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Abstract

Einstein’s theory of special relativity replaced the Euclidean space at the heart of

Galilean physics with the new geometry of Minkowski space. Aiming to establishing a

verified foundation for special relativity, this MSc project continues the mechanization

of an axiomatic system for Minkowski space developed by Schutz in the interactive

theorem prover Isabelle/HOL. First, the existing partial formalization is critically re-

viewed and several changes made to it are discussed. A new mechanization of the third

theorem of collinearity introduced in Schutz’s monograph is discussed. This required

the development of new rigorous proofs capturing geometric intuitions which Schutz

apparently derives from pictorial representations. Techniques to avoid combinatorial

explosions arising in the mechanization of geometric proofs, by capturing without loss

of generality notions, are discussed.
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Chapter 1

Introduction

The predominant Galilean conception of space and time in physics was overturned

in the beginning of the 20th century, when the empirical observation of a universally

constant speed of light led Einstein to the theory of special relativity (SR) [1]. This was

later developed into the theory of general relativity (GR), which incorporates the effect

of gravity by treating it as the geometric curvature of a unified spacetime. Crucial

for this development was the work of Minkowski, who turned Einstein’s empirical

description of SR into a systematic formalism in terms of the so called Minkowski

spacetime1, a flat non-Euclidean geometric space2 [4].

Although Minkowski’s spacetime formalism is now the standard description of

relativity in physics, it was initially met with scepticism for being overly complex [5].

One reason for this is that Minkowski’s linear-algebraic description of space and time

is farther removed from our intuition than Einstein’s initial, more empirical, description

in terms of clocks, distances and movement through space. This suggests the problem

of formalizing Minkowski spacetime as an axiomatic geometric space, using minimal

building blocks such as events (points in space and time) and paths between events,

analogous to the description of Euclidean geometry by a set of intuitively appealing

and comprehensible axioms [6].

One such effort has been made by Schutz [7, 8, 9], which eventually led to a system

of fifteen independent axioms that describe Minkowski spacetime. From these, the

geometry is constructed in terms of derived theorems, and the standard linear-algebraic

1Minkowski spacetime may be referred to as both space and spacetime, one referring to it as a
geometric space and the other as the unification of physical space and time.

2The metric of Minkowski space is flat. Gravity in GR manifests itself in local perturbations of the
Minkowski metric, leading to curvature. A basic introduction to SR will be given in section 2.1. For an
in-depth introduction to both SR and GR see any standard physics textbook on the subject [2, 3].
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Chapter 1. Introduction 2

description of Minkowski space is eventually shown to be a model.

The aim of this project is to create a machine-checked formalization of Schutz’s

axioms and theorems as outlined in his 1997 monograph Independent axioms for

Minkowski space-time[9] using the mechanized proof assistant Isabelle, continuing the

work of two prior MSc projects with the same goal [10, 11, 12]. In these prior projects,

mechanizations of the axioms described in Schutz’s second chapter3 as well as the the-

orems of chapter three (with the exception of a partial result of Theorem 12) were com-

pleted. The objective of this project is to advance the mechanization of Schutz’s work

and begin with the mechanization of chapter four. The mechanization of all three parts

of Theorem 15 were completed, which involved filling in several lemmas that express

geometric intuitions which Schutz appears to have taken for granted. Additionally,

several existing mechanizations of definitions and derived objects were modified and

corrected.

A brief introduction to special relativity, its axiomatization, and to Isabelle in the

context of higher order logic (HOL) is given in section 2, as required to follow the

main results. Since this project is, as stated, the direct continuation of two previous

MSc projects, it was necessary to split it into two phases. In the first, the existing

mechanized formalization in Isabelle was studied, which led to several improvements

and corrections. These are explained and justified in section 3, together with a brief

outline of Schutz’s axiomatic system itself and relevant existing mechanizations.

The second phase of the project consists of the mechanization of Schutz’s The-

orem 15 and is discussed in section 4. Schutz makes considerable use of geometric

intuition, which means that great care needed to be taken in finding appropriate def-

initions for several of his definitions. For the same reason, his proofs needed to be

expanded by several lemmas he may have considered obvious as well as by a rigorous

treatment of “without loss of generality” (WLOG) assumptions and case distinctions.

3If not otherwise stated, all following references to specific chapters, Schutz’s axioms or his original
formulation of theorems refer to his 1997 monograph [9].



Chapter 2

Background

A brief description of special relativity in terms of Minkowski’s spacetime formalism

is given in section 2.1. This aims to remind the reader of the general setting, but also

serves as a demonstration of the formalism being rather far removed from intuitive

concepts about space and time, which leads to the motivation for creating a (machine

checked) geometric axiomatization of Minkowski space discussed in section 2.2. The

interactive theorem prover Isabelle/HOL is introduced in section 2.3, which is neces-

sary to understand the difficulties in moving from Schutz’s pen-and-paper proofs to a

mechanized version. Schutz’s axiomatic system of Minkowski space is summarized

in section 3, together with several relevant formalizations of definitions, axioms and

theorems in Isabelle inherited from the previous MSc projects.

2.1 Special Relativity

Before Einstein, space and time were widely thought to adhere to Galilean relativity.

An object moving at velocity v for observer O1, for example, would move at velocity

v− v0 for an observer O2 who moves at velocity v0 with respect to O2. These kind

of linear transformations from one observer to the other have the characteristic prop-

erty that they leave the Euclidean metric dl2 = dx2 + dy2 + dz2 invariant1. A moving

observer measures the same spacial distances as an observer at rest. Motivated by

this, physical space can be treated as a Euclidean space separate from time, with time

parameterizing paths in this space.

If, in the above example, the object is a beam of light moving at the velocity c

1This notation for a metric is common in physics. It describes how an infinitesimal length dl is
calculated in terms of displacements dx,dy,dz along each axis.

3



Chapter 2. Background 4

for O1, we would expect O2 to measure a speed of light of c− v0. This was falsified

experimentally, where the speed of light was always measured to be c for all observers,

calling for a new theory. The defining property for this new theory is that all physical

transformations2 between observers must leave the speed of light c2 = (dx2 + dy2 +

dz2)/dt2 constant, that is we must always have dx2 +dy2 +dz2− c2dt2 = 0 when dx,

dy, dz are distances light has travelled in a time dt along each axis. This eventually

leads to a new geometry called Minkowski space [3], in which the following defining

metric is left invariant by transformations between observers:

ds2 = dx2 +dy2 +dz2− c2dt2 , (2.1)

With this theory, physical space can no longer be treated as a separate Euclidean

space but is unified with time into a single geometric space. Points must now be

given in three spacial and one temporal coordinate, and are thus typically referred to

as events. Paths (in general not necessarily “straight”) between two events are physical

trajectories, but importantly not all events have paths connecting them. This is intu-

itively clear since it is not physical to move from one event to another event that has

the same time coordinate. Mathematically, this manifests itself in these kind of events

being separated by an imaginary distance:

ds =
√

dx2 +dy2 +dz2− c2dt2 =
√
−c2dt2 . (2.2)

2.2 Formalization as an Axiomatic System

The comparison between the coordinate-based spacetime formalism for Minkowski

space and its treatment in terms of axiomatic geometry is analogous to the different

descriptions of Euclidean space. Euclidean space can either be defined in terms of

linear algebra as a vector space Rn, or it can be defined as an axiomatic system in the

language of synthetic geometry, using undefined primitive objects and relations like

points and collinearity, as famously done in Euclid’s Elements [13].

While for Euclidean geometry the axiomatic treatment was developed before the

modern linear algebra version, Minkowski space was first introduced in these terms.

Axiomatic systems of Euclidean geometry have received considerable attention since

Euclid, notably by Hilbert [14], who called for a general effort to axiomatize all areas

of physics [15]. An early axiomatic description of Minkowski space was proposed by

2“Physical” in this context means “physically possible” such as changes in position and velocity.
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Robb [16] and later further developed by Mundy [17], although compared to Euclidean

geometry, relatively little attention has been paid to this effort.

Schutz’s axiomatic system of Minkowski space was greatly influenced by those

of Euclidean space. He specifically cites developments made by Hilbert [14], Veblen

[18] and Moore [19], whose results are used in several of Schutz’s theorems. Schutz’s

1997 monograph, which is the main work considered for this project, builds on top of

several previous approaches [20, 21], including his own earlier work [8]. An alterna-

tive axiomatic system using only first order logic (FOL) was proposed by Goldblatt

[22, 23], which was criticized by Schutz for allowing non-isomorphic models3. In a

more recent effort, a FOL formalization of special relativity was mechanized in Is-

abelle/HOL [24, 25]. It focuses more on physical predictions, however, and cannot be

directly compared to the geometric axiomatization considered here 4.

2.3 Mechanized Formalization with Isabelle/HOL

Defining Minkowski space in terms of an axiomatic system gives it a philosophically

appealing foundation. Constructing a theory based on a small set of comprehensible

axioms using rigorous deduction increases the confidence in its results and internal

consistency. As with Euclid’s fifth postulate, it also facilitates the exploration of variant

theories obtained by modifying or removing axioms.

All of the above benefits apply even more to a mechanized formalization of the ax-

iomatic system. Using an interactive theorem prover, axioms, theorems and proofs can

be expressed in a machine readable way such that proofs use only machine-verified

logical steps. Assuming the soundness of the underlying software, this lends even

greater confidence to the resulting theory than the corresponding pen-and-paper ver-

sion. Translating an existing system of axioms, including theorems and proofs, into

the framework of an interactive theorem prover thus serves to validate the line of rea-

soning and the logical consistency of the axioms. If the set of axioms are insufficient

to prove the claimed theorems, this will become apparent by a failure to mechanize

their proofs. Since traditional expositions of mathematical proofs often involve con-

siderable intuition, “obvious” steps or minor errors, mechanizing a theory also serves

as an opportunity to clarify proofs and make them more rigorous.

3This means more than one distinct vector space satisfies the given set of axioms. Schutz’s model is
categorical, which means all models satisfying his axioms are isomorphic (i.e. equivalent) to each other.

4It includes a theory about accelerated observers inside of Minkowski space, for example, while
Schutz’s axiomatic system describes the geometry itself without discussing physical implications.
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The interactive theorem prover used for this project is Isabelle [26] within the

higher order logic (HOL) framework. An introduction to Isabelle/HOL, its type system

and its proof syntax is given below, as necessary to follow the subsequent discussion.

2.3.1 Formalizing Higher Order Logic

While Isabelle supports other underlying logic systems such as ZF set theory [27, 28],

we will use the version which implements HOL [29]. HOL is defined by its ability to

quantify over arbitrarily complex terms, not only over individual non-logical objects

as in “∀n ∈ N.n < n+ 1” (first order), or predicates as in “∀P. P x → P x” (second

order). Isabelle is an LCF-style theorem prover [30, 31] and realizes HOL using a

typed version of the λ-calculus [32], which will be explained in the next section.

2.3.2 Isabelle’s Type System

Isabelle/HOL[33] is built on a type system similar to that of functional programming

languages. A set of base types are provided, including booleans bool and natural num-

bers nat, as well as type constructors like list and set. One may also work with an

abstract type using type variables, which are denoted with a prefixed apostrophe like

'a. Valid instantiations of a type variable are constrained by postulating specific prop-

erties the type must satisfy, which will become clearer in section 2.3.5 on locales. The

type of a function mapping two natural numbers to a third natural number is denoted

as nat ⇒ nat ⇒ nat. An example of such a function, which can be expressed in

Isabelle using the familiar λ-calculus, is λ x y :: nat. Suc (x + y). Here, the

notation :: nat indicates that both x and y have the type of a natural number. The

function Suc :: nat ⇒ nat takes a natural number x to its successor x+ 1. Func-

tions are always total over the declared type. It is not possible to declare a function to

map from one specified set (of elements of some type) to another set.

2.3.3 HOL and Meta-Level Logic

Object level logic is expressed in Isabelle using the familiar quantifiers ∀ and ∃, and the

arrows −→ and ←→ denote implication and equivalence. Since we use higher order

logic, this object-level syntax is also referred to as HOL syntax.

