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Abstract

Human brain encodes information through activity patterns in populations of neurons.

Recent advancements in multi-electrode interfaces allow researchers to record large

clusters of neurons simultaneously with a single neuron precision. Latent variables

models have been shown effective in extracting signals from these populations while

disregarding the background noise, typical of in neural recordings. More recently, a

few models have tried to represent both neural activity and behaviour through latent

variables extracted from neural recordings. In this project, we focus our attention on

LFADS [1], the state-of-the-art method for the extraction of latent variables from neu-

ral recordings. We then compare the performance of LFADS with TNDM [2], a recent

extension of the same model that takes into account behaviour. We show TNDM out-

performs LFADS for small training samples, that it can decode wrist electromyography

(EMG) signals when applied to the primary motor cortex (M1) and that it is able of

disentangling behaviour-relevant and behaviour-irrelevant latent variables. Among the

contributions of this project, a new Python implementation for both algorithms based

on TensorFlow2. The novel implementation offers faster training, a simpler interface

and a cleaner, shorter codebase, which will be easier to maintain. This implementation

was employed for all the experiments provided in this project.
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Chapter 1

Introduction

As humans, every day we sense information about the world around us, plan our future,

perform some actions and feel emotions. Our brain is the organ responsible for all these

actions. Studied since the 17th century BC [3], the brain was recognized as the central

organ in our cognitive process only two centuries ago, thanks to the pioneering work

of Santiago Ramón y Cajal [4]. The Spanish neuroscientist was the first to recognise

the role of neurons and the connections between them, called synapses, in processing

information.

Two centuries and many discoveries later, we know that information is encoded in

networks of neurons through electrical activity. In each neuron, the electrical activity

is characterised by stereotypical discrete events, called spikes, where the membrane

rapidly depolarises from -50mV to +10mV and then hyperpolarises back to -70mV.

Recent advancements in medicine, material engineering and electronics enabled the

development of neural implants able to capture the activity of large clusters of neurons

simultaneously, with single-neuron spatial precision [5, 6, 7]. At the time of writing,

it is possible to monitor over 104 neurons using slow (10Hz) calcium imaging [8] and

over 103 neurons through multi-electrode recordings [9, 10], which can reach sampling

rates of 30KHz. The relationship between the neural activity and the encoded infor-

mation has been investigated for decades [11, 12], but it is only thanks to the recent

technological advances that we were able to investigate complex dynamics.

Throughout the years, several hypothesis were formulated around the encoding of

information in our brain. Clusters of neighboring neurons in the primary virtual cortex

(V1) were shown to activate when stripes with specific angles were displayed in front

of the animal, a phenomenon called population code [13]. This finding seemed to

suggest that distributed encoding was the preferred solution adopted by the brain, until

1



Chapter 1. Introduction 2

Quiroga et al. [14] observed that in the medial temporal lobe (MTL) some information

was encoded in as little as a single neuron [14]. The amount of neurons involved in

encoding a single piece of information in the brain is referred to as sparseness. A

sparse encoding can more efficiently encode a large amount of information in a small

population. In critical brain areas this comes at a cost, as sparseness increases the

chances of a message being corrupted due to some background noise. Decreasing the

chances of a corrupted message might be the reason underpinning redundancy in our

brain [15].

The first medical and commercial applications of brain computer interfaces (BCI)

[16, 17] created a growing demand for models that are able to extract from neural activ-

ity the information relevant to behaviour and perception. The challenging task of sep-

arating the signals in neural population activity from the background is of paramount

importance for the development of systems downstream, whether they are prosthetic

limbs [18], a system to prevent epileptic seizures [16] or a keyboard interface for your

computer [19]. This task can be further complicated by sparse representations of the

behaviour investigated in the neural activity, noise components in both the neural ac-

tivity and behaviour or the limited availability of training samples. Improvements in

the data efficiency, accuracy and speed of the models translate into faster, more precise

and more robust neural decoding, which in turn enables superior systems downstream.

This project will analyse two algorithms for extracting small sets of variables that

describe the variability observed in the neural activity, for this reason called latent vari-

ables. The first algorithm, Latent Factor Analysis via Dynamical Systems (LFADS)

[1], is the de-facto standard solution for extracting non-linear latent variables from

neural activity, producing state-of-the-art performance in multiple datasets. This algo-

rithm will be compared to the recently developed Targeted Neural Dynamical Mod-

elling (TNDM) [2], a derived model specialised in extracting latent variables related to

behaviour. After re-implementing and updating both algorithms to a modern machine

learning framework (TensorFlow 2), we will test them on both synthetic and recorded

data, evaluating their accuracy, data efficiency and the differences in the latent factors

extracted.

After a brief literature review in Chapter 2, we will describe how LFADS’ architec-

ture compares to TNDM in Chapter 3. Chapter 4 will describe the new TensorFlow2

implementation and compare it to the legacy code in terms of speed, resources util-

isation and performance. A Lorenz system will generate the synthetic data used to

compare the two models in Chapter 5, while Chapter 6 will apply both algorithms to
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a dataset containing neural, muscular and behavioural activity from a primate, resem-

bling the typical prosthetic scenario. Finally, Chapter 7 contains a summary of our find-

ings and identifies some promising areas for further work. The code associated with

this document is available on the GitHub project alessandrofacchin/msc-project.

https://github.com/alessandrofacchin/msc-project


Chapter 2

Background

The human brain typically encodes information through discrete events called spikes,

which are generated by neurons and consist of a rapid increase in the voltage potential

of a neuron’s membrane, followed by a reduction beyond the resting potential, called

hyper-polarization, and then a slower return to the resting potential [20, 21, 22].

Previous research has shown how neural encoding can differ substantially across

brain areas [13, 14]. With few exceptions, information tends to be encoded by clusters

of neurons rather than single units, a phenomenon known as population coding. This

amount of neurons used to encode a single piece of information is associated with the

concept of redundancy, often opposed to sparsity.

Patterns in spikes, or lack thereof, can be recorded across multiple channels using

electrode arrays with over 103 channels [23, 6, 10]. Analysing populations of such

size requires a systematic approach which takes into consideration the behaviour of

the population as a whole, in order to filter-out noise at a single neuron level. Statis-

tical models applied to large scale neural recordings are an active area of research. A

reasonable portfolio of algorithms is already available for industrial application and

improved versions of the existing models are published on a yearly basis. The wide

range of algorithms developed so far can be split into correlation models and latent

variables models [7].

2.1 Correlation Models

In correlation models neural activity is represented as a distribution, where the corre-

lation structure between neurons is modelled explicitly. Macke et al. [24] apply Di-

chotomized Gaussian models, where the density function of a discretised multivariate

4



Chapter 2. Background 5

Gaussian is fitted to the population firing activity.

Savin and Tkačik [25] increase the capacity of the representation by applying a

Maximum Entropy model, which can represent complex relationships, but requires

additional computational resources. Generalized Linear models [26, 27] are particu-

larly effective when the external inputs are provided and can often be formulated with

convex utility function, resulting in cost-effective training procedures.

An even higher level of detail is obtained by integrating copulas [28, 29]. Such

algorithms model separately the parameters of the firing distribution and the density

functions themselves, allowing for complex non-linear dependencies between clusters

of neurons, in line with biological properties of neural populations.

2.2 Latent Variables Models

While correlation models model the population’s firing distribution by modelling sin-

gle neurons individually, latent variables model extract aims at extracting a small set

of variables that describe the behaviour of the population as a whole. Latent vari-

ables methods gained popularity following the discovery that neural activity was rep-

resented efficiently in a low dimensional manifold in several brain areas [30, 31, 32].

More recently, some experimental findings undermined the low-manifold assumption

by showing how dimensionality can increase substantially on the primary visual cortex

(V1) [33]. As a consequence, the applicability of latent variables models should not be

given for granted when exploring uncharted brain areas.

Two latent variables paradigms have produced significant results: state-space and

temporal models. In state-space models, the dynamics of latent variables are described

by transition functions, that express the latent variables of each timestep based on the

previous ones. On the other hand, temporal algorithms model time-dependent relation-

ships, updating latent variables’ trajectories as a function of time.

Several general-purpose dimensionality reduction techniques have been applied on

neural populations, among all Principal Component Analisis (PCA), which has been

used both to describe static relationships [34, 35] and state-space systems [36, 37].

Non-linear architectures have become popular in recent years, thanks to their ability to

model more closely the non-liearities typical of brain dynamics [38].

