the cell’s proteome. In healthy cells,

cell division is strictly controlled and most cells enter a non-dividing state. However,

if sufficient pathogenic changes to the genetic material accumulate, the brakes on this

system can loosen (e.g. due to mutations that render tumour suppressor proteins use-

less) and the inappropriate activation of oncogenes (supporting cell division) can lead

Chapter 2. Background 5

to uncontrolled propagation of the tumour [10, Chapter 41, Section X]. In comparison,

a defining feature of viruses is their inability to reproduce themselves. They, therefore,

need to capture the host’s protein expression system to do so. This will also lead to

changes to the cell’s proteome.

2.1.2 The MHC class-I pathway

Therefore, presenting information about the proteins present inside the cell transfers

valuable information about the cell’s state of health to the outside world. This is

achieved via the MHC-I pathway which has the following steps [12]:

1. Proteasomes fragment the cell’s internal proteins into peptides

2. transporter associated with antigen processing (TAP) proteins transport these

peptides into the endoplasmic reticulum (ER)

3. In the ER there reside membrane bound MHC-I proteins, which can bind with

the peptides to form pMHC.

4. The pMHCs get transported to the cell membrane, where the MHC protein acts

as a pedestal for the peptide and presents it to the extracellular fluid

5. A CTL with a fitting TCR could bind a presented neo-antigen. This might trigger

an immune reaction, as CTLs do not strongly bind to ”self” peptides (the body’s

own peptides) but only non-self ones. CTLs are trained for this in the thymus by

positive- and negative selection [3].

With regards to step 1 Figure 2.1 shows that inside the cell’s cytoplasm, proteins

are constantly degraded into peptides (mostly of 7-8 AAs length [13]) by protea-

somes. There are three different types of proteasomes, having different specificities

[12]. While the proteasomes generate the exact C-terminal cut, the produced frag-

ments can further be cut down by peptidases on their N-terminals in the cytoplasm

[14]. To reach the ER these are bound by TAP proteins that are responsible for the

peptides’ transfer to the ER (step 2). The affinity of these TAP proteins peaks at pep-

tide lengths of 11 AA [13]. Since the peptides go through both filters - proteasomes

and TAP - the distribution of those making it to the ER concentrates at 9-10 AAs. With

regards to sequence specificity, MHC binding is far more restrictive than proteasomal

cleavage as well as TAP transport and it seems their main role is to deliver right length

peptides to the ER and not to act as a sequence filter [13].

Chapter 2. Background 6

In the ER the peptides encounter membrane bound MHC proteins. It has been

shown that the binding of MHC proteins to peptides (step 3) is a particularly restrictive

step in the MHC-I pathway - with only roughly 1 in 200 randomly generated peptides

binding [15]. These MHC proteins differ between individuals. In fact, each individual

has several different MHC proteins as well. Within the human MHC located on chro-

mosome 6 at 6p21.3 there are three main loci coding for MHC-I proteins: HLA-A,

HLA-B and HLA-C [2]. As Homo sapiens is a diploid species, each human therefore

can express up to six different HLA-A, HLA-B and HLA-C proteins. Each of those can

have different binding properties. As these gene regions are highly polymorphic and

there are many different HLA alleles in the human population, there is a large variety

in immunopeptidomes (the entirety of all presented peptides) across humanity. In fact,

currently there are more than 4,064 HLA-A, 4,962 HLA-B and 3,831 HLA-C proteins

known [16]. Each of these can bind roughly 1,000 to 10,000 different peptides [17].

If the binding between MHC and peptide in step 3 is successful, a complex (pMHC)

forms. This can then migrate to the cell membrane. Here, the peptide is presented

to the extracellular environment by the MHC protein - which acts as a pedestal for

the peptide (step 4). Whether this results in an immune reaction or not, depends on

whether a CTL with a fitting TCR gets in contact with the pMHC and the presence

or absence of other signals. Approximately half of the peptides will not be detected

due to a limited TCR (CD8+) repertoire [15]. In total, [15] estimate that just one out

of 2000 random peptides (8-11 AA long) of a foreign antigen will be presented by a

particular MHC protein and cause an immune reaction.

Interestingly, in addition to their role in adaptive immunity, MHC proteins also

have an inhibitory influence on natural killer cells [2] (part of innate immunity). This

way, a tumour cell that switches off MHC production completely will also be de-

stroyed. However, what happens after peptide presentation at the cell surface is not

part of our examination.

2.1.3 Experimental datasources

As the most restrictive step in epitope presentation is MHC binding, measuring the

binding affinity (BA) between a particular MHC protein and a peptide in vitro, can

give us some insight into how likely it is that a particular peptide will be presented

to the extracellular environment. Early presentation predictors were, therefore, only

trained on this BA data. Its biggest disadvantage is, that it is costly to carry out the

Chapter 2. Background 7

Figure 2.1: MHC-I pathway [18]

experiments that then only generate little data [19].

In the modern high throughput eluted ligand (EL) approach, the whole immunopep-

tidome of the cell is harvested and then the peptides are identified using mass spectrom-

etry [20]. This identifies many peptides at once. However, it is typically not possible

to measure which of the up to six different MHC alleles presented which eluted pep-

tide. Monoclonal cell lines, that only express a single MHC allele are a potential way

around this limitation. There also exist algorithms to identify which allele is respon-

sible for a peptide’s presentation. This step is called “deconvolution” in the literature.

However, it also often relies on data that can be unambiguously ascribed to a single

allele to kickstart it (see Subsection 2.2.1).

Another disadvantage of the EL approach is, that it does not generate definitive

negative examples. It only reports about the presence of a peptide at the cell’s surface.

It cannot assert the absence of a peptide from the individuals immunopeptidome. For

example a peptide present in the human genome, might only not be presented by the

cell because its protein is not being expressed by the particular cell. Despite it’s draw-

backs, the high quantity of data generated by this approach will make it the backbone

of our examinations.

2.1.4 MHC proteins and peptide binding

There are several types of MHC proteins. We will only concentrate on the classical

MHC-I proteins here. Each of those is a hetero-dimer consisting of the non-covalently

Chapter 2. Background 8

bound transmembrane heavy chain α and the light chain β2-microglobulin [21]. The

α chain has two membrane distal α1 and α2 domains that form a potentially peptide

binding groove. The α1 and α2 domains each consist of a sheet of four antiparallel beta

strands and a single helical region. The beta sheets of the two α domains together, form

the floor of the groove, while the helices each form one of its sides [22]. The residues

lining this groove are also the ones showing the highest number of polymorphism. Six

pockets (A-F) were identified for peptide binding. In particular pockets A and F are

responsible for binding the peptide’s N- and C-termini [21]. Most peptides are firmly

embedded into the binding groove and terminated on both sites by the A and F pocket.

So, there is little variation with regards to bound peptide length. Bulges and in a very

few cases protrusions out of the groove can, however, lead to longer peptides binding

[21].

As already mentioned, there are many different MHC alleles. So, the following

naming convention has been adopted in humans [23]. The full name of a MHC allele

could look like: HLA-A*04:18:03:01N. The letter after HLA (’A’) signifies the gene

that we are referring to. Then, the following number (’04’) stands for the allele group.

This often corresponds to the serological antigen carried by it. The second number

(’18’) refers to the subtype. Importantly, HLA alleles that differ in any of those three

parts (’A’, ’04’ or ’18’), will also differ on an amino acid level. So, these parts de-

termine the specific HLA protein. In contrast, the third number (’03’) only signifies

substitution mutations in the gene that do not lead to a different protein. The last num-

ber (’01’) orders the alleles with respect to mutations in the introns. Finally, the suffix

(’N’) can be used to transfer information about the expression of the allele. For ex-

ample, if an allele would not be present on the cell surface. For our purposes, we will

only consider the gene and the first two numbers.

Differences in HLA proteins present in an individual do have real world conse-

quences. For example, while HLA-B*42:01 is linked to better outcomes for HIV suf-

ferers, HLA-B*42:02 is not, despite them only differing in one amino acid position

[24]. In contrast, HLA-B*35:03 is suspected to be connected with fast AIDS progres-

sion, while the only at one position differing allele HLA-B*35:01 is not [24]. The

differences are not limited to viral infections. In the Gambia HLA-B*53 was shown to

be present in 25% of healthy and mild malaria cases while only to be present in 15% of

severe cases - suggesting an approximately 40% reduction in the risk of severe malaria

[2].

Chapter 2. Background 9

2.2 Machine Learning

Based on the last section, predicting the immunopeptidome of a particular individual

is difficult mainly because of three facts. First, as any of the up to six MHC-I alleles

present in the cell might be responsible for a peptide observation in an EL experiment,

the problem does not fit well into the supervised learning framework in which x results

in y. Second, the high throughput eluted ligand assays only produce positive examples

resulting in the need to create artificial negative ones (decoys). This is, third, aggra-

vated by the fact that in reality most peptides will not be presented on the cell’s surface

(imbalanced dataset). In this section we discuss these issues in turn and then present

the backbone architecture used by us - BERT, before introducing the techniques we

will employ for its interpretation.

2.2.1 Deconvolution

With regards to the first obstacle, deconvolution refers to the process in which each

peptide is associated to its presenting MHC protein [19]. Several approaches have

been put forward to deal with this challenging task. We already mentioned the possi-

bility to use cell lines only expressing a single MHC allele. However, bioinformatics

has also produced in silico ways to tackle this task. For example the usage of un-

supervised sequence clustering - like Gibbs clustering. This, however, needs manual

curation like providing the correct number of clusters and sometimes also during the

assignment of those clusters to MHC proteins [19]. As an alternative, [25] have de-

veloped a mixture model approach that models the likelihood of the observed eluted

ligands of a sample (with up to six different HLA proteins) as the mixture of several

position weight matrices (PWMs). They observe that most of the observed peptides

show a good match to only one of those PWMs and so can be assigned to this. These

PWMs are then assigned to known PWMs of alleles from IEDB.

Looking at deconvolution from the perspective of weakly supervised learning -

in particular Multi Instance Learning (MIL) - points us towards solutions based on

single allele models. MIL assumes that several instances xn j do each belong to a class

yn j = 1 or not yn j = 0. However, these yn j are not directly observed. We only know

the classifications yn for bags Xn of instances (Xn = (xn1,xn2, ...,xnm)). The presence

of a single instance belonging to a class in a bag is sufficient for the whole bag to be

labelled with this class (∃ j,yn j = 1⇒ yn = 1). Only if all instances do not belong to the

class, then the bag’s label is zero (∀ j,yn j = 0 ⇒ yn = 0). This means that yn = max jyn j

Chapter 2. Background 10

[26]. These bag level labels yn are what is contained in the data. There are two main

categories of MIL algorithms [27, 26]. The traditional approach is instance-level based

while the alternative is embedding-level based.

In instance-level based methods, a function f estimates the classification for each

instance ˆyn j = f (xn j). The class of the whole bag is estimated as the maximum estimate

of the bag’s instances ŷn = F(Xn) = max j f (xn j) [28]. In contrast, in embedding-level

approaches, f does not directly estimate the instance’s classification but only produces

an embedding. A pooling operation is used to obtain a fixed dimensional representation

of the whole bag. This representation is then fed into a classifier for the whole bag. Al-

though [27] have demonstrated, that the latter approach can have higher performance,

we will stick to the former one as it fits better to the fact, that our data also contains ob-

servations that can be clearly assigned to a single allele. Also, the traditional approach

is implicitly loosely followed by NetMHCpan’s deconvolution mechanism [19] and

BERTMHC [29].

So, in the instance-level approach the estimation for the bag’s classification is the

maximum of the individual estimates. The maximum is not differentiable everywhere

which is a requirement for gradient based learning algorithms. There is, however, a dif-

ferentiable version of the max available - the LogSumExp (max j x j ≈ 1
β

log∑expβx j).

However, since the astonishing success of the ReLU activation function in neural net-

works, the concerns about not being differentiable locally seem to have eased a bit and

we will see that the current SOTA model NetMHCpan also implicitly relies on the max

pooling via the NNAlign MA framework (see Subsection 2.3.1).

2.2.2 Negative examples

The previous section argued that our problem differs from the traditional supervised

learning setting with regards to the inputs. Here we argue, that it also differs with

regards to the output. In the supervised setting, the training data is assumed to be

fully labelled [30]. However, in our case, there are no (few if we were to include BA

data) negative examples available. We do have a lot of positive examples (peptides

eluted from the cell’s surface) and even more unlabelled data (the whole part of the

human proteome expressed in a sample). This fits into the category of positive and

unlabelled (PU) learning, which is closely linked to the problem of one-class clas-

sification in which only positive examples are available. [31] have analysed the PU

setting in particular with regards to the transporter classification database for mem-

Chapter 2. Background 11

brane transport protein analyses (TCDB) which stores proteins involved in signalling

across membranes (positive examples) and the SwissProt database (unlabelled exam-

ples). In addition to the input variable x and the class label y ∈ {0,1} they introduce s,

that signifies whether an example is labeled (s = 1) or not (s = 0) and assume:

• Only positive examples are labeled: P(s = 1|x,y = 0) = 0

• For a positive example, whether it is labelled or not is independent of x:

c = P(s = 1|x,y = 1) = P(s = 1|y = 1)

They call a classifier g(x) = P(s = 1|x) that distinguishes between labelled and

unlabelled examples a non-traditional classifier and proof that:

P(y = 1|x) = P(s = 1|x)
c

(2.1)

Therefore, f (x) = g(x)
c is a traditional classifier for the original class. Furthermore,

[31] show three ways to estimate c using the non-traditional classifier g and a val-

idation set V , consisting of positive (P) and unlabelled data. The first estimator is

ĉ1 =
1
|P| ∑x∈P g(x), the second ĉ2 =

∑x∈P g(x)
∑x∈V g(x) and the third one ĉ3 = maxx∈V g(x). These

estimators rely on the classifier g being powerful enough to capture the probability

exactly (not mis-specified). They argue, that if g(x) = P(s = 1|x) only approximately,

then ĉ1 is the best choice.

While Equation 2.1 directly points towards adjusting the threshold of g(x), that is

typically 0.5 to the value 0.5
ĉ1

to construct the classifier f (x) for the actual class we

are interested in predicting, they also propose a second way that leaves the threshold

unchanged to achieve this. This relies on splitting up every unlabelled example into a

positive one and a negative one and train the classifier using different weights for these.

In an example analysis they perform with the TCDB and SwissProt data mentioned

before, they find that those two versions perform similarly well.

Their results deliver the theoretical justification for our approach. However, we

will not re-scale the threshold since we will only benchmark our classifier vs generated

negative data (decoys). If we, however, were to use it for real prediction, we would

have to scale the threshold in accordance to Equation 2.1.

2.2.3 Imbalanced datasets and metrics

Although we only have positive examples, the unobserved implicit negative ones out-

weigh the observed positive ones by a considerable margin as only one out of roughly

Chapter 2. Background 12

200 randomly generated peptides will bind (see Subsection 2.1.2). This raises the

question of how to deal with this imbalance. Many standard learning algorithms ex-

perience significant problems when dealing with imbalanced data - however to what

degree the original dataset should be balanced is still open to debate [32]. It seems that

it has to be answered on a case by case basis. However, Weiss and Provost [33] have

shown that selecting accuracy as the relevant performance metric tends to favour stick-

ing close to the natural class distribution, while selecting area-under-the-curve (AUC)

based metrics favours more balanced class distributions.

He and Garcia [32] argue, that accuracy is in general not a good metric when as-

sessing performance on highly skewed datasets. If the majority- to minority class ratio

was 999:1, then a classifier always predicting the majority class has an accuracy of

99.9% - despite it missing all minority class examples. There are alternative metrics

available that result in a more balanced assessment.

