
Enhancing user-controlled

contexts:

An innovative approach for

handling complex scientific data

Patricia Hartmann

Master of Science

Data Science

School of Informatics

University of Edinburgh

2021

Abstract

The remark “Big Data is the oil of the 21st century” [107] nicely summarises the

relevance which complex data has already reached in our lives. Still, such massive

(digital) data piles impose a huge challenge on storage and maintenance systems and

particularly science is exposed to this problem. Their current, mostly unsustainable

silo-solutions [3, 17] require novel approaches like the one the DARE Knowledge

Base (DKB) implements: the notion of user-controlled contexts, introduced in 2019

by Atkinson et al. [5] as an innovative way of partitioning the knowledge space and

thus storing its diverse, interlinked data. However, since the current DARE Knowl-

edge Base (DKB) prototype is not (yet) production-ready, the aim and objectives of

this project are to improve the existing DKB application by identifying weaknesses,

determining and resolving multiple of these issues (with particular focus on conceptual

limitations) and assessing their value since eventually the (scientific) user community

should benefit from any adjustments. To accomplish this, the project is divided into

five phases: (1) To begin with, an appropriate number (390 MB) of synthetic and real-

world records is generated before (2) thorough functionality and performance tests are

performed and their outcome summarized. Thereafter, (3) a justified selection of ded-

icated bugs and functionality deficiencies is made, followed by an extensive literature

review to contrast and reason various (conceptualization and implementation) choices.

Finally, the (4) agreed developments are performed and (5) all achievements evalu-

ated, both with functionality and performance tests and a user questionnaire. Since

this project is rather focused on research than on development, the two key contribu-

tions are the 1) conceptualized and realized data querying improvements as well as the

2) collections conceptualization (the bug fixes are seen as a prerequisite for pursuing

the later work on DKB). Notably, the two major (conceptual) ‘functionality’ achieve-

ments also received the best overall user rating (average of 4.7 out of 5.0), which

further stresses their significance.

i

Acknowledgements

First and foremost, I would like to thank my supervisor, Malcolm Atkinson, for his

continuous support and guidance throughout the project. Thank you for keeping on

challenging and encouraging me!

I would also like to wholeheartedly thank Federica Magnoni, who works at the

National Institute of Geophysics and Volcanology (INGV), not only for her help with

the generation of (scientific) real-world test data but also for pointing me to lots of

relevant DARE sources. Thank you for our pleasant and fruitful discussions, I hope to

meet you sometime in Italy!

Additionally, I want to sincerely thank Rosa Filgueira, Assistant Professor at Heriot-

Watt University, and Oscar Corcho, Professor at the Technical University of Madrid

and member of the Ontology Engineering Group. I am extremely grateful for your

input on the DARE (CWL and dispel4py) workflows and your distributed SPARQL

work!

Finally, I would like to express a heartfelt thank-you to all members of the former

DARE project team (EU H2020 research and innovation program under grant agree-

ment No 777413) as well as the University of Edinburgh’s DIRG group for filling in

my user questionnaire.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Patricia Hartmann)

iii

Table of Contents

1 Introduction 1
1.1 The 21st century - Digital Age and Big Data era 1

1.2 DARE & DKB - Coping with complex scientific data 2

1.3 DKB’s current limit - Research proposal 3

2 Background and Related Work 5
2.1 The DARE Knowledge Base (DKB) 5

2.2 Owlready2 - Following the graph database concept 7

2.2.1 Brief introduction to NoSQL databases 7

2.2.2 Graph databases - One of four main NoSQL types 8

2.2.3 Owlready2 - An optimized quadstore 9

3 Approach, Methodology and Achievements 10
3.1 Test data generation . 11

3.1.1 Synthetic test data . 11

3.1.2 Real-world test data . 11

3.2 System analysis . 12

3.2.1 Test case preparation . 13

3.2.2 Test case execution and results 14

3.3 Project focus and literature review 17

3.3.1 Test result assessment, Issue selection and justification 18

3.3.2 Formulated research and development plan 20

3.3.3 Solution approach and conceptualisation 21

3.4 Software development . 33

3.4.1 Utilized methodology . 34

3.4.2 Coding style . 35

3.4.3 Accomplished developments 35

iv

3.5 Achievements and their assessment 36

4 Closing discussion and Future Work 37

Bibliography 41

A Test cases and results 53
A.1 Site functions . 53

A.1.1 User Manual updates . 54

A.2 Context functions . 55

A.2.1 Application bug . 60

A.2.2 User Manual updates . 60

A.3 Concept functions . 62

A.3.1 Application bugs . 65

A.3.2 Functionality deficiencies 66

A.3.3 User Manual update . 68

A.4 Instance functions . 68

A.4.1 Application bugs . 71

A.4.2 Functionality deficiency . 72

A.4.3 User Manual update . 73

A.5 Performance . 73

A.5.1 Site functions . 73

A.5.2 Concept and instance functions 74

B Application bug fixes 77
B.1 Instance creation issue . 77

B.2 Data access after DKB server restart 79

B.2.1 Find and get instance . 79

B.2.2 Get concept . 80

B.3 Find issue . 85

C User Manual updates 87
C.1 Running the DKB . 87

C.1.1 Owlready2 warning message [75] 87

C.1.2 For Windows users only: potential run issues [75] 88

C.2 Find() search criteria and expected values 89

C.2.1 Available property search criteria and expected values [75] . . 89

v

C.2.2 Range sort: selection according to ASCII sort order [75] . . . 90

C.3 Added notes . 91

D Survey questionnaire 92
D.1 Questionnaire . 93

D.2 Survey results . 96

D.3 Information sheet . 98

D.4 Plain consent form . 101

vi

List of Figures

2.1 Concept of user-controlled contexts (Atkinson et al. (2019) [5]) 6

2.2 DKB architecture, taken from Levray and Zhao (2020) [76] 6

2.3 Sample graph, taken from Webber and Van Bruggen (2020) [116] . . 8

3.1 Project phases . 10

3.2 Spiral methodology, according to Despa (2020) [30] 34

A.1 DKB: entering and resetting a ‘frozen’ context 61

A.2 DKB: accessing previously created concept after server restart 65

A.3 DKB: find concept issues . 66

A.3 DKB: Find concept issues (cont.) . 67

A.4 DKB: accessing previously created instance after server restart 71

A.5 DKB: find instance issues . 72

A.6 DKB login performance . 73

A.7 DKB site function performance . 74

A.8 DKB: get() function performance 74

A.8 DKB: get() function performance (cont.) 75

A.9 DKB: find() function performance 75

A.9 DKB: find() function performance (cont.) 76

C.1 DKB set-up: Owlready2 warning message 87

C.2 DKB set-up: common txt file location 88

C.3 DKB set-up: linked directory . 88

C.4 DKB find: string range results in accordance with American Standard

Code for Information Interchange (ASCII) sort order [100] 90

C.5 DKB enter context: MultiUser exception 91

D.1 Survey questionnaire: first section 93

D.2 Survey questionnaire: second section 94

vii

D.3 Survey questionnaire: third section 95

D.4 Survey questionnaire: fourth section 95

D.5 Survey results: first section . 96

D.6 Survey results: second section . 96

D.7 Survey results: third section . 97

D.8 Survey results: fourth section . 97

viii

List of Tables

3.1 Python comparison operators (Python Software Foundation [42]) . . . 15

3.2 Extract of benchmark comparison carried out by Jean-Baptiste Lamy

[70] . 31

A.1 DKB site functions . 54

A.2 DKB context functions . 60

A.3 DKB concept functions . 65

A.4 DKB instance functions . 70

C.1 DKB find: Concept search parameters, expected values and examples

(as added to [75]) . 89

C.2 DKB find: instance search parameters, expected values and examples

(as added to [75]) . 90

ix

List of abbreviations

AB Application bug

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CWL Common Workflow Language

DARE Delivering Agile Research Excellence on European e-Infrastructures

DB database

DKB DARE Knowledge Base

DIRG Data-Intensive Research Group

EPOS European Plate Observing System

FD Functionality deficiency

FIFO First-In, First-Out

GB Gigabyte

GO Gene Ontology

ID identifier

IDE Integrated Development Environment

I/O Input/Output

KB Kilobyte

MB Megabyte

MT3D Moment Tensor in 3D

NoSQL “Not only SQL”

ODMG Object Database Management Group

OWL Web Ontology Language

x

PC Prefetched Cache

PDB Python Debugger

PE Processing Element

PID Persistent Identifier

RA Rapid Ground Motion Assessment

RDF Resource Description Framework

SNS Social Networking Sites

SQL Structured Query Language

UC Used Cache

UM User Manual

UMU User Manual update

URL Uniform Resource Locator

W3C World Wide Web Consortium

xi

Chapter 1

Introduction

1.1 The 21st century - Digital Age and Big Data era

For quite a while now, the buzzword “Big Data” has been floating around. Early state-

ments such as “data is the new oil” [58] by Clive Humby and its refined version “Big

Data is the oil of the 21st century” [107] by Peter Sondergaard, Gartner’s Global Head

of Research, already indicate the influence that (Big) Data already has and increasingly

will gain in our everyday lives. The fact that around 90% of the world’s data has been

created between 2014 and 2016 (declared by IBM, back in 2016) [99] and that Big

Data gains more and more attention during happenings such as the World Economy

Forum in Davos [39, 78], further back its importance.

But what does ‘Big Data’ actually stand for and what are its drivers? Due to the

high attention ‘Big Data’ has attracted, a multitude of definitions has evolved. Yet

Gartner’s “three Vs” (Volume1, Velocity2 and Variety3) [32], introduced to characterize

data, are the foundation for most of them. An example are De Mauro et al. (2016)

[29], who have built upon Gartner’s three Vs to combine the various existing Big Data

definitions into one that is universal.

The growth of these (digital) data piles is accelerated by the rapid spreading of

mobile devices (such as phones, smartwatches and fitness trackers [11]) and the con-

tinuous progression of the Internet. Particularly Social Networking Sites (SNS)4 like

Twitter and Facebook (with their hundreds of millions monthly users [11]), search

1Volume describes data’s fast-growing amount and size [114, 32].
2Velocity refers to the expediting rate at which data is being produced [114, 32].
3Variety represents the distinct data formats – from structured (table-like) to unstructured (e.g., im-

ages, social network posts or sound files [80]) – as well as data’s complexity [114].
4Such online platforms empower the users to post and discuss their opinion on any topic [11].

1

Chapter 1. Introduction 2

engines5 such as (the most well-known [15]) Google, Microsoft Bing or Yahoo, cor-

porate websites6 and sensors7 contribute to the nowadays around 2.5 billion GB of

daily generated data [99].

To make use of these huge volumes of un- and semi-structured data, more efficient

ways of dealing with and capturing complex data are needed: relational databases

(DBs) with their inflexible, tabular structure reach their limits when it comes to data

that lacks structure and differs in format (e.g., pictures, sound and text files) [103, 96].

1.2 DARE & DKB - Coping with complex scientific data

Due to its multilayered, large-scale and regularly accessed data [102], science is one of

the domains which is particularly exposed to the challenge of handling Big Data. With

the ever-growing number of experiments, simulations and measurements, the overall

data volume constantly builds up, which further exacerbates the problem and results in

the evolution of more individual (division-specific) implementations [3]. These silo-

structures however impede the reutilisation and sharing of acquired know-how [3],

which ultimately yields in unsustainable throw-away solutions [17].

To tackle this issue, the EU Commission has launched the (recently completed)

Delivering Agile Research Excellence on European e-Infrastructures (DARE) project

[17]. DARE’s underlying intention has been to introduce a “unifying hyper-platform

and development context” [17], which scientific communities can utilize for their

(rapid8) prototyping9 and data-intensive activities in an effective and reproducible

manner [17]. Therefore, the DARE platform, takes advantage of Big Data technologies

and analytics10 to ensure that domain-specific solutions can be developed [17].

One of DARE’s major components should be the DARE Knowledge Base (DKB),

a central interface for accessing, creating and distributing data that aims to facilitate

scientists’ collaboration with each other [75]. To achieve this goal, an edge-cutting,

new approach for subdividing and storing data has been suggested by Atkinson et

5Enabling the Internet’s exploration for any piece of information linked to one’s area of interest [11].
6A company’s online presence usually maintains information about its business, provides the oppor-

tunity to purchase product(s) and view customers’ (product) assessments [11].
7The most common sensors types are those installed in mobile devices and card readers, which can

backtrack locations, observe health data and record transactions [11].
8In the prototyping context, rapid illustrates the pace at which each prototype is designed [31].
9As an operable version, the prototype exemplifies program properties such as layout, computed

results and their calculation time [31]. With the help of a prototype, requirements can be validated and
(technical) problems spotted (and thus repaired) early on in the process [31].

10So far, Big Data and Analytics have been used in commercial, but not yet in scientific contexts. [17]

Chapter 1. Introduction 3

al. (2019) [5]: the user-controlled contexts (figure 2.1 in Chapter 2 illustrates their

construct). The idea is to set up multiple user-specific (local) contextual workspaces

and embed those in other, more general (global) context settings [5]. These global

and persistent context areas then provide the generally applicable knowledge, whereas

the local environments assist the use of personal assumptions and know-how during

individual experiments11 and (rapid) prototyping9 [5].

1.3 DKB’s current limit - Research proposal

As elaborated above, the DARE Knowledge Base (DKB) – with its notion of user-

controlled context – should be one of DARE’s main parts. The emphasis however is

on ‘should’: Since DKB’s design has not progressed as fast as DARE’s, it could not

(yet) be adopted for DARE. Thus, additional (conceptualization and implementation)

work is necessary to prove that the continuously rising data complexity can be handled

more efficiently when DKB’s context concept is utilized.