Latent Factor Analysis via Dynamical Systems (LFADS) [1] is one of the central

algorithms in this document. In LFADS, latent variables are modelled through a recur-

rent neural network (RNN) [39], that allows for non-linear state-space dynamics. A
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bottleneck structure typical of Variational Autoencoders (VAE) [40] enforces a simple

latent representation despite the non-linearities in the RNNs, resulting in state-of-art

performances. The architecture of LFADS is analysed more in detail in section 3.1.

A recent framework based on evolutionary algorithms extended LFADS’ usability

by creating AutoLFADS, a framework that tunes hyperparameters to fit most practi-

cal applications [41]. Inspired by the popularity of transformers in natural language

processing and machine translation, Ye and Pandarinath [42] developed a new model

which replaces the RNN in LFADS with self-attention blocks, resulting in faster infer-

ence time thanks to the shallower network architecture. Another interesting approach

from Kim et al. [43] relies on neural ordinary differential equations and claims to im-

prove the state-of-art performance in inferring latent trajectories underlying a neural

population, particularly in sparse conditions. Their method currently requires signif-

icantly longer training times than LFADS and TNDM, but could provide additional

insights into the phase portraits and fixed points of neural activity.

2.3 Joint Neural-Behavioural Models

Recent improvements in the precision of electromyography (EMG) analysis [44] and

the increasing importance of Brain Computer Interfaces (BCIs) in prosthetics fueled

the development of a new sub-field, with researchers increasingly interested in ex-

tracting latent variables that can explain the behaviour of the animal. Preferential

Subspace Identification (PSID) [45] is the most popular method in this space, extract-

ing behaviour-relevant latent variables through a linear dynamical system which relies

heavily on vector projections. Behaviour has often been shown to be linked with neu-

ral activity through non-linear relationships [46]. In addition, neural activity is rather

sparse in time, therefore some degrees of integration or smoothing are necessary to

understand the big picture. Algorithms that can simultaneously model non-linear rela-

tionship and extract latent variables from entire populations are naturally advantaged

in extracting behaviour-relevant latent variables. Their configuration allows them to

ignore the idiosyncratic noise of single neurons and integrate information both hori-

zontally across neurons and vertically across time.

Targeted Neural Dynamical Modelling (TNDM) [2] is an adaptation of LFADS

that integrates behaviour in the training process, while retaining LFADS’ ability to

model non-linear latent dynamics. Its peculiar architecture splits latent variables into

two subspaces, for behaviour-relevant factors and behaviour-irrelevant factors. The
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entire set of factors is used to reconstruct neural activity, while only behaviour-relevant

latent variables are employed to reconstruct behaviour. A major advantage of TNDM

compared with PSID is the flexibility of its behaviour decoder, which allows both to

model same-time relationships between latent dynamics and behaviour and time lagged

relationships. The structure of TNDM will be covered in further details in section 3.2.



Chapter 3

Methodology

The experiments proposed in this project focus on two architectures: Latent Factor

Analysis via Dynamical Systems (LFADS) [1] and Targeted Neural Dynamical Mod-

eling (TNDM) [2]. The former is the state-of-the-art algorithm for the extraction of

latent variables from neural activity. TNDM, on the other hand, is an enhanced ar-

chitecture that extends LFADS capabilities to the extraction of behaviour-relevant la-

tent variables. This chapter explores the two architectures and the training procedure

adopted throughout the project.

Both algorithms receive the activity in a neural population as an input. For a given

trial, the activity is represented as a two-dimensional matrix X ∈ NT×N where the first

dimension T is the number of time intervals for each trial and the second dimension N

represents the number of neural channels recorded. Each point of the neural activity xi j

corresponds to the number of spikes recorded during the time interval i on the neural

channel j.

3.1 Latent Factor Analysis via Dynamical Systems

The high-level architecture of LFADS can be broken down into an encoder and a

decoder, combined sequentially to form a structure that is often referred to as auto-

encoder. Figure 3.1 illustrates the main layers in the network – dropouts, concatenation

and reshaping layers have been omitted for readability reasons.

For a given trial, at each time interval the encoder receives the neural activity

xt ∈ RN and summarizes it into a lower dimensional latent vector g0 ∈ RD, where

D is the size of the latent space. The latent vector is then fed to the decoder, that

will de-compress the information to match as closely as possible the activity in the

8
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Neural Activity
(trials, time, neurons)

Latent Mean
(trials, latents)

Latent Log-Variance
(trials, latents)

Initial Conditions
(trials, latents)

Latent Dynamics
(trials, time, latents)

Factors
(trials, time, factors)

Firing Rates
(trials, time, neurons)

Figure 3.1: Architecture of LFADS.

input neural activity. While this structure is common to most auto-encoders, a few fea-

tures distinguish LFADS from other types of auto-encoders, such as the presence of

recurrent neural networs (RNNs) [39] and the regularization of the latent space using

Kullback–Leibler divergence [47].

3.1.1 Encoder

The central element in the encoding procedure of LFADS is a recurrent neural net-

work. In line with the original LFADS codebase, our novel implementation employs

the gated recurrent unit (GRU) from Cho et al. [48] as the fundamental cell of the

RNN. A dropout layer is applied to the neural activity as it enters the single-layered

bi-directional encoder RNN. The outputs from the last unit of the forward direction

and from the first unit of the backward direction are concatenated, and dropped out a

second time, resulting in the encoding vector y.

As in other VAEs, in LFADS the latent space encodings are modelled as distribu-

tions rather than deterministic vectors. The distribution used is a multivariate Gaussian
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with a diagonal covariance matrix, where each dimension is independently sampled.

The output of the encoder RNN flows through two separate dense layers, Wµ and Wσ2 ,

outputting for the mean and log-variance parameters of the encoder distribution:

µ =Wµ×y

σ
2 = exp(Wσ2×y)

The log-variance is preferred to the variance because it is expressed in [−∞,+∞]

rather then in [0,+∞], such that the output of the previous fully-connected layer can

be used without the need of an activation. The resulting distribution is then used to

sample the initial condition g0 that will be provided to the decoder:

g0 ∼N (µµµ, σσσ
2�1) (3.1)

3.1.2 Decoder

The main difference between the encoding and decoding process lies in the different

usage of recurrent cells. In the encoding process, the recurrent architecture is used

to extract and compress the information from the neural spikes into a limited set of

variables. The decoder, on the other hand, ingests the low-dimensional latent space and

generates autonomous temporal dynamics. For each trial, the encoded representation

g0 used to seed the initial state of the RNN. The inputs to the RNN at each time step

are set to zero, resulting in a generative process that is solely dependent on the initial

state, also called autonomous. The state-space model described by the RNN results in

the following generative process:

gt+1 = GRU(gt) (3.2)

The latent dynamics gt ∈ RD are reduced in size through another linear transfor-

mation Wz, resulting in a limited set of latent factors zt :

zt = Wz×gt (3.3)

One of the key assumptions underlying this architecture is the linear synchronous

relationship between the latent factors and the log-firing rates. As a consequence, the

low-dimensional latent factors are mapped to the log-firing rates ft ∈ RN through a

dense layer Wr:

ft = Wr× zt (3.4)
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3.1.3 Training

The training procedure in LFADS reflects the most common practices in VAEs. VAEs

are typically trained through backpropagation by maximising the evidence lower-bound

(ELBO) of the marginal log-likelihood, which is composed of a divergence loss and a

reconstruction reward. The divergence loss is employed to regularize the latent space

and is computed as the Kullback–Leibler (KL) divergence [47] between the prior

distribution N (0,σp) of the latent space and the encoded (or posterior) distribution

N (µµµ, σσσ2�1):

KLd = log
(

σ2
d

σp

)
+

σ2
p +µ2

d

2σ2
d
− 1

2
(3.5)

Unlike most VAEs, in LFADS the decoding procedure does not directly reconstruct

the input information, but rather estimates the underlying log-firing rates ft , under the

assumption of a Poisson spiking process. For each trial, the ELBO to maximise is

computed as:

ELBO =−
D

∑
d=1

KLd +
T

∑
t=1

log p[xt |exp(ft)] (3.6)

where D is the size of the initial conditions and T is the number of time intervals.

During training, the algorithm seeks a trade-off between a regular latent space, where

the prior and the posterior are highly aligned, and a higher information throughput,

which usually results in better reconstruction.

The network is regularised during training both through dropout layers and an L2

regularization on the network’s weights. Dropout layers are present at the entrance

and exit of the encoding RNN, as well as between each layer of the generator RNN.

The L2 regularization, on the other hand, is applied to every layer in the network. The

original source code of LFADS assumes a constant regularization weight across all

layers, while our novel implementation provides the ability to specify different scaling

factors in each layer. In general, for a given layer m, the L2 regularization loss can be

written as:

`m = km

Wm

∑
i=1
‖wi‖2 (3.7)

where km is the layer-specific constant and wi the i-th weight of the layer and Wm is the

number of weights associated with the layer m.