A typical binary classifier scores an example with values between 0 and 1. Scores

above a predefined threshold are considered positive (belonging to the class), those

below negative. If a positive prediction is correct, it is a true positive (TP) example,

if incorrect a false positive (FP) one. Equally, a correct negative assignment is a true

negative (TN) example, and an incorrect one a false negative (FN). In the equations

below, TP(threshold) means the threshold dependent count of all TP examples across

the relevant dataset. Equivalently, FP, TN and FN are defined [32]:

Recall or TPR(threshold) =
T P(threshold)

T P(threshold)+FN(threshold)
(2.2)

FPR(threshold) =
FP(threshold)

FP(threshold)+T N(threshold)
(2.3)

Precision(threshold) =
T P(threshold)

T P(threshold)+FP(threshold)
(2.4)

AP = ∑
n
(Recall(Tn)−Recall(Tn−1)) ·Precision(Tn) (2.5)

A common way to visualize a classifier’s diagnostic ability is the receiver-operating-

curve (ROC). It emerges when we let the classifier’s threshold slowly increase from

zero to one and plot the false positive rate (FPR) (Equation 2.3) on the x-axis and the

true positive rate (TPR) (Equation 2.2) on the y-axis. A good classifier will have a high

area under this emerging curve - the AUC-ROC.

An alternative visualizations are precision-recall (PR) curves. They emerge, when

we let the threshold slowly increase from zero to one and plot the recall (Equation 2.2)

on the x-axis and the precision (Equation 2.4) on the y-axis. The average precision

Chapter 2. Background 13

(AP) [34] is a common way to summarize a PR curve. It is calculated based on a series

of increasing threshold values (Tn, see Equation 2.5).

We will use the AUC-ROC due to its easy interpretation. However, [32] argue that

PR curves provide a more informative representation of a model’s performance under

highly imbalanced data. Therefore, we will visualize the performance using PR curves

and also calculate the AP metric.

2.2.4 BERT

The backbone of our classifier is a Bidirectional Encoder Representations for Trans-

formers (BERT) [35] model. This belongs to the Transformer class of neural networks

that have been pushing the SOTA performance in many natural language processing

tasks. In particular big models like GPT-3 [36] have captured the public’s imagination

[37]. While the original Transformer consists of an encoder and a decoder [38], BERT

only has an encoder stack, producing one contextualized embedding for each input

token.

The revolutionary idea in transformers is the consequent usage of self-attention

layers - signified by the original paper’s title ”All you need is attention” [38]. Attention

enables a neuron to focus on the output of any preceding layer position. Crucially,

it can focus on far away positions and directly access their outputs - without them

going through many operations. This is particularly useful when dealing with long

sequence data. In comparison, recursive neural networks struggle to take into account

far away text parts (long-range dependencies) and are prone to vanishing gradients

[38, 39, 40]. More recently, these advantageous properties of transformers have also

been exploited for visual tasks by [40]. While convolutional neural networks (CNNs)

can connect information from two distinct points in a picture only in their upper layers

(small receptive fields in low ones), transformers can do this already in early ones [40].

Transformers use a very special type of attention. There are in general three types

of attention. Hard attention, soft attention and self-attention [41]. Let us assume that

for each example, a lower layer produces n vectors o j as output. In our setting, each

of these n vectors could correspond to an amino acid of a peptide we want to classify.

Hard attention would only consider a subset of m ≤ n of these as input for the next

higher layer - completely disregarding the others. This is a non-differentiable opera-

tion that we will not consider any further in this thesis. Soft-attention, in comparison,

is often used for pooling. It calculates weights for each o j (e.g. by calculating the dot

Chapter 2. Background 14

product of a learned vector with all o j followed by a softmax operation). The weighted

sum of the o j is then the single fixed dimensional input vector to the following layer

[42]. We will come back to this again when we discuss the various ways of pooling

the output of our model’s BERT backbone before feeding it into the classifier’s head.

Finally, self-attention is the form of attention used by transformers [38]. The standard

implementation uses learned transformations to produce a value v j, query q j and key

k j vector for each output vector o j. An intuitive way to think about those is to see

the key vector as encoding what type of information is encoded in the position (sim-

ilarly to the key in e.g. a hash table). The query vector then encodes which type of

information a position in the next layer requires as input. If the information encoded at

position j and the information required at position i are similar, then ki and qk should

be similar. Therefore, a dot product (cosine simularity) is calculated for each of the n2

possible position pairs. This represents the weighting that the v j will have in the input

to position i. In addition, BERT performs several of these in parallel (multiple heads),

allowing a neuron to focus on several aspects at once.

Although transformers have been successful in tackling the long-range dependency

issue, their biggest strength is also their biggest weakness. Self-attention assesses the

importance of each lower layer output for each higher layer input. This defines a

squared complexity task [43]. Therefore, BERT models are often limited to relatively

short sequence lengths. There are initiatives to alleviate this. For example google’s

Reformer [44] network uses the sparseness of the attention matrix. Using locality

sensitive hashing allows them to focus the attention calculation on the values with the

closest indices to the keys. This approach allows them to reduce the complexity of the

self-attention operation to n log(n). The application of these optimized models to our

task is an promising area for future research.

BERT pretraining: The BERT framework [35] postulates two steps in training a

model for a new task - pretraining and fine-tuning. For pretraining, a vast amount of

unlabelled data is used to perform self-supervised learning tasks. The original BERT

paper [35] uses Masked Language Modelling (MLM) and Next Sentence Prediction

(NSP). In MLM, part of an input sentence (typically 15% of the tokens) are hidden -

80% with a masking token, 10% with a random token and 10% with the same token.

The model has to fill only those positions with their original tokens. This contrasts

to de-noising auto-encoders, that reconstruct the whole original input [35]. As MLM

allows and requires the network to use information from both sides of the gaps, it en-

courages the emergence of bidirectional representations for the input tokens. So, the

Chapter 2. Background 15

final BERT layer’s outputs can be seen as context-sensitive features. This contrasts to

traditional embeddings, that are only dependent on a single token and not its context.

By not always replacing the hidden parts with the masking token, [35] want to allevi-

ate the mismatch between pre-training vocabulary and fine-tuning vocabulary (which

typically does not include the masking token). They also mention that keeping the

transformer in the dark about exactly which parts have been replaced, forces it to keep

a contextual representation of every position. To encapsule relationships between sen-

tences, NSP pretraining is used. This should prepare BERT for tasks like question

answering and natural language inference [35]. The self-supervised learning task is to

predict whether the second sentence input into the model follows after the first one.

The pretrained protein BERT model we use (TAPE), was only pretrained using MLM.

TAPE [45]: In the domain of protein prediction, the Tasks Assessing Protein

Embeddings (TAPE) transformer model [45] implements the hugging face interface for

the BERT model. It has 12 layers with 12 attention heads each. It has been pretrained

for 1 week on 4 GPUs on more than 32 million protein domains [45, supplement] from

the Pfam database using masked-token prediction (MLM) [46]. Next to the BERT

transformer model, [45] also pretrained several other models (LSTM, ResNet).

After the pretraining, they fine-tuned common SOTA task specific model architec-

tures using the embeddings generated from these models as well as baseline embed-

dings (like one hot encoded amino acids). During fine tuning they trained the full stack

(including the pretrained model). The TAPE framework includes tasks coming from

three important areas of protein biology: structure prediction, detection of remote ho-

mologs and protein engineering. They find, that pretraining positively influences the

performance on downstream tasks and that the best performing architecture (BERT,

LSTM, ResNet) for embedding generation is task dependent [45, Table 2]. There are

alternative protein transformer models available as well - like ProtTrans [47]. How-

ever, due to its small size, our limited computing resources and that it has already been

fine tuned previously for MHC class II (MHC-II) prediction (see Subsection 2.3.3), we

use the TAPE transformer model as the backbone for our model.

As transformers have shown impressive performance in many ML tasks [38, 36,

40, 45, 47], we want to explore whether they can also be applied to our task outlined

in the introduction. Before, we present two frameworks for model interpretation and

introduce the current SOTA approaches in this field.

Chapter 2. Background 16

2.2.5 Interpretable AI

To check, whether our model f has learnt relationships grounded in biology, we em-

ploy two explanatory frameworks: Local Interpretable Model-agnostic Explanations

(LIME) [48] and SHapley Additive exPlanations (SHAP) [49]. We can only give a

brief introduction on those two methods here.

LIME [48]: As its name suggests, LIME produces local (for a particular example)

explanations, treating the model f to be explained as a black-box (model-agnostic). It

is motivated by the observation that simple models are often easy to explain but deliver

worse performance than more complicated ones [48]. Therefore, the LIME frame-

work builds a surrogate model g for the actual model’s behaviour around a particular

example x. The standard surrogate model used by the package is a ridge regression.

This is trained to explain the original model’s predictions. As input it receives in-

terpretable data. This could be a binary vector z′ with the same dimension as the

feature space of the original model. The binary vector is used to generate a mutated

example. Where a feature of the binary vector is 1, the feature value of the original

example is used. Where the binary vector’s feature is 0, an imputed value is used.

The imputation is domain specific. We will use the text version. In this case, the

feature j (word) is just deleted if z′j = 0. In contrast, LIME tabular samples values

from a Gaussian around the feature mean or the original feature - the LIME pack-

age (https://github.com/marcotcr/lime) offers a lot of optionality here. The conversion

from binary into original feature space is performed by the function z = hx(z′) which

depends on the example to explain x. In a next step, a distance to the original example

is calculated, which is used as a weight for the sample in the training of the surrogate

model. If a feature is particularly important for the prediction of the original example,

then its addition in the binary feature should change the surrogate’s estimate a lot. This

means having a high coefficient.

Shapley values: Although intuitively clear, LIME has little theoretical grounding.

In fact, it is well suitable to explain, how the predictions of the original model will

change in the vicinity of the example to be explained, however, in general it fails to

attribute the difference between the average prediction over the dataset and the exam-

ple’s prediction fairly to the various features. This is, because the only method that

does this (and satisfies certain conditions) are Shapley values [50], which measure the

contribution of each feature value to the prediction for a particular example. Shapley

values have their origin in game theory and are the only way to fairly attribute the

Chapter 2. Background 17

outcome of a ‘game’ satisfying four quite basic axioms [49, supplement]:

• Efficiency: The sum of the Shapley values is equal to the original prediction

• Symmetry: If the inclusion of two features individually has the same effect on

the estimator, then their Shapley values must be the same

• Null effects: Features not considered by the model, have a Shapley value of zero

• Linearity: A feature’s, Shapley value for the sum of two models is the same as

the sum of its Shapley values in the two models

A feature’s Shapley value is computed by calculating the difference between the

predicted value of a model trained to take into account that feature and one not taking

it into account. This is done and averaged over all possible combinations of feature

subsets, resulting in the feature’s Shapley value. Equation 2.6 shows how the Shapley

value of feature i from the feature set F is calculated for the prediction of an example

x. fS denotes the model trained only on the features in set S and xS the subset of S

features from x. Computing the whole expression is impractical for more than only a

few features, due to the need to train and evaluate many models (O(2nr of features)). This

led to the introduction of Shapley sampling values. These only sample a subset of all

possible feature combinations and do not retrain models, but rather approximate the

impact of removing variables by marginalizing these over the training set [49].

φi = ∑
S⊆F\{i}

|S|!(|F |− |S|−1)!
|F |!

[fS∪{i}(xS∪{i})− fS(xS)] [49, equation 4] (2.6)

SHAP [49]: Based on the idea of Shapley values, Lundberg and Lee [49] devel-

oped the SHAP package for the efficient approximation of SHAP values. These are

the Shapley values under the assumption that the model’s output restricted to a subset

of the features is given by the expected model prediction conditioned on this subset.

To estimate SHAP values, the package offers several model specific ways as well

as the model agnostic Kernel SHAP which we will use. It is based on the observation

that a linear explanation model (like LIME) can be trained with certain parameters

(in particular a special kernel) to approximate SHAP values. However, while LIME

parameter choices are heuristic [49], Kernel SHAP trains the linear model in a spe-

cific way. Similarly to Shapley sampling values, Kernel SHAP does not consider all

possible feature combinations, but just a few. The standard value is 2048 + 2 times

the number of features. In addition, to estimate the conditional expectations, Kernel

Chapter 2. Background 18

SHAP requires the data’s background distribution. This is provided in the form of rep-

resentative examples. Ideally, these are the whole training set. In total, if we had 20

features and a training set of 1000 examples, this would lead to 2.088.000 (=1000 x

(2048 + 2x20)) model predictions to estimate the SHAP values. Therefore, the SHAP

developers suggest to use just few or only a single reference value for larger problems.

The SHAP values will then, however, only explain the difference in prediction vs this

reference value and not the overall set.

The main advantage of using a linear regression approximation vs directly the

Shapley equations (see Equation 2.6) is that the regressor can approximate all Shapley

values at the same time - resulting in higher sample efficiency [49].

2.3 Current state of the art

Now that we have discussed the necessary biological and machine learning methods,

we want to take a look at the most popular models currently available. These have in

particular evolved along three dimensions over the past decades.

The first one regards their input data. As outlined in Subsection 2.1.2, the most

restrictive step in the MHC-I pathway is the binding of the MHC-I protein with the

peptide. Early models like [51], and in fact even quite recent ones like NetMHCpan-

3.0 [52] were, therefore, just considering BA data. Predicting binding affinity is theo-

retically a regression task. However, for example [52] transformed the binding affinity

values to be between 0 and 1 by using the cut off transformation 1 - log(binding affin-

ity IC50 in nM)/log(50,000). Also, an IC50 of 500 nM is often used as a threshold

to distinguish between binders and non-binders [53, 54, 55, 56]. Newer models like

NetMHCpan-4.1 [55] do typically also take into consideration EL data. This data nat-

urally defines a categorization task (presented, not presented).

The second dimension of evolution, concerns the treatment of different MHC alle-

les. Early models were MHC protein specific. This means that a single model is trained

for a particular MHC allele. Recent models typically also consider information about

the MHC protein concerned. This is often input via a pseudo sequence (subsequence of

the MHC protein’s full amino acid sequence). Models able to deal with various MHC

alleles are often referred to as ‘pan’ in the literature (e.g. NetMHC vs NetMHCpan).

The next evolution step in this direction was the addition of deconvolution capabilities

(see Subsection 2.2.1).

Finally, the third dimension regards the context of the peptide. Most models still

Chapter 2. Background 19

today do not take into account the amino acids surrounding the peptide in its source

protein. However, based on the idea to capture the whole MHC-I pathway, which

also includes cleavage by proteasomes and proteases that might work better on certain

contexts, models like MHCflurry [56] do exactly this.

After this sketch of the evolution of MHC-I immunopeptidome predicting mod-

els, we describe two of the most popular ones in more detail. Then we introduce one

transformer model - BERTMHC - that has been trained for the prediction of peptide

presentation by a related MHC protein - the MHC-II protein. This has been an impor-

tant inspiration for our work. At the end of the section we give a very brief overview

of some other notable approaches taken in the literature for binding affinity and/or

presentation prediction.

2.3.1 NetMHCpan

The probably most commonly used model today is NetMHCpan. It has got a very

long history which we could trace back to the early 2000s [51] and is currently in its

version 4.1 [55]. The ’pan’ in its name means that it can handle various different MHC

proteins. NetMHCpan 4.1 is an ensemble of 50 single hidden layer feed forward neural

networks. To support BA as well as EL data, the outputs of these networks have two

heads [55, supplement]. The information about the MHC allele is given to the model

in form of a pseudo sequence consisting of only 34 AAs. These were identified by

[57] as being particularly close to the presented peptide (closer than 4.0 angstrom from

the peptide for a representative set of HLA-A and HLA-B structures). The idea is that

those should be particularly relevant for peptide binding.