Correspondingly, the aim of this project is to improve the existing DKB applica-

tion by determining and resolving one or more defined issues, while keeping in mind

that ultimately any enhancement(s) should benefit the (scientific) user community. To

identify possible key topics, a thorough system analysis will be conducted. Since this

project is primarily a research one with some development percentage, the problem

investigation will pay particularly attention to DKB’s conceptual weaknesses. Accord-

ingly, the objectives can be divided into three coherent stages:

1. Identification of current weaknesses

2. Topic selection and resolution

3. Achievement evaluation

To begin with, an exhaustive test and analysis phase is carried out to reveal DKB’s ex-

isting deficiencies. Besides the creation of a sufficiently large amount of (test) data12,

both the execution of functionality and performance tests and the examination of their

results is involved. Outcome of these first tasks is the generation of around 390 MB of

synthetic and real-world test data as well as the exposure of three general problem clus-

ters – namely, ‘application bugs (ABs)’, ‘functionality deficiencies (FDs)’ and ‘User

Manual updates (UMUs)’ – to which all the individual findings can be allocated. After

11For example, users can produce ‘new sets of validated time series, new versions of an analysis
process, new methods and new concepts” [5].

12An adequate test database is a prerequisite for all subsequent (functionality and performance) tests.

Chapter 1. Introduction 4

those weak spots have been pointed out, the most practicable13, acute and research-

intensive issues are picked as the thesis’ main topics:

• Enhancement of the find() function (more search criteria and operators)

• Establishment of a conceptual model of collections

To focus on these though, the detected application errors have to be fixed first since they

severely hamper DKB’s usability14. This however then enables the conceptualization

and implementation (design) of the main tasks. Finally, the bug fixes and find()

improvement developments are examined the same way as before: with functionality

and performance tests. Additionally, a user survey has been prepared to measure all

achievements’ value via a user rating. The test and assessment results clearly prove the

implementations’ and conceptualizations’ success by passing all the test and receiving

an average rating of 4.9 (find) and 4.5 (collections) out of the maximum score of 5.0.

Paper outline To accomplish the above described objectives, the thesis is split into

a total of four sections: First of all, Chapter 2 provides the relevant background in-

formation on the DARE Knowledge Base (section 2.1) and NoSQL databases such as

Owlready2 (section 2.2), since the DKB is based on Owlready2. This is followed by

the main and most important part, Chapter 3, which details each of the five project

phases: ‘test data generation’ [section 3.1], ‘system analysis’ [section 3.2], ‘project

focus’ [section 3.3], ‘software development’ [section 3.4] and ‘achievements’ assess-

ment’ [section 3.5]. Sections 3.1 and 3.2 thereby target the first objective, the identi-

fication of existing weaknesses, while sections 3.3 and 3.4 aim at the second object,

the (focus) topic selection and solution. The dissertation’s major contribution is also

located in section 3.3, which raises and answers various research questions to:

• Cover the reasoning for the choice of certain (focus) topics,

• Explore possible solution approaches (literature-based) and

• Conceptualise their solution design (section 3.3.3)

Section 3.5, which deals with the third and last objective - the solutions’ test and (user)

evaluation, concludes the third chapter. It should be noted that the three problem clus-

ters – ‘ABs’, ‘FDs’ and ‘UMUs’ – and their order are kept throughout sections 3.2,

3.3 and 3.4. Finally, Chapter 4 discusses the achievements as well as their evaluation,

while critically reviewing those and any open points that have been left as future work.

13With respect to the imposed time constraint of two and a half months
14Making it close to impossible to properly work with the application prototype.

Chapter 2

Background and Related Work

2.1 The DARE Knowledge Base (DKB)

DKB’s functional concept As stated in the beginning, the era of ‘Big Data’ with

the rapidly growing amounts of interlinked, manifold and complex data is now. Still,

particularly the scientific community lacks reproducible and reusable solutions for han-

dling and analysing these (ever-growing) data volumes [17]. New approaches are re-

quired and this is where DKB comes into play: it assists scientists from any domain by

implementing the completely novel concept of user-controlled contexts1. The under-

lying idea of setting up one (or more) individual (local) context workspace(s) which

is (/are) integrated into surrounding, more generic (global) contexts (the closer to the

outer layer, the more general the context; pictured in figure 2.1) [5]:

• Ensures that users have direct control over the contexts and

• Enables a more informal, natural way of thinking (without having to consider

formalities such as ontologies2).

Additionally, this approach satisfies two other key points:

• Data dynamics: since data nowadays is widely distributed and continuously up-

dated, DKB’s method is to store references to already existing data instead of

physically saving (thus, duplicating) the (constantly changing) source data [7].

• Conceptual autonomy: it is quite common that multiple scientists are concur-

rently working with the same data. In such cases it is essential that each of them

1As of now, contexts can incorporate concepts (abstract conceptual definition, e.g., of a workflow or
experimental run) and instances (instantiation of previously defined concepts, e.g., containing execution
parameters); partially realizing the specification of “data, methods, concepts and collections” [75].

2An ontology is a “knowledge base system” which consists of “terms” (domain-specific concepts)
and “semantics” (relationships between the “terms”) [69]. Its main purpose is to use this uniform and
formally specified vocabulary to ease the reuse and distribution of know-how [51, 7].

5

Chapter 2. Background and Related Work 6

can independently model and test ideas, without being limited by the others [7].

Figure 2.1: Concept of user-controlled contexts (Atkinson et al. (2019) [5])

Overall, DKB helps prevent throw-away solutions3, manage complex data4 and ease

the running of data-driven experiments and their outcome distribution4 [17, 75].

DKB’s technical set-up As displayed in figure 2.2, the client-server DKB applica-

tion comprises a backend server and a frontend client [75]. Every user is expected to

set up and interact5 with their own (personal) DKB client, which consists of a Python

library – DKBlib – and a web service [7]. The web service uses Owlready2 (further

details about Owlready2 in section 2.2.3) to convert the ontology2-like information to

the Web Ontology Language (OWL)6 [7, 76].

Figure 2.2: DKB architecture, taken from Levray and Zhao (2020) [76]

3By providing solution which are tailored to the individual area of expertise and reusable [17].
4Through the DKB interface, which is responsible for accessing, creating and spreading data [75].
5For instance by utilizing the web-based Jupyter notebook [7]
6OWL is World Wide Web Consortium (W3C)’s (Semantic) Web language for portraying ontologies

(“rich and complex knowledge about things, groups of things, and relations between things”) [48].

Chapter 2. Background and Related Work 7

Right now, the DKB server has to be installed locally before DKB can be launched

for test or development reasons. In future however, the DKB server will either become

an element of the DARE hyper-platform or run as a standalone solution [75]. Figure

2.2 demonstrates the DKB server’s four main components [76]:

• The Application Programming Interface (API) endpoint, in charge of handling

the communication between user client(s) and the server the client is logged into.

• An user action proxy to translate the user inputs/ commands into their corre-

sponding server functions and afterwards call those.

• The DKB service with its server-side methods to verify and execute the user ac-

tivities (and potentially connect to the data storage service to retrieve DB data).

• The data storage service to access, refresh and save the queried data from/ to the

database without prior validation (the DKB service takes care of the verification).

2.2 Owlready2 - Following the graph database concept

2.2.1 Brief introduction to NoSQL databases

In particular the recent ‘Big Data’ challenge and the thereto relating need to handle

and store massive amounts of manifold and connected data gave rise to (various types

of) the so-called “Not only SQL” (NoSQL) databases. Usually NoSQL databases are

divided into four main groups7:

• Key-Value stores: since the data is kept in a schema-less way, the data objects

can only be queried via their key values [79].

• Document databases: unlike key-value stores, document DBs are structured [79].

However in contrast to relational databases, they do not have one overarching

schema all documents have to comply with [79].

• Columnar stores: as opposed to the row-oriented relational DBs, columnar stores

pack their data into column-wise blocks [79].

• Graph DBs (covered in depth in section 2.2.2): keep data in a graph structure

and are therefore ideal for highly interlinked data.

Unlike relational (alternatively also called ‘Structured Query Language (SQL)’8) data-

bases, NoSQL DBs rely on an adaptable schema and do not adhere to the (rigid) rela-

7Nonetheless, also notable NoSQL databases are the “scientific DBs” such as the SkyServer
database, which contains data about the universe (for example, galaxies and stars images) [47, 1].

8Derived from the fact that SQL is relational DBs’ most frequently used query language [82].

Chapter 2. Background and Related Work 8

tional data model9 [79]. This provides them with the necessary flexibility for dealing

with large amounts of both structured and unstructured data [10].

One major disadvantage almost all NoSQL DBs types have in common is the fact

that they – alike relational DBs – predominantly store chunks of disconnected data,

which limits their use for highly interlinked and complex data [96]. Graph DBs over-

come this downside by storing the data in graph structures, which can represent con-

nectivity via graph relationships [79]. Therefore, especially graph databases are be-

coming more and more attractive for depicting diverse and complex connections [79].

2.2.2 Graph databases - One of four main NoSQL types

A graph essentially consists of three main components: nodes or vertices, relationships

or edges and constraints [116]. Nodes “typically represent some entity, such as person

[or] product” [116] while relationships help connect these nodes with each other [116].

Constraints are imposed to ensure certain properties are filled: for instance, a person

node may require forename and surname [116]. Figure 2.3 shows an illustrative graph,

where nodes are drawn as circles and relationships as pointing arrows (to indicate

subject and object) with descriptive predicates (e.g., ‘HAS INSURANCE’) [116].

Figure 2.3: Sample graph, taken from Webber and Van Bruggen (2020) [116]

Graph databases for scientific purposes Not only commercial firms such as flight

booking services, LinkedIn or Facebook increasingly benefit from graph databases,

also science progressively exploits (and thus profits from) them [120]. For this reason,

researchers like Yoon et al. (2017) [120], Salehpour and Davis (2020) [98] or Effendi

et al. (2020) have investigated their eligibility for managing huge volumes of scientific

(e.g., biological and spatio-temporal) data [98, 35], which includes the comparison

9The relational data model captures data in a tabular (row- and column-based) structure and is still
the most regularly applied model [115]

Chapter 2. Background and Related Work 9

with other (partially open-source) edge-cutting relational databases like MySQL or

PostgreSQL [35, 120]. Their findings confirm graph DBs’ superiority when it comes

to response time [35] and performance (improvement of up to 40%) [120].

Further, more earth-related examples are graph DBs’ usage for power grids [93], water

drainage networks [23] or bioinformatics databases such as Reactome [37, 50].

DKB’s key differentiator from other in use graph DBs are the user-controlled con-

texts10. As of now, such an approach has neither been examined nor put into practice.

2.2.3 Owlready2 - An optimized quadstore

The DARE Knowledge Base (DKB) implements Owlready2, a Python package for

ontology-oriented programming which means that “OWL6 2.0 ontologies” can be loaded,

altered and maintained as Python objects [72]. Owlready2 comes with a (performance-

and memory consumption-wise) optimized quadstore, which is based on a SQLite3

(file) database [72]. The ‘quad’11store thereby defines how all information is kept (as

“RDF12 quads”), while the SQLite3 DB deals with the where: it provides the flexibility

to either retain all data quads in memory or store them on a harddrive (by default they

are kept in memory) [72]. The persistent storage in the SQLite3 file (database) is par-

ticularly appealing for huge ontologies13 since loading all their data into memory takes

a while whereas opening a (database) file and retrieving only a few (requested) quads

can be significantly faster [72]. Moreover, Jean-Baptiste Lamy, Owlready2’s inventor,

claims “that Owlready2 [even] performs a little faster when storing the quadstore on

[..] disk” [72]. In general, Owlready2 retrieves all information dynamically once it’s

queried, caches it in memory and discards it later, when it is no longer required [72].

Thus, although Owlready2 contains an integrated, relational database, it captures

and treats data like a graph database (using RDF12 quads11 and respecting relations

between different quads) and thereby follows a graph database’s main concept.

10Introduced to easily gather, reuse and share knowledge [17, 75].
11‘Quad’ due to its four elements: “(subject, predicate, object, ontology)” [72].
12The Resource Description Framework (RDF) is one of W3C’s information exchange guidelines,

which integrates data relations as directed, tagged graphs [49].
13Such as the Gene Ontology (GO) with its round about 170 MB of data [72].

Chapter 3

Approach, Methodology and

Achievements

The (investigative) work performed on the existing DARE Knowledge Base (DKB)

prototype is a combination of research and software development, with the overall

goal of enhancing the current application by:

• Determining existing deficiencies and limitations,

• Selecting and solving a subset of those and

• Assessing the added value these application improvement(s) offer.

For this reason, the project has been divided into five consecutive phases, as illustrated

in figure 3.1, which will be elaborated further in the subsequent sections.

Figure 3.1: Project phases

10

Chapter 3. Approach, Methodology and Achievements 11

3.1 Test data generation

A balanced mix of a quantitatively adequate number of (test) data records and a realis-

tic (test) data representation is a prerequisite for performing a thorough system analy-

sis. For this reason - and because the existing database consisted of only a handful of

data samples so far -, two types of test data have been generated:

• Synthetic data, to satisfy the quantitative need for mass data, and

• Real-world data, to meet the demand of a sufficiently realistic data set.

Overall, the underlying database volume has been enlarged from around 20 KB of data

to around 390 MB1 or 0.38 GB. This amount has been considered appropriate since it

roughly doubles the size of the GO (170 MB), which the inventor of Owlready2, Jean-

Baptiste Lamy, calls a large ontology and which - according to him - takes noticeable

time to load [72].

3.1.1 Synthetic test data

Following DKB’s approach of utilizing user-controlled contexts and the embedded

concepts and instances to partition and store data [5], a synthetic data generation pro-

gram with adjustable parameters, through which the number of created contexts, con-

cepts per context and instances per concept can be controlled, has been set up. Addi-

tionally, one can specify a general context, concept and/ or instance name prefix, which

is then complemented by a (continuously increasing) numbered counter to create each

(synthetic) context’s/ concept’s/ instance’s name.