In order to facilitate logical deduction, Isabelle has two levels of syntax in which

logic is expressed. Deduction is done via the application of truth preserving rules.
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Consider, for example, that the goal is to prove some statement A1 x about the object

x, and there is a lemma which states B1 ?a and B2 ?a together imply A1 ?a. The

question mark in front of ?a is indicates that the statement is true for all instantiations

of the lemma, with ?a replaced by an expression of the correct type. Isabelle can then

apply this lemma backwards to replace the goal A1 x with the subgoals B1 x and B2

x. This kind of instantiation-ready quantification of a variable is expressed in Isabelle

with the symbol
∧

, and implication is written as =⇒. This so-called meta-level syntax

is logically equivalent to the corresponding HOL syntax but treated slightly differently

by Isabelle. The above lemma is then stated in Isabelle as
∧
a. B1 a =⇒ B2 a =⇒

A1 a , or in the equivalent compressed version
∧
a. JB1 a; B2 aK =⇒ A1 a .

2.3.4 Isar Language and Proofs

The primary features of interactive theorem provers are the machine-verification of

proofs and advanced algorithms which can prove many steps automatically. While one

may thus trust a machine-checked theorem without verifying it by hand (assuming one

trusts the underlying logic kernel), it is still important for proofs to be comprehensible

to humans. There is no algorithm which can decide which theories are worthwhile to

develop and which theorems are important to prove. It is thus still important for hu-

mans to develop an intuition, which is built up by deriving results from the postulated

axioms. Furthermore, while Isabelle provides the sledgehammer tool [34] to search for

a proof of a given (sub-)goal, more complex proofs must still be developed manually.

Isabelle provides the Isar language [35], which aims to facilitate both human and

machine readability. It combines the above backward reasoning, well-suited for the

automated solvers, with the forward reasoning style common in mathematics. Since

Isar is designed to be intuitive to understand, most of the results here can be followed

with a basic understanding of it. Consider, for example, the following lemma which

shows that [a;b;c] implies a6=b. The relation [a;b;c] will be introduced later.

1 lemma abc ab neq :
2 fixes a b c :: 'a
3 assumes abc: "[a;b;c]"
4 shows "a 6= b"
5 proof (rule notI)
6 assume "a = b"
7 hence "[c;a;a]" using abc abc sym by simp
8 hence "[c;a;c]" using abc abc bcd abd 〈a=b 〉 by blast
9 then show "False" using abc ac neq by blast

10 qed
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The lemma is introduced with the keyword lemma followed by a name which can be

used to refer to its results in later proofs. The keyword theorem is equivalent and in-

dicates a higher level of importance. In the second line, we introduce three variables a,

b and c, and declare them to be of type 'a. Using the keyword assumes, the assump-

tions of the lemma are sated. Here, the assumption is given the label abc, by which

we can refer to it later. This is especially helpful if there are multiple assumptions, or

if we want to refer to intermediate results in a more complex proof. The statement of

the lemma is completed with the shows keyword, followed by whatever the lemma

concludes. Lines two and three could be expressed in a single line using Isabelle’s

meta-level syntax: "
∧

a b c :: 'a. [a;b;c] =⇒ a 6= b" .

The proof of the lemma is begun with the proof keyword, optionally followed by

a proof method which modifies the goal of the following proof. Important examples

are proof by contradiction, which replaces the goal A by the goal ¬A =⇒ False, case

splitting, and induction. Here, the proof method is an application of the following

rule: notI: "(P=⇒False) =⇒ ¬P". Isabelle automatically tries to apply a proof

method if none is given, which can be prevented by writing proof -.

Above, the proof opens by stating the assumption which matches the proof’s goal.

This is generally followed by a list of derived statements, culminating in a final state-

ment which matches the conclusion of the proof’s goal and is preceded by the keyword

show. There are several abbreviations which make Isar proofs more readable. A gen-

eral statement claimed to be true is introduced with the keyword have. If the proof

makes use of the preceding statement, this is indicated by then have, which is ab-

breviated to hence. A shorthand for then show is thus. Other such keywords

used here should become clear from their context.

The proof of a statement itself consists of two components. Besides the keyword

then, further facts can be made available by listing their names after the using key-

word. The facts used in the above proofs are axioms listed in the example for locales in

the next section. Finally, the method used to derive the statement given the listed facts

is chosen with the by keyword. Available proof methods include simp and auto and

automatic theorem provers like blast and metis. More difficult statements may be

proved using their own proof ... qed block. In this text, a proof method follow-

ing the by keyword is always meant to indicate that the stated proof method success-

fully concludes without error. For brevity, a proof may be represented by <proof>,

and omitted parts are indicated by ... .

A successful proof is terminated with qed. An unsuccessful proof can be termi-
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nated using two keywords: oops terminates a proof but does not allow the lemma or

statement to be used in further deductions, while sorry allows this. The latter should

be used carefully, as a contradiction may be introduced in this way and may make

future results meaningless (anything can be validly deduced from False).

2.3.5 Locales

Theorems and lemmas can be organized into locales, which make it possible to safely

introduce a set of axioms assumed to be true. Locales can be built on top of each other,

inheriting all contained facts. This allows a theory to be built up systematically, with

axioms and results grouped together thematically. In this way, the influence of axioms

can be made explicit, and sub-theories can be studied independently. Furthermore,

axioms are only true inside the locale so the effect of faulty axioms is limited.

To understand how locales work, consider the following example which defines the

Betweenness locale discussed in section 3.3. It introduces the axioms that were used

in the proof of abc ab neq above.

1 locale Betweenness =
2 fixes between :: "'a ⇒ 'a ⇒ 'a ⇒ bool" ("[ ; ; ]")
3 assumes
4 (* O2 *) abc sym: "[a;b;c] =⇒ [c;b;a]" and
5 (* O3 *) abc ac neq : "[a;b;c] =⇒ a 6= c" and
6 (* O4 *) abc bcd abd: " J[a;b;c]; [b;c;d] K =⇒ [a;b;d]"
7 begin (* lemma a b c a b n e q : . . . * ) end

Just like a lemma, the locale begins with a block containing fixes and assumes. In

the second line, we fix a function named between with the type 'a ⇒ 'a ⇒ 'a ⇒
bool. Implicitly, this also introduces the type variable 'a over which the relation is

defined. A nice feature of Isabelle is that we can introduce a notation for our function.

In this case, the notation [a;b;c] is defined to be equivalent to the predicate between

a b c. At this point, we have fixed some undefined ternary relation and introduced a

notation for it. To be able to reason about it, we introduce three axioms following the

assumes keyword which specify its properties. All fixed variables and assumptions

are available within the body of the locale, which is delimited by begin ... end.

Locales can be built on top of other locales, in which case they inherit all axioms and

definitions as well as proven theorems and lemmas.



Chapter 3

Refactoring the Formalization of

Schutz’s Axiomatic System

Schutz introduces Minkowski spaceM in terms of undefined primitives:

M= 〈E , P, [ · · · ]〉 .

Here, E is some set of elements called events. P is restricted to contain subsets of E .

Elements of P are called paths. [ · · · ] is a ternary relation of events called between-

ness, which is further discussed in section 3.3.

In total, Schutz introduces fifteen axioms to describe Minkowski space, grouped

into six axioms of order, seven axioms of incidence, the Axiom Of symmetry or

isotropy, and the Axiom Of continuity. All of these axioms have been fully formal-

ized in Isabelle in the previous two MSc projects [10, 12] and, apart from some small

modifications discussed below, retained for this project.

To be able to continue the formalization of Schutz’s work, the first part of the

project consisted of critically studying the existing one. While the prior mechanization

was overall found to be of very high quality and well suited to expand upon, several

improvements and small corrections were made. The following sections summarize

the most important changes made. Where necessary, Schutz’s formulation and the

mechanized formalization as completed in the previous MSc projects are briefly intro-

duced. A full discussion of the differences between Schutz’s prose and their existing

mechanizations is not repeated here, and can be found elsewhere [10, 11, 12].

10
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3.1 Events and Paths

We first introduce some basic notions about paths and events. Schutz’s space funda-

mentally consists of a set E of elements called events. Some sets of events are called

paths, and these make up the set P . In Isabelle, we introduce the primitives of Schutz’s

Minkowski space inside a locale MinkowskiPrimitive:

1 locale MinkowskiPrimitive =
2 fixes E :: "'a set"
3 and P :: "('a set) set"
4 assumes paths in pow events: "P ⊆ Pow E"
5 and ... (* Axioms I1 −I3 shown below *)

Here, we introduced a type variable ‘a for events. In order to show that for example

R4 is a model for Schutz’s axioms, we would instantiate the ‘a with a type for that

vector space. Inside the axiomatic system, the type is kept unspecified.

We will see below that a path is uniquely defined by two distinct elements that lie

on it. Schutz thus often denotes a path with two such elements a and b simply as ab.

To capture this, we introduce the predicate path:

1 abbreviation path :: "'a ⇒ 'a ⇒ 'a set ⇒ bool" where
2 "path a b ab ≡ ab∈P ∧ a∈ab ∧ b∈ab ∧ a6=b"

In order to state that two events lie on a path without specifying it, we introduce:

1 abbreviation path ex :: "'a ⇒ 'a ⇒ bool" where
2 "path ex a b ≡ ∃ab. path a b ab"

3.2 Notation

In the previous MSc projects, Schutz’s betweenness relation [abc] was denoted as [[

a b c]]. The reason for this is that Schutz’s notation would clash with the notation

for lists with a single element and lead to ambiguous parse trees (the parser may think

a is a function taking two arguments). While the parse ambiguity was successfully

avoided by using double brackets, the notation still clashes with that of lists. For

example, the list of a list of two numbers [[1::nat,2::nat]] fails to be parsed in

the locale in which the double-bracket betwenness relation is defined. This does not

technically pose a problem, as long as lists are not used for anything relating to the

present formalization, and the list syntax can be disabled completely. The clash of

notation is, nonetheless, stylistically unpleasing and would become a problem if we

decided to use lists for some future problem.
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A new notation has been introduced for this project, which aims to resolve any

ambiguity with lists. Instead of Schutz’s spaces between events in [abc], we now use

semicolons and retain the single bracket: [a;b;c]. This has an additional advantage

over the original mechanized version. In more complex expressions, delimitation by

semicolons (as opposed to spaces) alleviates the need for additional brackets. Instead

of an expression like

[[(f (i-1)) (f i) (f (i+1))]] ,

we can now write the arguably easier to read version

[f (i-1); f i; f (i+1)] .

Furthermore, Schutz later extends the betweenness ordering to four events. Using

semicolons as delimitation, the expression [a;b;c;d] can be parsed without a prob-

lem, while the old notation led to parsing ambiguities. Again, [[a b c d]] may actu-

ally be the ternary ordering if c is a function taking a single argument. This ambiguity

is avoided using the new notation.

Lastly, Schutz introduces the non-strict orderings [abcK and JabcK (further dis-

cussed in section 3.3.2). In the old mechanized notation, double brackets were already

used for the ternary version, which led to the usage of a special bracket: Ja b cK. Un-

fortunately, this clashes with the meta-level syntax for assumptions in a lemma. Using

the new notation, double brackets are freed up and we can define non-strict orderings

as [a b c]] and [[a b c]].

We will see below that, using Schutz’s axioms, betweenness [abc] implies the exis-

tence of a path that contains the events a, b and c, these events are distinct, and the be-

tweenness relation is symmetric. This motivates the notation [a;b‖Q] for path a b Q

and [a;b] for path ex a b. Even though ternary ordering is not derived from the bi-

nary relation path ex, a unified notation invokes the correct intuition.

Based on the above changes to betweenness, the notation for chains (see section

3.5) was also modified to be consistent. A summary of all changes to the notation in

Isabelle can be found in table B.1 in the appendix.

3.3 Axioms of Order and the Betweenness Locale

The relation Schutz uses to give a geometric structure to the set of events and paths

is the ternary betweenness relation [ · · · ]. Paths in Schutz’s system correspond to
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the physical paths of inertial particles. Intuitively, the betweeness relation [abc] can

be understood as the statement that a, b and c are events which occur on a path and

are ordered temporally1, i.e. the event b happens between the events a and c. The

properties of the betweenness relation are defined by the six axioms of order2 O1 to O6

shown in table 3.1 below. In the prior mechanization, Axioms O1-O5 were introduced

Table 3.1: Mechanized axioms of order O1-O5. The notation dist3 a b c is an ab-

breviation for a,b and c being distinct. Axiom O6 omitted for brevity.