For deconvolution of multi-allele (MA) data, NetMHCpan takes advantage of the

NNAlign MA [19] framework. First only single-allele (SA) data is used to train a

classifier (which takes as input a peptide and a single MHC allele). Then follows the

deconvolution step. Each observation that could be caused by multiple MHC alleles,

is deconvolved separately. To do so, the classifier trained in the previous step is used

to predict the likelihood of each potential peptide:MHC protein combination indepen-

dently. The MHC allele showing the highest scaled prediction (the scaling essentially

results in the z-score of allele’s predictions) is chosen and used as the MHC protein

responsible for the observation for all purposes until to the next deconvolution step. In

case of a negative example, a MHC allele is picked at random. Except for the scaling,

this is also roughly the approach we will follow.

Chapter 2. Background 20

The generation of negative examples is not explained in detail. However, [19] say

that they use random peptides from the UniProt database. For each peptide length they

generate an equal amount of random negatives. This amount is five times the number of

observations for the most abundant peptide length in a dataset (they combine several

sources) [19]. In total, it seems that for NetMHCpan there are roughly 18 negative

examples per positive one in their training set [55, Supplement Table 1].

2.3.2 MHCflurry

Next we introduce MHCflurry 2.0 [56]. It explicitly models the process of MHC bind-

ing separately from the others (e.g. proteasomal cleavage). This results in a natural

integration of BA and EL data. MHCflurry 2.0 consists of three sub-models. First,

MHCflurry BA models the process of the peptide binding to a MHC protein. Second,

MHCflurry AP is supposed to model the remaining antigen processing steps, like pro-

teasomal cleavage and TAP transportation (see Subsection 2.1.2). Finally, MHCflurry

PS combines the output of those two models to predict peptide presentation. We will

quickly introduce those three models in more detail here.

First, MHCflurry BA is trained to predict the binding between peptides of up to

15-mer length and a MHC protein. As does NetMHCpan, MHCflurry BA receives

the MHC-I identity in the form of a pseudo sequence. Only they extend it by 3 addi-

tional positions to separate some otherwise indistinguishable alleles. MHCflurry BA is

trained on BA and mono-allelic EL data. For its training they generate random decoys

from the same distribution as the EL hits - not from the distribution in the proteome

[56]. They trained 140 different models and selected ten of those to use in the final en-

semble. These ten would have varying architecture, with the input passing through up

to three dense neural network layers, each followed by dropout. Some of these layers

might also use L1 penalty and skip connections [56].

Since the activity of proteasomes and peptidases can be affected by the residues

surrounding the peptide, the second model - MHCflurry AP - takes the 15 residues

before the peptide’s N-terminus and the 15 residues after the peptide’s C-terminus as

an additional input to the peptide. Doing this, [56] found a small but consistent pos-

itive improvement in model performance. In contrast to MHCflurry BA, MHCflurry

AP does not receive any information about the MHC protein. The training set for

MHCflurry AP is generated based on mono allelic EL data enriched by 100 decoys per

observation. The decoys have the same lengths and are from the same proteins as the

Chapter 2. Background 21

hits. Then they let MHCflurry BA predict the binding affinity of the peptides in the

enriched dataset. The 2% of peptides (hits and decoys) predicted to bind the strongest,

are selected for the training set of MHCflurry AP. 44% of these were hits. As these

were both observed in the EL experiment as well as predicted to bind by MHCflurry

BA, also the remaining antigen presentation steps need to have been successful. Hence,

MHCflurry AP should predict a positive result. On the other hand, the remaining 56%

of decoys, were predicted by MHCflurry BA to bind to the MHC allele, but were not

observed in the experiment. Assuming that the mass spectrometry did not miss those,

there must have been a problem with a different antigen presentation process. There-

fore, MHCflurry AP should predict a negative result. Similarly to MHCflurry BA, they

train 512 different neural networks and select the best 8 of them to combine in an en-

semble. These are four layer neural networks. The first layer is a convolutional one

producing as many output positions as input positions and allows for the integration of

contextual information. Then follow two parallel subnetworks. Each of these has two

layers and is applied to every position independently. They are supposed to predict

potential C- and N-terminal cut sites at each position. Their outputs are then pooled

in various ways and fed through a single fully connected layer to produce the final

prediction. [56]

Finally, the third sub-model is MHCflurry PS. It receives the MHCflurry BA’s

binding affinity prediction as well as MHCflurry AP’s antigen processing prediction

and outputs a presentation score. For multi-allele examples, the strongest BA pre-

diction by MHCflurry BA for any of the alleles is used. MHCflurry, therefore, also

implicitly relies on the results from MIL for deconvolution (see Subsection 2.2.1).

While MHCflurry BA and AP were both trained on mono-allelic data, MHCflurry PS

is trained on multi-allelic EL data. To generate negative examples, they sample two

random decoys per hit from its corresponding protein.

[56] benchmarked their performance on held-out MS data against NetMHCpan 4.0

and MixMHCpred 2.0.2. They find that their model has substantially better perfor-

mance (with regards to their chosen metric - positive predictive value). We will also

use this benchmark dataset for comparing our model to those three SOTA models.

2.3.3 BERTMHC

The network constructed by [29] has a very similar structure to the one we trained for

this thesis. In contrast to us, however, their aim is to predict peptide presentation via a

Chapter 2. Background 22

different pathway by the MHC-II protein. This pathway is used by professional antigen

presenting cells to present longer peptides to CD+4 (mostly helper) T-cells. Their

network takes as input the MHC-II pseudo sequence and the peptide concatenated.

This is in contrast to our network, that also takes into account the peptide’s context. The

input is then tokenized (one embedding per amino acid) and fed through a pretrained

BERT model. This is the TAPE transformer model (see Subsection 2.2.4) also used by

us. Its outputs are then pooled with average pooling. The fixed dimensional output of

this pooling operation is then fed through a multi layer perceptron (MLP) consisting of

two layers with a hidden dimension of 512. Its output layer has two neurons delivering

two values - binding affinity and surface presentation.

2.3.4 Notable other approaches

Several other approaches have been proposed in the literature for the prediction of

peptide:MHC protein binding and presentation.

[58] propose ACME (Attention-based Convolutional neural networks for MHC

Epitope binding prediction) - a pan-specific deep CNN with an attention mechanism

that is computed in parallel to the CNN and then weights the CNN’s output before it is

input into the model’s head. ACME is restricted to predicting MHC-I peptide binding

affinities for single-allele data. Their primary aim is to generalize binding prediction

to before unseen HLA alleles and to use the attention mechanism to explain the under-

lying rules of peptide:MHC binding.

Another CNN based model is PUFFIN (Prediction of Uncertainty in MHC-peptide

aFFInity using residual networks) [59]. It receives a MHC allele and a peptide as input

and produces the probabilistic binding affinity distribution as output. Based on this

they introduce a ‘binding likelihood’. This is defined as the probability of binding at a

specified affinity threshold. [59] find that using this with an affinity threshold of 500nM

for prioritizing peptides leads to improved precision over using binding affinity.

MHCAttnNet [60] has another interesting architecture. It uses two encoder stacks

- one for the peptide and one for the MHC allele. Each begins with a bidirectional

long short-term memory (bi-LSTM) network, which allows them to deal with variable-

length inputs. Then this is fed through a fully connected network to produce the bind-

ing probability score. MHCAttnNet predicts MHC-I and MHC-II binding.

Chapter 3

Method

In this chapter, we describe the data used by us, the model architecture trained as well

as the methodology followed by us to produce the charts for the model interpretation.

3.1 Data

We combined data from two datasources. The first one was provided by Georges

Bedran a PhD student at the University of Gdansk. It consists of a collection of peptides

from EL assays mapped to the GRCh38 Homo sapiens reference genome and proteins

within the Ensembl v94 database. The ultimate source of the data were studies included

in the PRoteomics IDEntifications Database (PRIDE) [61]. We applied some manual

preprocessing and removed samples without linked HLA proteins or where only the

HLA supertype was available. We also removed “cryptic” matches (neo-antigens).

The second data-source is the HLA Ligand Atlas [62]. This includes tissue and HLA

allele specific ligands from EL experiments. In contrast to the first data-source, the

HLA Ligand Atlas maps peptides to the Uniprot proteome.

We only consider peptides of lengths between 7 and 15 amino acids (inclusive).

This compares to peptide length restrictions of 8 to 14 AA for NetMHCpan 4.1 [55]

and 8 to 15 AA for MHCflurry [56].

There are several distinct entities present in our problem. A sample represents

the experiment carried out on a particular cell-line/individual. It is, therefore, linked

with up to 6 different HLA alleles (see Subsection 2.1.2) and the observations (hits)

of peptides during the experiment. Each peptide was mapped to proteins in the human

genome. In case all of those mappings had the same 15-mer context (N-flank and C-

flank), these flanks were used. Otherwise, they were left out (not given to the model

23

Chapter 3. Method 24

as an input). For each observation we generated 99 artificial decoys (see Subsection

3.1.1). Examples are either observations/hits or decoys and define a single training

instance. However, this means that the same peptide:MHC allele combination can

be shown several times to the model during the same epoch. This will effectively

lead to an overweighting of these for the updating of the model parameters. From

the perspective, that those examples were also observed during multiple independent

experiments this seems justified. An alternative way would have been to collapse all

of those examples into one. We suggest further research into this topic.

Using the representation outlined above, we get the following Table 3.1 of obser-

vations, unique peptides and MHC alleles occurring in our combined dataset.

DATASOURCE SAMPLES OBSERVATIONS UNIQUE MHC

SA MA PEPTIDES ALLELES

UNIVERSITY OF GDANSK 271 293,334 1,256,916 390,959 104

LIGAND ATLAS 198 0 409,486 90,422 51

TOTAL 469 293,334 1,666,402 429,339 109

Table 3.1: Overview of total dataset

3.1.1 Decoy generation

Negative example (decoy) generation is very important, particularly due to the imbal-

anced nature of the dataset (see Subsection 2.2.2). Our way of doing this is inspired

by how the MHCflurry benchmark dataset was generated [56]. For each hit we sample

99 decoys. To match the observations’ length distribution, the decoy peptides have the

same length as their associated hits. To generate a decoy peptide we would randomly

select any protein from the set of proteins observed in a sample. These are all proteins

that any of the sample’s peptides was mapped to. Then we randomly select a position

within the protein as the start of the decoy peptide. This step should be improved in a

next version of our model, as it might skew the decoys towards shorter proteins. Also,

implicitly we (and other SOTA models) assume that all proteins that a sample’s pep-

tides got mapped to must also be expressed in the sample. Based on this we take the

absence of a peptide’s observation as evidence for it actually not being presented. So,

we assume that the data comes from high quality EL experiments and that peptides

are only matched to actually expressed proteins. We think that these assumptions need

more scrutiny by the community and that in a next step weighting examples by our

Chapter 3. Method 25

confidence that they hold, might be beneficial.

The benchmark dataset of MHCflurry is used to test MHCflurry’s performance. As

seen in Subsection 2.3.2, they generated 99 decoys from the same protein as the obser-

vation for the training of MHCflurry AP but only 2 decoys per observation for the train-

ing of MHCflurry PS. Ninety-nine decoys per hit fits better to the true distribution (see

Subsection 2.1.2) but training on an imbalanced dataset might be an issue (see Subsec-

tion 2.2.3). Subsection 2.3.1 mentions that NetMHCpan 4.1 used roughly 18 decoys

per hit. So, we consider using 19 or 99 decoys per hit in our hyper-parameter search

(Section 4.1). With regards to whether those should be chosen from the same protein

as the observation or any protein observed within the sample, the implicit assumption

for both is that absence of evidence is taken as evidence of absence. However, prac-

tically, there could be gene products that are too short to accommodate the 99 decoys

per hit. So we decided to sample from all proteins observed during an experiment.

3.1.2 Data splits

Splitting the data into a train, test and validation set is not trivial, as:

1. We would like to assess generalization along 2 dimensions - primarily to unseen

MHC alleles and secondarily to unseen proteins

2. Each observation can be associated with up to six MHC alleles from which at

least one is responsible for the presentation

3. There are many homologues (see Subsection 2.1.1) in the human genome. Ide-

ally, a group of homologues would not span different splits

MHC allele dimension: As each individual normally has at least one working

copy of each HLA gene (A/B/C), it is not possible to hold out a full gene. So, we

hold out observations on the HLA group level (e.g. HLA-A*01, ...). First we count

how many observations belong to each HLA group (from a donor/cell with at least one

HLA gene being in the group). The result can be found in Appendix Table 6.1. We

find that the groups are highly unequally represented in the dataset. To find at least 5

groups for each set, we perform the following steps until a satisfactory split is found.

First, we randomly assign HLA groups (and the linked examples) to the validation

set until its target number of examples is reached - overriding the standard training

set assignment. Then we randomly assign allele groups to the test set until its target

number of examples is reached - overriding any earlier assignment. If we assigned too

Chapter 3. Method 26

Figure 3.1: Illustration of splitting procedure

few or too many we repeat. The final split can be found in Appendix Table 6.1. Figure

3.1 illustrates this process which ensures that no validation or test MHC group enters

the training phase and no test MHC group enters the validation or training phases.

Protein dimension: Following this, we split off another validation and test set

from the remaining training set. This second split is, however, based on an observa-

tion’s mapped proteins not its linked MHC alleles. Due to homology we cannot just

split the dataset based on the protein names. There are many different approaches to

deal with this. For example [45] have decided to go for sequence identity and ensure

that no sequence in the test and train set have more than 25% sequence identity. We

feel that this approach might be the right one for the particular applications [45] had

in mind - assessing for example overall protein structure. However, in our case we are

more concerned with small local features - peptides. So we do not want to have any

similarity of subsequences above 7 amino acids long. As checking this would be pro-

hibitively computationally expensive, we chose another approach. We use the python

networkx package, which allows to build and explore graph structures. With it we use

the Ensembl BioMart paralogue table [63] to link related genes as well as proteins to

their respective gene. We then randomly assign disconnected sub-graphs to the various

splits until our target values are reached.

Following the above, our dataset is split up into 5 sets. One training set, two vali-

dation sets and two test sets. Combining the two validation sets would be problematic.

Let us assume an observation is part of the MHC validation set. As the protein split

is done on the remaining observations after the MHC split, it cannot be part of the

protein test or validation splits. However, it could still come from a protein, that is on

the list of proteins defining the protein test set. Therefore, it is cleaner to keep these

two perspectives independent.

After the split, we obtain the partition of our data in Table 3.2. Since generalization

in the MHC dimension is more important (as the peptides in our dataset already spread

across the whole human genome), we assigned it a bigger proportion.

Chapter 3. Method 27

SPLIT TRAIN VAL-PROT TEST-PROT VAL-MHC TEST-MHC

TOTAL OBSERVATIONS
1,408K

(71.8%)

70K

(3.6%)

71K

(3.6%)

204K

(10.4%)

206K

(10.5%)

SINGLE ALLELE
206K

(10.5%)

10K

(0.5%)

11K

(0.6%)

24K

(1.2%)

43K

(2.2%)

MULTIPLE ALLELE
1,202K

(61.3%)

60K

(3.1%)

60K

(3.1%)

181K

(9.2%)

164K

(8.3%)

Table 3.2: Observations per dataset split

3.2 Model Architecture

One of the major ML developments in the past few years has been transfer learning.

This has been particularly successful in the domain of natural language processing

where big networks like GPT-2 and T-5 have been trained on multiple GPUs for weeks

and extensive text corpora and are now available in model zoos to download for every-

body and fine-tune quickly to their particular task. In this spirit, we adapt and use the

pre-trained TAPE transformer (see Subsection 2.2.4) as backbone for our model.