For re-usability reasons and because the scientific community, whom DKB aims to

support during their day-to-day business, works with Jupyter notebooks almost daily,

the synthetic data generation program is not only available as an executable Python

file but also as a Jupyter notebook with detailed descriptions and (usage) instructions

(located on Gitlab [54]).

3.1.2 Real-world test data

As opposed to the (automated) generation of large amounts of synthetic test data,

the real-world samples have been manually designed in close consultation with for-

mer DARE (Delivering Agile Research Excellence on European e-Infrastructures) and

1Most of this is synthetic data, which has been generated by multiple runs of the below described
program on a personal laptop. In total there have been ten runs, of which each has run for several days
to create 10 contexts with 50-100 concepts per context and 100-1,000 instances per concept.

https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test%20data%20creation/Synthetic%20test%20data.ipynb

Chapter 3. Approach, Methodology and Achievements 12

DKB scientists. Based on the DARE European Plate Observing System (EPOS) use

cases [28], samples for both Rapid Ground Motion Assessment (RA) and Moment Ten-

sor in 3D (MT3D) scenarios and their associated workflows [25] have been considered.

As part of the RA, seismologists evaluate seismic wavefields which appear straight

after (large) earthquakes to immediately create ground motion predictions (e.g., in

terms of speed and acceleration) and apply them as part of their emergency response

[27]. Later, these estimations are compared with the actual, registered ground mo-

tion data to further advance their seismological models and knowledge of the Earth’s

behaviour after an earthquake [27].

Similarly, the MT3D also concentrates on earthquakes: the focus here lies on their

source parameters (mainly, location and moment tensor for characterizing the earth-

quake rupture’s magnitude and mechanism) and the uncertainty assigned to the param-

eters’ impact on wave transmission and risk assessment [26]. Using 3D instead of the

previous 1D seismic wavespeed models and running multiple simulations with vary-

ing perturbed source parameters, helps reduce the gap between the observed and the

artificial wavefields and identify the most realistic model (parameters) [26].

For both of the above described scenarios, workflows2 (with according parameters)

and runs have been set-up as part of DARE EPOS [25]. Therefore, this general, ab-

stract workflow and run structure has been mapped to DKB’s concepts, whereas the

actual workflows and runs with their execution parameters have been added as DKB

instances.

Alike the synthetic data generation, the real-world records are also stored in both an

executable Python file and a Jupyter notebook with detailed descriptions and (usage)

instructions3 (and are again located on Gitlab [53]).

3.2 System analysis

Based on the previously created synthetic and real-world test data, an extensive system

analysis, consisting of two kinds of tests, has been performed:

2Namely, the Python-based dispel4py [109] and the YAML-based Common Workflow Language
(CWL) [4] to cover both streaming- (several tasks can run concurrently, as soon as the required resources
are available) and task-oriented (each task waits for the preceding task to complete) workflows [65,
38, 25, 24]. With dispel4py, each task or Processing Element (PE) is essentially a Python class and
represents a workflow step, which dispel4py eventually joins together in a graph [38]. Thus, dispel4py
contains the entire workflow logic [38]. CWL on the contrary, does not implement the logic: instead,
YAML files are used to specify the order of the various scripts, which contain the workflow logic [38].

3Reasons: re-usability and scientists’ habit of preferring Jupyter notebooks

https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test%20data%20creation/Real-world%20test%20data.ipynb

Chapter 3. Approach, Methodology and Achievements 13

1. On the one hand, functionality tests have been set up to analyse the existing

prototype’s functionality and answer two research questions:

• Does the application and its functions work as promised?

• Is the prototype with its current functionality what (scientific) users expect?

2. On the other hand, performance tests have been included to cover non-functional

specifications, evaluate the system’s behaviour and speed and thereby solve the

question of whether the current performance is sufficient to keep users engaged.

3.2.1 Test case preparation

The first task hereby has been to build test cases according to DKB’s main features and

functionalities. Therefore, not only the User Manual4 [75], Design5 [8] and Specifica-

tion6 documents [76], but also the supervisor and former DARE scientists have been

consulted. Together with some general instructions and detailed explanations, all the

thereby identified test scenarios have been then captured in a Jupyter notebook3 [56].

Thereafter, performance measurements – in form of taking the exact time before

and after each function’s execution, to calculate the difference between these two

points in time and report the overall execution time – have been added to the Jupyter

notebook. The decision to use Python’s built-in datetime [43] library – instead of an

external software – for this matter, is based on several factors:

• First of all, their – for this straightforward use case of measuring only response

time – functionality overload: ‘Solarwinds Database Performance Monitoring’

for instance offers (24/7) database health, performance troubleshooting and code

deploy features in addition to the – for this project solely required – system

performance function [77]. And both ‘Apache Jmeter’ [40] and ‘LoadNinja’

[105] for example provide supplementary test (plan) recordings [40, 105], an

offline test result access, a command-line mode and dynamic HTML report [40].

• Secondly, their costs: due to their extensive range of features most of the soft-

ware is chargeable and/ or offers solely a 14-days trial period.

• Thirdly and lastly, the set-up procedure: all of the researched software products

require an installation and set-up process as well as some time for familiarisation,

whereas the Python built-in libraries are well-known and fairly easy to use.

4Besides describing DKB’s available functions, the User Manual lists all possible input parameters
and gives illustrative examples. [75]

5The DKB Design paper focuses on functionality and their implementation. [8]
6Alike the DKB Design document, DKB’s Specification explains DKB’s purpose and functionalities

as well as the current implementation approach. [76]

https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test_files/User%20tests_Jupyter%20notebook.ipynb

Chapter 3. Approach, Methodology and Achievements 14

3.2.2 Test case execution and results

After all the collected test cases had been written in Python (Jupyter notebook3 [56])

and captured in a test document (Appendix A), they have been executed and their

results – together with illustrative screenshots – recorded, both in the test document

(Appendix A) and a GoogleDoc [6].

In general, the findings can be clustered into three broad categories:

1. Application bugs (ABs): all cases, where the research question, whether the ap-

plication and its functionalities work as promised, has been denied.

2. Functionality deficiencies (FDs): those occurrences, where the application with

its existing functionality differs from what a typical (scientific) user would ex-

pect or where the performance is insufficient to keep the users engaged (thus

negating the second and third research inquiries).

3. User Manual updates (UMUs): documentation-related and dealing with the query

of whether the User Manual is lacking helpful7 information.

Please refer to the detailed test documentation in Appendix A for more exhaustive

specifics than the following summaries.

3.2.2.1 Application bugs (ABs)

The application’s functionality is clearly not what users demand when they execute

the functions precisely as described in the User Manual [75] and receive an error mes-

sage instead of the (expected) result. This however has happened for the following

operations, which therefore have been logged as application bugs:

• Instance creation with new instance(): returns an Internal Server Error

• Concept and instance lookup with find(): results in various type errors

– TypeError: (“get instance() missing 1 required positional argument: ‘name’”)

– TypeError: unhashable type: ‘dict’, []

– TypeError: “unhashable type: ‘IndividualValueList’”, []

as well as an Internal Server Error

• Concept and instance data access with get(), find() and context reset after

a DKB server restart: again, returns either an Internal Server Error or a TypeEr-

ror: (“get instance() missing 1 required positional argument: ‘name’”)
7Helpful in terms of explanations and clarifications to
• Avoid confusion with regards to what is possible and what (potential) prerequisites are,
• Ensure a correct application usage,
• And expand the users’ knowledge (with respect to input parameters for instance).

https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test_files/User%20tests_Jupyter%20notebook.ipynb
https://docs.google.com/document/d/10zE--xRvaSThLAsFbyvXCMnA3tHjriWC2eSnc7DN6wk/edit

Chapter 3. Approach, Methodology and Achievements 15

3.2.2.2 Functionality deficiencies (FDs)

Functionality expectations The scientific user community, whom DKB is targeted

at, consists of well-trained mathematicians (e.g., seismologists and climatologists)

who are familiar with Python and work with Jupyter notebooks almost daily. There-

fore, DKB’s functions and their (input) parameters are somewhat supposed to cover

Python’s basic principals such as the variety of data types (‘integers’, ‘floats’, ‘strings’,

‘booleans’, ‘lists’ or ‘dictionaries’, to name a few [41]) or the (comparison) operator

scope [42], which is pictured in table 3.1.

Operation Meaning

< Strictly less than

<= Less than or equal

> Strictly greater than

>= Greater than or equal

== Equal

!= Not equal

Table 3.1: Python comparison operators (Python Software Foundation [42])

Performance benchmark Moreover, several user studies [84, 13, 87] (a.o. by behav-

ioral scientist Robert Miller (1968) [84]) have proven, that users are rather impatient

and tend to get distracted quite easily if the system’s response time is too long (in gen-

eral, more than 15 seconds [84]). The most widespread and quoted (e.g., by Nielsen

(1994) [85], who himself is frequently cited) advice with regards to an application’s

response time has broadly been the same for the last 50 years [84, 13]:

• Solely a splitsecond (0.1 second) ensures the users’ perception of an instanta-

neously reacting system [85].

• 1-4 seconds are required to keep the users committed to the interaction [13, 85].

App users for instance, demand (mobile) apps to react within two seconds or

less [87], which already Robert Miller, back in 1968, has reported to be users’

response expectations to simple queries [84]. For more complex queries though,

up to four seconds are allowed although two seconds are still preferable [84].

If however, this response time is exceeded, the users are likely to feel bored while

waiting for a response [13].

• Finally, data loads should ideally be finished within 15 seconds, which – accord-

ing to Miller (1968) – is also the maximum time the user stays in a “problem-

Chapter 3. Approach, Methodology and Achievements 16

solving” mindset [84]. Similarly, Card, Robertson and Mackinlay (1991) [13]

investigated that 5-30 seconds are acceptable when completing very complicated

requests [13]. Jim Gray, Alexander Szalay and colleagues [108, 86] also stress

the importance of parallel processing for reducing a query’s execution time8 [86]

as well as a “as-soon-as-possible data push strategy”9 [108].

Especially for rather simple10 (data querying) functions, such as DKB’s, exceeding

these timeframes quite likely leads to user distraction [84]. Accordingly, they have

been considered as the execution time limits.

Results Accordingly, the observed functionality deficiencies are as follows:

• The concept creation (new concept()) parameters can take ‘string’ and ‘inte-

ger’ types and none of the other basic Python types such as ‘boolean’ or ‘float’

[41].

• As of now, one cannot assign default values to the concept creation (new concept)

parameters, which again is common Python practice when specifying function/

method arguments [66]. For example, a DKB concept defines the general object

structure (like a function) and this concept’s DKB instances then populates the

frame with actual values (similarly to the function call). If a user – during the in-

stance creation new instance() – prefers to not specify each parameter’s value,

but to instead rely on default settings, he/ she can currently not realize this.

• At present, users can solely perform equality checks with two search criteria

(PID and prefix) with the find() function. Other typical11 arithmetic compar-

ison operators, as listed in table 3.1, or search parameters are not available.

• In their conference paper, Atkinson et al. (2019) [5] briefly touch on the idea of

collections as a part of their newly introduced context concept. They explicitly

state the requirement of having “to support all four aspects of a context: con-

cepts, methods, data and collections” [5], however the collections proposition

has neither been conceptualized nor realized so far.

• The execution performance measurements revealed that:

8Since users might “be willing to wait for 3 minutes but very few will ever wait for 11 minutes in
front of their browsers” [86].

9It ensures that users can instantly view all the (up to the current point in time) selected data records,
which match the query condition(s) [108]. This is particularly beneficial for long-running queries [108].

10As opposed to more computational-intensive tasks (e.g., machine learning with its training runs)
for which users are prepared to wait for days.

11For SQL queries (WHERE condition) [94] or various Python (comparison) operations which for
instance are used in IF-statements [42]

Chapter 3. Approach, Methodology and Achievements 17

1. The response time increased with the amount of available data.

2. On an adequately large underlying database (in this case of around 390 MB

or 0.38 GB), various DKB functions can take multiple (up to 90) seconds

and therefore potentially harm the user engagement:

– Especially the initial login, the closing logoff and the ongoing ses-

sion’s first concept creation (new concept()) last up until 90 seconds

(exceeding Miller’s (1968) reported maximum acceptable data load

delay of up to one minute [84]).

– Other function calls such as get() or a (complex12) find() also take

up to five or 15 seconds respectively (again potentially exceeding the

upper tolerance limit for simple and complex requests [84, 13]).

3.2.2.3 User Manual updates (UMUs)

Together with the following test execution and result documentation, the review of

the User Manual (UM) (as part of the initial test case creation) has revealed a few

information shortcomings. For instance, the following topics have not been covered:

• For Windows users, the DKB set-up has led to some unforeseen installation and

run issues which are not described in the User Manual.

• Furthermore, neither the possible concept and/ or instance find() search criteria

nor their expected values are outlined anywhere.

• Additionally, the naming convention for (context) creations is not specified.

• Finally, some functionality prerequisites and/ or conditions are missing, for ex-

ample when entering, leaving, freezing, deprecating or resetting a context.

All of these instruction shortages have resulted in extra work13 and time spent to figure

out how to correctly run these functions.

3.3 Project focus and literature review

As elaborated in the introduction, this section contains the dissertation’s main contribu-

tion: the solution conceptualizations in subsection 3.3.3. To prepare for the resolution

drafting, a variety of research questions are raised which:

• Justify the choice of the selected (focus) topics and

• Perform an evaluation of possible (literature-based) resolution approaches,

12The complexity hereby derives from query nesting (through ‘AND’ and/ or ‘OR’).
13In terms of multiple (trial & error) executions as well as some code analysis

Chapter 3. Approach, Methodology and Achievements 18

before eventually conceptualising a solution for the chosen key topic. Since this project

is primarily a research one with some development percentage, the topic selection will

particularly consider DKB’s conceptual weaknesses while answering the following

(subsection 3.3.1) two investigative (user- and developer-related) questions.