VAEs often suffer from a phenomenon called posterior collapse, where the poste-

rior distribution converges to the prior and fails to learn any useful latent representation

[49, 50]. In order to avoid such scenario, we introduce an hyperparameters scheduling
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that gradually increases the weights of the L2 regularization and of the KL divergence.

As a result, the loss function minimised throughout the experiment becomes:

L =−
T

∑
t=1

log p[xt |exp(ft)]+λ1

D

∑
d=1

KLd +λ2 ∑
m∈M

`m (3.8)

where M is the set of all layers, log p[xt |exp(ft)] is the Poisson log-likelihood of

spiking events given firing rates and the weights λ1 and λ2 are updated at each back-

propagation step, from an initial value of 0 to a final value of 1.

3.2 Targeted Neural Dynamical Modeling

The second algorithm explored in this document combines LFADS’ ability to extract

non-linear latent variables from the neural activity with the intuition of Sani, Pesaran,

and Shanechi [45] to exploit behavioural information in order to extract better latent

variables. The result is a sequential VAE that shares the same encoder as LFADS, but

decodes separately the behaviour-relevant and behaviour-irrelevant variables. Con-

trary to PSID [45], TNDM allows for both same-time and delayed reactions of the

behaviour relative to the neural latent variables, such that shifts in behavioural activity

are not needed.

While LFADS relies uniquely on neural activity, TNDM requires behavioural in-

formation during training to disentangle behaviour-relevant from behaviour-irrelevant

variables and, as a consequence, predicts behaviour at test time. For this reason,

LFADS should be classified as an unsupervised method, while TNDM would more

likely fall in the semi-supervised range. A high-level diagram of TNDM is presented

in fig. 3.2.

3.2.1 Encoder

The encoding procedure of TNDM is extremely similar to what we discussed about

LFADS in section 3.1.1, with the only exception of the post-RNN dense layers. The

encoder is now in charge of producing means and log-variances for two diagonal mul-

tivariate Gaussian distributions, one for the behaviour-relevant initial values gr0 and

one for the behaviour-irrelevant initial values gi0. As a consequence, there are four

separate dense layer acting on the same output of the RNN:

µr =Wrµ×y ,

µi =Wiµ×y ,

σ
2

r = exp(Wrσ2×y)

σ
2

i = exp(Wiσ2×y)
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Neural Activity
(trials, time, neurons)

Irrelevant Mean
(trials, latents)

Irrelevant Log-Variance
(trials, latents)

Irr. Initial Conditions
(trials, latents)

Irr. Latent Dynamics
(trials, time, latents)

Irrelevant Factors
(trials, time, irr. factors)

Firing Rates
(trials, time, neurons)

Relevant Mean
(trials, latents)

Relevant Log-Variance
(trials, latents)

Rel. Initial Conditions
(trials, latents)

Rel. Latent Dynamics
(trials, time, latents)

Relevant Factors
(trials, time, rel. factors)

Behaviour
(trials, time, channels)

Figure 3.2: Architecture of TNDM.

Initial conditions for the two latent spaces are then sampled from the two distribu-

tions:

gr0 ∼N (µµµr, σσσ
2
r �1) , gi0 ∼N (µµµi, σσσ

2
i �1)

3.2.2 Decoder

The decoder architecture is the most prominent difference between TNDM and LFADS.

Two parallel threads are clearly identifiable in fig. 3.2, each dedicated to either behaviour-

relevant or behaviour-irrelevant latent factors. While behaviour-irrelevant factors zit

are merely dedicated to the reconstruction of neural firing rates, behaviour-relevant

factors zrt are used to reconstruct both neural activity and behaviour.

Formally, the initial conditions are fed to two distinct RNNs in order to generate

the autonomous dynamics and the latent factors:

gr(t+1) = GRUr(grt),

gi(t+1) = GRUi(git),

zrt = Wrz×grt

zit = Wiz×git

Behaviour-relevant factors zrt are used to predict behaviour using one of two meth-

ods: a single synchronous matrix or a set of diagonal causal matrices. The synchronous
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method assumes synchronization between the zrt and bt , while the causal matrices al-

low any linear relationship between zrt and bq if and only if q ≥ t. The synchronous

behaviour decoder is described as:

b̂t =C× zt (3.9)

For the causal behaviour, we employ an Zr×B set of lower triangular matrices,

where Zr is the dimension of the behaviour-relevant latent factors space and B is the

number of behaviour variables recorded. Each behavioural point would be calculated

as:

b̂bt = ∑
i∈[1,Zr]

Cib× zi , with Cib lower-triangular. (3.10)

Behaviour-relevant and irrelevant factors are eventually concatenated and used to

calculate log-firing rates, in line with what happens in eq. (3.4) for LFADS.

3.2.3 Training

The loss function for TNDM is defined as the ELBO of the joint marginal log-likelihood

of the neural activity and behaviour reconstruction. The same Poisson hypothesis de-

scribed in section 3.1.3 is applied to the neural reconstruction, while a Gaussian distri-

bution with fixed variance is used for the behavioural reconstruction.

A new disentanglement loss is introduced to avoid overlaps between the two latent

spaces. For each trial in a given batch, a number of independent samples is generated

from both N (µµµr, σσσ2
r �1) and N (µµµi, σσσ2

i �1). The sampled points are then concate-

nated for all the trials in the batch, to form a single matrix for each of the two latent

spaces. The `2 norm of the sample covariance matrix between the two matrices is then

used as a penalty in the main loss function.

An hyperparameters scheduling procedure with a constant step updates the weights

associated with the KL losses, the L2 loss and the disentanglement loss c. Fixed

weights λn and λb are assigned to the neural and behavioural reconstruction losses

instead, balancing the dual supervised-unsupervised nature of the algorithm.

L =−λn

T

∑
t=1

log p[xt |exp(ft)]−λb

T

∑
t=1

log p[bt |b̂t ]+

+λ1

Dr

∑
d=1

KLrd +λ2

Di

∑
d=1

KLid +λ3 ∑
m∈M

`m +λ4c

(3.11)



Chapter 4

Implementation

Nominally maintained and distributed as part of Tensorflow Model Garden [51] initia-

tive, the original codebase of LFADS was developed in Python around four years ago.

At the time, TensorFlow 1 [52] was the most consolidated neural networks framework

together with PyTorch [53], while TensorFlow 2 was not yet released.

On September 2019, the second major release of TensorFlow introduced several

improvements upon the first version. The API was simplified and consolidated, vari-

able named scopes were replaced in favour of simpler objects and Eager Execution

was introduced, resulting in a drastic reduction in startup time [54]. Since its first im-

plementation, LFADS’ source code was translated to PyTorch [55] and JAX [56], but

it was never updated from TensorFlow 1 to TensorFlow 2.

Updating the codebase was the catalyst for a broader range of enhancements that

improved the usability of the model and simplified the maintenance. Projects involving

rigid time constraints often overlook the efforts required to maintain a codebase once

the project terminates, focusing instead on short-term findings and ad-hoc analysis.

This chapter will analyse the improvements introduced in the new implementation,

that should simplify the usage and management of the existing LFADS model.

4.1 Refactoring

An initial selection of the features worth porting to the new versions, resulted in the

exclusion of an auxiliary controller extension, which is sometimes used in the original

version. This structure provides some additional information to the generator RNN

described in section 3.1, potentially leading to a weak form of trivial copying, where

a single lagged time series can flow from the encoder to the decoder without the KL

15
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divergence penalty. For smooth slow dynamics, this could mean that the bottleneck

structure is not effective.

A second feature that was removed from the source code was parser for the com-

mand line interface. In the legacy implementation, runtime parameters were provided

as command line arguments to the Tensorflow app in order to kick off the training or

evaluation process. The flat structure of the interface, combined with the complexity

of the model resulted in the proliferating of a wide range of possible command line

arguments, often with counter-intuitive names (appendix A.1).

The re-factored code is structured around two interfaces: a model interface and

a runtime interface. The model interface is the result of the adoption of TensorFlow

2’s best practices for building new architectures [57]. Core methods such as build,

fit, call, save and load can be accessed as in built-in TensorFlow architectures.

Users can now experiment with the model without any sort of learning curve, through

a simple script or notebook (appendix A.2). This is a significant improvement over the

legacy code, which cannot be accessed easily from a notebook, due to the lack of a

Python interface and the high reliance on command line tools.