3.2.1 Tokenization and Embedding

The primary input into our model is the peptide’s AA sequence. If a peptide could

be mapped to multiple proteins, then we check if all contexts are the same. If so, we

provide the model with this context as input, otherwise not (as well as in the input to

the decoy examples). The context consists of the up to 15 AAs that occur to the ’left’

of the peptide in its source protein’s AA sequence (the N-flank) as well as the up to

15 AAs that occur to the ’right’ of it (the C-flank). The 15 AAs length was chosen to

be compatible with MHCflurry and be able to use their benchmarking data. Finally,

the model also receives the MHC pseudo sequence as defined by NetMHCpan (see

Subsection 2.3.1) as input.

The input sequence starts with a <cls> token. Then come the N-flank, peptide,

C-flank and MHC allele. In between those components and at the end of the sequence

there are <sep> tokens. The <sep> are used in BERT to separate sentences and the

<cls> is meant to be used for classification [35].

All of these components are represented by letters symbolizing amino acids. How-

ever, BERT requires embedding vectors as input. At first a tokenizer splits the input

Chapter 3. Method 28

sequence up into tokens and maps each to several integers - in our case token ID,

position number and token type ID. Then, embedding layers assign a different learnt

embedding vector to each token ID, position number and token type ID. The overall

embedding is the sum of these vectors (in our case a 768 dimensional vector per token).

Crucially, this embedding does not take into account its context. So every histidine at

peptide position 3 will always result in the same embedding - independent of the other

amino acids in the input sequence. In addition, there is an input mask with which it is

possible to hide tokens from the model (set the mask to zero).

To take advantage of the pretraining, we need to use the same token IDs as used by

the TAPE transformer. This represents each amino acid by a separate number. The tok-

enizer distinguishes 20 standard AAs, the two non-standard AAs (pyrrolysine, seleno-

cystein) and unknown AAs [45]. There exist alternative tokenizations. For example,

several amino acids could be combined to form a single token.

Off the shelf, the TAPE transformer supports only a single token type id. To make

it easier for the model to distinguish between the various input parts, we use a novel

representation of the input and extended the TAPE model’s token type embedding ma-

trix to four different token types - one each for the N-flank, peptide, C-flank and MHC

protein. Their values are initialized with the TAPE standard token type embedding

values and will then diverge during training.

With regards to the position numbering, the N-flank begins with number one being

the residue closest to the peptide (numbering from C- to N-terminus). This is done, so

that the peptide’s proximal amino acid is always at position 1 - even if the N-flank is

shorter than 15 AAs long. In contrast, the peptide and C-flank position numbering is

done from N- to C-terminus. For the MHC pseudo sequence, we use the AA’s position

in the full MHC amino acid sequence. This is done, so that in future, the model can

be easily fine tuned to support full MHC sequences. An example can be found in the

Appendix.

3.2.2 Encoder

The resulting vectors from the embedding step are fed through the TAPE encoder con-

sisting of 12 self attention layers with 12 heads each. The output is again a vector of

dimension 768 per position. This, however, is now a contextual embedding for each

position. This means, that other elements of the input will have influenced this vector

- so it will change if other positions in the input were to change.

Chapter 3. Method 29

3.2.3 Pooling

The encoder produces as many vectors as input tokens. These cannot be fed directly

into a MLP which expects a fixed dimensional input. Pooling is necessary. [42] showed

that the optimal pooling operation is task dependent. BERTMHC (Subsection 2.3.3)

use average pooling. However, we felt that the meaning of the peptide, context and

MHC sequence are quite different and so we considered three options: to use averag-

ing, to use an attention layer and to use the classification token’s vector. We compare

those as part of the hyper-parameter search (see Section 4.1).

3.2.4 Head

The structure of our model’s head is similar to the one used by BERTMHC [29]. It is

also a MLP consisting of two fully connected layers with a hidden dimension of 512. In

contrast to BERTMHC we only have a single output neuron, with sigmoid activation.

This is because we only estimate a presentation score and not binding affinity.

3.3 Training

The training procedure of our model is inspired by the NNAlign MA framework and

general results of MIL. In the first training epoch we only use SA data. Then follows a

deconvolution phase. During this, we deconvolve each MA observation by at first pre-

dicting the presentation score for each potentially responsible allele and then selecting

the one with the highest score as the relevant allele. This means, that for forward-

propagation and backward-propagation, the MA example is treated as if coming from

the relevant allele until the next deconvolution phase, which happens after each epoch.

The relevant MHC allele of the decoys, follows the one of the observation.

For training we use standard binary cross entropy as loss function. The param-

eter gradients were calculated using standard back-propagation. We trained the full

network (including encoder and embedding layers). The parameters were updated us-

ing the ADAM optimizer which adjusts each parameter’s learning rate over time. We

use its standard hyper-parameters from the original paper (β1 = 0.9,β2 = 0.999 [64]).

Although it is quite robust with regards to hyper-parameter choice, and adjusts the

learning rates over time, a sensible choice of initial learning rate is still necessary [65,

page 306]. We choose this as part of the hyper-parameter search (see Section 4.1).

Chapter 3. Method 30

3.4 Evaluation

To shed light on what our model has learnt and to assess its quality, we performed:

- Evaluation on the test sets

- Comparison of our model to MHCflurry and NetMHCpan

- Model interpretation by LIME analysis of peptide, flanks and pseudo sequence

feature importances, using motifs and by SHAP analysis of peptide AAs contributions

3.4.1 Evaluation on the test set

In Section 4.2 we evaluate our final model for AP, ROC-AUC and accuracy (see Sub-

section 2.2.3) on the MHC allele- and protein test sets (see Subsection 3.1.2).

3.4.2 Comparison to MHCflurry and NetMHCpan

The MULTIALLELIC benchmark dataset of MHCflurry consists of 9,158,100 exam-

ples. Each has a peptide, N-flank (15 AA), C-flank (15 AA), up to six HLA alleles

as well as the predictions of NetMHCpan, MixMHCpred and MHCflurry for the ex-

ample. [56] generated this dataset from 11 studies using EL data. For each hit they

randomly generated 99 decoys. A more detailed description and the full dataset is

available in [56, Supplement Data S1]. We run two evaluations on this - one on the

whole dataset (9,158,100 examples) and one for which we removed examples of pep-

tides that were already part of our training dataset (2,781,898 examples). For these

we predict our model’s presentation score, calculate performance metrics and plot PR

curves for MHCflurry, NetMHCpan and our model (ImmunoBERT).

3.4.3 Interpretation

To reduce complexity, we restrict our interpretation of the model to 9-mer peptides and

single-allele data. We used only the test set during interpretation. So, our model has

not seen the data before. Therefore, the analysis demonstrates our model’s ability to

generalize to unseen MHC proteins.

LIME analysis of all features: We first assess the importance of all AA features in

the input-sequence. For this, we use the LIME framework, as this is in general faster

than SHAP - in particular for many features (in our case 73 amino acid positions). As

described in Subsection 2.2.5 we adapted the text version of LIME. We implement the

deactivation of a feature by setting the input mask token to zero. We use the standard

Chapter 3. Method 31

cosine distance metric (in binary space) between the original example and the sampled

examples. For each test set HLA allele, we selected a random 500 observations and

for each of those one decoy (total 1000 examples) to be explained. Each example gets

explained by sampling a random 2000 feature combinations.

For visualization, Figures 4.1, 4.6 and 4.9 show in each bar the proportion of exam-

ples with a given importance-ranking. If for example the bright red bar (1st) of peptide

position 9 showed 0.5, this means that 50% of examples had this as the most important

feature.

Sequence Motifs: We want to utilize the very common sequence motif logos [66] to

visualize for each test set HLA allele, how often various amino acids occur at presented

peptide positions. To do so, we generate 100,000 random 9-mer peptides from the

human proteome (as well as their context). Then we predict for each of those 100,000

examples the presentation score for the HLA protein concerned. We select the ones

for which our model predicts presentation (presentation score > 0.5) and use them to

create the allele dependent logo for our model (using the logomaker [67] package).

This analysis is similar to the one carried out by [68], which however use the 2%

highest scoring peptides for the model motif. Afterwards, we take the data from our

test set and use all of the 9-mer peptides unambiguously presented by the HLA allele

to create another logo for the data as well.

The created motif logos have the following form. For each of the nine peptide

positions, a stack of AA letters is displayed. The size of each letter is proportional to

the AA’s frequency at this position. Also, more frequent AAs can be found on top.

Each stack is then scaled with the position’s information content (IC), resulting in a

representation as bits [66]. The lower the position’s entropy, the higher the IC and, so,

the logo. We do not display positions with IC < 0.5 to avoid distraction. Amino acids

with similar chemistry are coloured the same.

SHAP analysis of peptide positions: Finally, we look for additional insights by ex-

amining the average contribution of peptide amino acids using SHAP. For each test set

HLA allele, we select a random five-hundred 9-mer single allele hits and one decoy

per hit to explain from the test set. From these 1000 examples we also sample 250 as

background distribution (see Subsection 2.2.5). The nine features in the peptide would

result in a maximum of 512 feature subsets. We carry out the Kernel SHAP analysis

using a sample of 64 of these (see Subsection 2.2.5). For the whole process we ignore

the flanks. In Figures 4.4, 4.8 and 4.11 we plot the average SHAP value for each amino

acid at each position.

Chapter 4

Results

This chapter presents the results obtained by applying the methodologies from Chapter

3. First, we justify some of the parameters chosen before benchmarking our model to

two alternative SOTA models. Eventually, we use explainability techniques to analyse

what our model has learnt about peptide presentation by three test set HLA proteins.

4.1 Hyperparameter search and training

We searched parameters along 3 dimensions: pooling mechanism, decoys per hit and

learning rate. We considered using the <cls> tokens embedding, averaging and a clas-

sical attention mechanism (see Subsection 3.2.3) as pooling mechanism. Further, we

compare using datasets enriched by 19 and 99 decoys per observation. Eventually,

we try using 1e-04, 1e-05 and 1e-06 as initial learning rates. For the hyperparameter

search, each model was trained on 10% of the SA data for 64,599 steps (one epoch for

the 99 decoys per observation datasets and five epochs for the 19 decoys per observa-

tion datasets - so both of them have seen the same observations at least once).

We evaluated each model on 10% of the MHC-validation and protein-validation set
1 SA data (using 99 decoys per hit). Table 4.1 shows the result for the hyper-parameter

search using a learning rate of 1e-05. The results for a learning rate of 1e-06 can be

found in Appendix Table 6.2 and show, that the learning happened too slow. Using a

learning rate of 1e-04 would most of the time not result in any detected hits.

Table 4.1 shows various performance metrics (best column values in red) on our

two validation sets for the 6 models described above at two points during their train-

ing. Different initializations might deliver different results, as mentioned above we

1our two validation sets, see Subsection 3.1.2

32

Chapter 4. Results 33

didn’t use the full dataset and the training will not have converged after 64,559 steps

yet. However, given our limited computing resources and the time it takes to train

transformers, we had to base our decision on these numbers. Dependent on the chosen

metric, one or the other pooling mechanism and one or the other hits-to-decoys ratio

looks best. In general, the unbalanced dataset (99 decoys per hit) at first (step 12,911)

leads to quite poor classifiers in terms of ROC-AUC and AP. However, after a full

epoch they are able to make up most of this. In fact, as found by [33], models trained

on an unbalanced dataset close to the actual data distribution (99 decoys per observa-

tion) show better accuracy. Actually, the models using only 19 decoys per observation

have a worse accuracy than just always predicting negative. However, as we have seen

in Subsection 2.2.3 accuracy is not informative and reliable when dealing with highly

imbalanced data 2. As we see in Table 4.1 the models performing best on ROC-AUC

and AP all were trained using 19 decoys-per-hit. So we will use this. The table also

shows that using the classification token as input to the head had the best performance

(in red) in 5 cases while the attention mechanism only had the best performance in 3

cases and the averaging in 2 cases. We will, therefore, train our final model using the

classification token’s output as input to the model’s head.

POOLING DECOYS
AFTER VAL-MHC VAL-PROTEIN

X STEPS ROC

AUC
AP ACC° ROC

AUC
AP ACC°

CLS

19
12911 0.938 0.319 0.986 0.956 0.447 0.987

64559 0.949 0.394 0.982 0.964 0.552 0.983

99
12911 0.823 0.062 0.990 0.917 0.232 0.990

64559 0.945 0.349 0.991 0.960 0.492 0.992

ATTN

19
12911 0.936 0.298 0.973 0.957 0.447 0.982

64559 0.941 0.410 0.983 0.964 0.535 0.982

99
12911 0.792 0.044 0.990 0.884 0.184 0.990

64559 0.938 0.315 0.990 0.958 0.496 0.992

AVG

19
12911 0.926 0.252 0.982 0.954 0.417 0.985

64559 0.949 0.369 0.977 0.960 0.506 0.980

99
12911 0.689 0.026 0.990 0.835 0.145 0.990

64559 0.924 0.287 0.990 0.956 0.471 0.992

Table 4.1: Performance comparison for a learning rate of 1e-05 (°... accuracy)
2e.g. when the majority to minority class ratio is 999:1 a classifier always predicting the majority

class will have 99.9% accuracy

Chapter 4. Results 34

Table 4.2 shows how various metrics develop during its training. Due to time

reasons and little improvement we stopped after epoch 5 and use this as our final model.

AFTER VAL-MHC VAL-PROTEIN

EPOCHS STEPS AP ROC

AUC
ACC° AP ROC

AUC
ACC°

1 128494 0.571 0.966 0.989 0.667 0.985 0.988

2 1008417 0.646 0.976 0.992 0.762 0.993 0.993

3 1888340 0.671 0.978 0.993 0.767 0.993 0.994

4 2768263 0.673 0.978 0.992 0.768 0.993 0.993

5 3648186 0.683 0.979 0.992 0.765 0.993 0.994

Table 4.2: Performance comparison during training (°... accuracy)

4.2 Evaluation on the test set

To make sure we didn’t overfit the hyperparameters to the validation set, Table 4.3

shows the test set performance of our selected final model. We see that the values are

not very different from the ones for the validation set in Table 4.2.

AFTER TEST-MHC TEST-PROTEIN

EPOCHS STEPS AP ROC

AUC
ACC° AP ROC

AUC
ACC°

5 3648186 0.704 0.981 0.993 0.755 0.992 0.993

Table 4.3: Performance on the test set (°... accuracy)

4.3 Benchmarking

Unluckily, there are no generally agreed upon standard benchmarking datasets avail-

able in our domain. However, [56] have curated a benchmark dataset (see Subsection

3.4.2). We ran the below analysis on the full dataset as well as on one in which we

exclude peptides from our training set. We calculated the AP as well as the ROC-AUC

for MHCflurry, NetMHCpan and ImmunoBERT. For the full set we also plotted the

PR-curves for them (Table 4.4). The models were trained on different datasets. So any

judgement about the advantageousness of the architectures is not valid. However, the

comparison is useful to compare the practical predictive power of the models.

Chapter 4. Results 35

For both datasets, our model shows an AP in between MHCflurry and NetMHCpan.

In particular, it does well for thresholds corresponding to intermediate recall levels.

However, it achieves less ROC-AUC than the others, possibly caused by the sharp

drop in performance for higher recall values. The performance on the reduced set is

far worse for all models. So, also the other two models might have already seen similar

peptides as were removed during their training. As we explicitly only removed ours,

this skews the reduced dataset against our model.

We decided to generate decoys once and show the model the same decoys in each

epoch. This was done to ensure reproducibility of results. In contrast, NetMHCpan

and MHCflurry resample decoys each epoch [56]. In hindsight, this might be a better

design choice and might have led to later convergence during training of our model.