3.3.1 Test result assessment, Issue selection and justification

The comprehensive system analysis has exposed more application bugs and function-

ality deficiencies than can be resolved within the given time frame of two and a half

months. Therefore, a feasible and achievable subset of the identified issues has to be

selected. The decision, which of the detected problem(s) to tackle, has been based

on an (internal) prioritization, which takes the following questions during each issue’s

evaluation into account:

• From a user’s perspective: Does an alternative or workaround exist? Does/ Do

the issue(s) negatively impact DKB’s usage?

• From a researcher/ developer’s angle: How likely is it to conceptualize/ imple-

ment the solution(s) in the time given?

3.3.1.1 Application bugs

All of the discovered prototype defects severely harm both the users’ experience and

DKB’s usability in general, since certain (expected) features are not working at all.

Instead, their execution aborts with various error messages. Because all the detected

application bugs compromise DKB’s usability so severely, partially even making it

nearly impossible to work with the prototype, their resolution becomes a prerequisite

for any later (conceptual or implementation) improvements. Since the investigation,

debugging and development effort also seems manageable from an analysis and im-

plementation point of view, they will be resolved as part of this project.

3.3.1.2 Functionality deficiencies

Data types At first sight, the limited data types (solely ‘string’ and ‘integer’) might

very well damage the users’ acceptance and usage of the DKB prototype. But in prin-

ciple, users can still record ‘boolean’, ‘dictionary’ or (rounded) ‘float’ entries: as an

(intermediate) workaround the other data types’ values can be captured as either a

‘string’ or an ‘integer’, which significantly reduces the negative impact caused by their

unavailability. Moreover, it has been possible to create all the exemplary real-world

Chapter 3. Approach, Methodology and Achievements 19

use cases with the current solution, which again proves that resolving this matter is

less important than others.

Therefore the conclusion is drawn to postpone this resolution to a later point in

time (leaving it either as future work or picking it up towards the project end).

Default values Similarly, the standard value option is more ‘nice to have’ (to help cut

down manual user inputs and thus effort) than a serious functionality constraint: as of

now, users ‘have to’ enter the default values and cannot define them solely once. Also,

as mentioned before, so far all the illustrative real-world use cases could be generated

with the existing solution, which shows that this matter is less important than others.

Hence, the decision is made to defer this problem as well (leaving it again either as

future work or picking it up towards the project end, if time allows).

Find functionality As highlighted in paragraph Functionality expectations, a typical

DKB user, who is familiar with the Python language, its structure and concepts, re-

quires certain basic operators besides the equality (‘==’) operation. The lack of these

(comparison) operators hampers DKB’s data querying capabilities quite substantially

and therefore makes a notable conceptual shortcoming. Furthermore, with only two pa-

rameters the range of available search criteria is very restricted, which again negatively

affects DKB’s data retrieval ability. An efficient implementation, which achieves an

adequate response time while the complexity of the (data) selection expression grows,

thereby presents a core research challenge.

Since both the research (of additional search parameters, comparison operators

and ways of efficiently implementing those) and their successive development appear

achievable within the two and a half months, the find functionality enhancement is

added to the project scope as one of its major contributions.

Collections concept As stated before, Atkinson et al. (2019) [5] have suggested the

introduction of collections to DKB. Since this proposition has not yet been investigated

(which again forms a conceptual weakness), it will be explored as part of this project.

People have the natural tendency to collect things and the scientific user community

is no different: they ‘collect’ anything from (input) variables, to simulation results and

their true (observed) outcomes as well as new occurrences [5]. Therefore, enabling this

common behaviour as part of DKB would greatly benefit the targeted scientific users

and make the application even more appealing to them. It also poses research issues

Chapter 3. Approach, Methodology and Achievements 20

regarding the nature of collections, their representation and performance. If users can

gain control over a collection while its instantiation minimises data traffic (within DKB

or even between DKB and a remote system), substantial savings will ensue.

Since the general conceptualisation also seems doable within the given time frame,

the investigation of collections becomes a major research focus.

Performance improvement As pictured in paragraph Performance benchmark, some

general (application-specific) response time boundaries do exist [84, 13, 87] and breach-

ing those – as in DKB’s case – may quite quickly lead to a loss of user attention

and engagement [84]. However, unlike other applications, the DARE Knowledge

Base (DKB)’s (test) data stock consists mainly of artificially created (synthetic) data,

which possibly is the reason why the performance results could be viewed with sus-

picion: the generation of large amounts of nested data14 might have been carried too

far15, thus one should exercise caution with those findings. To put them into perspec-

tive, additional research questions have to be considered:

• Do other underlying DBs handle large amounts of nested data more efficiently?

• What other options for improving the current system’s performance remain?

Only thereafter a (realistic) estimate regarding the extent, to which some of the re-

searched and outlined suggestions should and can be realized, can be given.

3.3.1.3 User Manual updates

All of highlighted instruction shortcomings have led to extra work and additional time

spent on figuring out how to correctly run the functions. Therefore, adding the de-

scribed pieces of information will help DKB’s usability and comprehensibility. More-

over, such elaborations are perfectly viable within the available time frame and will

therefore be completed as part of this project.

3.3.2 Formulated research and development plan

In conclusion, the following research and development plan has been framed in close

consultation with the supervisor:

14Context with hundreds of concepts, each of them again consisting of hundreds (sometimes even
thousands) of instances.

15The real-world samples are nowhere near the synthetic data’s nesting. Additionally, Jean-Baptiste
Lamy, the inventor of Owlready2, noted that the loading of large ontologies such as the GO, around 170
MB of data which is less than DKB, can take a while [72].

Chapter 3. Approach, Methodology and Achievements 21

• Bug fixing, including the revision and correction of the existing ontology map-

pings, to recover DKB’s functionality and ensure the application’s usability.

• Enhancement of the find() function (adding further search criteria as well as

operators such as inequality and range) in combination with the

• Establishment of a conceptual model of collections, to further broaden DKB’s

feature range and meet users’ expectations regarding (basic) functionality.

• Research performance benchmark results as well as improvement possibilities

to boost response time and keep users engaged.

• Perform necessary UM updates to avoid misunderstandings and waste of time.

3.3.3 Solution approach and conceptualisation

Based on the above presented research and development plan, this section states each

focus topic’s underlying research question(s), outlines the approach for resolving the

matter and covers the detailed solution conceptualisation where applicable.

3.3.3.1 Bug fixing

The key to resolving any application errors is to narrow down and identify their root

cause. Only thereafter, possible fixes can be investigated and implemented. Thus, the

two questions that arise as part of DKB’s bug fixing task are:

• Which of the existing debugging16 strategies can be adopted?

• Which debugging tools17 are available to facilitate the root cause determination?

Debugging strategies Although debugging is one of the programmer’s most fun-

damental, constantly used skill, it – together with potential strategies – is hardly ever

taught and therefore acquired ‘the hard way’ in practice, once programs crash or output

something unexpected [83]. Still, a variety of debugging strategies, commonly divided

into forward reasoning and backward reasoning [63], exists. Forward reasoning

thereby refers to starting the bug search from the written program code itself, whereas

backward reasoning comprises strategies that begin with the program’s erroneous be-

haviour (e.g., an incorrect output) and work backwards, towards the problem’s cause

16Debugging, one of the most crucial programming competence, is commonly known as the approach
of revealing and resolving (application) errors [83].

17The debugger is the most widespread and well-known tool, however of course the overall toolset is
not limited to the debugger [83].

Chapter 3. Approach, Methodology and Achievements 22

[97, 63]. Katz and Anderson (1987) [63] list comprehension18 and hand-simulation19

as examples of the first, and simple mapping20 and causal reasoning21 of the later.

Since programmers, when using the two mentioned forward reasoning procedures

comprehension and hand-simulation, only focus on the written code itself and do not

run it step-by-step (e.g., with the help of breakpoints), Romero et al. (2007) [97]

introduce the so-called following execution. Following execution extends the forward

reasoning methods by adding visualisations and the gathering of code information

through a stepwise code execution [97]. And Whalley et al. (2021) [117] propose to

make a distinction between ‘static’ (simple code scanning) and ‘dynamic’ (including

the usage of print statements) comprehension.

More recent approaches than Katz and Anderson’s (1987) [63] (refined)22 forward

and backward reasoning are the

• Scientific Method [122] and

• Algorithmic (or declarative) debugging [104].

The Scientific Method is named after (natural) sciences, since the scientists’ ap-

proach of formulating a theory is adhered to [122]. Therefore, this model implies

roughly the following steps: First of all, excessive testing to identify program bugs

(“observation(s)” [122]) [83]. Thereafter, phrasing of (root cause) hypotheses (“tenta-

tive description”, in line with previous “observation(s)” [122]), which are then either

proven or refined through (multiple) experimental runs (repeated “experiments”, until

the divergence between “hypotheses” and “experiments” is eliminated [122]) [83].

The algorithmic debugging is a semi-automatic method, where the debugger pro-

duces a set of questions23, which an “oracle” (usually the programmer) answers [104].

Those replies then tell the debugger, whether the program’s (intermediate) computa-

tion is working as requested or not [104].

Because the DKB application and its coding had been completely unknown before-

hand, a mixture of dynamic comprehension, following execution and simple mapping

has been chosen. With the help of dynamic code comprehension and numerous print

18During the comprehension process, the programmer constructs a (mental) program representation,
for instance by transcribing the code [97, 63].

19When ‘hand-simulating’, the programmer acts as a computer to analyze the code likewise [63].
20Simple mapping implies that the program result itself immediately leads to faulty code line(s) [63].
21Alike the more general backward reasoning, causal reasoning commences from the wrong output

and heads backwards (by utilizing one’s own insights into the underlying program) to find the bug [63].
22For instance by Romero et al. (2007) [97] and Whalley et al. (2021) [117]
23Whether or not the output of an (intermediate) calculation is correct or not

Chapter 3. Approach, Methodology and Achievements 23

statements, an initial familiarisation with the application logic and coding has been

achieved. Thereafter, mainly the program execution strategy has been followed in a

forward reasoning manner by utilizing following execution and various breakpoints to

verify temporary results and to find the issue’s root cause. Partially, also the simple

mapping procedure has been adopted for cases, where the error messages have been

self-explanatory and pointed to dedicated code lines.

Main debugging tool Generally speaking, there are two prominent Python debugger

options:

1. Python’s built-in debugger PDB [44] and

2. The Integrated Development Environment (IDE)’s (internal) debugging alterna-

tive, in this case Atom’s24 python-debugger package [21].

The Python Debugger (PDB)’s major advantage over Atom’s debugging solution is the

fact, that one can both view (temporary) variable values and evaluate (partial) expres-

sion results anytime [61], whereas Atom’s Python debugger does not offer “watched

variables or expressions” [21]. Additionally, PDB provides a wide variety of com-

mands to (slowly) step through the code and reproduce each step’s results [61]. Al-

though the circumstance of interacting with PDB via the command prompt might put

people off, it is more convenient in the DKB context since the DKB server communi-

cation also happens completely via the command prompt. For all this reasons , the tool

of choice is Python’s built-in debugger PDB.

3.3.3.2 Find functionality enhancement

DARE Knowledge Base’s find feature basically represents a different way of querying

data from the database according to certain selection criteria, similarly to what users

can achieve with a Structured Query Language (SQL) query on a relational database.

To define find’s (advanced) scope and conceptualize its implementation, three ques-

tions have to be taken into account:

• What do scientific users expect a basic data query feature to look like?

• Considering the underlying RDF storage, is there a best practice approach for

developing these feature improvements?

24Essentially, Atom is a open-source desktop text editor which comes with some basic core function-
ality [22]. Its main core however is easily extendable through numerous individual packages [22, 19],
such as Hydrogen (for interactively running (Python, R or JavaScript) code [20]), the Github/ Gitlab inte-
grations (for working with Github/ Gitlab repositories (e.g., by staging, committing, pulling and pushing
changes) in the Atom environment [18]) or the Python debugger (for debugging Python projects [21]).

Chapter 3. Approach, Methodology and Achievements 24

• Given that a RDF data querying recommendation does exist, how can this be

applied to the existing Owlready2 data store?

Basic data querying functionality Essentially, the first of the three research ques-

tions has already been answered during the system analysis phase: to identify potential

functionality gaps during the tests, fundamental user expectations had to be disclosed

beforehand (paragraph Functionality expectations).

Thus, table 3.1 lists typical arithmetic comparison operators, which the users25 ex-

pect and which therefore have to be added. Moreover, users assume that all the param-

eters, which they specify during a concept’s or instance’s creation, are also available

as search criteria. Respectively, the range of lookup criteria has to be supplemented by

name, description, state, timestamp, mutability, translation, py class and

methods.

RDF best practice Upon recalling that Owlready2 stores data as “RDF quads” [72],

the question arises whether the World Wide Web Consortium (W3C) also recommends

a standard for querying such RDF data26: and indeed six years after Resource De-

scription Framework (RDF)’s release in 1998, the ‘RDF Data Access Working Group’

presents SPARQL as the first RDF query language draft, which – again four years later,

in 2008 – becomes the official recommendation [91, 90, 89].

At first glance, SPARQL might remind oneself of SQL due to its structural and

syntactical similarities [67]. However, the most important distinction is that SPARQL

extracts graph27 data while SQL returns relational (tabular) data [67]. Since SPARQL

can be adopted by any RDF data storage system, (code) reusability is ensured even if

the underlying database storage system is changed at a later point in time.