The runtime interface was designed to serve a different user, who might be inter-

ested in running several experiments through batch jobs, for example from within a

remote cluster. The legacy LFADS offered a solution based on command line argu-

ments, where changes in scripts were difficult to detect and commands were hard to

navigate. The ability of both JSON and YAML files to represent nested complex struc-

ture and the wide availability of explorer for these files enabled the exposure of a much

wider set of parameters despite a perceived reduction in the complexity of the interface

(appendix A.3).

Throughout the refactoring, a number of custom-built functions in the LFADS im-

plementation were switched to default methods from the TensorFlow 2 Keras library,

in order to improve the efficiency and reduce the long-term maintenance cost. Some

examples include the implementation of the KL divergence losses, the initialisation of

the weights in the layers, the Poisson log-likelihood, GRU cells and the training loop

itself. The result was a 49% reduction in the project lines of code, which went from

2199 to 11171. If we limit the analysis to the model code, the codebase reduction

reaches -63%, from 1390 to 514 lines.

The refactored LFADS codebase the starting point for the development of a Tensor-

1Ad-hoc plotting libraries were excluded in both cases, as they are not necessary to run and evaluate
the model.
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Flow 2 TNDM implementation. The large similarities between the two models and the

adoption of SOLID principles [58] throughout the refactoring of LFADS significantly

simplified this task. Interfaces and loss functions were all retained, as well as the core

structure of model and of the training procedure.

In order to further simplify the long-term support of the code, a suite of unit and

smoke tests was developed in parallel, for a total code coverage of 91%. In line with

standard coding practices, a CD/CI pipeline was developed, which tests the source code

on Linux every time new changes are pushed to the repository and creates detailed code

coverage reports attached to any pull request.

4.2 Benchmarking

The newly implemented algorithms were tested against the legacy version in two ex-

periments. The first experiment compares the speed of the refactored models with the

legacy version, addressing training time and resources utilisation. A second experi-

ment compares the accuracy of the new LFADS against the old version in a simple

parameter recovery task.

4.2.1 Speed and Resources Utilisation

In this first experiment, the newly developed LFADS and TNDM are tested against

the legacy code in order to measure the speed improvement and any changes in the

utilization of computing resources. Experienced members of the research group report

similar training time for the legacy version of LFADS on CPUs and GPUs, therefore

both options will be tested here. In a second stage, TNDM will be tested against

the new LFADS implementation using the best performing computing solution for

LFADS.

The CPU-optimized machine used for this experiment is a c2-standard-8 virtual

machine (VM) on Google Cloud Platform (GCP). It is equipped with 8 virtual-CPUs

(vCPUs) adding up to a total 32 GB of memory. The operating system (OS) installed

on the machine is Debian 10, equipped with an Intel Cascade Lake CPU platform.

According to the provider, the machine can run at a sustained clock speed of 3.8GHz.

The GPU-optimized VM is a n1-standard-4 (4 vCPUs, 15 GB memory), mounting

an NVIDIA Tesla P100 GPU (3584 CUDA Cores). The operating system in this case

is Ubuntu 20.04 LTS Minimal and the CPU platform is Intel Haswell. According to
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the GPU producer, the P100 model can reach 4.7 TeraFLOPS on double operations.

The dataset used for the test contains synthetic neural activity simulated through a

Lorenz system and encoded into spiking events on 30 channels and behaviour obser-

vations on 4 channels (more on synthetic data in chapter 5). It contains a total of 50

trials, each long 100 timesteps in total. In all models the initial conditions dimension

was set to 64 and the number of factors to 3.

Table 4.1 shows the results of this first benchmark analysis. As anticipated, the

legacy version of LFADS performs comparably in the two platforms (1.23 it/s and

1.44 it/s), even though the compiling time is significantly smaller in the GPU-based

machine – 1m 12s against 4m 14s. In both platforms, the model shows a worrying

growth in the memory allocation, hinting at a possible memory leak. For this test,

the execution was limited to 1000 iterations, but longer training efforts could lead to a

memory explosion and a subsequent reduction in the training speed.

Type Machine Startup Speed Max CPU Max mem. Max GPU Mem. growth
LFADS-old CPU-opt 4m 14s 1.23 it/s 69.4 % 33.3 % – +9.70 % / Kit
LFADS-new CPU-opt 3s 1.53 it/s 47.9 % 4.2 % – –
LFADS-old GPU-opt 1m 12s 1.44 it/s 31.2 % 33.7 % 43 % +2.12 % / Kit
LFADS-new GPU-opt 2s 6.78 it/s 27.0 % 28.25 % 12 % –
TNDM GPU-opt 2s 3.73 it/s 27.6 % 28.3 % 10 % –

Table 4.1: Runtime statistics for legacy and new versions of LFADS, as well as for the

latest version of TNDM. In the table, “it” is used to abbreviate iterations (training steps)

and “Kit” for 103 iterations.

Thanks to TensorFlow 2’s Eager Execution, the new version terminates the setup in

a fraction of the time in both platforms – 3s on average against 2m 43s on average. The

faster startup time is combined with a +24% speed improvement at regime on CPU and

a 4.7x improvement on GPU. The increased speed did not come at a cost in terms of

CPU, GPU or memory utilisation, where the new implementation achieved an average

reduction of 22%, 72% and 52%.

Given the superior performance of the refactored LFADS on GPU compared to

CPU, we tested TNDM on the same machine, in order to asses the performance loss

due to the more complex structure of TNDM. The speed reduced 45% to 3.73 it/s,

while CPU, GPU and memory remained stable despite the increase in the network size.

Not only did the refactoring operation simplify the codebase, but it also significantly

reduced the required training time. Moreover, the lower utilisation of resources enables

the parallel execution of multiple experiments on the same machine, further decreasing
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the time requirements in batch experiments.

4.2.2 Accuracy

The second experiment carried out as part of the refactoring task explores the impact

on the accuracy of the model. The old and new LFADS implementation were tested on

a typical parameter recovery recovery task, where synthetic latent factors are encoded

into neural activity and the algorithms must recover them as accurately as possible

(further details in chapter 5).

Figure 4.1 illustrates the difference in performance between the legacy and the new

implementation of LFADS. Performance is calculated as the percentage of total vari-

ance explained by the model, often referred to as R2. For medium to high firing rates

the performance of the two algorithms is equivalent, while the new implementation

performs significantly better when the baseline firing rate is lower and encodings are

sparser.

We suspect this is due to the slightly different regularisation on the two versions:

the legacy codebase applies the same L2 penalty across all layers, while the new ver-

sion was tuned to enforce higher L2 penalties on the recurrent weights of the RNN, in

order to generate smoother trajectories. AutoLFADS [41] already demonstrated how

hyperparameter tuning plays a key role in determining the performance of LFADS on

sparse encodings and we believe this might be the reason for the divergence.
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Synthetic Data

The novel implementation of LFADS and TNDM was the enabler for a set of experi-

ments involving both synthetic and real-world data, where we explored the behaviour

of the two in challenging learning conditions. Examples of challenging conditions are

those where the algorithm has access to a limited number of training samples, where

the signal-to-noise ratio in the population is low or where the information is encoded

in few spikes, often referred to as sparse encoding.

For this purpose, we craft a synthetic dataset base on the Lorenz system [59]. We

conjecture that TNDM will outperform LFADS in hostile conditions due to its ability to

ingest both neural and behavioural data during training. The outperformance should be

more significant when the behaviour is highly correlated with the neural latent factors,

while high noise in behavioural data should result in less visible improvements of

TNDM over LFADS.

5.1 Lorenz System Generator

The synthetic data employed throughout this chapter were generated through a Lorenz

system generator. This system is commonly used for synthetic data due to its simple

structure and the chaotic 3D butterfly attractor that it produces [1, 42]. Starting from an

initial point (x0,y0,z0), the Lorenz system updates its state according to the following

dynamical system:

ẋ = σ(y− x)

ẏ = ρx− y− xz

ż = xy−βz

(5.1)

20
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where σ, ρ and β are three parameters, in this case equal to 10, 28 and 2.667.

For each trial, the generator samples a different initial point (x0,y0,z0), where x0,

y0, z0 are independent and identically distributed following a uniform distribution be-

tween −10 and 10. The Lorenz system is then simulated using the Explicit Runge-

Kutta method of order 5(4) [60] with a time interval ∆t = 10ms for a total trial length

of 1s. For each trial, the three timeseries are then shuffled in order to increase the com-

plexity of the recovery task, effectively resulting in 6 possible rotations of the latent

space. The timeseries generated are combined in a matrix U ∈RR×T×3, where R is the

number of trials (or independent runs) and T is the total amount of timesteps, in our

case 10ms/1000ms = 100. After a standard mean-variance standardization, the matrix

U is transformed in the latent factors Z:

Z = (U− Ū)� 1
sU

, where sU is the sample standard deviation of U. (5.2)

Combining a high-variance initial sampling technique with the axis rotation resulted

in a set of latent factors representing a highly heterogeneous set of possible trajectories

(fig. 5.1).