MODEL / METRIC AP ROC

AUC
PR-CURVE

F
U

L
L

D
A

TA
S

E
T

NETMHCPAN 0.327 0.916

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

NetMHCpan
MHCflurry
ImmunoBERT

MHCFLURRY 0.427 0.938

IMMUNOBERT 0.383 0.893

R
E

D
U

C
E

D
D

A
TA

S
E

T NETMHCPAN 0.151 0.873

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

NetMHCpan
MHCflurry
ImmunoBERT

MHCFLURRY 0.215 0.890

IMMUNOBERT 0.163 0.831

Table 4.4: Performance comparison on benchmark dataset

4.4 Interpretation

Next we use LIME, motifs and SHAP as described in Subsection 3.4.3 to interpret our

model’s predictions for three selected test set HLA proteins. We chose them to cover

different HLA genes and degrees of perceived matching between their data and model

motifs. As there are too many test HLA alleles to discuss within the boundaries of this

thesis, we put the figures for the remaining test HLA alleles into the Appendix. To

improve readability all SHAP values were multiplied by 100.

Chapter 4. Results 36

4.4.1 HLA-A*33:01

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-A33:01 protein

Figure 4.1: LIME feature importance rank distribution for HLA-A*33:01

Figure 4.1 shows for each input position the

proportion of examples in which this position

had a certain importance ranking (see Subsec-

tion 3.4.3). The peptide’s AAs tend to be highly

ranked. Its position 9 is ranked first in roughly

half of the examples. The MHC pseudo se-

quence positions display a high variance in their

ranking distributions. Some positions tend to be

particularly highly ranked - like 63, 73, 116 and

171. Figure 4.2: Data(top) & model motif

MHC positions 171 and 116 are located in the MHC’s A and F pockets [24] which

both are supposed to house a peptide terminus [21]. This might explain what we see

in the motifs of Figure 4.2 3. A peptide C-terminus arginine (R) is very common and

the N-terminus is enriched as well. In contrast, the significance of MHC positions 73

(in pocket C) and 63 (in pocket B) is unclear. There might be confounding with other

positions or some biological reason for this. For example pocket B could house peptide

position 2 - also explaining the slightly elevated importance of this in Figure 4.1. This

is just speculation and biological experiments are needed to confirm this.

Finally, the flanks seem the least important in Figure 4.1. [56] also found that

including them only results in a small but consistent improvement. Within the flanks,

quite sensibly our model attributes most importance to peptide proximal positions.
3motifs show the frequency of AAs at positions in observed peptides (hits), Subsection 3.4.3

Chapter 4. Results 37

The data and model motifs in Figure 4.2 are not exactly the same. This might be be-

cause they were generated from different background distributions 4. We argue below

that also the SHAP values are context, and so background distribution, dependent.

1 2 3 4 5 6 7 8 9
peptide position

*
A

C
D

E
F

G
HI

K
L

M
N

P
Q

R
S

T
V

W
Y

am
in

o
ac

id
0

-1 5 -0 1 -1 -2 1 1 -16
-8 -7 -6 -9 -7 -8 -5 -8 -12
2 -13 -8 2 -4 -7 -8 -5 -12
6 -11 -9 1 -5 -9 -3 1 -13
-5 -5 8 -1 3 9 5 -1 -14
-4 -4 -5 3 -1 -2 -6 1 -13
4 -16 1 2 2 2 7 2 -13
-3 2 1 -1 6 6 2 -6 -16
-2 -11 3 1 1 -2 -3 -1 -15
-7 -5 -1 -3 -0 0 -5 -3 -13
-2 -2 2 -7 -3 -2 -2 -4 -13
4 -7 4 1 -1 -2 0 8 -14
-9 -10 -2 2 -0 1 -5 -0 -13
1 -4 2 0 -1 -1 -0 3 -14
-2 -13 -2 -1 0 -2 -3 -1 19
3 2 -2 1 -1 -2 -1 0 -13
2 11 -4 -0 -1 1 1 1 -15
-3 15 -1 -1 4 3 6 -2 -14
-11 -14 2 -3 5 -3 4 -7 -12
-3 7 8 -0 0 3 4 3 -10

1% 10% 100%
proportion of AA at position

30

20

10

0

10

20

m
ea

n
SH

AP
 v

al
ue

 o
f A

A
at

 p
os

iti
on

example type
hit
decoy

Figure 4.4: Mean SHAP values (x 100) for HLA-A3301examples

With regards to SHAP values, Figure 4.4 left side shows the mean SHAP value

of each AA at each peptide position 5. We see the strong positive mean contribution

of R at peptide position 9, making its high frequency in Figures 4.2 plausible. It also

shows high values for V and T at position 2 which are also enriched in the model motif.

Intuitively, higher mean SHAP values should be linked

to more occurrences of the AA at a position. Figure

4.4 right side depicts this relationship. For hits it seems

to be positive - not so for decoys. To investigate this

further, Figure 4.5 shows for each AA the difference

between its mean SHAP value at position 8 in hits (dot)

and in decoys (end of arrow). Especially the values

for Asparagine N and Cysteine C change a lot. This

demonstrates the context’s importance for a feature’s

SHAP value. So, high average SHAP values need not

lead to higher occurrences under all background distri-

butions.

20 10 0 10 20
difference in mean SHAP value

A
C
D
E
F
G
H
I

K
L
M
N
P
Q
R
S
T
V
Y

am
in

o
ac

id

mean SHAP value (hits to decoys)

Figure 4.5: position 8:

change in SHAP values

4While the data motif is based only on the peptides that were expressed in the samples of the test
HLA allele, the model motifs are based on the whole human genome - Subsection 3.4.3

5see Subsection 3.4.3

Chapter 4. Results 38

4.4.2 HLA-B*54:01

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-B54:01 protein

Figure 4.6: LIME feature importance rank distribution for HLA-B*54:01

We see a similar picture in Figure 4.6 as in Fig-

ure 4.1. The peptide is the most important ele-

ment followed by the MHC allele and the flanks

are the least important. However, this time two

positions in the peptide are of especially great

importance - 2 and 9. This corresponds to what

we see in the motifs in Figure 4.7 and in fact the

SHAP values in Figure 4.8.

With regards to the MHC protein, its most im-

portant position is 95. This is located in the F

pocket [24]. This makes sense given the high

SHAP values of peptide position 9. Its sec-

ond most important position is 66 in pocket

B. Given the enrichment of peptide position 2

by P and A we speculate that pocket B houses

those. Indeed, [69] claim that this is the case.

Also the other MHC alleles in our test set with

a high specificity at peptide position 2 in the

data motif (HLA-B*37:01, HLA-B*58:01 and

HLA-B*58:02) show slightly elevated impor-

tances for pocket B positions (e.g. 66, 67) - see

Appendix.

Figure 4.7: Data (top) & model motif

1 2 3 4 5 6 7 8 9
peptide position

A
C

D
E

F
G

HI
K

L
M

N
P

Q
R

S
T

V
W

Y
am

in
o

ac
id

1 -1 1 -0 -1 -1 -0 5 14
-8 -12 -5 -7 -7 -7 -4 -5 -7
-6 -11 -4 3 -3 -4 -5 -8 -11
-7 -11 -9 3 -1 -4 -2 2 -12
5 -13 11 2 4 8 1 -6 -8
-5 -12 -9 -0 -0 0 -4 -3 -11
4 -13 3 -2 -1 -1 2 -3 -11
2 -12 3 -1 5 4 4 -1 -3
1 -12 1 1 -1 -2 -2 2 -9
1 -12 -0 -1 -1 0 1 -4 -1
6 -12 3 -3 -2 -1 -1 -3 -5
-0 -10 1 -0 -1 -2 -0 -5 -10
-11 18 -7 5 2 0 2 -4 -8
-1 -11 -1 1 -1 -0 0 1 -10
0 -11 2 -2 -4 -4 -2 -2 -10
2 -13 -1 -1 -1 -1 -1 5 -12
-1 -8 -1 -2 -1 1 0 4 -10
-0 -4 2 -2 3 3 3 5 9
-5 -12 6 0 0 -1 -0 -7 -11
4 -11 7 -0 -1 0 -0 -2 -10

Figure 4.8: Mean SHAP values

Chapter 4. Results 39

4.4.3 HLA-C*01:02

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-C01:02 protein

Figure 4.9: LIME feature importance rank distribution for HLA-C*01:02

Figure 4.9 shows a similar picture as Figures 4.1

and 4.6. However, the data and model motifs in

Figure 4.10 are quite different. First, the model

motif misses the enrichment in particular by S

and A at data motif position 8. Interestingly,

those AAs have relatively high mean SHAP val-

ues in Figure 4.11. Also Figure 4.9 shows el-

evated importance of this position. So, this

might just be caused by different background

distributions between the sets used to generate

the model (based on the whole human genome)

and the data motif (based on test set examples).

Next, the model motif shows an enrichment at

position 4. This is primarily caused by E, which

also has a high mean SHAP value. Given the

low IC of this, the difference in motifs could be

caused by chance. At peptide positions 2 and

3 the two motifs look very similar - except for

ordering. With regards to MHC positions 114

and 156 are especially important in Figure 4.9.

These lie close to each other in pocket E [24]

and might house one of the enriched peptide po-

sitions requiring further research.

Figure 4.10: Data(top) & model mo-

tif

1 2 3 4 5 6 7 8 9
peptide position

A
C

D
E

F
G

HI
K

L
M

N
P

Q
R

S
T

V
W

Y
am

in
o

ac
id

-1 0 -5 -1 -0 -1 -0 4 -6
-4 -5 -6 -4 -7 -5 -5 -4 -7
-6 -4 26 2 -1 -1 -2 -5 -5
-4 -6 -3 5 -2 -3 -2 3 -6
9 16 -5 -0 1 -0 -2 -3 6
-5 -6 -5 -2 2 1 -3 -4 -6
1 -4 -3 -2 6 5 7 -1 -4
1 0 -3 -1 -1 1 0 -2 -4
-0 -5 -5 -0 3 0 0 -1 -6
-2 3 -6 -0 -2 -2 -3 -2 6
-0 1 -3 -2 -1 -3 -1 -1 3
-1 -5 -3 -0 -1 -1 -0 -2 -5
-4 3 0 2 2 3 -1 -4 -6
-4 -3 -6 -2 0 -3 -1 -2 -6
-1 -5 -4 -2 4 5 6 -1 -7
1 -4 -6 -1 -2 -1 1 4 -6
-1 -5 -5 -1 -0 2 3 -0 -5
1 -1 -3 0 -0 1 2 -1 -1
-2 2 -3 -0 -0 -3 -3 -4 -3
11 16 -0 -0 -0 1 -2 -1 -3

Figure 4.11: Mean SHAP values

Chapter 5

Conclusion and future work

We have seen in Section 4.3 that our model based on the BERT architecture was able

to compete with current SOTA models that have been developed over many years.

This highlights BERT’s high potential in this area. Then, we compared various pool-

ing techniques and decoy to hit ratios in Section 4.1 and found that the best choice

will depend on the evaluation metric. As a novel approach in Section 4.4 we used the

explainability techniques LIME and SHAP to find that our model learnt biologically

sensible importance rankings and feature contributions. Namely, it placed particularly

high importance on AAs near the N- and C-termini of the peptide and varying MHC

positions in the A, B and F pockets. In contrast, the flanks showed less importance,

which explains why [56] found that including them only results in a small but con-

sistent model improvement. The motifs we found using our model followed broadly

those observed in the data. As these analysis were all carried out on held out MHC

proteins, it also demonstrates the generalization ability of our model.

Given the high degree of imbalance in the data, we think that more advanced meth-

ods are required for decoy generation. Generative adversarial networks might be a way

to achieve this. An alternative could also be to utilize the ability of transformer models

to assess all positions of a whole sequence at once. As input the model would not

only receive a single peptide but a longer sequence of amino acids. It could then be

trained to identify the presented sub sequences. This would make the artificial gener-

ation of decoys and in particular the search for a good ratio between decoys and hits

unnecessary.

To summarize, this thesis has highlighted the high potential of transformer mod-

els for peptide presentation prediction and as a novelty applied advanced explanation

techniques to this task, with which we could demonstrate biological relationships.

40

41

Chapter 6. Appendix 42

Chapter 6

Appendix

6.1 MHC split

HLA-A HLA-B HLA-C

GROUP S° HITS GROUP S° HITS GROUP S° HITS

HLA-A01 99 359,049 HLA-B07 66 378,396 HLA-C01 ** 10 36,665

HLA-A02 156 505,417 HLA-B08 * 37 128,339 HLA-C02 73 322,819

HLA-A03 92 644,773 HLA-B13 18 42,331 HLA-C03 96 392,462

HLA-A11 80 200,286 HLA-B14 47 219,850 HLA-C04 114 566,983

HLA-A23 25 73,141 HLA-B15 75 228,832 HLA-C05 37 416,633

HLA-A24 60 299,863 HLA-B18 25 177,056 HLA-C06 75 199,060

HLA-A25 3 14,163 HLA-B27 54 285,520 HLA-C07 173 614,980

HLA-A26 9 16,779 HLA-B35 108 572,469 HLA-C08 48 223,603

HLA-A29 24 244,649 HLA-B37 ** 30 74,723 HLA-C12 9 77,625

HLA-A30 16 22,321 HLA-B38 5 45,822 HLA-C14 7 34,824

HLA-A31 18 199,800 HLA-B39 * 6 60,623 HLA-C15 ** 5 17,682

HLA-A32 39 272,779 HLA-B40 43 156,648 HLA-C16 25 58,074

HLA-A33 ** 2 8,015 HLA-B41 2 12,971 HLA-C17 ** 4 18,124

HLA-A34 * 2 7,749 HLA-B42 * 1 4,077

HLA-A36 ** 1 3,960 HLA-B44 83 398,328

HLA-A66 * 1 2,532 HLA-B45 17 30,927

HLA-A68 75 246,119 HLA-B46 ** 1 1,203

HLA-A69 22 50,198 HLA-B47 * 6 3,720

HLA-A74 ** 1 3,543 HLA-B49 30 78,815

HLA-B51 * 9 29,332

HLA-B52 * 1 1,585

HLA-B53 * 1 2,883

HLA-B54 ** 1 1,622

HLA-B55 7 29,812

HLA-B56 * 1 1,780

HLA-B57 8 24,397

HLA-B58 ** 24 40,795

Table 6.1: MHC groups in the datasets (°... samples, *... validation set, **... test set)

Chapter 6. Appendix 43

6.2 Tokenization example

Peptide: ’LWDSAVSHF’

N-flank: ’SVSHKFLSLPMLVRQ’

C-flank: ’FSLPFKKSLLAALIL’

MHC pseudo sequence: ’YYAGYREKYRQTDVNKLYLRYDSYTWAEWAYEWY’

This will result in the following string:

‘<cls>SVSHKFLSLPMLVRQ<sep>LWDSAVSHF<sep>FSLPFKKSLL

AALIL<sep>YYAGYREKYRQTDVNKLYLRYDSYTWAEWAYEWY<sep>’

This string will be tokenized into the following input token ids: 2, 22, 25, 22, 12,

14, 10, 15, 22, 15, 19, 16, 15, 25, 21, 20, 3, 15, 26, 8, 22, 5, 25, 22, 12, 10, 3, 10,

22, 15, 19, 10, 14, 14, 22, 15, 15, 5, 5, 15, 13, 15, 3, 28, 28, 5, 11, 28, 21, 9, 14, 28,

21, 20, 23, 8, 25, 17, 14, 15, 28, 15, 21, 28, 8, 22, 28, 23, 26, 5, 9, 26, 5, 28, 9, 26, 28, 3

These input token ids will be linked to the following token type ids: 2, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 0

The corresponding position ids are: 0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 7, 9, 24, 45,

59, 62, 63, 66, 67, 69, 70, 73, 74, 76, 77, 80, 81, 84, 95, 97, 99, 114, 116, 118, 143,

147, 150, 152, 156, 158, 159, 163, 167, 171, 0

If all features should be considered, then every input mask position will be 1: 1, 1, 1,

1, 1,

1, 1,

1, 1, 1, 1, 1, 1, 1

Chapter 6. Appendix 44

6.3 Hyperparameter search

POOLING DECOYS
AFTER VAL-MHC VAL-PROTEIN

X STEPS ROC

AUC
AP ACC° ROC

AUC
AP ACC°

CLS

19
12911 0.660 0.020 0.990 0.771 0.061 0.990

64559 0.902 0.209 0.974 0.943 0.356 0.975

99
12911 0.584 0.013 0.990 0.689 0.033 0.990

64559 0.721 0.027 0.990 0.835 0.119 0.990

ATTN

19
12911 0.649 0.018 0.990 0.774 0.073 0.990

64559 0.902 0.210 0.975 0.937 0.349 0.975

99
12911 0.594 0.014 0.990 0.694 0.034 0.990

64559 0.731 0.029 0.990 0.829 0.132 0.990

AVG

19
12911 0.657 0.020 0.990 0.776 0.081 0.990

64559 0.892 0.202 0.969 0.937 0.349 0.970

99
12911 0.601 0.016 0.990 0.700 0.037 0.990

64559 0.733 0.031 0.990 0.840 0.134 0.990

Table 6.2: Performance comparison for a learning rate of 1e-06 (°... accuracy)

6.4 Interpretation

On the following pages, the charts for the remaining HLA alleles that were note se-

lected for detailed discussion in Section 4.4 can be found. The methodology for con-

structing the charts was explained there and in Subsection 3.4.3.