Owlready2 SPARQL implementation options The Owlready2 documentation [72,

74] contains detailed information on SPARQL queries and how they can be imple-

mented in and run with Owlready2. Basically, there are two options [74]:

• The native SPARQL engine and

• RDFlib.
25Who are for instance familiar with SQL queries (and particularly its WHERE condition) [94] or

various programming languages such as Python, their diverse (comparison) operations and use cases
(e.g., as part of IF-statements) [42]

26Since RDF is also one of W3C’s standards for information exchange [49].
27A RDF graph consists of RDF triples and therefore SPARQL queries such triples, which are made

up of a subject, predicate and object [90].

Chapter 3. Approach, Methodology and Achievements 25

The instructions state, that – since the native SPARQL engine has 1) hardly any

dependencies, 2) a relatively smooth and thus fast start-up 3) and directly converts

SPARQL queries into SQL ones before executing those SQL queries with SQLite3 –

the native SPARQL engine is around 60 times quicker than its alternative, RDFlib [74].

However, the native SPARQL engine also has one major drawback: at the moment, it

only covers a fraction28 of SPARQL’s whole functionality range [74]. Depending on

one’s own usage scope, this might or might not be an elimination criteria and definitely

has to be kept in mind during the planning and conceptualisation phase.

RDFlib on the contrary, offers SPARQL’s whole functionality range and therefore

loads Owlready’s quadstore as a RDFlib graph [74].

From the viewpoint of the anticipated find selection scope extension, inequality and

range operators to be precise29, the following SPARQL components are needed:

• PREFIX

• SELECT

• WHERE and

• FILTER.

Since all of those elements are available under the native SPARQL engine and because

this project cares about a performant and efficient implementation, the data querying

enhancements will be set-up with the native SPARQL engine.

3.3.3.3 Collection conceptualisation

The collection concept can be seen as a complement to DKB’s present functionality,

to further mirror the (scientific) user community’s behaviour and needs and thereby

valorise DKB’s value for them. As previously stated, people have the natural tendency

to collect things: from the classic example of stamps to coins, model cars/ planes/

trains or liquids such as whisky. The scientific user community is thereby no different:

as listed by Atkinson et al. (2019) [5], they ‘gather’ anything from (input) variables, to

simulation results and their true (observed) outcomes and new occurrences. But then

the questions arise,

• How can a collection be defined?

• What are its components and features?

28For example, data inserts or deletions (with and without WHERE limitation) as well as CON-
STRUCT, COPY or DROP queries are not available [74].

29Besides of the extra selection criteria, which have no impact on the required SPARQL elements.

Chapter 3. Approach, Methodology and Achievements 26

These will be answered by the successive collection conceptualisation, which takes a

practical angle30 whilst incorporating the theoretical (academic) perspective.

Collection definition Generally speaking31, a collection is an object (‘container’),

which groups (multiple) individual elements into one unit [110, 16, 62, 88].

There are three ways of viewing collections, which have to be respected during the

conceptualisation:

• Local or user view: Considers how users think of collections (usually as sets,

bags, sequences and dictionaries, depending on the importance of a (sort) order

and/ or the allowance of duplicates).

• Knowledge base or organizer perspective: Takes the backend (‘organizer’), which

is in control of the data and their storage, into account and how collections should

best be established from this point of view.

• Global viewpoint: Refers to remote, (possibly) distributed collections, which

account for the majority of existing collections [112], and how to incorporate

them into DKB.

Collection components In line with Van Lepthien’s and Anderson’s (2005) [110]

suggested collection items32, the collection’s three major components are the:

1. Container or collection wrapper

2. Content in terms of the individual elements

3. Methods / functions for accessing and working with collections and their content

1) Collection wrapper: the overarching ‘wrapper’, framework for the comprised ele-

ments, should have a couple of tunable specification parameters:

• Collection origin: First of all, it is crucial to decide whether the collection will

consist of local DKB data or whether it is based on a remote (distributed) col-

lection. This is necessary to account for the global view with its remote and dis-

tributed collections: incorporating33 such remote archives gives the users more

flexibility and decision-making options, fosters reusability and potentially saves

30By targeting the scientific user community and what is most useful to them.
31And in accordance with mathematics and computer science [16]
32“Content”, “type(s) of elements” and “mechanism(s) for accessing the content” [110].
33However, including extensive heterogeneous data (with varying semantics and underlying imple-

mentations) imposes a significant challenge, which a couple of researchers have focused on: Endris et
al. (2019) [36] for instance propose “Ontario”, an innovative, SPARQL based processor for selecting
information from Semantic Data Lakes. Verborgh et al. (2016) [112] frame the “Linked Data Frag-
ments” to exploit “Linked Data” (instead of centralized SPARQL endpoints) and move as much of the
processing as possible away from the servers and to the clients.

Chapter 3. Approach, Methodology and Achievements 27

disk space if the remote collections remain referenced.

• Initial build: Based on the collection (data)’s provenance, the users can de-

cide how to build their collection: either manually, by giving (a list of) DKB

Persistent Identifier (PID)/ remote identification numbers, or dynamically, through

DKB’s find34 or the reference to a distributed collection. This again offers users

further flexibility and freedom of choice since they can both set up a new col-

lection from scratch by hand or by utilizing existing (DKB) functionalities (the

later is less time-intensive, whereas the first allows for (extremely) individual-

ized collections), depending on their preferences and requirements.

• (Containment)35 Type: Thereafter it is crucial to determine whether the col-

lection is static and materialized (thus, the content of the specific collection is

physically stored) or virtual/ referenced (hence the individual elements are not

kept)36. Virtual/ referenced further implies, that the collection can change each

time the according expression or reference is called (since the underlying DKB

database, on which the find is executed, or the remote collection can evolve). Es-

pecially under the aspects of ever-growing amounts of data, their multiple (phys-

ical) storage and the thereof resulting retention challenges, both the avoidance

of (duplicate) physical storage and its replacement with virtual representations

become more and more important. In case a local copy of a remote collection is

saved, the questions, how updates to the referenced collection are handled within

DKB (update the local duplicate likewise?) and how a notification mechanism

(e.g., triggering cache refreshments via protocols) looks like, have to be asked.

• Element type37: Facultative it is possible to regulate the kind of individual ele-

ments, which can be added to the collection (in DKB’s case either contexts, con-

cepts, instances or collections). This is particularly helpful in situations, where

scientists for example want to compare the results of multiple simulation runs

with the actual earthquake observation and thus only wish to collect particular

34E. James Whitehead (2002) [119] even states that ”queries are by far the most common functions
used to dynamically create containers”.

35According to Whitehead (2002) [119], who introduces the “containment type” as a way of repre-
senting how elements are enclosed. Therefore Whitehead (2002) [119] differentiates between two types
of containment: “inclusion” and “referential”.

36Besides Whitehead (2002) [119], also Johnston and Robinson (2002) [62] and Psaila (2011) [92]
distinguish between “physical” and “digital items” [62] and talk about “archival fonds” and “artificial
collection” [62] as well as “named (if materialized in the database)” and “unnamed (if temporary)”
elements [92].

37As described by Whitehead (2002) [119], “containers may limit, or explicitly state the type of
objects that can be contained”.

Chapter 3. Approach, Methodology and Achievements 28

DKB instances38. To avoid the unintentional inclusion of a concept or context,

users can restrict the collection’s element type.

• Size39: Optionally, users can decide whether the total collection size is limited to

a certain number of elements (upper boundary) or whether the size is unrestricted

(default setting). This is especially useful for cases, where scientists want to

publish a collection (containing simulation or observation results e.g.) as part of

a conference or journal paper but have to adhere to their imposed size limitation.

• Specialisation (Membership and Ordering): The final optional (specialisation)

setting follows Whitehead’s (2001/ 2002) [118, 119] notion of “membership”

and “ordering”: users are able to define a(n)

– Order (by key [64], value or insertion [64]; by default not ordered)

– Duplicate removal (by entering a discriminating function as per which the

duplicate decision is made: e.g., duplicates are identified based on the

‘name’ or on ‘name’ and ‘year’; default setting allows duplicates).

Accordingly, the collection then becomes a40

– Set (unordered, without duplicates [64]), realisable with Python’s built-in

set.

– Bag or multiset (unordered, with duplicates [16]), implementable as a Python

collection.

– Map (ordered, without duplicates), presentable as a Python dictionary.

– Sequence (ordered, with duplicates [64, 16]), achievable as Python array41.

2) Collection content: following Atkinson et al.’s (2019) [5] statement that a “collec-

tions may be of anything: concepts, methods, data or collections”, a collection in the

DKB environment can consist of concepts, instances, contexts and collections42.

3) Collection functions: The first and most essential operation is to create a new col-

lection, which distinguishes between

• Dynamic ways of generating (none-empty) collections (by evaluating/ storing

the literal find expression or the remote collection reference) and

• Manual options to set up a new collection, either by

– Explicitly naming the individual collection elements, or by

38Instances represent actual workflows and (simulation) runs with according execution parameters.
39What Whitehead (2002) [119] calls the “number of contained objects”.
40Similarly to what Object Database Management Group (ODMG) has specified as the four collection

types: ”sets, lists, arrays, and bag (multiset)” [88]
41According to Keedy and Rosenberg [64] the “default implementation for key order sequences”.
42Amongst others, Psaila (2011) [92] noted that one can deduces an object from itself (e.g., “contain-

ers from containers”).

Chapter 3. Approach, Methodology and Achievements 29

– Copying an existing collection.

All remaining methods for accessing and working with collections and their content

can be divided into element- and collection-oriented operations:

• Element-oriented (in line with those established by Van Lepthien and Anderson

(2005) [110], Psaila (2011) [92], Whitehead (2002) [119] as well as Keedy and

Rosenberg (1989) [64])

– Insertion of individual elements: It is quite common that users want to add

further content at a later point in time, similarly to documents which users

keep expanding. For ordered collections users might even want to fill in an

element at a specific position [33].

– Update specific elements: it is not unusual that content has to be altered

later on, which again is comparable to documents that users keep changing.

– Replacement of particular elements: from time to time certain components

have to be exchanged, for instance with a newer version; just as with living

documents, where various passages are continuously rewritten.

– Deletion of outdated elements: every now and then content becomes ob-

solete (e.g., when a new finding or observation is made) or does no longer

belong to the previously assigned group (e.g., a tsunami is allocated to

an earthquake but further investigations reveal that another earthquake has

caused it) and therefore has to be removed from it.

– Listing all collection elements (‘snapshot’): often it is necessary to get

an overview of all the currently (thus ‘snapshot’) contained elements, for

instance to report them or to review their correct assignment.

– Extraction of a subset: Sometimes only a dedicated subgroup (e.g., all

earthquakes in Greece for a particular year) is required, which can then

be derived by DKB’s find function. To perform look-ups within a specified

collection though, the ‘IN’ operator is needed. This however is currently

neither implemented nor in scope and thus has to be added to find().

– Renaming of elements: as with any document, a later (refining43) name

change is not uncommon and should therefore be possible.

– Viewing predecessor and successor record [33]: Especially for sorted col-

lections it can be beneficial to inspect only the previous and subsequent

entry. If, for example, users generate a (simulation run) collection ordered

by execution timestamp and would like to compare successive runs, each

43Especially once further progress is made or information is available

Chapter 3. Approach, Methodology and Achievements 30

of which has been refined, the option to examine the predecessor and suc-

cessor run is extremely helpful.

• Collection-oriented

– Application of a (user-defined) function: Most of the scientific users, whom

DKB is targeted at, are fluent in Python and thus comfortable with writing

own (small) programs and scripts. Therefore they are accustomed to ap-

plying one function to a whole set of elements (e.g., if they would like to

repeat all their previous (earthquake) simulation runs with a slightly in-

creased moment tensor). Hence such a feature (of applying more or less

complex user-defined functions like addition) is required for collections.

– Deletion of a complete collection: similarly to documents, users sometimes

wish to remove an entire collection, for instance (if it is no longer in use)

to clean up their work space or to save storage space.

– Ways of combining collections44:

* Union: Combines all elements from any of the selected collections into

one unified collection. For example useful for scenarios where users

want to create an overarching collection with all Italian earthquakes,

but only have region-specific (per Italian state) earthquake collections.

* Set difference: Returns all elements of the first listed collection, which

do not appear in the other named collection(s). A possible applica-

tion of such an operator could be the request to report all earthquakes,

which can be unambiguously assigned to Greece (and did not occur

close to its Bulgarian border for instance).

* Intersection/ Inner join: Shows those elements, which are contained

in each of the mentioned collections. If we take the previous example

again, the use case is now that all these ambiguous/ close to the border

earthquakes between Greece and Bulgaria should be presented (which

the scientists have included in both countries’ earthquake collections).

* Joins (left, right and cross-product [14]): Specifically for compar-

isons between simulation runs and real-world observations (e.g., earth-

quakes) the various join options are of help. If the simulation results

are either listed left or right and the according observations (right or

left) should be mapped by date of occurrence and/ or name for in-

stance, a left or right join can be utilized. If, on the contrary, simula-

44In accordance with Whitehead (2002) [119] and Keedy and Rosenberg (1989) [64]

Chapter 3. Approach, Methodology and Achievements 31

tions and their observations cannot be mapped by a unique column, a

cross (/ cartesian) product, which matches all elements with each other

and is therefore computationally expensive, might be required.

3.3.3.4 Performance improvement

As elaborated in paragraph Performance improvement, the previous performance find-

ings have to be treated with caution and have to be put into perspective. To do so,

questions such as

• How is Owlready2’s performance compared to other (NoSQL and relational, to

name the most popular) databases?

• How does Owlready2 aim to ensure an adequate performance?

• How can Owlready2’s overall performance concept be improved, specifically for

DKB?

have to be clarified.