Latent Dynamics

Figure 5.1: Latent factors trajectories for the first 20 trials.

For this chapter’s experiment, all 3 latent factors are encoded into neural activity

and only 2 of them were used in order to generate behaviour:

Z = Zr +Zi = 3 , Zr = 2 (5.3)

The factors are translated into neural activity on 30 neurons through a linear weights

matrix WN ∈ N3×N
+ , sampled using a Uniform(1,2) distribution for the absolute value
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of the weights and random signs with equal probability. Using such matrix, we com-

pute the log-firing rates as:

F = Z×WN + log fb , where fb is the baseline firing rate. (5.4)

Spikes are then sampled using a Poisson process, after being scaled by the time interval

∆t:

si jk ∼ Poisson(exp( fi jk)∆t) (5.5)

where fi jk and si jk are the elements of F and S. A typical example of the neural activity

is shown in fig. 5.2. Increasing the baseline firing rate has a scaling effect on the entire

activity of the population, allowing the signal to emerge from the background noise.

A better signal-to-noise ratio improves the latent factors reconstruction accuracy for

most algorithms, as the information is encoded in a large number of redundant events.
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Figure 5.2: Encoded neural activity of the Lorenz system in 3 independent trials sorted

by sparseness. On the left-hand side, the baseline firing rate was set to 5Hz, in the

middle to 10Hz and on the right-hand side to 15Hz

In order to evaluate TNDM’s ability to leverage behavioural information in order

to disentangle behaviour relevant variables and improve reconstruction performance,

we designed a second linear transformation WB ∈ RZr×B, where single weights are

sampled from a Gaussian distribution with zero mean and variance of 5. Only the

behaviour-relevant latent factors Zr were used in the construction of the four (B) be-

havioural timeseries. Excluding one latent factor from the encoding will turn out useful

in the experiments in order to evaluate the ability of TNDM to partition the latent space

correctly. Each element of the behavioural timeseries B ∈ RR×T×B was calculated as:

bi jk ∼N (Z[:,:,1:Zr]×WB,σ
2
B) (5.6)
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where σB is the behavioural noise, ranging from 0.5 to 2 depending on the specific ex-

periment. Figure 5.3 illustrates the behavioural variables for three trials with increasing

behavioural noise σB.
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Figure 5.3: Encoded behavioural activity of the Lorenz system in 3 independent tri-

als sorted by behavioural noise (0.5,1,2). Heavier lines represent the noiseless be-

havioural variables, before adding the noise term. The more transparent lines represent

the actual behavioural variables.

5.2 Experiment Setup

A single experiment was designed to answer three separate research questions:

• Is TNDM outperforming LFADS on latent factors recovery?

• To what extent is TNDM’s performance affected by the noise in the behaviour?

• Can TNDM disentangle behaviour-relevant variables?

In order to answer these questions, we designed a 3× 3× 3 grid of experimental set-

tings, spanning across different training sample sizes (50, 100, 200), baseline firing

rates (5Hz, 10Hz, 15Hz) and behaviour noises (0.5, 1, 2). Each setting was associated

with different WN and WB, simulating a total of 27 independent conditions.

An architecture was chosen for LFADS based on the hyperparameters provided in

the original implementation and a brief manual fine-tuning, to adapt the parameters

to the new implementation. The same parameters were applied to TNDM, with the

exception of latent factors, modelled jointly in LFADS and here separated between the

relevant and irrelevant subspace (Zi = 1,Zr = 2). Appendix B.1 contains the full set of
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hyperparameters used for the two models. The experiments were run on GCP, using

the GPU-optimized machine mentioned in section 4.2.1.

5.3 Results

Both LFADS and TNDM displayed some degrees of learning across all the experi-

ments in the grid. Throughout this analysis, we will use R2 as the prime metric of

accuracy in retrieving the latent factors. The average R2 values were 0.76 and 0.81

for LFADS and TNDM respectively, with lows of 0.43 and 0.60, and highs of 0.94 on

both. Figure C.1 displays the encoded and reconstructed latent factors for some typical

scenarios.

The experiments show that both LFADS and TNDM were able to reconstruct latent

variables reliably when they were trained with more than 50 samples. Both algorithms

reached their top performance when trained on with the maximum number of training

samples and on the least sparse dataset (fig. 5.4). TNDM significantly outperformed

LFADS in setting with small training samples, leveraging on its dual backpropagation

flow to extract useful information from both the neural and the behavioural activity.

On average, TNDM was able to explain 16% more of the total variance compared to

LFADS on the 50 trials training sample, generating latent variables that more closely

tracked the encoded dynamics.

5 10 15

50

100

200

5 10 15

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

Latent Reconstruction Performance

Baseline Firing Rate [Hz] Baseline Firing Rate [Hz]

T
r
a
in

in
g
 T

r
ia

ls

0.71 0.66 0.67

0.83 0.86 0.86

0.88 0.92 0.93

0.52 0.54 0.50

0.86 0.88 0.87

0.88 0.92 0.92

LFADS TNDM

Figure 5.4: Reconstruction accuracy (R2) for LFADS and TNDM as a function of the

training trials and the baseline firing rate.
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On an aggregated level, both LFADS and TNDM displayed a good resistance to low

firing rates, with the average R2 decreasing of just 0.01 from the maximum baseline

firing rate (15Hz) to the minimum one (5Hz), despite a large difference in the resulting

activity, as shown in fig. 5.2. A similar experiment with more extreme changes in the

baseline firing rates or with more independent runs per setup could unveil some minor

impacts that we were not able to observe.

In contrast with our initial assumption, the noise in the behaviour did not impact

the learning outcome for TNDM (fig. 5.5). This result seems counter-intuitive and we

believe it could be due to the fact that the behavioural weight in the loss function was

significantly lower than the neural reconstruction weight, shifting the attention away

from behavioural performance. We conjecture that a higher behavioural weight could

have resulted in some overfitting in the high-noise datasets, where the model has high

risk of picking up spurious relationships between latent and the noisy behaviours, and

a more precise reconstruction in the low-noise datasets. Further work should explore

this relationship in more detail, possibly leveraging on the automated hyperparameters

tuning developed for AutoLFADS [41].
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Figure 5.5: Difference in reconstruction accuracy (R2) between LFADS and TNDM as

a function of the behavioural noise.

The last research question we posed involves the ability of TNDM to isolate behaviour-

relevant information in the appropriate side of its architecture. In order to verify to

what extent TNDM managed to isolate the behaviour-relevant latent variables, we cal-

culate for each experiment a confusion matrix of how each partition of the recovered

factors can predict each partition of the actual factors. Results are summarized in Fig-

ure 5.6. It is possible to observe how the matrix in the diagonal contain the higher

accuracy, meaning that factors were disentangled on average correctly. As for the
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general accuracy, disentanglement seems to be working more successfully for large

training datasets.
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Figure 5.6: Accuracy in predicting one of the two sets of embedded factors from any of

the two sets of recovered factors.

The experiments proposed in this chapter analysed the two models’ ability to re-

cover parameters embedded in neural and behavioural activity. The ability of TNDM

to consume behavioural and neural information jointly resulted in a significantly better

generalisation for small training dataset, but did not show any advantage for sparse

encoding, even when using extremely informative behavioural variables. We hypoth-

esize this is due to the small weight associated to behaviour likelihood in the loss

function and that a larger weight could further improve TNDM’s performance when

behavioural timeseries are clean. Finally, we demonstrated TNDM’s ability to dis-

entangle behaviour-relevant latent factors from irrelevant ones, an extremely useful

property for prosthetic applications and BCI in general.
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Primate Motor Cortex Data

6.1 Dataset

The previous chapter demonstrated how both LFADS and TNDM can recover latent

variables when applied on synthetic data. The two models will now be applied to a

real-world dataset containing neural and behavioural recordings from a rhesus mon-

key (Macaca mulatta, 10.5 kg) [46], in order to evaluate their performances when

applied on the field. In addition to the neural activity, the dataset analysed contains

both electrical activity from the monkey’s wrist muscles (electromyography, EMG)

and the forces applied by the monkey on a wrist-operated manipulandum. TNDM’s

ability to extract behavioural-relevant latent variables will be tested on each of the two

behavioural datasets, measuring the accuracy in predicting the behavioural variables

while reconstructing accurately the neural activity.