Axiom (Name) Statement

O1 (abc ex path) [a;b;c] =⇒ ∃Q∈P. a,b,c ∈ Q

O2 (abc sym) [a;b;c] =⇒ [c;b;a]

O3 (abc ac neq) [a;b;c] =⇒ a 6= c

O4 (abc bcd abd) J[a;b;c]; [b;c;d]K =⇒ [a;b;d]

O5 (some betw) JQ∈P; a,b,c∈Q; dist3 a b cK

=⇒ [a;b;c] ∨ [b;c;a] ∨ [c;a;b]

all together in the locale MinkowksiBetweenness, which is built directly on top of

the lowest-level locale MinkowskiPrimitive. During this project, it was noticed that

axioms O2-O4 can be stated independently of the sets E and P and define a kind

of standalone “theory of betweenness”. For this reason, these axioms were moved

into their own Betweenness locale. Several meaningful lemmas can be proved within

this locale alone, justifying the separation. It may be possible to move further results

into the locale (e.g. results about chains), stressing their dependence on only a small

number of assumptions. This was not further pursued. An outline of the new locale

was shown in section 2.3.5. Here, we list several conceptually important results that

can be proven inside of it:

• Events satisfying betweenness are distinct. For this we use the abbreviation

dist3 a b c ≡ a6=b ∧ b6=c ∧ c6=a:

lemma abc abc neq: "[a;b;c] =⇒ dist3 a b c"

• Alternate version of transitivity property asserted by Axiom O4:

lemma abc bcd acd: " J[a;b;c]; [b;c;d] K =⇒ [a;c;d]"

1Schutz’s system does not pick a positive time direction since the betweenness relation is symmetric,
which means that we cannot say whether the events are ordered or ordered in reverse.

2The statement here does not follow Isabelle’s syntax strictly in order to improve legibility.
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• Given [a;b;c], all other permutations (except [c;b;a]) are false. Since be-

tweenness is symmetric (Axiom O2) there are only four distinct permutations:

lemma abc only cba:
assumes "[a;b;c]"
shows "¬[b;a;c] ∧ ¬[a;c;b] ∧ ¬[b;c;a] ∧ ¬[c;a;b]"

3.3.1 Kinematic Triangle

Based on the properties introduced above, we can define a geometric constellation

called a kinematic triangle. This notion plays a central role in Theorem 15. In this

context, we furthermore note a modification that was made to its definition in the ex-

isting formalization.

Schutz calls three distinct events {a,b,c} a kinematic triangle if each pair of events

belongs to one of three distinct paths. This corresponds exactly to the usual concept of

a triangle specified by its vertices. A triangle is denoted4 a b c, both by Schutz and

in Isabelle. The existing mechanization of the kinematic triangle was as follows:

1 definition kinematic triangle ::
2 "'a ⇒ 'a ⇒ 'a ⇒ bool"
3 where "4 a b c ≡
4 a ∈ E ∧ b ∈ E ∧ c ∈ E ∧ a 6= b ∧ a 6= c ∧ b 6= c
5 ∧ (∃Q∈P. ∃R∈P. Q 6= R ∧ (∃S∈P. Q 6= S ∧ R 6= S
6 ∧ a ∈ Q ∧ b ∈ Q ∧ a ∈ R ∧ c ∈ R ∧ b ∈ S ∧ c ∈ S))

Using the new notation for a path crossing through two points, we can introduce a

much shorter version which is easier compare with Schutz’s original formulation:

1 definition kinematic triangle :: "'a ⇒ 'a ⇒ 'a ⇒ bool"
2 where "4 a b c ≡
3 ∃Q∈P. ∃R∈P. ∃S∈P.
4 dist3 Q R S ∧ [a;b‖Q] ∧ [a;c‖R] ∧ [b;c‖S]"

The two definitions were shown to be equivalent using a mechanized proof.

3.3.2 Non-Strict Orderings

A more meaningful change was made to the definition of non-strict orderings. Schutz

literally defines these as3 [ab . . .e f K := [ab . . .e f ] or e = f which (for the case of four

elements) was mechanized previously as

3Orderings of four or more events denote chains, which are discussed in section 3.5.2. Specifically,
[abcd] = [abc]∧ [bcd].
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1 abbreviation nonstrict betw right4 ::
2 "'a ⇒ 'a ⇒ 'a ⇒ 'a ⇒ bool" where
3 "nonstrict betw right a b c d ≡ [a;b;c;d] ∨ c=d"

With this definition, [ab . . .cc] would always be true, even if a and b are not connected

by a path. While this interpretation of Schutz’s text seems odd on its own, strong

evidence that Schutz had another definition in mind comes from a reading of Lemma 2

for Theorem 15. In it appears an expression like [abcdK. With the literal interpretation

above, the event b would be completely unconstrained4 if c = d. Furthermore, Schutz

makes use of the fact that [abc] without comment or case distinction. This suggests

the following definition instead:

[abcdK := [abcd] ∨ (c = d∧ [abc]) . (3.1)

Therefore, the mechanized version has been replaced by the following:

1 abbreviation nonstrict betw right4 ::
2 "'a ⇒ 'a ⇒ 'a ⇒ 'a ⇒ bool" where
3 "nonstrict betw right a b c d ≡
4 [a;b;c;d] ∨ ([a;b;c] ∧ c=d)"

All existing mechanized proofs were successfully modified to use this new definition.

3.4 Axioms of Incidence

Besides the axioms of order, several important properties of Schutz’s system which

are used in the following are introduced through the axioms of incidence. Table 3.2

shows these axioms as formulated in the existing mechanization. Axiom I3 states

Table 3.2: Mechanized axioms of incidence I1-I3. Axioms I4-I7 omitted for brevity.

Axiom (Name) Statement

I1 (nonempty events) P 6= {}

I2 (events paths) Ja,b∈E; a 6=bK

=⇒ ∃R,S∈P. a∈R ∧ b∈S ∧ R∩S6={}

I3 (eq pahts) JR,S∈P; a,b∈R; a,b∈S; a 6=bK =⇒ R=S

the property that a path is fully specified in terms of two distinct events that lie on it.

An important implication is that two events which both lie in the intersection of two

4Apart from one other assumption which is not sufficient to prove the lemma.
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distinct paths must be the same. This corresponds to our geometric intuition that two

distinct straight lines meet exactly once, which Schutz often uses implicitly.

3.5 Consistent Definition of Chains

Schutz defines chains as a sequence of events on a path Q, denoted either as [Q0 Q1 · · · ]
if infinite or [Q0 Q1 · · · Qn−1] if finite , with the following properties:

• Sequence has two elements: The two elements are distinct.

• More than two elements: For all i ≥ 2, have [Qi−2 Qi−1 Qi].5

Since in the second property betweenness ordering is only demanded for adjacent el-

ements of the chain, we say the chain is locally ordered. Axiom O4 (see table 3.1)

postulates a kind of transitivity property for chains, however, which leads to the chains

being totally ordered: For all i < j < k, have [Qi Q j Qk].

In fact, a proof that local ordering implies total ordering given Axioms O4 and O2

is the content of Schutz’s Theorem 2. Schutz explicitly states this result only for finite

chains. However, the result immediately implies total ordering for infinite chains also:

For three fixed but arbitrary elements, we can restrict the infinite chain to the finite

sub-chain terminating at the largest relevant index and obtain the desired total ordering

via Theorem 2. Besides total ordering, chains gain a second property using the axioms.

Using Axiom O3 and total ordering, it can be shown that all elements of a chain are

distinct.

The definition of chains in Isabelle was a major topic in both prior MSc projects.

There is no primitive in Isabelle that corresponds directly to the mathematical notion

of sequences that Schutz uses. While lists could be used for finite chains, infinite

lists are not defined and lists are always constructed by recursive insertion which may

complicate proofs and definitions. The solution to this, which was already introduced

in the first MSc project, is to replace the sequence with a set X containing its elements

and an index function:

f :
{

0, . . . , |X |−1
}
−→ X . (3.2)

The sequence [a b], for example, would be represented by f = {0 7→ a,1 7→ b} and the

set X = {a,b}. Since we want f to be an index function for all elements in X , we

5Necessary bounds on indices, such as i < n for a finite chain, are always implied.
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require f to be surjective. In general, f need not be injective. For Schutz’s chains

this follows, however, from the fact that all elements of a chain are distinct, making f

bijective.

We see from the above discussion that Schutz’s definition of chains can be rapidly

enhanced. Using the axioms of order, local ordering can be elevated to total ordering

and we can prove that all chain elements are distinct. Since we do not have the goal to

mechanize Schutz’s formulations as literally as possible, we are at liberty to immedi-

ately incorporate further facts into the definition of chains, especially if this makes our

work simpler. This is, in fact, exactly what was done in the previous MSc projects.

In the first project [10], chains were defined based on a total ordering of chains,

making use of both the fact that chains are totally ordered and that elements are distinct.

This effectively made Schutz’s Theorem 2 obsolete, as it was immediately implied by

the definition. During the second project [12], another kind of ordering, termed local

ordering, was introduced to define an additional notion of chains, which could be used

to stay closer to Schutz’s formulations of proofs. It did not, however, exactly match

Schutz’s definition either, as it still uses the fact that elements of chains are distinct.

Unfortunately, the past struggle with the definition of orderings and chains has led

to a proliferation of disparate versions in the formalization inherited from the prior

projects, making these parts difficult to follow. This motivated an effort, undertaken

in the present project, to rigorously compare the different definitions of orderings with

Schutz’s definition, and to refactor the mechanized formalization to use consistent def-

initions of orderings and chains.

In the next section, we will consider three possible definitions of orderings. All

aim to formalize sequences, which are either locally or totally ordered, using a set and

an index function. These form the basis for the definition of chains, which is discussed

in section 3.5.2. The second and third orderings are exactly the local and total ordering

introduced in the previous projects. The first ordering, termed weak ordering, is new

and aims to replicate Schutz’s definition faithfully.

3.5.1 Weak, Local and Total Ordering

The different kind of ordered sequences are defined here for a general ternary ordering

ord. The definitions in this section are written in a verbose style which aims to closely

resemble their mechanized versions in Isabelle while being considerably more readable

(several details not important to the present discussion are ignored and some liberties
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were taken with syntax). The actual Isabelle versions of these definitions are discussed

in section B.3 of the appendix. For the version reproducing Schutz’s definition most

literally, the elements are not assumed to be distinct and only local ordering is asserted:

Definition 1 (weak ordering f ord X N)

A weakly ordered sequence of N elements is defined by the set X :: 'a with index

function f :: nat ⇒ 'a if the function is surjective (∀x∈X. ∃i<N. f i = x) and

it defines a length N sequence (∀i<N. f i ∈ X) which is locally ordered:

∀i<N+2. ord (f i) (f (i+1)) (f (i+2)).

We allow N ∈N∪{∞}. How this is done is discussed in section B.3.1 of the appendix.

We can come to a slightly more convenient definition of ordering by realizing that

chains always contain distinct events. Thus, we always have |X | = N and we can get

rid of the additional length-parameter:

Definition 2 (local ordering f ord X)

A locally ordered sequence of N elements is defined by the set X :: 'a with index

function f :: nat ⇒ 'a if the function is surjective (∀x∈X. ∃i<N. f i = x), and

the sequence is a reordering of X (∀n<|X|. f n ∈ X) which is locally ordered:

∀i<|X|+2. ord (f i) (f (i+1)) (f (i+2)).

The first property states that f restricted to {1,...,|X|} is surjective onto X while

second property asserts that f maps {1,...,|X|} into X . The third property is the

same as for the weak ordering. If X is infinite, properties one and two simply state f

corresponds to a surjective function f : N −→ X , which makes it equivalent to weak

ordering. For a finite set X, however, properties one and two imply that f restricted

to {1,...,|X|} is a bijective function6 f :
{

1, . . . , |X |
}
−→ X , making the definition

strictly stronger than the weak ordering. Finally, we can replace local ordering with

total ordering:

Definition 3 (total ordering f ord X)

A totally ordered sequence of N elements is defined by the set X :: 'a with index

function f :: nat ⇒ 'a if the function is surjective (∀x∈X. ∃i<N. f i = x), and

the sequence is a reordering of X (∀n<|X|. f n ∈ X) which is totally ordered:

6To see why, note that the second property implies the restricted function f maps between sets of
equal cardinality. A surjective function between finite sets of equal cardinality is always injective.
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∀i<j<k<|X|. ord (f i) (f j) (f k).

The definition of sequences for infinite sets X is equivalent in all three definitions.