Chapter 6. Appendix 45

6.4.1 HLA-A*33:03

1 2 3 4 5 6 7 8 9
peptide position

A
C

D
E

F
G

HI
K

L
M

N
P

Q
R

S
T

V
W

Y
am

in
o

ac
id

-0 1 1 0 -1 -3 1 0 -16
-8 -9 -10 -9 -7 -8 -7 -12 -18
-0 -11 -9 2 -5 -9 -6 -10 -16
5 -15 -8 0 -5 -8 -4 1 -16
-8 -6 7 -1 4 12 4 -1 -18
-5 -6 -5 2 -2 -4 -7 1 -16
6 -17 2 1 1 2 6 3 -18
-1 0 2 -2 7 7 4 -9 -19
-1 -12 6 1 1 -2 -3 -0 -19
-6 -4 -0 -5 -0 -0 -7 -2 -18
-2 -2 3 -6 -5 -2 -4 -3 -18
2 -9 5 1 -1 -3 1 8 -17

-11 -11 -4 3 1 -0 -7 -1 -19
2 -4 3 0 -2 -1 1 4 -16
-1 -13 -1 -1 -0 -4 -2 -2 20
5 2 -0 1 -2 -2 -0 0 -17
5 13 -3 0 -1 0 2 1 -17
-1 13 1 -1 4 4 6 -2 -17

-10 -21 2 -2 2 -1 6 -8 -17
-4 6 5 -0 -0 3 4 3 -15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-A33:03 protein

Figure 6.1: Motifs (top left), mean SHAP values (top right) and LIME feature ranks

6.4.2 HLA-A*36:01

1 2 3 4 5 6 7 8 9
peptide position

A
C

D
E

F
G

HI
K

L
M

N
P

Q
R

S
T

V
W

X
Y

am
in

o
ac

id

0 0 -6 -0 -0 -0 -0 -0 -13
-4 -8 -9 -4 -2 -2 -4 -2 -15
-3 -7 16 2 0 -1 -0 -1 -14
-0 -5 4 1 -0 -1 -1 0 -13
0 -9 -7 -0 0 1 0 1 -9
-2 -9 -9 0 1 -0 -2 -0 -14
1 -10 -7 -0 3 1 -0 3 -13
0 1 -7 -2 -0 0 -1 -2 -15
0 -11 -11 0 1 -0 -2 1 -15
-0 3 -8 -0 -0 -0 6 0 -9
0 4 -6 -1 -2 -1 -0 -0 -11
1 -10 -7 -0 1 -0 -0 -0 -12
-4 -9 -6 1 1 1 -1 -4 -13
0 -5 -8 0 -0 -0 -1 0 -15
0 -12 -13 -0 1 -0 -2 2 -14
1 8 -6 0 -0 0 -1 1 -14
1 14 -7 0 0 1 0 0 -15
0 5 -9 -0 0 1 0 1 -13
-1 -10 -8 -1 -0 -1 1 -2 -7
-7
2 -8 -5 -0 0 0 1 1 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-A36:01 protein

Figure 6.2: Motifs (top left), mean SHAP values (top right) and LIME feature ranks

Chapter 6. Appendix 46

6.4.3 HLA-A*74:01

1 2 3 4 5 6 7 8 9
peptide position

A
C

D
E

F
G

HI
K

L
M

N
P

Q
R

S
T

V
W

Y
am

in
o

ac
id

2 -4 -2 0 -1 -1 1 1 -16
-12 -7 -5 -4 -4 -6 -2 -3 -13
-12 -12 -10 2 -5 -9 -9 -6 -14
-11 -11 -11 2 -4 -9 -5 0 -14
-11 -10 6 -3 3 3 4 -3 -13
-5 -6 -7 1 -1 -3 -9 1 -13
-6 -13 1 0 7 1 5 2 -12
-6 2 -1 -1 3 6 4 -9 -14
9 -12 8 2 4 1 -1 -0 -10

-13 4 -1 -2 -1 0 -4 -2 -12
-9 3 2 -8 -1 -2 -2 -2 -14

-10 -9 10 1 0 -3 0 8 -20
-12 -12 -8 3 -1 -1 -10 -2 -16
-5 1 1 1 0 -1 0 2 -16
13 -12 -0 -0 5 1 0 -2 12
2 2 -4 1 -3 -2 -0 2 -14
-7 10 -7 0 -1 2 1 2 -13
-7 7 -3 -1 2 4 4 -1 -13

-14 -13 -1 -5 8 -1 6 -9 -12
-15 -3 5 -1 1 4 5 2 -11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-A74:01 protein

Figure 6.3: Motifs (top left), mean SHAP values (top right) and LIME feature ranks

6.4.4 HLA-B*37:01

1 2 3 4 5 6 7 8 9
peptide position

A
C

D
E

F
G

HI
K

L
M

N
P

Q
R

S
T

V
W

Y
am

in
o

ac
id

9 -3 -0 -1 -1 -0 -0 3 -3
-3 -3 -3 -3 -2 -4 -2 -2 -4
0 -6 -1 1 -2 -3 -2 -3 -4
0 8 -3 3 -2 -2 -1 -0 -5
-3 -4 7 -1 0 2 1 -5 8
-2 -4 -2 -1 -1 -1 -1 -0 -4
1 -4 1 -2 2 0 4 -1 -4
-3 -3 0 1 2 3 2 -3 -1
-5 -3 -3 -1 -2 0 -1 0 -5
-5 -3 -2 0 -1 0 -1 -2 2
0 -3 6 -1 -1 -1 -1 -2 2
0 -5 4 -2 -1 -0 -1 -2 -4
-3 1 -4 1 0 1 0 -1 -5
0 -3 3 1 -1 -0 2 -1 -4
-3 -3 -3 -3 1 -0 -2 -1 -4
4 -3 -1 -1 -1 -2 -1 5 -4
0 -4 -2 -2 -1 1 0 1 -4
-3 -3 -1 -1 0 2 2 0 -2
-8 -5 4 -5 -0 -2 2 -2 -2
-1 -4 6 -1 -1 -1 1 -2 -4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-B37:01 protein

Figure 6.4: Motifs (top left), mean SHAP values (top right) and LIME feature ranks

Chapter 6. Appendix 47

6.4.5 HLA-B*46:01

1 2 3 4 5 6 7 8 9
peptide position

A
C

D
E

F
G

HI
K

L
M

N
P

Q
R

S
T

V
W

Y
am

in
o

ac
id

1 9 1 -2 -0 -1 0 4 -10
-9 -7 -8 -15 -10 -4 -16 -10 -8
-7 -9 -7 5 -3 -5 -5 -11 -9
-9 -7 -7 3 -1 -2 1 5 -11
14 -7 3 -4 -4 -3 -7 -6 8
-4 -7 -6 1 3 5 -2 -4 -10
-0 -9 -1 -3 4 6 7 -3 -8
3 8 6 -2 1 2 2 -4 -11
1 -8 8 -1 -2 1 -0 -5 -9
-3 -1 -10 -2 -4 -3 -0 -5 -3
-1 -1 -2 -7 -3 -2 -0 -4 -0
-8 -8 1 -0 1 -1 -2 -6 -12
-8 -9 -5 6 8 -1 -3 -3 -12
-4 2 -5 -1 -1 -1 1 -1 -10
-1 -8 3 -4 1 2 2 -3 -10
0 1 -5 -2 -0 2 3 4 -10
-2 0 -8 -3 1 5 5 3 -11
2 3 -5 -2 -1 1 4 1 -12
-9 -9 -11 -4 -15 -18 -15 -8 -7
13 -8 5 -6 -6 -6 -4 -4 17

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-B46:01 protein

Figure 6.5: Motifs (top left), mean SHAP values (top right) and LIME feature ranks

6.4.6 HLA-B*58:01

1 2 3 4 5 6 7 8 9
peptide position

A
C

D
E

F
G

HI
K

L
M

N
P

Q
R

S
T

V
W

Y
am

in
o

ac
id

-3 8 1 -0 -0 0 -0 -0 -25
-17 -14 -4 -8 -8 -3 -6 -6 -25
-13 -18 -2 0 -1 -1 -1 -4 -25
-12 -21 -8 1 -1 -1 -0 1 -26
-9 -19 4 -4 0 -0 1 -2 12
-5 -3 -4 -0 -1 -2 -3 -1 -24
3 -16 4 1 5 4 7 2 -29
-1 -2 3 -1 3 0 0 -2 -14
12 -19 1 6 3 2 0 2 -23
-4 -10 1 -2 0 -0 -0 -0 -14
-8 -20 1 -2 -1 -0 -2 -0 -20

-10 -16 1 0 -0 0 -0 -0 -26
-18 -5 -7 6 -1 0 1 -10 -22
-5 -11 -1 -0 -0 0 0 -0 -23
6 -19 -1 3 -2 2 1 1 -25
-3 13 0 -0 -0 -0 -0 0 -25
-2 12 -1 0 0 1 0 2 -22
-2 4 1 -0 2 1 0 0 -24

-12 -14 1 -7 0 -4 0 -2 31
-4 -17 3 -3 0 0 0 -0 3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-B58:01 protein

Figure 6.6: Motifs (top left), mean SHAP values (top right) and LIME feature ranks

Chapter 6. Appendix 48

6.4.7 HLA-B*58:02

1 2 3 4 5 6 7 8 9
peptide position

A
C

D
E

F
G

HI
K

L
M

N
P

Q
R

S
T

V
W

Y
am

in
o

ac
id

-7 6 0 -0 -1 0 -2 -1 -15
-13 -15 -5 -7 -8 -4 -6 -6 -16
-19 -15 -7 2 -3 -4 -4 -8 -17
-11 -14 -11 3 -2 -1 -1 2 -16
-9 -12 5 -5 0 0 1 -5 19

-13 -11 -8 -1 -1 -4 -8 -4 -14
-2 -16 -1 -0 1 3 4 2 -14
-4 -10 3 -1 5 3 1 -2 10
12 -13 4 5 -1 1 0 2 -14
-7 -17 2 -2 2 0 -1 0 5
-11 -17 3 -5 -2 -1 -2 -1 -3
-9 -16 1 -0 -1 -1 -2 -1 -15

-17 -7 -9 6 -3 1 2 -11 -15
-5 -17 -4 0 -1 1 0 1 -15
2 -16 -1 0 -6 -2 5 0 -15
-7 11 -1 0 -2 -1 -4 1 -15
-7 15 -2 1 0 1 -2 5 -17
-5 -3 -0 -1 4 2 1 2 -10

-10 -12 3 -7 0 -1 2 -11 31
-2 -13 4 -3 -0 0 1 0 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-B58:02 protein

Figure 6.7: Motifs (top left), mean SHAP values (top right) and LIME feature ranks

6.4.8 HLA-C*15:02

1 2 3 4 5 6 7 8 9
peptide position

A
C

D
E

F
G

HI
K

L
M

N
P

Q
R

S
T

V
W

Y
am

in
o

ac
id

-1 14 -1 -1 -1 -0 -1 1 -3
-3 -2 -3 -2 -4 -3 -3 -3 -3
-3 -3 21 4 -1 -2 -3 -2 -5
-3 -3 -0 3 -1 -2 -1 4 -3
17 8 -0 -2 -1 2 -1 -2 7
-2 -3 -3 1 0 0 -2 -3 -4
0 -3 -2 -2 6 2 5 -1 -3
1 2 1 -3 -1 3 1 -1 -3
-0 -3 -3 -1 2 -2 0 1 -2
-0 -2 -3 -2 -3 -1 1 -2 6
1 -2 0 -4 -2 -0 0 -2 6
-1 -5 1 -0 1 -1 -1 -2 -4
-3 -0 -2 6 2 2 -1 -2 -4
-3 -3 -3 -2 -1 -1 -2 -1 -3
-3 -3 -4 -4 1 -1 3 1 -3
-0 0 -1 -1 -0 -0 -0 2 -3
-0 -1 -2 -1 -1 1 2 2 -4
1 -0 -1 -2 1 2 1 1 -2
-1 3 -4 -3 -1 -1 -2 -2 -3
13 3 3 -2 -0 -1 -1 -0 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-C15:02 protein

Figure 6.8: Motifs (top left), mean SHAP values (top right) and LIME feature ranks

Chapter 6. Appendix 49

6.4.9 HLA-C*17:01

1 2 3 4 5 6 7 8 9
peptide position

A
C

D
E

F
G

HI
K

L
M

N
P

Q
R

S
T

V
W

Y
am

in
o

ac
id

0 14 -4 -1 -1 0 0 1 -9
-8 -8 -10 -5 -6 -5 -8 -3 -9
-7 -8 27 6 0 0 -3 -3 -10
-7 -8 2 4 -0 -1 -2 6 -9
12 10 -2 -3 -2 -1 -2 -1 8
-6 -6 -8 2 1 0 -5 -3 -10
3 -9 -2 -1 10 2 6 3 -10
1 -0 -2 -4 0 2 4 -1 -3
1 -8 -8 2 4 -1 -1 4 -10
-2 -4 -8 -4 -4 -2 -3 -2 9
3 -5 -3 -3 -2 -1 -1 -1 4
1 -6 -2 -0 -0 -0 -2 -1 -10
-7 1 -3 5 1 7 -1 -4 -11
-4 -8 -6 -3 1 -1 -2 0 -10
-3 -9 -8 -4 2 0 1 3 -9
1 -2 -5 -0 -1 -1 -1 2 -9
-0 -3 -7 -3 0 0 3 2 -10
1 -2 -6 -3 0 2 4 1 1
-3 3 -3 -3 -3 -4 -4 -13 -8
11 3 1 -3 -2 -2 -1 2 -5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10.00
0.25
0.50
0.75
1.00 N-flank

1-4
5-9
10-24

25-49
Lower

1 2 3 4 5 6 7 8 90.00
0.25
0.50
0.75
1.00 9-mer peptide

1st
2nd
3rd

4th
Lower

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00
0.25
0.50
0.75
1.00 C-flank

7 9 24 45 59 62 63 66 67 69 70 73 74 76 77 80 81 84 95 97 99 11
4

11
6

11
8

14
3

14
7

15
0

15
2

15
6

15
8

15
9

16
3

16
7

17
1

position

0.00
0.25
0.50
0.75
1.00 HLA-C17:01 protein

Figure 6.9: Motifs (top left), mean SHAP values (top right) and LIME feature ranks