The task involves the monkey sitting in rest position with the forearm restrained,

holding with one hand the manipulandum. A computer screen displays the forces ap-

plied by the monkey on the manipulandum, which does not move. A trial begins when

no forces are applied and the cursor stays in the middle of the screen centre for at least

500ms. A second target is then showed at one of 8 directions equidistant from the

centre, positioned with radial symmetry each π

4 . The monkey is rewarded when the

cursor reaches the target and is maintained within the target for at least 500ms, with

a maximum trial length of 5s. The experimental session used throughout this chapter

lasts 25 minutes in total and contains 435 trials with a success rate just short of 85%.

The maximum time to reach the second target once shown is 3.5s, while the minimum

time is as low as 0.74s. For each trial, we trim the timeseries from the moment the sec-

ond target is displayed until the minimum trial length across the experimental session.

27
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Figure 6.1: On the left-hand side, EMG activity on all 12 channels recorded. On the

right-hand side, EMG activity on a subset of channels (4, 5, 12).

Unsuccessful trials or trials with equipment failures are removed, resulting in a total

number of trials R = 412. The experiments were approved by the Institutional Animal

Care and Use Committee of Northwestern University, in line with the Guide for the

Care and Use of Laboratory Animals.

A 96-channel microelectrode array from Blackrock Microsystems (Salt Lake City,

UT) is connected to the primary motor cortex (M1), extracting neural activity time-

series with a 1ms precision after spike-sorting with Offline Sorter (Plexon, Dallas,

TX). In the experimental session analysed, 92 of the 96 channels were recorded suc-

cessfully (N = 92). The forces applied by the monkey are measured from the manip-

ulandum itself and result in two behavioural variables (Bforces = 2): the force on the
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flexion/extension of the hand and the force on urnal/radial rotations of the hand. All

forces were sampled with a 1000Hz frequency.

A total of 24 pairs of intramuscular electrodes was implanted in a second proce-

dure, monitoring among others four wrist muscles involved in the interaction with the

manipulandum. Only 12 of the 24 total EMG channels were recorded in the exper-

imental session analysed here (Bemg = 2). At recording time, the electromyography

signal from these electrodes was amplified (x500), bandpass filtered between 80Hz

and 500Hz and sampled at 2000Hz. EMG timeseries were then cleaned offline using

a bandpass Butterworth filter of order 3 between 30Hz and 350Hz, followed by a rec-

tification (absolute value) and some smoothing (moving average with 50ms window

size). The right-skewed distribution of the resulting timeseries was then mitigated by

applying the logarithm and subsampled at 1000Hz, in order to match the neural ac-

tivity. Figure 6.1 illustrates the effect of the post-processing of the EMG data. The

resulting timeseries for neural data, forces and EMG were further reduced in granular-

ity by applying a binning with ∆t = 10ms. For neural data, spikes within each bin were

summed, while for the two behavioural datasets the values were summarised through

their mean.

6.2 Decoding Forces

In this first experiment, we explore the relationship between the activity of the pri-

mary motor cortex (M1) and the forces imposed on the manipulandum by the monkey.

Forces are a result of the contraction of the wrist muscles, which in turn are controlled

by the neural activity in M1. Several hypothesis have been tested regarding the rela-

tionship between these two variables. Some linear relationships between the activity

of single motor neurons and wrist dynamics were discovered as early as in 1968 by the

pioneering work of Evarts [61]. Humphrey, Schmidt, and Thompson [62] noticed for

the first time that the inertial load could significantly alter the linear coefficients, while

two working groups including the same Evarts noticed weak finely graded movements

were associated with unexpectedly high neural activations [63].

In contrast with the experiments in chapter 5, in this section we will replace the

synchronous decoder for TNDM with the causal decoder described in eq. (3.10). This

corresponds to the assumption that behaviour at time t can be expressed as a linear

combination of the latent factors at times t− k, with k ≥ 0.

We will investigates whether TNDM can outperform LFADS in extracting latent
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variables that represent accurately neural activity and how the two models evolve as a

function of the number of factors allowed. TNDM’s ability to disentangle behaviour-

relevant and irrelevant factors will be analysed qualitatively and quantitatively, as well

as its accuracy in inferring behaviour. A simple dimensionality reduction on the in-

formation encoded as initial conditions in the bottleneck will unveil a circular latent

representation, aligned with the target directions in the reach task.

6.2.1 Experiment Setup

The dataset was randomly shuffled and split using a 5-fold cross-validation framework

into 5 folds, each with 64% of samples dedicated to training, 16% for validation and the

rest for testing purposes. A default implementation of TNDM and LFADS involving

4 factors was applied to all 5 folds in order to obtain an estimation of the performance

distribution. TNDM and LFADS models of varying capacities – from 2 to 5 total

factors – were applied to the first folds to observe the relationship between the capacity

of the model and its performance. The hyperparameters template used for both LFADS

and TNDM is available in appendix B.2.

6.2.2 Results

LFADS and TNDM performed equally as good across the 5 folds in terms of neural

reconstruction, achieving a neural negative log-likelihood of 1379.7 and 1379.9 respec-

tively (p-value= 0.98, no significant difference). Figure 6.2 displays the inferred firing

rates from TNDM, comparing them with actual neural activity. The reconstructed fir-

ing rates appears smoother and less variables than the neural activity, which could hint

at a high amount of noise in the population activity or at an excessive regularisation

in the generator RNN. In the previous chapter, the regularization of the weights in the

generator RNN could be tuned such that the smoothness of the reconstructed dynam-

ics mimicked that of the encoded latent factors, which were known. Evaluating how

smooth latent variables should ideally be in this case is much more complex. On one

hand, having firing rates that correctly track single spikes would result in a black-box

solution that is too hard to decipher. At the same time, observing excessively smooth

latent factors could mean that the model is not reactive enough, or that it fails to cap-

ture faster dynamics. The ideal reactiveness could be ideally an external parameter,

determined for instance as a function of the downstream processes, which consume

the latent factors.
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Figure 6.2: Neural activity, sample firing rates and estimated firing rates for a sumb-

sample of neurons (1:4) and trials (the first 20) using TNDM with 2 relevant and 2

irrelevant factors.

Figure 6.3 shows the evolution on the performance for the two algorithms when the

number of factors changes. In the interval explored, neural log-likelihood improves

linearly with the addition of new factors on both models, regardless the split between

relevant and irrelevant factors. LFADS appears to be performing marginally better

than TNDM, particularly for 5 factors. This could be due to a lack of compatibility

between the modelling of neural activity and forces, resulting in a trade-off between

neural likelihood and behaviour likelihood without any significant synergy.
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Figure 6.4: Original and reconstructed behaviour using TNDM with 2 relevant and 2

irrelevant factors. Directions are expressed in degrees.

While we were not able to observe any improvement of TNDM over LFADS in

neural reconstruction, TNDM managed to obtain a staggering 0.95 average R2 per-

formance on behaviour reconstruction, with very low variability across the five folds

(sR2 ≤ 0.01). Increasing the number of relevant factors from 2 to 3 resulted on average

in a 0.01 improvement on the R2, while no improvement was detected from 3 to 4.

Figure 6.3 highlights how TNDM models with 5 factors underperformed model with

4 factors on the test set, despite a similar performance on the training set, where the

average R2 was 0.96 in both scenarios. This might be an indication of overfit, which

could be addressed by increasing the regularization or the dropout on higher-capacity

models. Figure 6.4 shows the difference between the original and the reconstructed

behaviour as a function of the target angle. The low trial-to-trial variability in the re-

constructed behaviour for a given direction seems to suggest that this variability is not

encoded clearly in the neural activity and it might derive from the interaction between

the monkey and the manipulandum.
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A useful source of information to understand the behaviour of TNDM are the

weights mapping the latent factors to the neural and behavioural activity (fig. 6.5).

The network seems to be partitioning the relevant factors subspace neatly in two: the

first factor is solely used to reconstruct behaviour, while the second is fully dedicated to

neural activity. Considering that the performance of TNDM was equivalent to LFADS,

we can comfortably say that TNDM managed to encode the neural activity more ef-

ficiently, using only 3 factors to achieve the same precision as a four factors LFADS.

Despite this positive remark, there does not seem to be any interesting interaction be-

tween the two relevant factors. This observation, combined with the lack of outperfor-

mance against LFADS and the suspicious behavioural reconstruction, seems to suggest

that wrist forces are not linearly encoded into neural activity.

So far, TNDM was able to demonstrate an improvement over LFADS in encod-

ing efficiency of the encoding and a promising behaviour reconstruction performance.