Without using the axioms of order, all allow elements of X to be repeated in the se-

quence. For finite sets, local and total ordering demand the index function to be bijec-

tive, which effects that each element of X appears exactly once in the sequence. For

Schutz’s betweenness relation, and using the axioms of order, all three definitions are

equivalent.

3.5.2 Definitions of Chains

Since switching to weak ordering would necessitate the introduction of an additional

variable for the chain length, it was decided to use local ordering for all definitions of

chains. This is a compromise between complexity and proximity to Schutz’s version.

Additionally, proofs from the prior projects only needed to be modified slightly to

prove equivalence between local orderings and total orderings given Axioms O2 and

O4. A mechanized proof that weak ordering is equivalent to local and total ordering

would have been time and has not been finished.

All of the mechanized formalization was refactored to use a consistent set of chain

definitions. Appropriate equivalences with all old definitions were also shown in mech-

anized proofs. An elaborate explanation of all different old chain definitions and equiv-

alence proofs would not be beneficial at this point. A short outline of the main new

chain definitions is given in section B.3.4 of the appendix.

3.6 Summary

The above sections outline the most important changes made to the existing mech-

anization of Schutz’s axiomatic system. A new locale describing the betweenness

relation was introduced, in line with the goal of using distinct locales for logically

independent sub-theories. A new notation solves several syntactic issues and makes

the Isabelle code easier to read. The definition of kinematic triangles was simplified

to align closely with Schutz’s version. The various inconsistent existing definitions of

chains were carefully studied and replaced by a single consistent kind. The existing

proofs were refactored, leading to simplifications in several places. With the study

and refactoring of the existing mechanization completed, the next section outlines the

advances that were made in mechanizing further theorems introduced by Schutz.
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Third Collinearity Theorem

The third collinearity theorem (Theorem 15) establishes a correspondence between the

arrangement of intersections of two paths with a kinematic triangle and whether they

meet at an internal event. For easy reference, Schutz’s statement of the theorem and

his proofs in prose are given in section A of the appendix. The theorem proceeds

in three parts. Part (i) of Theorem 15 was most straightforward to mechanize and

does not involve conceptually new steps. It proves a partial result which is used in

the other two parts of the theorem. Part (ii) was harder to mechanize and required

careful considerations about how to formalize a notion Schutz describes in prose and

on which the proof depends. While part (iii) is proved by Schutz in only two lines,

claiming it to be an immediate consequence of previous results, it proved the hardest

to formalize. Schutz seems to have used several non-trivial facts which may appear

obvious when looking at pictorial representations but which are in fact non-trivial when

proved rigorously using the axiomatic system.

In the next section, several common concepts and previous theorems are briefly re-

viewed. Afterwards, each part of the proof is dedicated its own section. This clarifies

what work was necessary for each part of the theorem, and how much more compli-

cated the mechanization is compared to Schutz’s statement.

4.1 Relevant Definitions and Results

In this section, relevant definitions and theorems mechanized previously are briefly in-

troduced. These include the notions of segments and intervals, the second collinearity

theorem (Theorem 7) and Theorem 8. Schutz also uses Theorem 14, but his use was

straightforward to mechanize and will thus not be discussed at length. Lastly, new

20
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mechanizations for boundary and internal events of a kinematic triangle are discussed.

4.1.1 Segments and Intervals

Conceptually, segments and intervals correspond to the familiar open and a closed

interval over real numbers. The segment between a and b, denoted as (ab), is the set

of all elements x such that [axb]:

1 lemma segment betw: "x ∈ segment a b ←→ [a;x;b]"

The interval from a to b is the segment (ab) joint with the endpoints:

1 definition interval :: "'a ⇒ 'a ⇒ 'a set" where
2 "interval a b ≡ insert b (insert a (segment a b))"

Both intervals and segments are manifestly symmetric.

4.1.2 Theorems 7 and 8

Theorem 7 states that a path which meets the extension of one side of a kinematic

triangle and the inside of the nearest other side of the triangle also meets the inside of

the last side of the triangle. Statements like that are often difficult to follow in prose

form, and can be seen more easily from visual representations. For Theorem 7, this

can be found in figure 4.1. The theorem was mechanized previously as

1 theorem (* 7 * ) collinearity2:
2 assumes "4 a b c"
3 and "[b;c;d]" and "[c;e;a]" and "[d;e‖de]"
4 shows "∃f∈de. [a;f;b] ∧ [d;e;f]"

Theorem 8 states there is no path as in figure 4.2 which touches each side of a triangle:

1 theorem (* 8 * ) tri betw no path :
2 assumes "4 a b c"
3 and "[a;b';c]" and "[b;c';a]" and "[c;a';b]"
4 shows "¬(∃Q∈P. a'∈Q ∧ b'∈Q ∧ c'∈Q)"

Figure 4.1: Visualization of Theorem 7. Figure 4.2: Visualization of Theorem 8.
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4.1.3 Boundary and Internal Events

Schutz introduces the boundary and internal events as follows:

Given a kinematic triangle 4a1a2a3, the three intervals |a1a2|, |a2a3|,
|a3a1| are called sides and their union is called the boundary B(a1,a2,a3).
Any event between two events of distinct sides of the triangle is called an
internal event. (Schutz [9, p. 31])

We first introduce the set of sides, which will become useful later:

1 abbreviation tri sides :: "'a ⇒ 'a ⇒ 'a ⇒ 'a set set"
2 where "tri sides a b c ≡
3 {interval a b, interval b c, interval c a}"

Note that the corner events of a triangle are distinct and, since intervals contain both

endpoints, the above set thus has three distinct elements. The boundary is now simply:

1 abbreviation tri boundary :: "'a ⇒ 'a ⇒ 'a ⇒ 'a set"
2 where "B{a b c} ≡

⋃
(tri sides a b c)"

Imitating Schutz’s notation, we denote the boundary set as B{a b c}.

For the internal event, we first note that Schutz’s language is slightly ambiguous.

We could argue that two corners b, c of a triangle abc are on two distinct sides ab, bc,

and thus every event in the segment (bc) must be considered internal. A reading of

Theorem 15 (see section 4.2) strongly suggests, however, that this is not what Schutz

had in mind. Instead, we assert the two events must not be in the same interval.

In formulating this definition, we encounter an issue which will reoccur frequently

below. Namely, the triangle is symmetric under permutations of the corners, and we

would like to simply draw two pictures as in figure 4.3 and claim these cover all defi-

nitions of internal events. We use the following abbreviation:

1 abbreviation permut3 :: ... where
2 (* Any p e r m u t a t i o n * )
3 "permut3 a b c a' b' c' ≡
4 (a'=a ∧ b'=b ∧ c'=c) ∨ (a'=a ∧ b'=c ∧ c'=b) ∨ ..."

The event is an internal event, if for two points x, z there is a permutation of the triangle

corners such that either of the two pictures in figure 4.3 is true:

1 definition internal event :: " ... ⇒ bool" where
2 "internal event a b c e ≡
3 (∃a' b' c' x z. permut3 a b c a' b' c' ∧
4 [x;e;z] ∧ [a';x;b'] ∧ ([b';z;c'] ∨ z = c'))"

While an explicit version of this, which lists all possibilities, has been proven to be

equivalent, it did not turn out to be more useful in the following proofs. In order to

have a consistent notation with the boundary set, a new notation was introduced:
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e ∈ I{a b c} ←→ internal event a b c e .

Figure 4.3: The two possible configurations in the definition of internal events.

Our reformulation of Schutz’s definition could be stated as follows. An event is an

internal event if it lies between two points x, z of the triangle’s boundary which do not

lie on the same interval. This is encoded by the following, conceptually pleasing but

less useful definition, which was proved to be equivalent:

1 lemma internal event alt:
2 "internal event a b c e ←→ ∃x∈B{a b c}. ∃z∈B{a b c}.
3 [x;e;z] ∧ ¬(∃I∈tri sides a b c. x∈I ∧ z∈I)"

4.2 Theorem 15 (i)

The first part of theorem 15 proves the existence of an intersection point assuming a

configuration as shown in figure 4.4. This arrangement is important, since it appears

in the proofs of both part (ii) and part (iii) as sub-configuration. Schutz states it as

Theorem 15 (i) (Third Collinearity Theorem)
If abc and db f are two kinematic triangles such that [a f b] and [bcd], then
(ac) meets (d f ) in an event e. (Schutz [9, p. 31])

Its statement and proof does not make use of any new notions introduced in chapter

4, such as internal points or the boundary. Following Schutz’s prose (sections A.2

and A.3 of the appendix), this theorem was successfully mechanized with only minor

alterations. Its mechanization is therefore only outlined briefly here. Schutz begins by

proving a lemma which captures a special case of part (i) as shown in figure 4.5, stated

as follows

Lemma 1 (of Theorem 15)
For any events a,b,c,d, f such that there are paths ab,ac,ad,bc,d f and
[bcd],a /∈ bc, [a f b], there is an event e such that [aec] and [de f ].

(Schutz [9, p. 31])
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This was mechanized as:

1 lemma collinearity3 1 lemma:
2 assumes
3 pthsE: "[a;b]" "[a;c]" "[a;d]" "[b;c‖bc]" "[d;f]" and
4 ord: "[b;c;d]" "[a;f;b]" and dist: "a /∈ bc"
5 shows "∃e. [a;e;c] ∧ [d;e;f]"

Its proof was straightforward, with the single exception that Schutz at one point makes

the unstated assumption (obvious from the figures) that an event obtained using Theo-

rem 7 is the same as one that was already introduced. Since this issue occurred multiple

times, the following auxiliary lemma was introduced which shows that an event ob-

tained via the second collinearity theorem is the same as another event which satisfies

either of several possible assumptions (compare figure 4.1 illustrating Theorem 7):

1 lemma collinearity2 events equal:
2 assumes
3 th7: "[a;f';b]" and "[d;e;f']" and
4 path ab: "ab∈P" and "a∈ab" and "b∈ab" and "x∈ab"
5 path de: "de∈P" and "d∈de" and "e∈de" and "x∈de" and
6 paths neq: "a/∈de ∨ b/∈de ∨ c/∈ab ∨ d/∈ab ∨ ab6=de"
7 shows "x = x'"

All of the possibilities in paths neq effectively show the two paths ab and de are

distinct. Using this auxiliary lemma, the tool sledgehammer was able to find a proof

of equality in each case this problem arose. Using the above lemma, Schutz then goes

on to proof part (i) of Theorem 15, which was mechanized as

1 theorem (* 15 *) collinearity3 1:
2 assumes "4 a b c" and "4 d b f" and "[a;f;b]" and "[b;c;d]"
3 shows "∃e. e ∈ segment a c ∧ e ∈ segment d f"

The mechanization was done following Schutz’s proof with only minor alterations.

Figure 4.4: Theorem 15 (i). Figure 4.5: Lemma 1. Figure 4.6: Lemma 2.

4.3 Theorem 15 (ii)

The second part of Theorem 15 was conceptually significantly harder to mechanize,

both since it involves new notions whose definitions had to be chosen carefully, and



Chapter 4. Third Collinearity Theorem 25

because the final bit of Schutz’s proof required considerable unpacking. Schutz states

the theorem as follows:

Theorem 15 (ii) (Third Collinearity Theorem)
If two paths cross each other over a kinematic triangle, then they meet at
an internal event. (Schutz [9, p. 31])

Internal events were defined in section 4.1.3 and the definition for cross over a kine-

matic triangle is discussed in detail below. In order to prove part (ii), Schutz introduces

a Lemma 2, which is visualized in figure 4.6, stated as follows:

Lemma 2 (of Theorem 15)
Let b1b2b3 be a kinematic triangle and let ac, d f be paths such that
[b1 f b2], Jb2adb3], [b1cb3]. Then ac meets d f in an event e such that [aec]
and [de f ]. (Schutz [9, p. 31])

The remainder of Schutz’s prose (section A.4 of the appendix) consists of a detailed

proof of this lemma, which was mechanized in a straightforward way using the tech-

niques developed for Lemma 1 in section 4.2 (see section B.2.4 of the appendix).

Schutz then claims Theorem 15 is “complete because all possible configurations

occur as special cases of part (i) and Lemma 2”. While this was eventually found to be

true, it involved the conceptual difficulty of mechanizing the notion of crossing over a

triangle and deducing the possible configurations such that part (i) and Lemma 2 can

be applied. Schutz does not give a detailed explanation of this, and appears to rely on

the pictorial representations and on the geometric intuitions of the reader instead.