Owlready2 benchmark results In his personal blog, “The flowers of evidence” [71],

the Owlready2 architect Jean-Baptiste Lamy reports his databases comparison results

for handling 10,000 nodes45 per object via random access [71]. Table 3.2 displays an

excerpt of the performed contrasting, which confirms that Owlready2 outperforms the

other investigated options.

Base technology Writing speed Reading speed

Python + MongoDB (4.0.4) 2,289 obj/sec 4,723 obj/sec

Python + Neo4J (3.4.9) 245 obj/sec 223 obj/sec

Python + Owlready2 (0.16) 12,892 obj/sec 19,158 obj/sec

Table 3.2: Extract of benchmark comparison carried out by Jean-Baptiste Lamy [70]

Having said this, it is equally important to note that the Owlready2 performance

results have not (yet) been confirmed by other researchers. Likewise, Jean-Baptiste

Lamy has only presented findings for random access and not (as of now) for sequen-

tial46 data access.

Thus overall, these observations are taken with a little scepticism and the remark,

that the outcome should be verified (for example, with differing amounts of data and
45As one of the three major graph components, nodes (or vertices) represent the graph’s entities [116].
46Sequential access is the preferred method for reading and writing data to disk since it shortens the

time spent on disk Input/Output (I/O) operations (through decreasing seek time and rotational delay,
two essential components of the total access time) [94].

Chapter 3. Approach, Methodology and Achievements 32

access patterns). Since such an in-depth comparison with other database matches the

workload of a separate, independent project, it will not be covered as part of this

project. Instead, this project will go along with Jean-Baptiste Lamy results and leave

their proof for future work.

Integrated Owlready2 optimizations For an enhanced performance and memory

consumption [72], Owlready2 utilizes four (among them one optional) factors:

• Cython module (optional): Owlready2 comes with an optimized Cython module,

which (if installed) enables an ontology loading speed-up of around 20% [72].

• Dynamic data loads & caching: Owlready2 offers dynamic loads from the un-

derlying quadstore as well as a (temporary) in-memory caching possibility [72].

• Integrated & persistent SQLite3 data store: Owlready2’s optimized quadstore is

by default retained in memory, but can also be made persistent in a SQLite3 file

[72]. The later benefits the handling of and dealing with huge ontologies [72].

• Indexing: a (debugging) investigation has revealed, that Owlready2 exploits in-

dexes on three of its in total eight internal database tables47 and that Python file

‘triplelite.py’ is responsible for their creation and deletion.

Owlready2 improvement suggestions With the above knowledge, a search for po-

tential enhancement opportunities has been conducted. First of all, Owlready2’s in-

dexing is rather generic and leaves room for (application-specific) customising: for the

DARE Knowledge Base, further indexes on

• PID (a unique (context, concept and instance) identifier to accelerate their search),

• Prefix (the name of the context, the concepts and instances belong to, to speed

up the selection of objects within a certain context) and

• Instance name and/ or timestamp (to facilitate future versioning (e.g., the look-

up of all (successive) instance versions)

seem suitable and useful.

Moreover, Owlready2’s existing caching approach could be adjusted: quite re-

cently, dedicated and promising graph database caching approaches have emerged

47Namely, on ‘resource’, ‘objs’ and ‘datas’; ‘resources’ maps a (numbered) unique, internal storage
identifier (ID) to the objects’48ontology Uniform Resource Locator (URL), ‘objs’ defines the relations
between the storage objects48 and ‘datas’ contains the user specified values for each of the object’s48

parameters.
48 An object may be anything from ontology class and instance annotations to DKB’s user-defined

contexts, concepts and instances.

Chapter 3. Approach, Methodology and Achievements 33

(for example GraphCache49 [113] or Bok et al.’s (2020) advanced “two-level caching

scheme”50 [12]), which can be further analyzed with regard to their adaptability.

Finally – and as suggested in Owlready2 benchmark results – Owlready2 as the

underlying database could be questioned. Basically, there are two choices:

• Either replace Owlready2 and its integrated SQLight3 database with a different

(graph) database (optimally one amongst the market leaders),

• Or alter Owlready2’s logic according to another (leading) database’s concept.

Nowadays, Neo4j is among the most popular graph databases [101, 68, 59, 95, 106],

with Neo4j Inc. even stating that “Neo4j is the leader in graph database technology”

[60]. And both Forrester [121] and Gartner [2] support this claim: their most re-

cent research reports (2020) have ranked Neo4j [46] among the most relevant graph

databases51. Thus, Neo4j might be one of the databases worth considering when per-

forming a DB replacement investigation. Alternatively, the adaption of one of Neo4j

superior concept’s (such as the two-tier index architecture52) could be inspected [46].

Due to the limited time available for this project and the fact that all of the above easily

accounts for another project proposal, the decision has been made to neither cover the

proof of the Owlready2 performance results nor the examination of any enhancements

but instead go along with Jean-Baptiste Lamy findings and leave the above highlighted

points as future work opportunities.

3.4 Software development

Although software development’s goal is to generate high-quality (software) solutions

within a given time and budget [45], it is often (justifiably) blamed for project delays

[45, 34]. A possible explanation therefore is, that developers’ estimation regarding the

implementation duration is rather often a delusive and hardly achievable “best-case

scenario” [34]. To improve the software development’s planning, a wide variety of

software development approaches exists nowadays: from waterfall (the first widely

49A “full-fledged caching system for general subgraph/ supergraph query processing” [113].
50The authors differentiate between Used Cache (UC) – recently used and probably queried again

soon – and Prefetched Cache (PC) – unused, however most likely required by the next run – and work
with various replacement policies such as First-In, First-Out (FIFO), if the cache is at full capacity [12].

51“Forrester’s research uncovered a market in which Neo4j, Amazon Web Services, TigerGraph,
Microsoft, and Oracle are Leaders” [121], with Neo4j attaining the best scalability and performance
scores [60].

52Neo4j’s two-tier index architecture contains both an object (attributes with their according descrip-
tions) and a triple (composed of subject, object and predicate, indicating their relationship) index [46].

Chapter 3. Approach, Methodology and Achievements 34

accepted methodology [30]), to prototyping, iterative, rapid and agile methods [30],

with the latter currently being one of the most frequently used techniques [34].

3.4.1 Utilized methodology

As elaborated by Ghule (2014) [45], one of software development’s major problems

is that a (upfront) proper risk analysis is often neglected, through which delays can

quickly sneak in. Amid the very strict time limit for this project, a particular focus has

been put on the method’s consideration of an early risk assessment, while reviewing

and deciding upon a software development approach. Despa (2014) [30] provides a

detailed overview of 20 commonly used methodologies, their main characteristics and

advantages and downsides. Based on Despa’s (2014) [30] review, techniques which

are primarily applicable for large-scale projects (e.g., prototyping) have been excluded

as well as those which only receive (user) feedback at the very end (e.g., waterfall).

Eventually, the spiral methodology, which consists of four phases – namely, plan-

ning, risk analysis, development and evaluation, as illustrated in figure 3.2 [30] – has

been chosen.

Figure 3.2: Spiral methodology, according to Despa (2020) [30]

To guarantee flexibility and a steady progress, all of the four phases are repeatedly

passed [30]. As indicated above, the main arguments in favor of this approach are

the continuous reiteration of all four phases (including an early and steady feedback

collection) as well as its risk analysis focus, which result in [30]:

• Exploration and evaluation of diverse options before a decision, upon which to

select, is made;

• Periodic (development) checks to ensure user satisfaction and high quality.

Chapter 3. Approach, Methodology and Achievements 35

3.4.2 Coding style

During the software development special attention will be given to the creation of

an efficient (both in terms of lines of code and runtime performance) and reusable

program code. Therefore, the Python coding guidelines, which have been framed by

Van Rossum et al. (2013) [111], will be followed and common compliance errors, such

as those reported by Bafatakis (2019) [9], considered.

3.4.3 Accomplished developments

Now that the general development procedure and the coding rules have been touched

on, the forthcoming section will focus on the achieved implementations.

3.4.3.1 Application bugs

Subsection Application bugs (ABs) covers all the observed application errors, while

subsection Application bugs justifies why it has been important to resolve them. As

aimed for, their53 resolution has been accomplished as part of this two and a half

month project (appendix Application bug fixes contains the coding snippets).

3.4.3.2 Functionality deficiencies

As discussed in subsection Functionality deficiencies and summarized in section For-

mulated research and development plan, the find functionality enhancement is in scope

of the implementation.

Find functionality: The first step to add further (comparison) operators has been to

expand the validation of the (user-supplied) query operator in the ‘DareKB.py’ file. To

account for potential (syntactically) erroneous user entries, not only ‘<=’ and ‘>=’

but also ‘=<’ and ‘=>’ have been included and are later mapped to their appropriate

counterpart. Now, it is possible to add the inequality and range operator to the internal

operator checks, which are responsible for calling the according ‘storage.py’ functions

(find all tuples(self, o type, *args) and find tuples inRange(self,

user query, o type)) for retrieving and returning the queried Persistent Identifiers

(PIDs).

To ensure reusability, maintainability54 and efficiency, for instance

53To be precise, the ‘instance creation’, ‘concept and instance lookup (find())’ as well as the ‘con-
cept and instance data access (find() and get()) after a DKB server restart’ issue.

54By writing as few code lines as possible and providing sufficient and sound code comments.

Chapter 3. Approach, Methodology and Achievements 36

• Hardcoding has been avoided where possible (e.g., function find all tuples

can be reused with any sort of look-up parameters *args),

• Dynamic compositions fostered (e.g., the SPARQL queries – function

find tuples inRange – are dynamically created) and

• The most efficient ways of implementing considered (e.g., list comprehension

instead of for-loops).

3.4.3.3 User Manual updates

Equally, the in subsection User Manual updates (UMUs) elaborated and in subsection

User Manual updates reasoned adjustments to the User Manual [75] have been com-

pleted (appendix User Manual updates incorporates the performed modifications).

3.5 Achievements and their assessment

After the developments had been finished, an examination – like the one performed

as part of the system analysis – has been carried out to investigate and contrast the

improved system with its previous version. Therefore, once more functionality and

performance test (to determine functionality as well as response time) have been exe-

cuted (respective Jupyter notebook located on Gitlab [55]). Additionally, a question-

naire55, for which ethical approval by the University of Edinburgh has been received

– RT#5959 – and which, together with its results, the information sheet and consent

form, is available in appendix D, has been set up and distributed among former DARE/

DKB test users56 as well as the Data-Intensive Research Group (DIRG)57 members to

gather their opinion and feedback.

An extensive discussion of the achievements, their (test and rating) results as well

as open points will be conducted in the following and final chapter, Closing discussion

and Future Work.

55This survey, a quantitative method for collecting data [81], asks the participants to rate the different
improvements on a scale from one to five (1 = Not helpful at all; 2 = Not helpful; 3 = Not sure; 4 =
Helpful; 5 = Extremely helpful).

56Those users have already collaborated on the current DARE Knowledge Base prototype and com-
mitted to support DKB further.

57The DIRG is a study group at the University of Edinburgh, which conducts research on the opti-
mization of data-intensive tasks.

https://docs.google.com/document/d/1u62251KnRURztDyBbxo77yfGGBpjxjzlWBlSinArxX0/edit#heading=h.mhz5evrki0j1
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test_files/Retests_Jupyter%20notebook.ipynb

Chapter 4

Closing discussion and Future Work

Achievement summary All in all, this project has achieved significant progress in

multiple areas: First of all, a functional and bug-free DKB version has been produced

(and already shared with the DIRG group) by resolving the detected application er-

rors. Furthermore, DKB’s existing (data querying) functionality has been enhanced

by providing a variety of additional search parameters and comparison operators, to

broaden DKB’s feature range and meet users’ expectations. Such an appropriate data

retrieval (find) function is also necessary to properly interact with the newly estab-

lished conceptual model of collections, a supplement to DKB’s present functionality:

collections mirror people’s natural behaviour of gathering and clustering things into

self-defined groups and therefore foster DKB’s value appreciation. Finally, a detailed

investigation of the current database’s (performance) acceleration measures, followed

by an extensive research of additional improvement options, has been composed.

Smaller accomplishments are the (synthetic) data generation program, the reusable

(test) Jupyter notebooks as well as the User Manual updates and the detailed test find-

ings, which offer future work opportunities.

Attainment evaluation To judge the benefits gained from the above described achieve-

ments, two types of assessment have been carried out: 1) (application) tests to validate

the developments’ functionality and investigate their performance and 2) a quantita-

tive user survey to measure the implementations’ and conceptualizations’ value with

the help of a user rating. Since any enhancements should eventually benefit the (scien-

tific) user community, only former DARE/ DKB participants, who have collaborated

on the current DKB prototype and its functionality scope, and DIRG members, who

continue to work on DKB, have been asked to fill in the questionnaire (Appendix D.1).