An area where TNDM excels despite the lack of linear relationships between M1

activity and the forces is the disentanglement of behaviour-relevant and behaviour-

irrelevant activity. In fig. 6.6, the different trajectories for the eight behavioural di-

rections are clearly identified in both behaviour-relevant variables, despite the mi-

nor impact the second one has on behaviour reconstruction. The connection between
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Figure 6.7: First two PCA components for LFADS initial conditions (left-hand side) and

TNDM behaviour-relevant initial conditions (right-hand side). Direction is expressed in

degrees.

behaviour-relevant variables and the target angles is even more evident by projecting

the behaviour-relevant initial conditions into a low-dimensional with PCA (fig. 6.7).

While in LFADS no patterns are detectable, TNDM organises the initial conditions

according to the target angle, forming eight clusters where encoded angles increase

proceeding clockwise.

6.3 Decoding Electromyography

The previous section illustrated how wrist forces do not appear to be linearly encoded

into neural activity. The remaining two experiments of this chapter explore the re-

lationship between M1 and EMG signals, a problem of major importance for BCI

applications.

6.3.1 Experiment Setup

The first experiment follows the structure of section 6.2.1. The dataset containing

neural and EMG data is re-organised into five derived datasets, containing different

partitions of the same trials, following standard cross-validation practices. The capac-

ity of TNDM was increased from 2 behaviour-relevant latent factors to 4, in order to

allow for a better modelling of the high dimensional EMG behaviour. LFADS total

factors were consequently increased from 4 to 6 to ensure a fair comparison – all the

other hyperparameters are reported in table B.3. The goal is to evaluate the differ-

ence in neural reconstruction performance between TNDM and LFADS, as well as the

precision of TNDM to infer behavioural dynamics.
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The experiment described above tests the ability of LFADS and TNDM to gen-

eralise to unseen trials drawn from the same distribution as the training samples. In

the second experiment, we stress-test the two models and evaluate their ability to gen-

eralise to trials drawn from a different distribution than the training set. In order to

do so, we train both LFADS and TNDM on 7 target directions and test their neural

reconstruction and behaviour accuracy on the unseen direction.

6.3.2 Results

In the first experiment, TNDM marginally underperforms LFADS, obtaining an av-

erage negative log-likelihood of 1371.8 against 1369.7 (p-value = 0.70, no significant

difference). At the same time, the semi-supervised nature of TNDM enables the recon-

struction of both behaviour and neural activity, with an average R2 of 0.82. From the

perspective of a prosthetic application, this is a remarkable finding. By monitoring 92

neurons we were able to extract 4 behaviour-relevant latent variables, that alone could

be used to control the torques and forces in a synthetic wrist junction (fig. 6.8).

Figure 6.9 highlights the ability of the two models to disentangle the target direc-

tions in the target variables, even though this information was never provided during

the training of the algorithm. By solely processing the neural activity and the EMG

data, TNDM and LFADS were able to recognise eight typical clusters of activity and
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Figure 6.9: Latent variables for LFADS and TNDM.
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Figure 6.10: First two PCA components for TNDM behaviour-relevant initial conditions.

to represent them as different trajectories. This behaviour is observable in the latent

variables of both algorithms, although much more visible in TNDM, where behaviour-

relevant and behaviour-irrelevant information is clearly demixed. In contrast with what

observed in the previous experiment for forces, this time the weights from factors to

neural activity and behaviour did not show any partitioning of the behaviour-relevant

subspace (fig. C.2 and fig. C.3 in appendix C).

TNDM’s ability to capture behaviour-relevant information is clear if we analyse

the representation of the encoded initial conditions. In fig. 6.10, TNDM represent

behaviour-relevant information in the neural activity in the same circular structure ob-

served in fig. 6.7. The main difference between the two experiments is that here the

network was never shown the notion of the target direction, not even during training.
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While the target direction is encoded in the terminal point of the forces trajectories,

provided as target during training in section 6.2, the direction is not encoded explic-

itly in EMG trajectories, which were used in this experiment. Despite the absence of

such information in the behaviour, TNDM recognise this circular manifold as the most

information-efficient way to describe the behaviour-related latent variable through the

bottleneck.

In the second experiment, we test the ability of the two algorithms to generalise to

data drawn from a different distribution then the training set. LFADS and TNDM con-

tinue to perform similarly from a neural reconstruction point of view, scoring 1367.4

and 1374.4 in the average log-likelihood (p-value = 0.40, no significant difference).

TNDM improves the behaviour reconstruction performance from 0.82 in the previous

experiment to 0.85 now, showing robustness to unseen behaviours and good general-

isation. The encoding of the test trials compared to the encoding of training samples

in the initial conditions space confirms the ability of the algorithm to generalised to

unseen angles (Figure 6.11).
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bution fitted to the data.
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Conclusions and Further Work

The extraction of latent variables from neural activity is an active research area, which

is rapidly developing thanks to advancements in recording tools and the parallel progress

in machine learning and pattern recognition. The main contributions of this project to

the field can be divided in three areas.

In chapter 4, we provide an updated implementation for the current state-of-the-art

algorithm. Startup time is reduced from minutes to seconds, the processing of batches

was sped up of a factor of five, cleaner interfaces were developed for the end user and

the codebase was more than halved in size, reducing maintenance costs.

The second major contribution involved the systematic testing of TNDM against

LFADS. For the first time TNDM was validated on a synthetic dataset against a state-

of-the-art algorithm. Results displayed a significant improvement in performances

on small batch sizes and convergence in the neural reconstruction performance for

favourable conditions. No clear trends were detected for varying behavioural noises

and/or baseline firing rates, in contrast with our initial assumptions. The study should

be repeated using wider ranges for these two parameters. In addition to the perfor-

mance comparison, TNDM’s disentanglement of behaviour-relevant from behaviour-

irrelevant factors was observed and quantified.

In chapter 6, the two algorithms were applied to real-world data from the primary

motor cortex of a primate. TNDM’s ability to decode signals from non-linear high-

dimensional data – such as electromyography – was tested for the first time and results

were successful. TNDM and LFADS models with the same capacity produced similar

neural reconstruction performances. However, TNDM proved able to encode at the

same time both behaviour and neural activity, reconstructing forces with an R-squared

of 0.95 and EMG signals with a 0.82 R-squared. In the last experiment, TNDM was

38
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shown to decode successfully also from behaviours observed from the first time, thanks

its ability to encode information in a manifold aligned with the target directions during

the task.

From a neural reconstruction perspective, TNDM proved to perform better than

LFADS in experimental setups with few trials and to perform in line with LFADS in

the remaining setups. Its ability to decode both neural activity and behaviour at the

same time, the creation of meaningful partitions between latent factor sub-spaces and

its tendency to cluster latent trajectories associated with similar behaviours are the core

features that this model offers beyond LFADS.

We identified two main areas of research connected with TNDM: discrete be-

haviours and online decoding. The current model is limited by the fact that it decodes

continuous timeseries. Integrating a discrete behavioural decoder would enable the

study of a new set of tasks, ranging from decision making to typing on a virtual key-

board. Online decoding, on the other hand, is a key problem that needs to be solved

if we want to be able to predict the future behaviour at any point in time, and not only

upon trial end. Solving the online learning problem would enable the application of

TNDM to brain computer interface, with substantial performance improvements com-

pared to all other existing algorithms.
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Appendix A

Interfaces

A.1 Legacy Interface

In the legacy interface, command line arguments are the only method for providing

parameters to the algorithm. This often results in commands that are hard to read due

to the absence of structure in the parametrization and the counter-intuitive names. For

example, the snippet below is a typical command used for one of the experiments in

section 4.2. One noticeable shortcoming of this interface is that training and evaluation,

which are typically performed jointly, are here delegated to two different commands,

both containing similar arguments in order to define the same network architecture.