In the following two sections, the mechanization of crossing over a triangle is

developed and the involved design decisions discussed. Schutz introduces it as follows:

A path which meets the boundary at exactly two distinct events separates
the remaining subset of boundary events into two components: if a second
path meets each of these components at exactly one event, we say that the
two paths cross each other over the kinematic triangle.

(Schutz [9, p. 31])

A visual representation of this is given in figure 4.8. The possible configurations (up

to permutations) allowed by the above definition were derived by hand and are shown

in figure 4.7. In section 4.3.1, we first mechanize the simpler notion of a single path

crossing a triangle. Section 4.3.2 gives a summary of the different approaches to the

final mechanized definition that were explored. After this, in section 4.3.3, the proof

of Theorem 15 (ii) is concluded.



Chapter 4. Third Collinearity Theorem 26

Figure 4.7: Possible configurations of two paths crossing over a triangle allowed by

Schutz’s definition and as derived on paper using pictorial representations.

4.3.1 Cross Kinematic Triangle

It will prove useful to define a predicate that states a path meets the boundary of a

triangle at exactly two distinct events, as in Schutz’s definition of crossing over a tri-

angle, since this is what separates the boundary into two parts which the second path

must meet. More importantly, it is used in the statement of Theorem 15 (iii) discussed

in section 4.4. Following Schutz’s, we must assert card (P∩B{a b c}) = 2. We

replace this with an equivalent expression that is more helpful for the proof in section

4.4.3, and define:

1 definition crosses triangle :: ...
2 where crosses triangle a b c P ≡
3 4 a b c ∧ P ∈ P ∧ (∃x y. x 6= y ∧ P∩B{a b c} = {x, y})

The definition is automatically symmetric under permutations of the triangle corners,

since both the boundary and the triangle predicate are.

This is a good opportunity to discuss a design decision which was made for this

definition as well as the definitions of internal events and the boundary. While the

predicate internal event a b c e does not include the statement that 4 a b c,

the predicate above does and it also states P∈P . One may argue that neither of these

facts are strictly necessary, or that they should either consistently appear or be absent

in both internal event and crosses triangle. The present difference between the

two predicates is intentional and justified as follows.

The predicate crosses triangle is meant to capture the complete geometric con-

figuration of a path crossing a triangle and will never appear in a context where either

4 a b c or P∈P is false. While the latter may be said about internal event as

well, it becomes clear that it should not capture the complete geometric configuration
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when written in the style e ∈ I{a b c}. It seems unjustified for this to imply4 a

b c, and it would be inconsistent with other similar notions (such as the boundary, or

an interval in relation to a path).

It is also worth noting that the predicate crosses triangle without the4 a b c

and P∈P reduced to card (P∩B{a b c}) = 2. This would hardly justify introduc-

ing a dedicated definition.

Figure 4.8: A path P crossing a triangle, splitting the boundary into two components,

and a path Q touching each such that P and Q cross over the triangle. The left case can

be excluded once Q is present or assuming denseness, since P would contain more

than two boundary events.

4.3.2 Cross Over Triangle

The notion of two paths crossing over a triangle initially proved difficult to mechanize.

Schutz’s description suggests the mechanization should state that the boundary is split

by a first path into two components, as illustrated in figure 4.8. Given this, it would

be straightforward to introduce a second path in a way that captures the notion of

crossing over the triangle. The goal is then to show that the definition implies a list

of possible geometric arrangements as worked out on paper and shown in figure 4.7.

This is necessary, since it amounts to the case distinction Schutz implicitly makes in

his final step in proving Theorem 15 (ii).

An attempt to implement Schutz’s definition literally is described in section 4.3.2.1.

As this proved difficult to connect to more primitive notions of orderings, a unified

definition which incorporates some pictorial intuition was developed, as summarized

in section 4.3.2.2. Finally, a definition which incorporates the full pictorial intuition

is introduced in section 4.3.2.3. With this, the final proof succeeded without further

difficulties.
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4.3.2.1 Splitting the Boundary

Initially, the goal was to define a predicate boundary split a b c P A B, with the

property that A, B, P∩B{a b c} are a disjoint partition of B{a b c} . Here, P is

assumed to be crossing the triangle, i.e. P∩B{a b c} = {x,y} for distinct x, y. The

problem is immediately that the partition is unconstrained, which means A and B could

have an arbitrary assignment of boundary events.

We clearly need to work harder to make A and B components in the sense Schutz

means it (see figure 4.8). This leads to the notion of connectedness, as Schutz intro-

duces it in Axiom I6 (connectedness of the unreachable set):

∀r∈A. ∀t∈A. ∀s. [r;s;t] −→ s ∈ A .

This constrains the possible partitions considerably. Neither set can contain events

from both sides of a triangle edge which is split by the path. On paper, this seems

to lead to the same configurations as shown in figure 4.8. It is not immediately clear,

however, whether the constraint is sufficient to prove this rigorously in the axiomatic

system (instead of pictorial reasoning). Initial efforts to prove this failed, partially

because the techniques to handle without loss of generality assumptions (discussed in

section 4.4.2) had not yet been developed and partially because the original definition

was slightly faulty. In order not to waste time, we moved on to a second definition as

outlined below and eventually found the inductive definition in section 4.3.2.3. Since

the latter worked well for the proof of Theorem 15, we have not yet returned to this

definition or proven equivalence.

4.3.2.2 Attempts at Unified Definition

Once a definition in terms of two sets representing the two components of the boundary

was given up, the next attempt was to find a single definition for two paths crossing

over a triangle directly. For this, we now consider two paths P and Q which each has

two intersections with the boundary, P∩B{a b c}={p,q} and Q∩B{a b c}={r,s}.

If P splits the boundary into two components, we make the following observation.

For all possible crossings over a triangle as shown in section 4.7, there is a corner v′

of the triangle such that both r and s are path connected within the boundary to that

corner. What this means pictorially is that one can draw an angle from r to the corner

to s without leaving the boundary. This angle is the set A = (rv′)∪
{

v′
}
∪ (v′s). The

property that the path Q, i.e. the set {p,q} meets this set A exactly once is true if and

only if the two paths cross over the triangle. This motivates the following definition:
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1 abbreviation cross over tri points :: ...
2 where "cross over tri points a b c p q r s ≡ ∃v'∈{a,b,c}.
3 interval r v' ⊆ B{a b c} ∧
4 interval v' s ⊆ B{a b c} ∧
5 card ({p, q} ∩ (interval r v' ∪ interval v' s)) = 1"

Crossing over a triangle would then involve the statement

∃q6=p. ∃r. ∃s6=r. B{a b c}∩Q={p,q} ∧ B{a b c}∩R={r,s} ∧
cross over tri points a b c p q r s

In the effort to prove that this implies combinations of figure 4.7, it emerged to be

difficult (and potentially impossible at this point) to prove that interval r v' ⊆ B
{a b c} implies that r and v′ are even on the same path. This means that the strong

intuition of the points being path connected within the boundary was not obviously

captured fully. It may be possible to prove this using the assumption of denseness,

stating that a,c ∈ P implies there is an event b such that [abc], which Schutz proves

later in Theorem 17. However, even with this there was still much work needed to

imply the derived possible configurations. For this reason the attempt at a unified

definition was abandoned in favour of the inductive version introduced next.

4.3.2.3 Inductive Definition

In hindsight, it is quite likely that Schutz intended his introduction of two paths cross-

ing over a triangle as a description rather than a definition. In this case, a formalization

of his prose is misguided, as he expects the reader to think pictorially about all possibil-

ities that conform to his description. This is possible since the components a crossing

path splits the boundary into are intuitively clear. If we thus allow ourselves to unpack

Schutz’s description into the possible configurations using unproven intuition about

the pictorial geometry, we can take these configurations as the definition.

In other words, instead of seeking some definitions close to Schutz’s words, we

define the proposition in terms of the possible configurations shown in figure 4.7 we

are sure Schutz had in mind. This is done in Isabelle using an inductive definition,

which lists all possible implications by which the proposition can be made true (see

section B.2.1):

1 inductive cross over tri :: ... where
2 two corners:
3 " JB{a b c}∩Q={a,x}; B{a b c}∩R={c,y}; [b;x;c]; [a;y;b]...K
4 =⇒ cross over tri a b c Q R" |
5 | one corner1:
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6 " JB{a b c}∩Q={a,x}; B{a b c}∩R={r,s}; [a;s;c]; [b;r;x;c]...K
7 =⇒ cross over tri a b c Q R" |
8 ...
9 | cross over tri sym :

10 " J cross over tri a b c Q R; permut3 a b c a' b' c'K
11 =⇒ cross over tri a' b' c' R Q"

In each case ... indicates the repeated 4 a b c; Q∈P; R∈P . With the last in-

ductive case, we implicitly introduce all possible permutations of corners and paths,

and also make the definition symmetric. The facts that Q6=P and each path meets the

boundary twice are obvious from figure 4.7 and were proven for each case. These

facts could have been included on the left hand sides of the inductive definitions, but

minimal assumptions simplify proofs where it must be shown the predicate is true.

4.3.3 Proof of Theorem 15 (ii)

Using the inductive definition above, the second part indeed becomes as straightfor-

ward to prove as Schutz claims. The inductive definition can be used in the mech-

anized proof to show the final goal by proving it for each possible configuration of

crossing over a triangle. It is easy to recognize the sub-configurations of Lemma 2

(figure 4.6) and part (i) (figure 4.4) in each of the inductive cases listed in figure 4.7.

The mechanized proof is structured as follows:

1 theorem (* 15 *) collinearity3 2:
2 assumes "cross over tri a b c Q R"
3 (* I n c l u d e a d d i t i o n a l r e s u l t t h a t w i l l be u s e f u l l a t e r * )
4 shows "∃x∈I{a b c}. x∈Q ∧ x∈R
5 ∧ path spans inner a b c Q x
6 ∧ path spans inner a b c R x"
7 (is "?IntE a b c Q R")
8 proof -
9 have "cross over tri a b c Q R =⇒ ?IntE a b c Q R"

10 proof (induction rule: cross over tri.induct)
11 case (two corners a b c Q R x y) ...
12 next ... qed
13 thus ?thesis using assms by auto
14 qed

Note that the result of the lemma was extended compared to Schutz’s statement to

include path spans inner a b c Q x and path spans inner a b c R x. These

are results which will become essential in the proof of the second part of Theorem 15

discussed below. The predicate path spans inner captures that x is between the two

events where the path crosses the boundary:
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1 abbreviation path spans inner :: ...
2 where "path spans inner a b c P e ≡
3 ∃x z. B{a b c}∩P = {x, z} ∧ [x;e;z]"

This result was a direct implication of facts that were already available in each case.

4.4 Theorem 15 (iii)

The third part of Theorem 15 is in some sense the converse of the second part. Schutz

states it as:

Theorem 15 (iii) (Third Collinearity Theorem)
Two paths which meet at an internal event (and which meet the boundary
at four distinct events), cross each other over the kinematic triangle.

(Schutz [9, p. 31])

Schutz simply claims that this is a direct implication of previous results:

Part (iii) is an immediate consequence of part (ii), the Second Collinearity
Theorem (Th.7) and Theorem 8. (Schutz [9, p. 35])

This is the full extent of the proof which he gives. Reviewing Theorems 7 (figure 4.1)

and 8 (figure 4.2), it appears that we must rigorously derive all possible arrangements

in which two paths may cross a triangle and lead all cases where they do not cross

over the triangle (as defined above), i.e. they pass each other, to a contradiction using

the assumptions. In contrast to part (ii) above, we are not at liberty to introduce an

inductive definition which immediately gives us all possible configurations (which we

could derive on paper). We must instead start from Schutz’s assumptions above and

deduce the possible configurations. Doing this pictorially and on paper is not very

difficult. The paths either cross, which are the configurations shown in figure 4.7, or

they pass each other in one of the arrangements shown in figure 4.9.

In summary, there are two parts to the proof Theorem 15 (iii) which Schutz seems

to imply. First, we need to deduce the possible configurations allowed given the as-

sumptions of the theorem. Then, we must lead all configurations in which the paths do

not cross over the triangle to a contradiction. In section 4.4.1 below, a reformulation

of the theorem (later proved equivalent) is discussed and the proof we surmise Schutz

to have meant is outlined. We will see that the proof is relatively straightforward if

we make an intuitive assumption about the internal event, namely that internal events

are always inner events as described below. This leads to a lemma we need to proof,

referred to in the following as internal always inner event.
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After the proof outline, the general method of WLOG (without loss of generality)

lemmas, used to avoid combinatorial explosions when considering possible arrange-

ments, is introduced in section 4.4.2, together with a proof that internal events are not

on the boundary (this will be used in proving internal always inner event). Be-

fore moving to two paths, as in the theorem, we first rigorously derive possible ways a

single path may cross a triangle in section 4.4.3. The mechanized, rigorous deduction

of possible arrangements for two paths is discussed in 4.4.4.