37

Chapter 4. Closing discussion and Future Work 38

Given the fact that this is a rather limited and elected circle, the ten received responses

to the completely anonymous questionnaire represent a good amount of feedback. Ten

replies are also an adequate indication of what the scientific community thinks about

those adjustments and ideas. Overall the reaction to the three types of changes – ‘FDs’,

‘ABs’, and ‘UMUs’ – has been very favourable (refer to Appendix D.2 for the detailed

results): Besides a median rating between 4 (‘helpful’) and 5 (‘extremely helpful’) –

• Functionality deficiencies: average of 4.7

• Application bugs: mean of 4.6

• User Manual updates: result of 4.4

–, the obtained comments are also extremely appreciative and positive (figure D.8),

stating that the “adjustments [...] were really needed”, are “wonderful and helpful” and

“increased the usability of the DKB”. They have further been declared a “significant

progress” and a necessity for “a knowledge base like DKB to be operational”. As

elaborated before, the goal of this project has been primarily to be a research one with

some development percentage. Therefore, two main focus topics (the most acute and

research-intensive), in fact the two listed functionality deficiencies, have been chosen:

• Improvement of the find() function (more search criteria and operators)

• Formulation of a conceptual model of collections

Particularly encouraging therefore is the circumstance that these two FDs have achieved

the best overall result (average of 4.7, with collections reaching 4.5 and find() even

a 4.9). The discrepancy between the collection and find() valuation however em-

phasises the challenge associated with conveying the theoretical concept of collection

(even more so as part of a short questionnaire). Still, the collections’ conceptualization

is seen as the thesis’ key outcome: as depicted before, the rising volumes of manifold,

complex and interlinked data from all kinds of dispersed sources require fresh manage-

ment and storage approaches, such as the completely novel concept of user-controlled

context. In 2019 Atkinson et al. [5] introduced user-controlled contexts as an in-

novative way of structuring the information space and thereby facilitating knowledge

self management. To reflect scientific users’ way of thinking, contexts incorporate

concepts, for defining the general object structure (like a function), and instances, for

populating the concept frame with actual values (similarly to the function call). This

new approach, which has neither been examined nor put into practice so far, however

currently lacks another important, natural habit: scientists’ tendency to collect things -

from (input) variables, to simulation results and their true (observed) outcomes as well

as new occurrences [5]. Thus, this is where the collection concept comes into play.

Chapter 4. Closing discussion and Future Work 39

Another essential aspect, which the collection conceptualization covers and which is

again related to the large amounts of distributed data, are the data storage options: vir-

tual/ referenced and static/ materialized. With growing data volumes, storage and data

maintenance become more challenging and it is preferable to not physically duplicate

data from the golden source. Instead, this information can be referred to and loaded

only upon request, which saves not only storage space but also maintenance (in terms

of implementing update mechanism) effort. A possible solution for integrating such

remote data (collections) could be Endris et al.’s (2019) [36] “Ontario”, an innovative

and centralized SPARQL endpoint for gathering and including information.

Unlike the questionnaire, which has also included the conceptual achievements,

the functionality and performance tests (captured in a Jupyter notebook on Gitlab [55])

solely focused on the implementations. The test results prove, that both the previously

detected application bugs and the find() selection parameter and comparison operator

enhancements work and return the expected results (e.g., the string range selection

follows the ASCII sort order, as demonstrated and explained in section C.2.2).

Limitations and future work Nevertheless, the performance tests have also revealed

some severe response issues for the ‘state’ and ‘mutability’ search parameters: af-

ter around one and a half hours, both query executions have been interrupted1. The

reason for their excessive runtime on the prepared test database is, that basically ev-

ery concept and instance (and therefore almost every entry in the 390 MB database

file) contains ‘state’ = ‘new’ and ‘mutability’ = ‘mutable’. Thus, accessing

each of them to retrieve a subset of their available parameters has exceeded the accept-

able wait time by far. Another observed (and related) limitation is specifically linked

to Jupyter notebooks: only a certain number of records can be outputted, before an

“IOPub data rate exceeded; The notebook server will temporarily stop sending output

to the client in order to avoid crashing it” error is given. For both of the mentioned

points a (user-defined or default, for the latter with an according informative message)

limit on the number of returned records seems reasonable. Moreover, a count feature

can help avoid too generic user queries by identifying the number of data sets, which

match the data selection query, in advance. Other limitations – and thus future work

possibilities – are missing implementations such as the collections, default values and

the absent data types. Both2 the unavailable default values and the limited data types

1Repeating their execution on a smaller database then returned the correct results.
2Similarly to the systematical approach followed for the find() enhancement, these two conceptual

shortcomings can also be dealt with by building upon the existing system and utilizing its options.

https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test_files/Retests_Jupyter%20notebook.ipynb

Chapter 4. Closing discussion and Future Work 40

(solely ‘string’ and ‘integer’), which are described in paragraph FD results, have been

deferred since a workaround exists and they are not decisive for DKB’s operability.

The collections though are: As outlined in the preceding paragraph, collections can

valorise DKB’s value since they correspond to scientists’ way of thinking and behav-

ing. Moreover, remote (distributed) collections and their integration present a great

opportunity and should therefore be realized as well. Finally, paragraphs Integrated

Owlready2 optimizations and Owlready2 improvement suggestions depict Owlready2’s

built-in optimizations and possible improvement suggestions, which can also be con-

sidered for future work on the DKB.

Conclusion To sum up, the thesis’ overarching goal has been to enhance the ex-

isting DKB application by determining and resolving multiple defined issues, which

ultimately benefit the (scientific) user community. To do so, the main aim has been

split into three objectives:

1. Identification of current weaknesses: with the help of a thorough test and analysis

phase, which has involved the generation of a sufficiently large (390 MB) amount of

synthetic and real-world (test) data as well as extensive functionality and performance

tests and the evaluation of their results, three major problem categories have been iden-

tified: ‘application bugs’, ‘functionality deficiencies’ and ‘User Manual updates’.

2. Topic selection and resolution: Since the amount of work associated with all re-

vealed ABs and FDs has exceeded the given time frame, a (justified) subselection has

been made. Particular focus has thereby been put on the most pressing, research-

intensive and achievable topics, namely: a) find() functionality enhancement and b)

collections conceptualization. Before those could be approached though, all detected

application errors, which made working with the DKB prototype almost impossible,

had to and have been resolved. Thereafter, the two most important achievements have

been accomplished: An efficient implementation of the additional find() search pa-

rameters and comparison operators, as well as the conceptualization of the collections

(further accomplishments have been summarized above, Achievement summary).

3. Achievement evaluation: Finally, all attainments have been critically analysed

through both application tests and a quantitative user survey (questionnaire). The

details regarding the investigation and observed limits are listed above (Attainment

evaluation and Limitations and future work).

Bibliography

[1] Jennifer K Adelman-McCarthy, Marcel A Agüeros, Sahar S Allam, Kurt SJ

Anderson, Scott F Anderson, James Annis, Neta A Bahcall, Coryn AL Bailer-

Jones, Ivan K Baldry, JC Barentine, et al. The fifth data release of the Sloan

Digital Sky Survey. The Astrophysical Journal Supplement Series, 172(2):634,

2007.

[2] Merv Adrian, Afraz Jaffri, and Donald Feinberg. Market guide for graph

database management solutions. Gartner Research Inc, 2021.

[3] Anastasia Ailamaki, Verena Kantere, and Debabrata Dash. Managing scientific

data. Communications of the ACM, 53(6):68–78, 2010.

[4] Peter Amstutz, Michael R Crusoe, Nebojša Tijanić, Brad Chapman, John

Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr, Hervé Ménager, Maya

Nedeljkovich, et al. Common workflow language, v1. 0. 2016.

[5] Malcolm Atkinson, Rosa Filgueira, Iraklis Klampanos, Antonis Koukourikos,

Amrey Krause, Federica Magnoni, Christian Pagé, Andreas Rietbrock, and

Alessandro Spinuso. Comprehensible control for researchers and developers

facing data challenges. In 2019 15th International Conference on eScience

(eScience), pages 311–320. IEEE, 2019.

[6] Malcolm Atkinson and Patricia Hartmann. Status of DKB imple-

mentation [Unpublished]. https://docs.google.com/document/d/

10zE-- xRvaSThLAsFbyvXCMnA3tHjriWC2eSnc7DN6wk/edit#heading=h.

jju9how9gxxl, 2021. Last accessed: 2021-07-25.

[7] Malcolm Atkinson, Iraklis Klampanos, Valentina Andries, Aurora Constantin,

Rosa Filgueira, André Genünd, Ellen Gottschämmer, Vangelis Karkaletsis, An-

tonis Koukourikos, Amélie Levray, Mike Linder, Federica Magnoni, Christian

41

https://docs.google.com/document/d/10zE--xRvaSThLAsFbyvXCMnA3tHjriWC2eSnc7DN6wk/edit#heading=h.jju9how9gxxl
https://docs.google.com/document/d/10zE--xRvaSThLAsFbyvXCMnA3tHjriWC2eSnc7DN6wk/edit#heading=h.jju9how9gxxl
https://docs.google.com/document/d/10zE--xRvaSThLAsFbyvXCMnA3tHjriWC2eSnc7DN6wk/edit#heading=h.jju9how9gxxl

Bibliography 42

Pagé, Andreas Rietbrock, Alessandro Spinuso, Chrysoula Themeli, Xenofon

Tsilimparis, and Wolf Fabian. Dare Architecture and Technology D2.2, De-

cember 2020. This deliverable was approved internally and by external review-

ers and recognised as reporting significant advances in distributed support for

computationally and data intesive research and development of particular rel-

evance for research developers and for those who develop and support their

web-enabled work environments.; Last accessed: 2021-08-10.

[8] Malcolm Atkinson, Amélie Levray, and Rui Zhao. DKB

Design. https : / / docs . google . com / document / d /

1hCyoqeB8R0Ov5ZcBZVxyCOAiOST7QEP90n37PnghxGs / edit # heading =

h.4gplbkwy09pn, 2020. Last accessed: 2021-07-28.

[9] Nikolaos Bafatakis, Niels Boecker, Wenjie Boon, Martin Cabello Salazar, Jens

Krinke, Gazi Oznacar, and Robert White. Python coding style compliance on

stack overflow. In 2019 IEEE/ACM 16th International Conference on Mining

Software Repositories (MSR), pages 210–214. IEEE, 2019.

[10] Jagdev Bhogal and Imran Choksi. Handling big data using NoSQL. In 2015

IEEE 29th International Conference on Advanced Information Networking and

Applications Workshops, pages 393–398. IEEE, 2015.

[11] Desamparados Blazquez and Josep Domenech. Big Data sources and meth-

ods for social and economic analyses. Technological Forecasting and Social

Change, 130:99–113, 2018.

[12] Kyoungsoo Bok, Seunghun Yoo, Dojin Choi, Jongtae Lim, and Jaesoo Yoo.

In-memory caching for enhancing subgraph accessibility. Applied Sciences,

10(16):5507, 2020.

[13] Stuart K Card, George G Robertson, and Jock D Mackinlay. The information

visualizer, an information workspace. In Proceedings of the SIGCHI Conference

on Human factors in computing systems, pages 181–186, 1991.

[14] Antonio Celesti, Maria Fazio, and Massimo Villari. A study on join operations

in mongodb preserving collections data models for future internet applications.

Future Internet, 11(4):83, 2019.

https://docs.google.com/document/d/1hCyoqeB8R0Ov5ZcBZVxyCOAiOST7QEP90n37PnghxGs/edit#heading=h.4gplbkwy09pn
https://docs.google.com/document/d/1hCyoqeB8R0Ov5ZcBZVxyCOAiOST7QEP90n37PnghxGs/edit#heading=h.4gplbkwy09pn
https://docs.google.com/document/d/1hCyoqeB8R0Ov5ZcBZVxyCOAiOST7QEP90n37PnghxGs/edit#heading=h.4gplbkwy09pn

Bibliography 43

[15] Alex Chris. Top 10 Search Engines In The World (2021 Update). https://

www.reliablesoft.net/top-10-search-engines-in-the-world/, 2021.

Last accessed: 2021-04-14.

[16] Paolo Ciccarese and Silvio Peroni. The collections ontology: creating and han-

dling collections in owl 2 dl frameworks. Semantic Web, 5(6):515–529, 2014.

[17] European Commission. Delivering Agile Research Excellence on European e-

Infrastructures. https://cordis.europa.eu/project/id/777413, 2020.

Last accessed: 2021-08-09.

[18] Atom community. Atom gitlab-integration package. https://atom.io/

packages/gitlab-integration, 2021. Last accessed: 2021-07-28.

[19] Atom community. Atom Packages. https://flight-manual.atom.io/

using-atom/sections/atom-packages/, 2021. Last accessed: 2021-07-28.

[20] Atom community. Hydrogen. https://atom.io/packages/hydrogen, 2021.

Last accessed: 2021-07-28.

[21] Atom community. Python-Debugger package. https://atom.io/packages/

python-debugger, 2021. Last accessed: 2021-07-28.

[22] Atom community. Why Atom? https://flight-manual.atom.io/

getting-started/sections/why-atom/, 2021. Last accessed: 2021-07-28.

[23] Jaudete Daltio. Graph database with the entire water drainage network of the

Brazilian hidrography. 2019.

[24] DARE Consortium. DARE Platform tutorial. https : / / gitlab .

com/project-dare/dare-examples/-/blob/master/tutorial/DARE%

20platform%20tutorial.ipynb, 2020. Last accessed: 2021-07-25.

[25] DARE Consortium. DARE Platform tutorial - WP6 MT3D test case. https://

gitlab.com/project-dare/dare-examples/-/blob/master/tutorial/

WP6_MT3D_tutorial.ipynb, 2020. Last accessed: 2021-07-22.