#!/bin/bash

echo "Training LFADS on data"

python latentneural/legacy/lfads/original/run_lfads.py --kind=train --data_dir="datadir" \

--data_filename_stem=dataset.h5 --lfads_save_dir="datadir/results" --co_dim=0 \

--factors_dim=3 --ext_input_dim=0 --controller_input_lag=1 --output_dist=poisson \

--do_causal_controller=false --batch_size=16 --learning_rate_init=.01 \

--learning_rate_stop=1e-05 --learning_rate_decay_factor=.95 --learning_rate_n_to_compare=6 \

--do_reset_learning_rate=false --keep_prob=0.95 --gen_dim=64 --ci_enc_dim=128 \

--ic_dim=64 --ic_enc_dim=64 --ic_prior_var_min=0.1 --gen_cell_input_weight_scale=1.0 \

--cell_weight_scale=1.0 --do_feed_factors_to_controller=true --kl_start_step=1000 \

--kl_increase_steps=1000 --kl_ic_weight=1.0 --l2_gen_scale=2000 --l2_con_scale=0.0 \

--l2_start_step=0 --l2_increase_steps=1000 --ic_prior_var_scale=0.1 \

--ic_post_var_min=0.0001 --kl_co_weight=1.0 --prior_ar_nvar=0.1 --cell_clip_value=5.0 \

--max_ckpt_to_keep_lve=5 --do_train_prior_ar_atau=true --co_prior_var_scale=0.1 \

--csv_log=fitlog --feedback_factors_or_rates=factors --do_train_prior_ar_nvar=true \

--max_grad_norm=200.0 --device=cpu:0 --num_steps_for_gen_ic=100000000 \

--ps_nexamples_to_process=100000000 --checkpoint_name=lfads_vae \

--temporal_spike_jitter_width=0 --checkpoint_pb_load_name=checkpoint \

--inject_ext_input_to_gen=false --co_mean_corr_scale=0.0 --gen_cell_rec_weight_scale=1.0 \

--max_ckpt_to_keep=5 --output_filename_stem="" --ic_prior_var_max=0.1 \

--prior_ar_atau=10.0 --do_train_io_only=false --do_train_encoder_only=false \

--seed=0
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echo "Evaluating LFADS on data"

python latentneural/legacy/lfads/original/run_lfads.py --kind=train --data_dir="datadir" \

--kind=posterior_sample_and_average \

[...] # continues with the same arguments as the previous command

Code A.1: Typical legacy LFADS command.

A.2 Model Interface

The Python interface provides a simple solution for developers who are interested in

running one-off experiments without significant learning curves. In a few lines the

model can be initialised, run and evaluated:

import tensorflow as tf

import numpy as np

from latentneural import LFADS

from latentneural.utils import AdaptiveWeights

train = np.random.binomial(1, 0.5, (80, 100, 50)).astype(float)

valid = np.random.binomial(1, 0.5, (10, 100, 50)).astype(float)

test = np.random.binomial(1, 0.5, (10, 100, 50)).astype(float)

adaptive_weights = AdaptiveWeights(

initial=[0.5, 1, 1],

min_weight=[0., 0., 0.],

max_weight=[1., 1., 1.],

update_step=[1, 2, 1],

update_start=[2, 1, 1],

update_rate=[-0.05, -0.1, -0.01]

)

model = LFADS(neural_dim=50, max_grad_norm=200)

model.build(input_shape=[None] + list(train.shape[1:]))

model.compile(optimizer=tf.keras.optimizers.Adam(1e-3),

loss_weights=adaptive_weights.w)

model.fit(x=train, y=None, callbacks=[adaptive_weights], shuffle=True,

epochs=4, validation_data=(valid,None))

test_out, _ = model(test, training=False)

model.save(save_location)

Code A.2: LFADS Python interface.
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A.3 Runtime Interface

The second interface was designed around scientists running batch jobs and/or exe-

cuting experiments in remote clusters. A single YAML or JSON configuration file

contains all the necessary information to run the task, including some dataset proper-

ties, the architecture of the network, the optimizer and the hyperparameters schedule.

The execution is triggered through a simple command from the terminal:

python latentneural -r "\$FILENAME"

The code can be run in a debug mode, which logs additional metrics (i.e. the

gradient flow and the weights norm in each layer) or in the standard mode, which is

marginally faster. Training metrics are logged in a format accessible through Tensor-

Board, as in the legacy code. A complete description of the experiment, including

environment and timing information, settings used and the code version is also saved

in a target folder. At the end of the training, the model is evaluated on test data and

saved in the same target directory. Below, a YAML example of a settings file:

data: {directory: datadir}

model:

settings:

full_logs: False

default_layer_settings:

kernel_initializer:

arguments: {distribution: normal, mode: fan_in, scale: 1.0}

type: variance_scaling

kernel_regularizer: {arguments: {l: 0.1}, type: l2}

encoded_dim: 64

factors: 3

layers:

decoder: {kernel_regularizer: {arguments: {l: 3}, type: l2}, original_cell: false}

encoder: {dropout: 0.05, var_trainable: false, var_min: 0.1}

max_grad_norm: 200

timestep: 0.01

type: lfads

output: {directory: outputdir}

runtime:

batch_size: 16

epochs: 10000

learning_rate: {factor: 0.95, initial: 0.01, patience: 30, terminating: 1.0e-05}

optimizer: {arguments: {beta_1: 0.9, beta_2: 0.999, epsilon: 0.1}, type: adam}

weights:

initial: [1.0, 0.0, 0.0]

update_rate: [0.0, 0.0005, 0.0005]

seed: 0

Code A.3: LFADS YAML interface.
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The nested structure enhances readability, while allowing for a more granular pa-

rameter definition. For example, while in the legacy LFADS implementation the L2

regularization is applied to all weights as a whole, in the interface proposed it can be

tuned to individual layers.



Appendix B

Hyperparameters

B.1 Synthetic Data Experiment

Name LFADS TNDM
Factors 3 2 Relevant, 1 Irrelevant
Initial Conditions Size 64 64
Behaviour Dense Type – Synchronous
Initial Conditions Size 64 64
Sampling Distribution Minimum Variance 0.1 0.1
Initialisation Type Variance Scaling Variance Scaling
Optimizer Adam Adam
Maximum Epochs 10000 10000
Batch Size 16 16
Initial Learning Rate 0.1 0.1
Learning Rate Decay 0.95 0.95
Learning Rate Patience 6 6
Terminating Learning Rate 0.00001 0.00001
Neural Weight 1 1
Behavioural Weight – 0.1
KL Divergence Step-size 0.0002 0.0002
L2 Weight Step-size 0.0002 0.0002
Disentanglement Weight Step-size – 0.0002
Standard L2 0.1 0.1
Generator GRU L2 (Kernel) 3 3
Generator GRU L2 (Recurrent) 3 3
Behaviour Dense L2 – 0.000001
Dropout 0.15 0.15

Table B.1: Hyperparameters used for the synthetic data experiment.
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B.2 Forces Data Experiment

Name LFADS TNDM
Factors Various Various
Initial Conditions Size 64 64
Behaviour Dense Type – Causal
Initial Conditions Size 64 64
Sampling Distribution Minimum Variance 0.01 0.01
Initialisation Type Variance Scaling Variance Scaling
Optimizer Adam Adam
Maximum Epochs 10000 10000
Batch Size 16 16
Initial Learning Rate 0.1 0.1
Learning Rate Decay 0.95 0.95
Learning Rate Patience 15 15
Terminating Learning Rate 0.0001 0.0001
Neural Weight 1 1
Behavioural Weight – 0.00001
KL Divergence Step-size 0.0005 0.0005
L2 Weight Step-size 0.0005 0.0005
Disentanglement Weight Step-size – 0.0005
Standard L2 0.01 0.01
Generator GRU L2 (Kernel) 1 1
Generator GRU L2 (Recurrent) 1 1
Behaviour Dense L2 – 0.01
Dropout 0.15 0.15

Table B.2: Hyperparameters used for the forces data experiment.
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B.3 EMG Data Experiment

Name LFADS TNDM
Factors 6 4 Relevant, 2 Irrelevant
Initial Conditions Size 64 64
Behaviour Dense Type – Causal
Initial Conditions Size 64 64
Sampling Distribution Minimum Variance 0.01 0.01
Initialisation Type Variance Scaling Variance Scaling
Optimizer Adam Adam
Maximum Epochs 10000 10000
Batch Size 16 16
Initial Learning Rate 0.1 0.1
Learning Rate Decay 0.95 0.95
Learning Rate Patience 15 15
Terminating Learning Rate 0.0001 0.0001
Neural Weight 1 1
Behavioural Weight – 0.001
KL Divergence Step-size 0.0005 0.0005
L2 Weight Step-size 0.0005 0.0005
Disentanglement Weight Step-size – 0.0005
Standard L2 0.02 0.02
Generator GRU L2 (Kernel) 1 1
Generator GRU L2 (Recurrent) 1 1
Dropout 0.2 0.2

Table B.3: Hyperparameters used for the EMG data experiment.
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Supplementary Plots
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Figure C.1: Encoded (“underlying”) and reconstructed trajectories for the bottom 5%

accuracy, median accuracy and top 5% accuracy in the experiment with 50 training

trials, a baseline rate of 5Hz and behavioural noise set to 2.
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Figure C.2: Weights mapping the latent factors to the behavioural activity for the EMG

task.
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Figure C.3: Weights mapping the latent factors to the neural activity for the EMG task.
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