Once this construction is completed, we unpack internal always inner event

into several layers of results, each of which required a careful consideration of all

possible configurations and permutations. While Schutz may have taken these to be

obvious, following from pictorial representations, we annot use this argument and must

provide rigorous proofs. Finally, the proof of part (iii) is outlined in section 4.4.6.

Figure 4.9: Two paths crossing a triangle and passing by each other. In red, the contra-

diction with Theorem 7 (on the right) and Theorem 8 (on the left) is illustrated, assuming

the paths meet at the internal point e.

4.4.1 Outline of Proof

We start here from a slightly modified version of part (iii), which is shown to imply

Schutz’s literal version in section 4.4.6. The following is written in prose style with

references to the corresponding mechanizations. We intend to show

Theorem 15 modified (iii)
Two distinct paths which both cross a kinematic triangle and meet each other at an

internal point, cross each other over the kinematic triangle.

Proof. First, observe that the two paths cannot meet each other on the boundary. As-

suming they do, note that they would meet twice, since the internal event is not on

the boundary (this is presumably assumed by Schutz as obvious; proven rigorously
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as internal event not boundary in section 4.4.2). Then the two paths are equal,

contradicting the assumption.

Next, we consider the possible arrangements in which the two paths may intersect

the boundary (see section 4.4.4). Either the two paths cross over the triangle, in which

case the proof is complete, or they miss each other.

Without loss of generality (this is derived using two crosses cases in section

4.4.4), there are two arrangements, shown in figure 4.9, in which the paths can pass

each other. Either both pass through the same two sides of the triangle (pass par) or

only one side is intersected by both (pass wedge). We can immediately lead each case

to a contradiction using the fact that no path meets each side of a triangle and the second

collinearity theorem, respectively, if we assume the following intuitive property.

Lemma internal always inner event (Internal event always between crossings)

Consider a path P that crosses the triangle 4 a b c and meets the boundary at events

x and z. For any internal event e which is also in P, we must have [xez]. With the

predicate introduced earlier, we always have path spans inner a b c P e.

This lemma follows directly from our intuitive understanding of “internal”, since an

ordering [xze] would put the internal event outside of the triangle. Proving it rigorously

in the axiomatic system was a considerable challenge and involved proving several

intermediate results. This is discussed in section 4.4.5.2 The contradictions arising in

each case using this lemma are discussed in more detail in section 4.4.5.1.

4.4.2 Internal Events Are Not on Boundary

Schutz appears to make several geometrically intuitive assumptions. One such assump-

tion which Schutz does not prove is that given a triangle 4 a b c an internal event

e∈I{a b c} is not also on the boundary, e/∈B{a b c}. A mechanized proof of this

statement was constructed and is briefly introduced here.

Given the definition of internal event in section 4.1.3, we know that we must

consider the two possible arrangements shown in figure 4.3. Unfortunately, these ar-

rangements may appear in any possible permutation of corners. We thus want to tell

Isabelle that, without loss of generality, we consider the permutation in which one of

the two arrangements is true. This is possible because both assumption4 a b c and

proposition e/∈B{a b c} are symmetric with respect to a, b, c. Isabelle can be told of

the WLOG proof method rule using the following lemma:
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1 lemma internal event wlog:
2 assumes asm sym: "

∧
a b c a' b' c'.

3 JA a b c; permut3 a b c a' b' c'K =⇒ A a' b' c'"
4 and pro sym: "

∧
a b c a' b' c'.

5 JP a b c; permut3 a b c a' b' c'K =⇒ P a' b' c'"
6 and wlog case: "

∧
a b c x z.

7 JA a b c e; [a;x;b]; [x;e;z]; [b;z;c]∨z=c K =⇒ P a b c e"
8 shows "

∧
a b c.

9 JA a b c; internal event a b c e K =⇒ P a b c"

The first assumption introduces some unspecified predicate A and states that this must

be symmetric under permutations. The second assumption introduces another unspec-

ified predicate P which is also symmetric. The third assumption states that A together

with x, z and e as in the two possible arrangements in the definition of the internal event

implises P. This is claimed to show that A a b c together with internal event a

b c e implies P a b c. In other words, assuming the general predicates A and P are

symmetric, the goal of showing A implies P given an internal event e can be replaced

with proving P for one permutation, and all other permutation follow automatically.

This rule can now be used to prove the original statement:

1 lemma internal event not boundary:
2 assumes "4 a b c" "internal event a b c e"
3 shows "e /∈ B{a b c}"
4 proof(rule internal event wlog[where
5 A="λ a b c. 4 a b c" and
6 P="λ a b c. e /∈ B{a b c}"], rule tac [4-5] assms)
7 show ... (* Assumpt ion and P r o p o s i t i o n s y m m e t r i c * )
8 next
9 fix a b c x z

10 assume "4 a b c" "[a;x;b]" "[x;e;z]" "[b;z;c] ∨ z = c"
11 show "e /∈ B{a b c}" ...

For Isabelle to understand how to apply internal event wlog as a rule, we specify

what the predicates A and P are using the where keyword.

The crucial step in the above proof, which would appear after line 13, is to consider

each position on the boundary e could be located at, and leading each case to a con-

tradiction. This is done using the fact that two distinct events specify a path uniquely,

and each possible position of e implies two sides of the triangle are equal, which is by

definition false.

The result above can be extended to the paths spanning a side of the triangle:

1 lemma internal not on tri path :
2 assumes "4 a b c" "internal event a b c e" "[a;b‖ab]"
3 shows "e /∈ ab"
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4.4.3 Cases of One Path Crossing a Triangle

We eventually aim to show possible configurations of two paths crossing a triangle, as

required for the case distinction in the proof of part (iii). We first show what configu-

rations are possible for a single path crossing a triangle. For a single path crossing a

triangle, we know that it touches the boundary exactly twice. We consider three cases:

Two of the intersections may be corners, one of them may be a corner or neither of

them may be a corner. In Isabelle, the lemma looks as follows:
1 lemma crosses tri cases:
2 assumes "crosses triangle a b c P"
3 shows "∃a' b' c'. permut3 a b c a' b' c' ∧ (
4 B{a' b' c'} ∩ P = {a', b'} ∨
5 (∃x. [b';x;c'] ∧ B{a' b' c'}∩P={a',x}) ∨
6 (∃x y. [a';x;b'] ∧ [c';y;a'] ∧ B{a' b' c'}∩P={x,y}))"
7 proof -
8 ...
9 obtain x y where "x 6= y" and "B{a b c}∩P = {x, y}" <proof>

10 then consider
11 (card2) "card ({x,y}∩{a,b,c}) = 2" |
12 (card1) "card ({x,y}∩{a,b,c}) = 1" |
13 (card0) "{x,y}∩{a,b,c} = {}"
14 <proof>
15 thus ?thesis
16 proof (cases) ... qed
17 qed

The possible configurations claimed to be implied by crosses triangle in this lemma

are visualized in figure 4.8. The first case amounts to the path P being aligned with one

of the edges and is spurious. It is only included because at this point we cannot show

that the interval |ab| contains more than two events. If it does, the third event would

contradict the assumption that the path touches the boundary exactly once. Luckily, all

of these spurious configurations eventually lead to contradictions once we have more

than one path crossing the triangle, which allows Theorem 15 to be proved without

assuming denseness.

Two kinds of WLOG lemmas are introduced (section B.2.2 in the appendix). One

in which the corners of the triangle can be permuted without loss of generality, and

another where this is not assumed to be possible.

4.4.4 Cases of Two Paths Crossing a Triangle

Given the two WLOG lemmas single paths, it is now relatively straightforward to

show what configurations are possible for two paths. While for the first path we can
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permute the corners of the triangle freely, once its intersection with the triangle is

fixed, we cannot repeat the same trick (the assumptions are no longer symmetric).

Instead, we use the second WLOG lemma introduced above, which does not permute

the corners. In addition to crossing the triangle, we also assume the paths do not meet

on the boundary. We show the following lemma, which claims that either the two

paths cross over the triangle, or there is a permutation of corners such that one of the

configurations shown in figure 4.9 holds:

1 lemma two crosses cases:
2 assumes "crosses triangle a b c Q"
3 and "crosses triangle a b c R" and "Q∩R∩B{a b c}={}"
4 shows "cross over tri a b c Q R ∨
5 (∃a' b' c'. permut3 a b c a' b' c' ∧ (
6 (∃p q r s. B{a' b' c'}∩Q={p,q} ∧ B{a' b' c'}∩R={r,s}
7 ∧ [a';p;r;b']] ∧ [a';q;s;c']])
8 ∨ (∃p q r s. B{a' b' c'}∩Q={p,q} ∧ B{a' b' c'}∩R={r,s}
9 ∧ [a';r;p;b']] ∧ [a';s;q;c']])

10 ∨ (∃p q r s. B{a' b' c'}∩Q={p,q} ∧ B{a' b' c'}∩R={r,s}
11 ∧ [a';p;b'] ∧ [b';r;c'] ∧ [a';q;s;c'])))"

The proof for each case is relatively straight-forward. Most of the spurious alignments

with sides can be shown to lead to contradictions, unless the two paths pass each other.

The other configurations are either shown to correspond to one of the defining con-

figurations of cross over tri (or one of their permutations), or to one of the cases

where the paths do not meet over the triangle. Given this lemma, it is straightforward

to prove corresponding WLOG lemmas (see section B.2.3 of the appendix).

4.4.5 Internal Event Ordering

The goal of this section is to prove the lemma internal always inner event in

order to complete the proof of Theorem 15 (iii). It states that any path P which crosses

the boundary of a triangle twice at points x and z, and contains an internal point e,

satisfies [x;e;z]. In order to show this, we need to use the definition of internal points.

First, in section 4.4.5.1, lead all configurations to contradictions where two paths cross

a triangle and pass each other, but one of them has an internal event ordered as above.

We use this in section 4.4.5.2 To lead up to the result of the lemma.

4.4.5.1 Passing Paths Share No Internal Point

As an important ingredient in showing both lemma internal always inner event,

and part (iii) of Theorem 15 itself, we show that two paths that do not cross over a
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triangle (i.e. pass each other) cannot share an internal event if one of paths satisfies

path spans inner a b c Q x. This last assumption is critical as it captures the def-

inition of an internal event. The motivation for formulating this lemma exactly like

this will become clearer in the next section. The first lemma regards the configuration

pass wedge of figure 4.9 where the outer of the two paths satisfies path spans inner:

1 lemma pass par no internal outer :
2 assumes "4 a b c" "Q ∈ P" "R ∈ P"
3 "B{a b c} ∩ Q = {p, q}" "B{a b c} ∩ R = {r, s}" and
4 meet: "[r;e;s]" "e∈R" "e∈Q" and
5 order: "[a;p;r;b]]" "[a;q;s;c]]"
6 shows False

The proof of this is straightforward using Theorem 8 and consists of establishing the

facts required for the application of this theorem.

The second lemma pass par no internal inner is almost the same as above,

the ordering is known for the inner path Q instead of R. If the same ordering applies

to the outer path, we can get a contradiction via the previous lemma. The other two

possible orderings [pqe] and [e pq] are symmetric under exchange of p and q, and can

both be lead to a contradiction using Theorem 7. For the final lemma, we consider the

configuration pass wedge from figure 4.9.

1 lemma pass wedge no internal:
2 assumes "4 a b c" "Q ∈ P" "R ∈ P"
3 "B{a b c} ∩ Q = {p, q}" "B{a b c} ∩ R = {r, s}" and
4 meet: "[r;e;s]" "e∈R" "e∈Q" and
5 order: "[a;p;b]" "[b;r;c]" "[a;q;s;c]"
6 shows False

The proof again makes use of Theorem 7, by which the path Q can be shown to touch

every segment of the triangle boundary, which contradicts Theorem 8.