Acronyms

AA amino acid. 3–6, 19, 23, 27, 28, 30, 31, 36, 37, 39

AP average precision. 12, 13, 30, 33–35, 44

AUC area-under-the-curve. 12, 13, 30, 33–35

BA binding affinity. 6, 10, 18–21

BERT Bidirectional Encoder Representations for Transformers. i, 2, 9, 13–15, 22,

27, 40

CNN convolutional neural network. 13, 22

CTL Cytotoxic T-lymphocytes. 1, 5, 6

DNA deoxyribonucleic acid. 4

EL eluted ligand. 7, 9, 18–21, 23, 24, 30

ER endoplasmic reticulum. 5, 6

FN false negative. 12

FP false positive. 12

FPR false positive rate. 12

HLA Human Leukocyte Antigen. 1, 6, 8, 9, 22, 23, 25, 30–32, 35, 37, 44

IC information content. 31, 39

LIME Local Interpretable Model-agnostic Explanations. i, 2, 16, 17, 30, 35, 36, 38–

40, 45–49

50

Acronyms 51

LSTM Long Short-term Memory. 15

MA multi-allele. 19, 24, 29

MHC major histocompatibility complex. i, 1–3, 5–7, 9, 18–22, 24–30, 32, 36, 38–40

MHC-I MHC class I. 1–3, 5–7, 9, 18–20, 22

MHC-II MHC class II. 15, 19, 22

MIL Multi Instance Learning. 9, 10, 21, 29

ML machine learning. 2, 3, 15, 27

MLM Masked Language Modelling. 14, 15

MLP multi layer perceptron. 22, 29

mRNA messenger ribonucleic acid. 4

NSP Next Sentence Prediction. 14, 15

pMHC peptide:MHC protein complex. 1, 5, 6

PR precision-recall. 12, 13, 30, 34, 35

PRIDE PRoteomics IDEntifications Database. 23

PU positive and unlabelled. 10

PWM position weight matrix. 9

ResNet residual network. 15

ROC receiver-operating-curve. 12, 13, 30, 33–35

SA single-allele. 19, 24, 29, 32

SHAP SHapley Additive exPlanations. i, 2, 16–18, 30, 31, 35, 37–40, 45–49

SOTA state of the art. i, 2, 10, 13, 15, 21, 24, 32, 40

TAP transporter associated with antigen processing. 5, 20

Acronyms 52

TAPE Tasks Assessing Protein Embeddings. 15, 22, 27, 28

TCR T-cell receptor. 1, 2, 5, 6

TN true negative. 12

TP true positive. 12

TPR true positive rate. 12

Bibliography

[1] Encyclopaedia Britannica. Major histocompatibility complex. July 2021. URL:

https://www.britannica.com/science/major-histocompatibility-

complex.

[2] Y. M. Mosaad. “Clinical Role of Human Leukocyte Antigen in Health and Dis-

ease”. In: Scandinavian Journal of Immunology 82.4 (2015), pp. 283–306. URL:

https://onlinelibrary.wiley.com/doi/abs/10.1111/sji.12329

(visited on 07/13/2021).

[3] Kenneth Murphy and Casey Weaver. Janeway’s Immunobiology. 9th. Garland

Science, 2017.

[4] Hans-Christof Gasser. Informatics Project Proposal: Generalizable models of

antigen presentation for the characterization of understudied immune-landscapes.

May 2021.

[5] Ton N. Schumacher and Robert D. Schreiber. “Neoantigens in cancer immunother-

apy”. In: Science 348.6230 (Apr. 2015). Publisher: American Association for the

Advancement of Science Section: Review, pp. 69–74. URL: https://science.

sciencemag.org/content/348/6230/69 (visited on 06/15/2021).

[6] Zheying Zhang et al. “Neoantigen: A New Breakthrough in Tumor Immunother-

apy”. In: Frontiers in Immunology 0 (2021). Publisher: Frontiers. URL: https:

//www.frontiersin.org/articles/10.3389/fimmu.2021.672356/full

(visited on 08/11/2021).

[7] Cynthia M. Fehres et al. “Understanding the Biology of Antigen Cross-Presentation

for the Design of Vaccines Against Cancer”. In: Frontiers in Immunology 5

(2014). Publisher: Frontiers. URL: https://www.frontiersin.org/articles/

10.3389/fimmu.2014.00149/full (visited on 06/15/2021).

53

https://www.britannica.com/science/major-histocompatibility-complex
https://www.britannica.com/science/major-histocompatibility-complex
https://onlinelibrary.wiley.com/doi/abs/10.1111/sji.12329
https://science.sciencemag.org/content/348/6230/69
https://science.sciencemag.org/content/348/6230/69
https://www.frontiersin.org/articles/10.3389/fimmu.2021.672356/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.672356/full
https://www.frontiersin.org/articles/10.3389/fimmu.2014.00149/full
https://www.frontiersin.org/articles/10.3389/fimmu.2014.00149/full

BIBLIOGRAPHY 54

[8] Guangyuan Li et al. “DeepImmuno: deep learning-empowered prediction and

generation of immunogenic peptides for T-cell immunity”. In: Briefings in Bioin-

formatics (May 2021). URL: https://doi.org/10.1093/bib/bbab160

(visited on 06/09/2021).

[9] Joseph D. Comber and Ramila Philip. “MHC class I antigen presentation and

implications for developing a new generation of therapeutic vaccines”. In: Ther-

apeutic Advances in Vaccines 2.3 (May 2014). Publisher: SAGE Publications

Ltd STM, pp. 77–89. URL: https://doi.org/10.1177/2051013614525375

(visited on 04/21/2021).

[10] Thomas D. Pollard et al. Cell Biology. 3rd ed. Elsevier Health Sciences, Nov.

2016.

[11] Jonathan Crowe and Tony Bradshaw. Chemistry for the Biosciences - The es-

sential concepts. 3rd. Oxford University Press, 2014.

[12] Kenneth L. Rock, Eric Reits, and Jacques Neefjes. “Present Yourself! By MHC

Class I and MHC Class II Molecules”. In: Trends in Immunology 37.11 (Nov.

2016), pp. 724–737. URL: https://www.sciencedirect.com/science/

article/pii/S1471490616301004 (visited on 04/05/2021).

[13] Morten Nielsen et al. “Immunoinformatics: Predicting Peptide–MHC Binding”.

In: Annual Review of Biomedical Data Science 3.1 (2020), pp. 191–215. URL:

https://doi.org/10.1146/annurev-biodatasci-021920-100259 (vis-

ited on 04/08/2021).

[14] Morten Nielsen et al. “The role of the proteasome in generating cytotoxic T-cell

epitopes: insights obtained from improved predictions of proteasomal cleav-

age”. In: Immunogenetics 57.1 (Apr. 2005), pp. 33–41. URL: https://doi.

org/10.1007/s00251-005-0781-7 (visited on 07/08/2021).

[15] Jonathan W. Yewdell and Jack R. Bennink. “Immunodominance in major his-

tocompatibility complex class i–restricted t lymphocyte responses”. In: Annual

Review of Immunology 17.1 (Apr. 1999). Publisher: Annual Reviews, pp. 51–

88. URL: https://www.annualreviews.org/doi/10.1146/annurev.

immunol.17.1.51 (visited on 07/02/2021).

[16] EBI. Immuno Polymorphism Database - Statistics. 2021. URL: https://www.

ebi.ac.uk/ipd/imgt/hla/stats.html (visited on 04/05/2021).

https://doi.org/10.1093/bib/bbab160
https://doi.org/10.1177/2051013614525375
https://www.sciencedirect.com/science/article/pii/S1471490616301004
https://www.sciencedirect.com/science/article/pii/S1471490616301004
https://doi.org/10.1146/annurev-biodatasci-021920-100259
https://doi.org/10.1007/s00251-005-0781-7
https://doi.org/10.1007/s00251-005-0781-7
https://www.annualreviews.org/doi/10.1146/annurev.immunol.17.1.51
https://www.annualreviews.org/doi/10.1146/annurev.immunol.17.1.51
https://www.ebi.ac.uk/ipd/imgt/hla/stats.html
https://www.ebi.ac.uk/ipd/imgt/hla/stats.html

BIBLIOGRAPHY 55

[17] Jennifer G. Abelin et al. “Mass Spectrometry Profiling of HLA-Associated Pep-

tidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction”. In:

Immunity 46.2 (Feb. 2017). Publisher: Elsevier, pp. 315–326. URL: https://

www.cell.com/immunity/abstract/S1074-7613(17)30042-0 (visited on

04/22/2021).

[18] Wikipedia. Major histocompatibility complex. Page Version ID: 1020006475.

Apr. 2021. URL: https://en.wikipedia.org/w/index.php?title=Major_

histocompatibility_complex&oldid=1020006475 (visited on 05/04/2021).

[19] Bruno Alvarez et al. “NNAlign MA; MHC Peptidome Deconvolution for Accu-

rate MHC Binding Motif Characterization and Improved T-cell Epitope Predic-

tions”. In: Molecular & Cellular Proteomics 18.12 (Dec. 2019). Publisher: Else-

vier, pp. 2459–2477. URL: https://www.mcponline.org/article/S1535-

9476(20)31649-2/abstract (visited on 04/05/2021).

[20] D. F. Hunt et al. “Characterization of peptides bound to the class I MHC molecule

HLA-A2.1 by mass spectrometry”. In: Science 255.5049 (Mar. 1992). Pub-

lisher: American Association for the Advancement of Science Section: Reports,

pp. 1261–1263. URL: https://science.sciencemag.org/content/255/

5049/1261 (visited on 07/19/2021).

[21] Anette Stryhn et al. “Longer peptide can be accommodated in the MHC class I

binding site by a protrusion mechanism”. In: European Journal of Immunology

30.11 (2000), pp. 3089–3099. URL: https://onlinelibrary.wiley.com/

doi/abs/10.1002/1521-4141%28200011%2930%3A11%3C3089%3A%3AAID-

IMMU3089%3E3.0.CO%3B2-5 (visited on 07/10/2021).

[22] Marie-Paule Lefranc et al. “IMGT unique numbering for MHC groove G-DOMAIN

and MHC superfamily (MhcSF) G-LIKE-DOMAIN”. In: Developmental & Com-

parative Immunology 29.11 (Jan. 2005), pp. 917–938. URL: https://www.

sciencedirect.com/science/article/pii/S0145305X05000650 (visited

on 05/14/2021).

[23] HLA Informatics Group. HLA Nomenclature @ hla.alleles.org. URL: http:

//hla.alleles.org/nomenclature/naming.html (visited on 07/13/2021).

[24] Hanneke W. M. van Deutekom and Can Keşmir. “Zooming into the binding

groove of HLA molecules: which positions and which substitutions change

peptide binding most?” In: Immunogenetics 67.8 (2015), pp. 425–436. URL:

https://www.cell.com/immunity/abstract/S1074-7613(17)30042-0
https://www.cell.com/immunity/abstract/S1074-7613(17)30042-0
https://en.wikipedia.org/w/index.php?title=Major_histocompatibility_complex&oldid=1020006475
https://en.wikipedia.org/w/index.php?title=Major_histocompatibility_complex&oldid=1020006475
https://www.mcponline.org/article/S1535-9476(20)31649-2/abstract
https://www.mcponline.org/article/S1535-9476(20)31649-2/abstract
https://science.sciencemag.org/content/255/5049/1261
https://science.sciencemag.org/content/255/5049/1261
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-4141%28200011%2930%3A11%3C3089%3A%3AAID-IMMU3089%3E3.0.CO%3B2-5
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-4141%28200011%2930%3A11%3C3089%3A%3AAID-IMMU3089%3E3.0.CO%3B2-5
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-4141%28200011%2930%3A11%3C3089%3A%3AAID-IMMU3089%3E3.0.CO%3B2-5
https://www.sciencedirect.com/science/article/pii/S0145305X05000650
https://www.sciencedirect.com/science/article/pii/S0145305X05000650
http://hla.alleles.org/nomenclature/naming.html
http://hla.alleles.org/nomenclature/naming.html

BIBLIOGRAPHY 56

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498290/ (visited on

07/10/2021).

[25] Michal Bassani-Sternberg and David Gfeller. “Unsupervised HLA Peptidome

Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative

Effects in Peptide–HLA Interactions”. In: The Journal of Immunology 197.6

(Sept. 2016). Publisher: American Association of Immunologists Section: SYS-

TEMS IMMUNOLOGY, pp. 2492–2499. URL: https://www.jimmunol.org/

content/197/6/2492 (visited on 07/19/2021).

[26] Maximilian Ilse, Jakub Tomczak, and Max Welling. “Attention-based Deep Mul-

tiple Instance Learning”. In: Proceedings of the 35th International Conference

on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Pro-

ceedings of Machine Learning Research. PMLR, July 2018, pp. 2127–2136.

URL: http://proceedings.mlr.press/v80/ilse18a.html.

[27] Xinggang Wang et al. “Revisiting multiple instance neural networks”. In: Pat-

tern Recognition 74 (Feb. 2018), pp. 15–24. URL: https : / / linkinghub .

elsevier.com/retrieve/pii/S0031320317303382 (visited on 05/06/2021).

[28] Jan Ramon and Luc De Raedt. “Multi instance neural networks”. In: Proceed-

ings of the ICML-2000 workshop on attribute-value and relational learning.

2000, pp. 53–60. URL: https://lirias.kuleuven.be/retrieve/416293

(visited on 06/05/2021).

[29] Jun Cheng et al. “BERTMHC: Improves MHC-peptide class II interaction pre-

diction with transformer and multiple instance learning”. In: bioRxiv (Nov. 2020).

Publisher: Cold Spring Harbor Laboratory Section: New Results, p. 2020.11.24.396101.

URL: https : / / www . biorxiv . org / content / 10 . 1101 / 2020 . 11 . 24 .

396101v1 (visited on 04/05/2021).

[30] Jessa Bekker and Jesse Davis. “Learning from positive and unlabeled data: a

survey”. In: Machine Learning 109.4 (Apr. 2020), pp. 719–760. URL: https:

//doi.org/10.1007/s10994-020-05877-5 (visited on 07/17/2021).

[31] Charles Elkan and Keith Noto. “Learning classifiers from only positive and un-

labeled data”. In: Proceedings of the 14th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining. KDD ’08. New York, NY, USA:

Association for Computing Machinery, Aug. 2008, pp. 213–220. URL: https:

//doi.org/10.1145/1401890.1401920 (visited on 07/17/2021).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498290/
https://www.jimmunol.org/content/197/6/2492
https://www.jimmunol.org/content/197/6/2492
http://proceedings.mlr.press/v80/ilse18a.html
https://linkinghub.elsevier.com/retrieve/pii/S0031320317303382
https://linkinghub.elsevier.com/retrieve/pii/S0031320317303382
https://lirias.kuleuven.be/retrieve/416293
https://www.biorxiv.org/content/10.1101/2020.11.24.396101v1
https://www.biorxiv.org/content/10.1101/2020.11.24.396101v1
https://doi.org/10.1007/s10994-020-05877-5
https://doi.org/10.1007/s10994-020-05877-5
https://doi.org/10.1145/1401890.1401920
https://doi.org/10.1145/1401890.1401920

BIBLIOGRAPHY 57

[32] Haibo He and Edwardo A. Garcia. “Learning from Imbalanced Data”. In: IEEE

Transactions on Knowledge and Data Engineering 21.9 (Sept. 2009). Confer-

ence Name: IEEE Transactions on Knowledge and Data Engineering, pp. 1263–

1284. URL: https://ieeexplore.ieee.org/document/5128907.

[33] G. M. Weiss and F. Provost. “Learning When Training Data are Costly: The

Effect of Class Distribution on Tree Induction”. In: Journal of Artificial Intel-

ligence Research 19 (Oct. 2003), pp. 315–354. URL: https://jair.org/

index.php/jair/article/view/10346 (visited on 08/15/2021).

[34] sklearn. sklearn.metrics.average precision score — scikit-learn 0.24.2 documen-

tation. July 2021. URL: https://scikit-learn.org/stable/modules/

generated/sklearn.metrics.average_precision_score.html (visited

on 07/21/2021).

[35] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding”. In: Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, Volume 1 (Long and Short Papers). Minneapolis,

Minnesota: Association for Computational Linguistics, June 2019, pp. 4171–

4186. URL: https://www.aclweb.org/anthology/N19-1423 (visited on

04/21/2021).

[36] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances

in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc.,

2020, pp. 1877–1901. URL: https : / / papers . nips . cc / paper / 2020 /

hash/1457c0d6bfcb4967418bfb8ac142f64a- Abstract.html (visited on

08/07/2021).

[37] Justin Weinberg. Philosophers On GPT-3 (updated with replies by GPT-3). Sec-

tion: Public philosophy and outreach. July 2020. URL: https://dailynous.

com/2020/07/30/philosophers-gpt-3/ (visited on 07/17/2021).

[38] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Infor-

mation Processing Systems 30 (2017), pp. 5998–6008. URL: https://papers.

nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.

html (visited on 11/06/2020).

[39] Yannic Kilcher. Attention Is All You Need. Nov. 2017. URL: https://www.

youtube.com/watch?v=iDulhoQ2pro (visited on 04/01/2021).

https://ieeexplore.ieee.org/document/5128907
https://jair.org/index.php/jair/article/view/10346
https://jair.org/index.php/jair/article/view/10346
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://www.aclweb.org/anthology/N19-1423
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://dailynous.com/2020/07/30/philosophers-gpt-3/
https://dailynous.com/2020/07/30/philosophers-gpt-3/
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.youtube.com/watch?v=iDulhoQ2pro
https://www.youtube.com/watch?v=iDulhoQ2pro

BIBLIOGRAPHY 58

[40] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for

Image Recognition at Scale”. In: Sept. 2020. URL: https://openreview.net/

forum?id=YicbFdNTTy (visited on 01/22/2021).

[41] Antreas Antoniou. MLP - Advanced Session 1: Transformers. University of Ed-

inburgh, Nov. 2020.

[42] Shubham Toshniwal et al. “A Cross-Task Analysis of Text Span Representa-

tions”. In: arXiv:2006.03866 [cs] (June 2020). arXiv: 2006.03866. URL: http:

//arxiv.org/abs/2006.03866 (visited on 04/25/2021).

[43] Łukasz Kaiser. Attention is all you need; Attentional Neural Network Models

— Łukasz Kaiser — Masterclass. Pi School, Oct. 2017. URL: https://www.

youtube.com/watch?v=rBCqOTEfxvg (visited on 07/31/2021).

[44] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. “Reformer: The Efficient

Transformer”. In: Apr. 2020. URL: https : / / iclr . cc / virtual _ 2020 /

poster_rkgNKkHtvB.html (visited on 08/15/2021).

[45] Roshan Rao et al. “Evaluating Protein Transfer Learning with TAPE”. In: Ad-

vances in neural information processing systems 32 (Dec. 2019), pp. 9689–

9701. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774645/

(visited on 04/21/2021).

[46] Pfam. TAPE Pfam pretraining data. 2019. URL: http://s3.amazonaws.com/

proteindata/data_pytorch/pfam.tar.gz.

[47] Ahmed Elnaggar et al. “ProtTrans: Towards Cracking the Language of Life’s

Code Through Self-Supervised Deep Learning and High Performance Com-

puting”. In: arXiv:2007.06225 [cs, stat] (May 2021). arXiv: 2007.06225. URL:

http://arxiv.org/abs/2007.06225 (visited on 05/17/2021).

[48] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should I Trust

You?”: Explaining the Predictions of Any Classifier”. In: Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. KDD ’16. New York, NY, USA: Association for Computing Ma-

chinery, Aug. 2016, pp. 1135–1144. URL: https : / / doi . org / 10 . 1145 /

2939672.2939778 (visited on 08/15/2021).

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://arxiv.org/abs/2006.03866
http://arxiv.org/abs/2006.03866
https://www.youtube.com/watch?v=rBCqOTEfxvg
https://www.youtube.com/watch?v=rBCqOTEfxvg
https://iclr.cc/virtual_2020/poster_rkgNKkHtvB.html
https://iclr.cc/virtual_2020/poster_rkgNKkHtvB.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774645/
http://s3.amazonaws.com/proteindata/data_pytorch/pfam.tar.gz
http://s3.amazonaws.com/proteindata/data_pytorch/pfam.tar.gz
http://arxiv.org/abs/2007.06225
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778

BIBLIOGRAPHY 59

[49] Scott M. Lundberg and Su-In Lee. “A unified approach to interpreting model

predictions”. In: Proceedings of the 31st International Conference on Neural

Information Processing Systems. NIPS’17. Red Hook, NY, USA: Curran Asso-

ciates Inc., Dec. 2017, pp. 4768–4777. URL: https://proceedings.neurips.

cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.

html (visited on 06/18/2021).

[50] Lloyd Shapley. “A value for n-person games”. In: Contributions to the Theory

of Games (AM-28), Volume II. Princeton University Press, 1953.

[51] Morten Nielsen et al. “Reliable prediction of T-cell epitopes using neural net-

works with novel sequence representations”. In: Protein Science: A Publica-

tion of the Protein Society 12.5 (May 2003), pp. 1007–1017. URL: https :

//onlinelibrary.wiley.com/doi/full/10.1110/ps.0239403.

[52] Morten Nielsen and Massimo Andreatta. “NetMHCpan-3.0; improved predic-

tion of binding to MHC class I molecules integrating information from multiple

receptor and peptide length datasets”. In: Genome Medicine 8.1 (Mar. 2016),

p. 33. URL: https://doi.org/10.1186/s13073-016-0288-x (visited on

07/18/2021).

[53] Sinu Paul et al. “HLA class I alleles are associated with peptide binding reper-

toires of different size, affinity and immunogenicity”. In: Journal of Immunol-

ogy 191.12 (Dec. 2013), 10.4049/jimmunol.1302101. URL: https : / / www .

jimmunol.org/content/191/12/5831 (visited on 07/19/2021).

[54] Keiko Udaka et al. “Empirical Evaluation of a Dynamic Experiment Design

Method for Prediction of MHC Class I-Binding Peptides”. In: The Journal of

Immunology 169.10 (Nov. 2002), pp. 5744–5753. URL: http://www.jimmunol.

org/lookup/doi/10.4049/jimmunol.169.10.5744 (visited on 07/02/2021).

[55] Birkir Reynisson et al. “NetMHCpan-4.1 and NetMHCIIpan-4.0: improved pre-

dictions of MHC antigen presentation by concurrent motif deconvolution and

integration of MS MHC eluted ligand data”. In: Nucleic Acids Research 48.W1

(July 2020), W449–W454. URL: https://doi.org/10.1093/nar/gkaa379

(visited on 04/05/2021).

[56] Timothy J. O’Donnell, Alex Rubinsteyn, and Uri Laserson. “MHCflurry 2.0:

Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incor-

porating Antigen Processing”. In: Cell Systems 11.1 (July 2020). Publisher:

https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://onlinelibrary.wiley.com/doi/full/10.1110/ps.0239403
https://onlinelibrary.wiley.com/doi/full/10.1110/ps.0239403
https://doi.org/10.1186/s13073-016-0288-x
https://www.jimmunol.org/content/191/12/5831
https://www.jimmunol.org/content/191/12/5831
http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.169.10.5744
http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.169.10.5744
https://doi.org/10.1093/nar/gkaa379

BIBLIOGRAPHY 60

Cell Press, 42–48.e7. URL: https://www.sciencedirect.com/science/

article/pii/S2405471220302398 (visited on 04/05/2021).

[57] Morten Nielsen et al. “NetMHCpan, a Method for Quantitative Predictions of

Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence”. In:

PLOS ONE 2.8 (Aug. 2007). Publisher: Public Library of Science, e796. URL:

https://journals.plos.org/plosone/article?id=10.1371/journal.

pone.0000796 (visited on 05/08/2021).

[58] Yan Hu et al. “ACME: pan-specific peptide–MHC class I binding prediction

through attention-based deep neural networks”. In: Bioinformatics 35.23 (Dec.

2019), pp. 4946–4954. URL: https://doi.org/10.1093/bioinformatics/

btz427 (visited on 04/22/2021).

[59] Haoyang Zeng and David K. Gifford. “Quantification of Uncertainty in Peptide-

MHC Binding Prediction Improves High-Affinity Peptide Selection for Ther-

apeutic Design”. In: Cell Systems 9.2 (Aug. 2019). Publisher: Elsevier, 159–

166.e3. URL: https://www.cell.com/cell-systems/abstract/S2405-

4712(19)30153-X (visited on 07/26/2021).

[60] Gopalakrishnan Venkatesh et al. “MHCAttnNet: predicting MHC-peptide bind-

ings for MHC alleles classes I and II using an attention-based deep neural

model”. In: Bioinformatics 36 (July 2020), pp. i399–i406. URL: https://doi.

org/10.1093/bioinformatics/btaa479 (visited on 07/26/2021).

[61] Yasset Perez-Riverol et al. “The PRIDE database and related tools and resources

in 2019: improving support for quantification data”. In: Nucleic Acids Research

47 (Jan. 2019), pp. D442–D450. URL: https://doi.org/10.1093/nar/

gky1106 (visited on 02/19/2021).

[62] Ana Marcu et al. “The HLA Ligand Atlas - A resource of natural HLA ligands

presented on benign tissues”. In: bioRxiv (July 2020). Publisher: Cold Spring

Harbor Laboratory Section: New Results. URL: https://www.biorxiv.org/

content/10.1101/778944v2 (visited on 04/20/2021).

[63] Ensembl. BioMart - Paralogue Table. June 2021. URL: http://www.ensembl.

org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=

default & ATTRIBUTES = hsapiens _ gene _ ensembl . default . homologs .

ensembl _ gene _ id % 7Chsapiens _ gene _ ensembl . default . homologs .

ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.

https://www.sciencedirect.com/science/article/pii/S2405471220302398
https://www.sciencedirect.com/science/article/pii/S2405471220302398
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000796
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000796
https://doi.org/10.1093/bioinformatics/btz427
https://doi.org/10.1093/bioinformatics/btz427
https://www.cell.com/cell-systems/abstract/S2405-4712(19)30153-X
https://www.cell.com/cell-systems/abstract/S2405-4712(19)30153-X
https://doi.org/10.1093/bioinformatics/btaa479
https://doi.org/10.1093/bioinformatics/btaa479
https://doi.org/10.1093/nar/gky1106
https://doi.org/10.1093/nar/gky1106
https://www.biorxiv.org/content/10.1101/778944v2
https://www.biorxiv.org/content/10.1101/778944v2
http://www.ensembl.org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.homologs.ensembl_gene_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_associated_gene_name%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&FILTERS=&VISIBLEPANEL=resultspanel
http://www.ensembl.org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.homologs.ensembl_gene_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_associated_gene_name%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&FILTERS=&VISIBLEPANEL=resultspanel
http://www.ensembl.org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.homologs.ensembl_gene_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_associated_gene_name%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&FILTERS=&VISIBLEPANEL=resultspanel
http://www.ensembl.org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.homologs.ensembl_gene_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_associated_gene_name%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&FILTERS=&VISIBLEPANEL=resultspanel
http://www.ensembl.org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.homologs.ensembl_gene_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_associated_gene_name%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&FILTERS=&VISIBLEPANEL=resultspanel

BIBLIOGRAPHY 61

ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.

hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.

homologs . hsapiens _ paralog _ associated _ gene _ name % 7Chsapiens _

gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&

FILTERS=&VISIBLEPANEL=resultspanel.

[64] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-

tion”. In: arXiv:1412.6980 [cs] (Jan. 2017). arXiv: 1412.6980. URL: http://

arxiv.org/abs/1412.6980 (visited on 10/22/2020).

[65] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. URL: http://www.deeplearningbook.org/.

[66] Thomas D. Schneider and R.Michael Stephens. “Sequence logos: a new way

to display consensus sequences”. In: Nucleic Acids Research (Oct. 1990). URL:

https://doi.org/10.1093/nar/18.20.6097 (visited on 07/26/2021).

[67] Ammar Tareen and Justin B. Kinney. “Logomaker: Beautiful sequence logos in

python”. In: Bioinformatics (May 2019). Publisher: Cold Spring Harbor Labo-

ratory Section: New Results. URL: https://www.biorxiv.org/content/10.

1101/635029v1 (visited on 08/01/2021).

[68] Jingcheng Wu et al. “DeepHLApan: A Deep Learning Approach for Neoantigen

Prediction Considering Both HLA-Peptide Binding and Immunogenicity”. In:

Frontiers in Immunology 10 (2019). URL: https://www.frontiersin.org/

articles/10.3389/fimmu.2019.02559/full (visited on 03/14/2021).

[69] Jun Liu and George F. Gao. “Major Histocompatibility Complex: Interaction

with Peptides”. In: Encyclopedia of Life Sciences. Wiley-Blackwell, 2011. URL:

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.

a0000922.pub2 (visited on 08/15/2021).

http://www.ensembl.org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.homologs.ensembl_gene_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_associated_gene_name%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&FILTERS=&VISIBLEPANEL=resultspanel
http://www.ensembl.org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.homologs.ensembl_gene_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_associated_gene_name%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&FILTERS=&VISIBLEPANEL=resultspanel
http://www.ensembl.org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.homologs.ensembl_gene_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_associated_gene_name%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&FILTERS=&VISIBLEPANEL=resultspanel
http://www.ensembl.org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.homologs.ensembl_gene_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_associated_gene_name%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&FILTERS=&VISIBLEPANEL=resultspanel
http://www.ensembl.org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.homologs.ensembl_gene_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_associated_gene_name%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&FILTERS=&VISIBLEPANEL=resultspanel
http://www.ensembl.org/biomart/martview/48db0485487a9c26d139bc5d7cdda420?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.homologs.ensembl_gene_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.homologs.ensembl_peptide_id%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_gene%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_associated_gene_name%7Chsapiens_gene_ensembl.default.homologs.hsapiens_paralog_ensembl_peptide&FILTERS=&VISIBLEPANEL=resultspanel
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://www.deeplearningbook.org/
https://doi.org/10.1093/nar/18.20.6097
https://www.biorxiv.org/content/10.1101/635029v1
https://www.biorxiv.org/content/10.1101/635029v1
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02559/full
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02559/full
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0000922.pub2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0000922.pub2

	Introduction
	Background
	Biology
	Proteins
	The MHC class-I pathway
	Experimental datasources
	MHC proteins and peptide binding

	Machine Learning
	Deconvolution
	Negative examples
	Imbalanced datasets and metrics
	BERT
	Interpretable AI

	Current state of the art
	NetMHCpan
	MHCflurry
	BERTMHC
	Notable other approaches

	Method
	Data
	Decoy generation
	Data splits

	Model Architecture
	Tokenization and Embedding
	Encoder
	Pooling
	Head

	Training
	Evaluation
	Evaluation on the test set
	Comparison to MHCflurry and NetMHCpan
	Interpretation

	Results
	Hyperparameter search and training
	Evaluation on the test set
	Benchmarking
	Interpretation
	HLA-A*33:01
	HLA-B*54:01
	HLA-C*01:02

	Conclusion and future work
	Appendix
	MHC split
	Tokenization example
	Hyperparameter search
	Interpretation
	HLA-A*33:03
	HLA-A*36:01
	HLA-A*74:01
	HLA-B*37:01
	HLA-B*46:01
	HLA-B*58:01
	HLA-B*58:02
	HLA-C*15:02
	HLA-C*17:01