4.4.5.2 Internal Event is Always Inner Event

We now want to show the lemma internal always inner event which was intro-

duced as the intuitive fact used to prove part (iii) in section 4.4.1. Given a path P which

crosses4 a b c and meets the boundary at x and z, we want to show that [xez] for any

internal event e. It is inevitable that we must make use of the definition of internal

events. As a first step, therefore, the following lemma is proved.

1 lemma internal event get crosses tri:
2 assumes "4 a b c" "internal event a b c e"
3 shows "∃P. P∈P ∧ crosses triangle a b c P
4 ∧ path spans inner a b c P e"
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We can obtain the path P directly using the definition of internal events and Axiom O1.

The only thing left to show is that there is no third event which is both on P and on

the boundary of the triangle. This can be proved easily, as the assumption of such

a path either immediately implies e is on the boundary, or is the case considered in

pass par no internal outer. The next step is showing the following lemma:

1 lemma internal both inner event:
2 assumes cross: "crosses triangle a b c Q"
3 "crosses triangle a b c R"
4 "Q∩R∩B{a b c}={}"
5 and meet: "B{a b c}∩Q={p,q}" "B{a b c}∩R={x,z}"
6 "[x;e;z]" "e∈R" "e∈Q"
7 shows "[p;e;q]"

The statement here is that path spans inner can be transferred from one path to the

other if the paths do not meet on the boundary but meet in the internal point for which

one ordering is known. To prove this, we use the WLOG lemma for two paths crossing

a triangle. In the case of the path crossing over the triangle, we are done using the

additional result that was included in part (ii), which states exactly the desired property.

The cases of the paths passing each other led to contradictions using the results of the

previous section. Finally, using the above results, the final lemma follows:

1 lemma internal always inner event:
2 assumes "crosses triangle a b c Q"
3 and "B{a b c}∩Q={p,q}" and "e ∈ Q∩I{a b c}"
4 shows "[p;e;q]"

4.4.6 Proof of Part (iii)

Since the lemma internal always inner event was proved above, we can now

mechanize a proof for the modified version of part (iii) following the proof-sketch

of section 4.4.1. The mechanized version of the modified part (iii) is

1 theorem (* 15 *) collinearity3 3:
2 assumes "crosses triangle a b c Q" "crosses triangle a b c R"
3 and "Q 6= R" "e ∈ Q ∩ I{a b c}"
4 shows "cross over tri a b c Q R"

Given this, it is straightforward to prove a mechanized version of Schutz’s formu-

lation also (see section B.2.5 in the appendix):

1 theorem (* 15 *) collinearity3 3':
2 assumes "4 a b c"
3 and "Q∈P" "R∈P" "e ∈ Q ∩ R ∩ I{a b c}"
4 and disj: "card ((Q ∪ R) ∩ B{a b c}) = 4"
5 shows "cross over tri a b c Q R"
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Conclusions

The mechanization of Schutz’s axiomatic system of Minkowski space was successfully

advanced. An initial critical reading of the existing mechanizations led to improve-

ments in notation and significant reduction of complexity in several parts, most notably

in the definition of chains. Theorem 15 was mechanized, which involved formalizing

Schutz’s definitions and filling in large parts of pictorial or intuitive reasoning.

Although not fully unexpected, it was surprising to find that The last two sentences

of Schutz proof to Theorem 15 proved the most difficult and most time-consuming

to mechanize. As mentioned, the reasons for this were that some of Schutz’s notions

could not be mechanized easily by following his prose literally, and that he seems to

have assumed geometrically obvious steps that turned out difficult to prove rigorously.

This also involved some advanced efforts in using WLOG lemmas to simplify proofs,

since a naive case distinction would have led to a combinatorial explosion that would

have been tedious and time consuming to manage.

It is worth noting that Schutz claims part (iii) is the immediate consequence, among

other facts, of part (ii). We have used part (ii) in our proof only for the fact that an

internal event e is ordered like [xez] for all events x and z that share a path with e,

which we suspect Schutz may have taken for granted. Notably, this was only possible

after we extended part (ii) by the result that the obtained internal event has such an

ordering, which Schutz did not specify even though it is an immediate result of his

proof. This seems to suggest either that Schutz did take the ordering of internal events

for granted, in which case part (ii) would not have been used at all, or he may have

had another or slightly different proof in mind. It is possible that this alternative proof

may have been slightly easier to formalize, although it would likely have involved a

similar kind of reasoning. The final theorem implies the intuitive facts we used in our
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proof , so it is likely that we have not shown more results than required, and whatever

alternative proof may exist would likely not be significantly simpler.

Although no fixed goal was set for the effort of continuing the formalization into

chapter 4, the general expectation was to mechanize more than one theorem. In this

regard one must acknowledge that Schutz’s theorems become progressively more dif-

ficult, building on previous results, and involving more complex geometric arrange-

ments. A mechanization is made more difficult especially by the fact that Schutz uses

pictorial reasoning, which cannot be easily translted to Isabelle.

Finally, we remark that our inductive definition of two paths crossing over a triangle

was nicely validated by the fact that two paths crossing a triangle were rigorously

shown to either pass each other, or cross over the triangle by our definition.

5.1 Future work

There are several theorems of chapter 4 left to formalize. In Theorem 16, Schutz

introduces an order topology on paths. Here, it may be worth investigating whether

existing theories about order topologies in Isabelle could be reused or whether new

definitions are needed. An investigation of this could unfortunately not be concluded

in this project. As mentioned in section 3.3, it is likely possible to reorganize the

mechanization more carefully into locales. Some work in this direction has been done

in this project, but needed to be postponed in order to finish the proof of Theorem 15.

It was found that often, many needed facts can be just read off from a pictorial rep-

resentation while requiring tedious derivation in Isabelle. A tool to generate facts from

existing ones using a specified set of rules would be convenient, including e.g. permu-

tations of facts or the existence of paths and kinematic triangles. Some work in this

direction appears to have been done [36], but was not investigated for this project.

It would, furthermore, be very useful if one could generate pictorial representations

of a given set of properties (triangles, intersecting paths, etc.) from a given set of

statements or for a lemma. This would help both in the development of proofs, as one

can check the meaning of variables more quickly and see what facts are available, as

in the reading of the results themselves.

Lastly, we note that while WLOG lemmas were indispensable for the proof of The-

orem 15 (iii), they were rather tedious to prove even though their proves mainly exploit

symmetry properties. This suggests it may be possible to design general algorithms

which can derive WLOG results or apply them automatically as a proof method.
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Appendix A

Original Text (Chapter 4, Schutz 1997)

For reference, relevant parts of Schutz’s text [9] are given below.

A.1 Third Collinearity Theorem
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A.2 Lemma 1 - For Proof of Part (i)
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A.3 Proof of Part (i)

A.4 Lemma 2 - For Proof of Part (ii)



Appendix A. Original Text (Chapter 4, Schutz 1997) 48

A.4.1 Case (a)
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A.4.2 Case (b)

A.5 Proof of Parts (ii) and (iii)



Appendix B

Formalizations of Theorems and

Definitions in Isabelle

B.1 Comparison of Notations

Table B.1: Comparison of Schutz’s notation with the old notation in Isabelle and the new

notation which does not clash with lists.

Predicate for Schutz’s notation Old notation New notation

Betweenness relation [abc] [[a b c]] [a;b;c]

Non-strict betweenness [abcdK [[a b c dK [a;b;c;d]]

Non-strict betweenness JabcdK Ja b c dK [[a;b;c;d]]

Finite chain [a · · ·b · · ·c] [f[a..b..c]X] [f;X|a..b..c]

Path exists & named ab path a b ab [a;b‖ab]

Path exists ab path ex a b [a;b]
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B.2 Mechanized Statements of Lemmas and Theorems

B.2.1 Definition of Crossing Over a Triangle

The full inductive definition is

1 inductive cross over tri :: ... where
2 two corners:
3 " JB{a b c}∩Q={a,x}; B{a b c}∩R={c,y}; [b;x;c]; [a;y;b]...K
4 =⇒ cross over tri a b c Q R" |
5 | one corner1:
6 " JB{a b c}∩Q={a,x}; B{a b c}∩R={r,s}; [a;s;c]; [b;r;x;c]...K
7 =⇒ cross over tri a b c Q R" |
8 | one corner2:
9 " JB{a b c}∩Q={a,x}; B{a b c}∩R={r, s};

10 [a;s;c]; [a;r;b]; [b;x;c]...K=⇒ cross over tri a b c Q R"
11 | two edges1:
12 " JB{a b c}∩Q={p,q}; B{a b c}∩R={r,s};
13 [a;p;r;b]; [b;q;c]; [c;s;a]...K=⇒ cross over tri a b c Q R"
14 | two edges2:
15 " JB{a b c}∩Q={p,q}; B{a b c}∩R={r,s};
16 [a;p;s;c]; [b;r;q;c]...K=⇒ cross over tri a b c Q R"
17 | cross over tri sym :
18 " J cross over tri a b c Q R; permut3 a b c a' b' c'K
19 =⇒ cross over tri a' b' c' R Q"

B.2.2 Crosses Triangle

First, the possible permuted cases are found:

1 lemma crosses tri cases:
2 assumes "crosses triangle a b c P"
3 (* The f i r s t ca se i m p l i e s i n t e r v a l x y = {x , y } . Can we

e x c l u d e t h i s ? * )
4 shows "∃a' b' c'. permut3 a b c a' b' c' ∧
5 ((B{a' b' c'} ∩ P = {a', b'}) ∨
6 (∃x. [b';x;c'] ∧ B{a' b' c'}∩P={a',x}) ∨
7 (∃x y. [a';x;b'] ∧ [c';y;a'] ∧ B{a' b' c'}∩P={x,y}))"

Equivalently, we can list all cases without permuting the corners:

1 lemma crosses tri cases no perm :
2 assumes "crosses triangle a b c P"
3 shows "B{a b c}∩P={a,b} ∨ B{a b c}∩P={a,c} ∨ B{a b c}∩P={b,c}
4 ∨ (∃x. [a;x;b] ∧ B{a b c}∩P={c,x}
5 ∨ [b;x;c] ∧ B{a b c}∩P={a,x}
6 ∨ [c;x;a] ∧ B{a b c}∩P={b,x}) ∨
7 (∃x y. B{a b c}∩P={x,y} ∧ (
8 ([a;x;b] ∧ [b;y;c])
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9 ∨ ([a;x;b] ∧ [c;y;a])
10 ∨ ([b;x;c] ∧ [c;y;a])))"

Using this, several WLOG lemmas are established:

1 lemma crosses tri wlog:
2 assumes sym: "

∧
a b c a' b' c'. J Prop a b c P; permut3 a b c a'

b' c'K =⇒ Prop a' b' c' P"
3 and aligned case: "

∧
a b c. J4 a b c; P∈P; B{a b c} ∩ P = {

a, b} K =⇒ Prop a b c P"
4 and corner case: "

∧
a b c x. J4 a b c; P∈P; [b;x;c]; B{a b

c} ∩ P = {a, x} K =⇒ Prop a b c P"
5 and edges case: "

∧
a b c x y. J4 a b c; P∈P; [a;x;b]; [c;y;

a]; B{a b c} ∩ P = {x,y} K =⇒ Prop a b c P"
6 shows "

∧
a b c. J crosses triangle a b c P K =⇒ Prop a b c P"

1 lemma crosses tri wlog asm:
2 assumes sym: "

∧
a b c a' b' c' P. J Prop a b c P; permut3 a b c

a' b' c'K =⇒ Prop a' b' c' P"
3 and symA: "

∧
a b c a' b' c' P. J Asm a b c P; permut3 a b c

a' b' c'K =⇒ Asm a' b' c' P"
4 and aligned case: "

∧
a b c P. J Asm a b c P; 4 a b c; P∈P; B

{a b c} ∩ P = {a, b} K =⇒ Prop a b c P"
5 and corner case: "

∧
a b c P x. J Asm a b c P; 4 a b c; P∈P;

[b;x;c]; B{a b c} ∩ P = {a, x} K =⇒ Prop a b c P"
6 and edges case: "

∧
a b c P x y. J Asm a b c P; 4 a b c; P∈P;

[a;x;b]; [c;y;a]; B{a b c} ∩ P = {x,y} K =⇒ Prop a b c P"
7 shows "

∧
a b c P. J Asm a b c P; crosses triangle a b c P K =⇒

Prop a b c P"

1 lemma crosses tri no perm wlog :
2 assumes aligned: "

∧
a b c P. J4 a b c; P∈P; B{a b c}∩P={a,b} ∨

B{a b c}∩P={a,c} ∨ B{a b c}∩P={b,c} K =⇒ Prop a b c P"
3 and corner c: "

∧
a b c P x. J4 a b c; P∈P; [a;x;b]; B{a b

c}∩P={c,x} K =⇒ Prop a b c P"
4 and corner a: "

∧
a b c P x. J4 a b c; P∈P; [b;x;c]; B{a b

c}∩P={a,x} K =⇒ Prop a b c P"
5 and corner b: "

∧
a b c P x. J4 a b c; P∈P; [c;x;a]; B{a b

c}∩P={b,x} K =⇒ Prop a b c P"
6 and edges b: "

∧
a b c P x y. J4 a b c; P∈P; [a;x;b]; [b;y;

c]; B{a b c}∩P={x,y} K =⇒ Prop a b c P"
7 and edges a: "

∧
a b c P x y. J4 a b c; P∈P; [a;x;b]; [c;y;

a]; B{a b c}∩P={x,y} K =⇒ Prop a b c P"
8 and edges c: "

∧
a b c P x y. J4 a b c; P∈P; [b;x;c]; [c;y;

a]; B{a b c}∩P={x,y} K =⇒ Prop a b c P"
9 shows "

∧
a b c P. crosses triangle a b c P =⇒ Prop a b c P"
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B.2.3 Two Paths Crossing a Triangle

Using the results from the previous section, we can establish the possible cases of two

paths crossing a triangle:

1 lemma two crosses cases:
2 assumes "crosses triangle a b c Q" and "crosses triangle a b c

R" and "Q∩R∩B{a b c}={}"
3 shows "cross over tri a b c Q R ∨ (∃a' b' c'. permut3 a b c a'

b' c' ∧ (
4 (∃p q r s. B{a' b' c'}∩Q={p,q} ∧ B{a' b' c'}∩R={r,s} ∧

[a';p;r;b']] ∧ [a';q;s;c']]) ∨
5 (∃p q r s. B{a' b' c'}∩Q={p,q} ∧ B{a' b' c'}∩R={r,s} ∧

[a';r;p;b']] ∧ [a';s;q;c']]) ∨
6 (∃p q r s. B{a' b' c'}∩Q={p,q} ∧ B{a' b' c'}∩R={r,s} ∧

[a';p;b'] ∧ [b';r;c'] ∧ [a';q;s;c'])))"

This can again be turned into a WLOG lemma:

1 lemma (in MinkowskiSpacetime) two crosses wlog asm':
2 assumes prop sym: "

∧
a b c Q R a' b' c'. J Prop a b c Q R;

permut3 a b c a' b' c'K =⇒ Prop a' b' c' R Q"
3 and asm sym: "

∧
a b c Q R a' b' c'. J Asm a b c Q R;

permut3 a b c a' b' c'K =⇒ Asm a' b' c' R Q"
4 and cross case: "

∧
a b c Q R. J Asm a b c Q R;

cross over tri a b c Q R K =⇒ Prop a b c Q R"
5 and pass1: "

∧
a b c Q R p q r s. J Asm a b c Q R; 4 a b c;

Q∈P; R∈P; B{a b c}∩Q={p,q}; B{a b c}∩R={r,s}; [a;p;r;b]]; [
a;q;s;c]] K =⇒ Prop a b c Q R"

6 and pass3: "
∧

a b c Q R p q r s. J Asm a b c Q R; 4 a b c;
Q∈P; R∈P; B{a b c}∩Q={p,q}; B{a b c}∩R={r,s}; [a;p;b]; [b;r
;c]; [a;q;s;c] K =⇒ Prop a b c Q R"

7 shows "
∧

a b c Q R. J Asm a b c Q R; crosses triangle a b c Q
; crosses triangle a b c R; Q∩R∩B{a b c}={} K =⇒ Prop a b c
Q R"
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B.2.4 Lemma 2

Following Schutz’s prose, the proof of Lemma 2 consists of a case (a) and a case (b),

where case (b) is shown by obtaining further events and relations to reduce it to case

(a). Therefore, lemma (a) was separated out into its own lemma:

1 lemma collinearity3 2 lemma a:
2 assumes
3 "4 b 1 b 2 b 3 " and
4 "[a;c‖ac]" and "[d;f‖df]" and
5 "[b 1 ;f;b 2 ]" and "[[b 2 ;a;d;b 3 ]" and "[b 1 ;c;b 3 ]" and
6 case a: "∃g∈df. [b 1 ;b 3 ;g]" (* i m p l i e s g∈d f∩b 1 b 3 *)
7 shows "∃e ∈ ac ∩ df. [a;e;c] ∧ [d;e;f]"

The proof of Lemma 2 can then be summarized as follows:

1 lemma collinearity3 2 lemma:
2 assumes
3 "4 b 1 b 2 b 3 " and
4 "[a;c‖ac]" and "[d;f‖df]" and
5 "[b 1 ;f;b 2 ]" and "[[b 2 ;a;d;b 3 ]" and "[b 1 ;c;b 3 ]"
6 shows "∃e ∈ ac ∩ df. [a;e;c] ∧ [d;e;f]"
7 proof -
8 ...
9 consider

10 "∃g∈df∩b 1 b 3 . [b 1 ;b 3 ;g]" |
11 "¬(∃g∈df∩b 1 b 3 . [b 1 ;b 3 ;g])"
12 by auto
13 thus ?thesis
14 proof (cases)
15 case 1
16 thus ?thesis
17 using paths collinearity3 2 lemma a[OF assms] by blast
18 next
19 case 2
20 (* Fol low S c h u t z ' s p r o s e * )
21 ...
22 (* Apply case ( a ) * )
23 (* Use c o n s t r u c t i o n t o o b t a i n f i n a l r e s u l t * )
24 qed
25 qed
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B.2.5 Theorem 15 (iii)

Using the following lemma, which can be shown by leading all cases where either path

has at least three events touching the boundary to contradictions:

1 lemma collinearity3 3 lemma:
2 assumes "4 a b c"
3 and two paths: "Q∈P" "R∈P"
4 and internal: "e ∈ Q ∩ R ∩ I{a b c}"
5 and meet dist4: "card ((Q ∪ R) ∩ B{a b c}) = 4"
6 shows "crosses triangle a b c Q ∧ crosses triangle a b c R"

The final proof of Schutz’s version of Theorem 15 (iii) is straightforward:

1 theorem (* 15 *) collinearity3 3':
2 assumes "4 a b c"
3 and two paths: "Q∈P" "R∈P"
4 and internal: "e ∈ Q ∩ R ∩ I{a b c}"
5 and disj: "card ((Q ∪ R) ∩ B{a b c}) = 4"
6 shows "cross over tri a b c Q R"
7 proof -
8 have meet int: "e ∈ Q ∩ R" "internal event a b c e"
9 using internal by auto

10 have cross: "crosses triangle a b c Q" "crosses triangle a b
c R"

11 using collinearity3 3 lemma[OF assms] by auto
12 have paths dist: "Q 6= R"
13 proof
14 assume "Q = R"
15 have "card (Q ∩ B{a b c}) = 2"
16 using cross(1) by (metis crosses triangle' inf commute)
17 hence "card ((Q ∪ R) ∩ B{a b c}) = 2"
18 using 〈Q = R 〉 by auto
19 thus False
20 using disj by linarith
21 qed
22 show ?thesis
23 using collinearity3 3[OF cross paths dist meet int] by

simp
24 qed

B.3 Definition of Chains

In the following sections, the definitions for the different kind of sequence orderings

are given and their subtleties briefly discussed.
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B.3.1 Weak Ordering

The mechanization of definition 1 in Isabelle is slightly more involved, since we need

to allow N to be a natural number or infinity. Allowing an argument to be infinity or

natural number can achieved using Isabelle’s option type, where a variable of type

'b option can either be Some b where b :: 'b, or None. In our case, None will

be treated as meaning infinity (i.e. no bound on the sequence). We first define the

following abbreviation, where the (Some b) = b, which is true when either a < b

or b = None:

1 abbreviation oless :: "nat ⇒ nat option ⇒ bool" where
2 "oless a b ≡ b = None ∨ a < the b"

We can then define weak ordering as follows:

1 definition weak ordering ::
2 "(nat⇒'a) ⇒
3 ('a⇒'a⇒'a⇒ bool) ⇒
4 'a set ⇒ nat option ⇒ bool"
5 where "weak ordering f ord X oN ≡
6 (∀n. oless n oN −→ f n ∈ X) ∧
7 (∀x∈X. ∃n. oless n oN ∧ f n = x) ∧
8 (∀n. oless (Suc (Suc n)) oN
9 −→ ord (f n) (f (Suc n)) (f (Suc (Suc n))))"

B.3.2 Local Ordering

The main difficulty in formalizing definition 2 in Isabelle is that one has to carefully

consider the case of the set X being infinite. We cannot simply use i < card X, since

for infinite set it is card X = 0. A concise definition can still be obtained, without

making explicit case distinctions, by using the fact that False −→ i < card X is

true. Thus, instead of something like

∀i<|X|. ... ,

using the mathematical notation where we assume the cardinality is valued infinite, we

can use

∀i. (finite X −→ n < card X) −→ ... .

Using this, local ordered chains can be implemented in Isabelle as follows:

1 definition local ordering ::
2 "(nat⇒'a) ⇒ ('a⇒'a⇒'a⇒ bool) ⇒ 'a set ⇒ bool"
3 where "local ordering f ord X ≡
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4 (∀n. (finite X −→ n < card X) −→ f n ∈ X) ∧
5 (∀x∈X. (∃n. (finite X −→ n < card X) ∧ f n = x)) ∧
6 (∀n. (finite X −→ Suc (Suc n) < card X)
7 −→ ord (f n) (f (Suc n)) (f (Suc (Suc n))))"

B.3.3 Total Ordering

The mechanized formalization of total ordering of definition 3 is a straight-forward

generalization of the mechanized formalization of local ordering:

1 definition ordering ::
2 "(nat⇒'a) ⇒ ('a⇒'a⇒'a⇒ bool) ⇒ 'a set ⇒ bool"
3 where "ordering f ord X ≡
4 (∀n. (finite X −→ n < card X) −→ f n ∈ X) ∧
5 (∀x∈X. (∃n. (finite X −→ n < card X) ∧ f n = x)) ∧
6 (∀n n' n''.
7 (finite X −→ n'' < card X) ∧ n < n' ∧ n' < n''
8 −→ ord (f n) (f n') (f n''))"

B.3.4 New chain definitions

We follow Schutz’s case distinction and introduce a short chain of two elements:

1 definition short ch :: "(nat ⇒ 'a) ⇒ 'a set ⇒ bool"
2 where "short ch f X ≡ X = {f 0, f 1} ∧ [f 0; f 1]"

It is easy to show (as was done in Isabelle), that short chains are effectively equivalent

to path ex, i.e. [a;b]. We have short ch f X =⇒ [f 0; f 1] and in the other

direction [a;b] =⇒ ∃ f. short ch {a,b}1. The above definition with an index

function was chosen to be consistent with that for long chains:

1 definition long ch :: "(nat ⇒ 'a) ⇒ 'a set ⇒ bool"
2 where "long ch f X ≡
3 (finite X −→ card X > 2) ∧ local ordering f between X"

The base definition of chains is then simply

1 definition chain :: "(nat ⇒ 'a) ⇒ 'a set ⇒ bool"
2 where "[f;X] ≡ short ch f X ∨ long ch f X"

The notation f;X is meant to evoke f indexes into X.

It is now straightforward to introduce further variations of chains with several ele-

ments specified, such as [f;X|a..b..c] and [a..b..c] (the latter is equivalent to

∃f X. [f;X|a..b..c]). For illustrative purposes, one such definition is given:

1Namely f=(λn::nat. if x=0 then a else b).
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1 abbreviation fin ch ::
2 "(nat⇒'a) ⇒ 'a set ⇒ 'a ⇒ 'a ⇒ bool"
3 where "[f;Q|x..z] ≡
4 [f;Q] ∧ finite Q ∧ f 0 = x ∧ f (card Q - 1) = z"

Finally, a definition that avoids the case splitting into short and long chains was

found and proven to be equivalent:

1 lemma chain alt:
2 "[f;X] ←→ local ordering f between X
3 ∧ (infinite X ∨ card X ≥ 2) ∧ [f 0;f 1]
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