[26] DARE Consortium. EPOS — MT3D – Moment Tensor In 3D. http:

//project-dare.eu/epos/mt3d-moment-tensor-in-3d/, 2020. Last ac-

cessed: 2021-07-22.

https://www.reliablesoft.net/top-10-search-engines-in-the-world/
https://www.reliablesoft.net/top-10-search-engines-in-the-world/
https://cordis.europa.eu/project/id/777413
https://atom.io/packages/gitlab-integration
https://atom.io/packages/gitlab-integration
https://flight-manual.atom.io/using-atom/sections/atom-packages/
https://flight-manual.atom.io/using-atom/sections/atom-packages/
https://atom.io/packages/hydrogen
https://atom.io/packages/python-debugger
https://atom.io/packages/python-debugger
https://flight-manual.atom.io/getting-started/sections/why-atom/
https://flight-manual.atom.io/getting-started/sections/why-atom/
https://gitlab.com/project-dare/dare-examples/-/blob/master/tutorial/DARE%20platform%20tutorial.ipynb
https://gitlab.com/project-dare/dare-examples/-/blob/master/tutorial/DARE%20platform%20tutorial.ipynb
https://gitlab.com/project-dare/dare-examples/-/blob/master/tutorial/DARE%20platform%20tutorial.ipynb
https://gitlab.com/project-dare/dare-examples/-/blob/master/tutorial/WP6_MT3D_tutorial.ipynb
https://gitlab.com/project-dare/dare-examples/-/blob/master/tutorial/WP6_MT3D_tutorial.ipynb
https://gitlab.com/project-dare/dare-examples/-/blob/master/tutorial/WP6_MT3D_tutorial.ipynb
http://project-dare.eu/epos/mt3d-moment-tensor-in-3d/
http://project-dare.eu/epos/mt3d-moment-tensor-in-3d/

Bibliography 44

[27] DARE Consortium. EPOS — RA – Rapid Ground Motion Assessment. http:

//project- dare.eu/epos/ra- rapid- ground- motion- assessment/,

2020. Last accessed: 2021-07-22.

[28] DARE Consortium. The EPOS Use Case. http://project-dare.eu/epos/,

2020. Last accessed: 2021-07-22.

[29] Andrea De Mauro, Marco Greco, and Michele Grimaldi. A formal definition of

Big Data based on its essential features. Library Review, 2016.

[30] Mihai Liviu Despa. Comparative study on software development methodolo-

gies. Database systems journal, 5(3):37–56, 2014.

[31] Nitish M Devadiga. Tailoring architecture centric design method with rapid pro-

totyping. In 2017 2nd International Conference on Communication and Elec-

tronics Systems (ICCES), pages 924–930. IEEE, 2017.

[32] Laney Douglas. 3d data management: Controlling data volume, velocity and

variety. Gartner. Retrieved, 6(2001):6, 2001.

[33] Nick Drummond, Alan Rector, Robert Stevens, Georgina Moulton, Matthew

Horridge, Hai H Wang, and Julian Seidenberg. Putting owl in order: Patterns

for sequences in owl.

[34] Charles Edeki. Agile software development methodology. European Journal of

Mathematics and Computer Science, 2(1), 2015.

[35] Sedick Baker Effendi, Brink van der Merwe, and Wolf-Tilo Balke. Suitability

of graph database technology for the analysis of spatio-temporal data. Future

Internet, 12(5):78, 2020.

[36] Kemele M Endris, Philipp D Rohde, Maria-Esther Vidal, and Sören Auer. On-

tario: Federated query processing against a semantic data lake. In Interna-

tional Conference on Database and Expert Systems Applications, pages 379–

395. Springer, 2019.

[37] Antonio Fabregat, Florian Korninger, Guilherme Viteri, Konstantinos

Sidiropoulos, Pablo Marin-Garcia, Peipei Ping, Guanming Wu, Lincoln Stein,

Peter D’Eustachio, and Henning Hermjakob. Reactome graph database:

Efficient access to complex pathway data. PLoS computational biology,

14(1):e1005968, 2018.

http://project-dare.eu/epos/ra-rapid-ground-motion-assessment/
http://project-dare.eu/epos/ra-rapid-ground-motion-assessment/
http://project-dare.eu/epos/

Bibliography 45

[38] Rosa Filguiera, Amrey Krause, Malcolm Atkinson, Iraklis Klampanos, and

Alexander Moreno. dispel4py: A python framework for data-intensive scien-

tific computing. The International Journal of High Performance Computing

Applications, 31(4):316–334, 2017.

[39] World Economic Forum. Big data, big impact: New possibilities for interna-

tional development. World Economic Forum, 2012.

[40] Apache Software Foundation. Apache JMeter™. https://jmeter.apache.

org/, 2021. Last accessed: 2021-07-25.

[41] Python Software Foundation. Built-in Types. https://docs.python.org/3/

library/stdtypes.html#, 2021. Last accessed: 2021-07-26.

[42] Python Software Foundation. Built-in Types - Comparisons. https://docs.

python.org/3/library/stdtypes.html#comparisons, 2021. Last ac-

cessed: 2021-07-26.

[43] Python Software Foundation. datetime — Basic date and time types. https://

docs.python.org/3/library/datetime.html, 2021. Last accessed: 2021-

07-25.

[44] Python Software Foundation. pdb — The Python Debugger. https://docs.

python.org/3/library/pdb.html, 2021. Last accessed: 2021-07-28.

[45] Sheel Ghule. Risk analysis and mitigation plan in software development. 2014.

[46] Faming Gong, Yuhui Ma, Wenjuan Gong, Xiaoran Li, Chantao Li, and Xiang-

bing Yuan. Neo4j graph database realizes efficient storage performance of oil-

field ontology. PloS one, 13(11):e0207595, 2018.

[47] Jim Gray, Alex S Szalay, Ani R Thakar, Peter Z Kunszt, Christopher Stoughton,

Don Slutz, and Jan vandenBerg. Data mining the SDSS SkyServer database.

arXiv preprint cs/0202014, 2002.

[48] OWL Working Group. Web Ontology Language (OWL). https://www.w3.

org/OWL/, 2012. Last accessed: 2021-07-10.

[49] RDF Working Group. Resource Description Framework (RDF). https://www.

w3.org/2001/sw/wiki/RDF, 2014. Last accessed: 2021-07-10.

https://jmeter.apache.org/
https://jmeter.apache.org/
https://docs.python.org/3/library/stdtypes.html#
https://docs.python.org/3/library/stdtypes.html#
https://docs.python.org/3/library/stdtypes.html#comparisons
https://docs.python.org/3/library/stdtypes.html#comparisons
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pdb.html
https://www.w3.org/OWL/
https://www.w3.org/OWL/
https://www.w3.org/2001/sw/wiki/RDF
https://www.w3.org/2001/sw/wiki/RDF

Bibliography 46

[50] Reactome group. Reactome. https://reactome.org/, 2021.

[51] Thomas R Gruber. Toward principles for the design of ontologies used for

knowledge sharing? International journal of human-computer studies, 43(5-

6):907–928, 1995.

[52] Patricia Hartmann. DareKB.py. https://gitlab.com/S2057482/dare_kb/-

/blob/master/src/server/dare_kb/server/DareKB.py, 2021. Last ac-

cessed: 2021-08-04.

[53] Patricia Hartmann. DKB - Creation of real-world test data. https://

gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test%20data%

20creation/Real-world%20test%20data.ipynb, 2021. Last accessed:

2021-07-22.

[54] Patricia Hartmann. DKB - Creation of synthetic test data. https://

gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test%20data%

20creation/Synthetic%20test%20data.ipynb, 2021. Last accessed: 2021-

07-22.

[55] Patricia Hartmann. DKB - Functionality retests. https://gitlab.

com/S2057482/dare_kb/-/blob/master/tests/Test_files/Retests_

Jupyter%20notebook.ipynb, 2021. Last accessed: 2021-08-09.

[56] Patricia Hartmann. DKB - User tests. https://gitlab.com/S2057482/

dare_kb/-/blob/master/tests/Test_files/User%20tests_Jupyter%

20notebook.ipynb, 2021. Last accessed: 2021-07-25.

[57] Patricia Hartmann. storage.py. https://gitlab.com/S2057482/dare_kb/-

/blob/master/src/server/dare_kb/server/storage.py, 2021. Last ac-

cessed: 2021-08-04.

[58] Clive Humby. Data is the new oil. Proc. ANA Sr. Marketer’s Summit. Evanston,

IL, USA, 2006.

[59] G2 Inc. Best Graph Databases. https://www.g2.com/categories/graph-

databases. Last accessed: 2021-07-30.

[60] Neo4j Inc. Neo4j Named a Leader in Graph Data Platforms by Independent Re-

search Firm). https://neo4j.com/press-releases/neo4j-leads-graph-

data-platform-wave/, 2020. Last accessed: 2021-07-30.

https://gitlab.com/S2057482/dare_kb/-/blob/master/src/server/dare_kb/server/DareKB.py
https://gitlab.com/S2057482/dare_kb/-/blob/master/src/server/dare_kb/server/DareKB.py
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test%20data%20creation/Real-world%20test%20data.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test%20data%20creation/Real-world%20test%20data.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test%20data%20creation/Real-world%20test%20data.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test%20data%20creation/Synthetic%20test%20data.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test%20data%20creation/Synthetic%20test%20data.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test%20data%20creation/Synthetic%20test%20data.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test_files/Retests_Jupyter%20notebook.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test_files/Retests_Jupyter%20notebook.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test_files/Retests_Jupyter%20notebook.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test_files/User%20tests_Jupyter%20notebook.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test_files/User%20tests_Jupyter%20notebook.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/tests/Test_files/User%20tests_Jupyter%20notebook.ipynb
https://gitlab.com/S2057482/dare_kb/-/blob/master/src/server/dare_kb/server/storage.py
https://gitlab.com/S2057482/dare_kb/-/blob/master/src/server/dare_kb/server/storage.py
https://www.g2.com/categories/graph-databases
https://www.g2.com/categories/graph-databases
https://neo4j.com/press-releases/neo4j-leads-graph-data-platform-wave/
https://neo4j.com/press-releases/neo4j-leads-graph-data-platform-wave/

Bibliography 47

[61] Nathan Jennings. Python Debugging With Pdb. https://realpython.com/

python-debugging-pdb/. Last accessed: 2021-07-28.

[62] Pete Johnston and Bridget Robinson. Collections and collection description.

UKOLN, 2002.

[63] Irvin R Katz and John R Anderson. Debugging: An analysis of bug-location

strategies. Human-Computer Interaction, 3(4):351–399, 1987.

[64] J Leslie Keedy and John Rosenberg. Uniform support for collections of ob-

jects in a persistent environment. In Proceedings of the Twenty-Second An-

nual Hawaii International Conference on System Sciences. Volume II: Software

Track, volume 2, pages 26–27. IEEE Computer Society, 1989.

[65] Iraklis A Klampanos, Chrysoula Themeli, Alessandro Spinuso, Rosa Filgueira,

Malcolm Atkinson, André Gemünd, and Vangelis Karkaletsis. DARE Platform:

a Developer-Friendly and Self-Optimising Workflows-as-a-Service Framework

for e-Science on the Cloud. Journal of Open Source Software, 5(54):2664, 2020.

[66] Dave Kuhlman. A python book: Beginning python, advanced python, and

python exercises. Dave Kuhlman Lutz, 2009.

[67] Archana P Kumar, Abhishekh Kumar, and Vipin N Kumar. A comprehensive

comparative study of sparql and sql. International Journal of Computer Science

and Information Technologies, 2(4):1706–1710, 2011.

[68] Rohit Kumar Kaliyar. Graph databases: A survey. In International Conference

on Computing, Communication & Automation, pages 785–790. IEEE, 2015.

[69] Raoul Kwuimi and Jean Vincent Fonou-Dombeu. Storing and querying on-

tologies in relational databases: An empirical evaluation of performance of

database-based ontology stores. In Proceedings of the 9th International Con-

ference on Advances in Semantic Processing (SEMAPRO 2015), pages 6–12,

2015.

[70] Jean-Baptiste Lamy. Owlready2 - Benchmark. http : / / www .

lesfleursdunormal.fr/static/informatique/owlready/benchmark_

en.html. Last accessed: 2021-07-30.

https://realpython.com/python-debugging-pdb/
https://realpython.com/python-debugging-pdb/
http://www.lesfleursdunormal.fr/static/informatique/owlready/benchmark_en.html
http://www.lesfleursdunormal.fr/static/informatique/owlready/benchmark_en.html
http://www.lesfleursdunormal.fr/static/informatique/owlready/benchmark_en.html

Bibliography 48

[71] Jean-Baptiste Lamy. The flowers of evidence. http : / / www .

lesfleursdunormal.fr/static/index_en.html. Last accessed: 2021-07-

30.

[72] Jean-Baptiste Lamy. Owlready: Ontology-oriented programming in Python

with automatic classification and high level constructs for biomedical ontolo-

gies. Artificial intelligence in medicine, 80:11–28, 2017.

[73] Jean-Baptiste Lamy. Owlready 2 - 0.13. http://owlready.8326.n8.nabble.

com/Owlready-2-0-13-td756.html, 2018. Last accessed: 2021-07-21.

[74] Jean-Baptiste Lamy. SPARQL queries. https://owlready2.readthedocs.

io/en/latest/sparql.html, 2019. Last accessed: 2021-07-29.

[75] Amélie Levray, Patricia Hartmann, Rui Zhao, and Malcolm Atkinson. DARE

Knowledge Base User Manual. https://docs.google.com/document/

d/1u62251KnRURztDyBbxo77yfGGBpjxjzlWBlSinArxX0/edit#heading=h.

mhz5evrki0j1, 2020. Last accessed: 2021-08-10.

[76] Amélie Levray and Rui Zhao. DKB Specification. https://docs.google.

com/document/d/1bh2CzZJOUOYL_1nPJI8f5hcokHYxB1m9NHr9owWq_F0,

2020. Last accessed: 2021-07-28.

[77] SolarWinds Worldwide LLC. Database Performance Monitor. https://www.

solarwinds.com/database-performance-monitor, 2021. Last accessed:

2021-07-25.

[78] Steve Lohr. The Age of Big Data. https://www.nytimes.com/2012/02/

12/sunday-review/big-datas-impact-in-the-world.html, 2012. Last

accessed: 2021-08-05.

[79] José Marı́a Cavanillas, Edward Curry, and Wolfgang Wahlster. New horizons

for a data-driven economy: a roadmap for usage and exploitation of big data in

Europe. Springer Nature, 2016.

[80] Bernard Marr. What Is Unstructured Data And Why Is It So Important To

Businesses? An Easy Explanation For Anyone. https://www.forbes.com/

sites/bernardmarr/2019/10/16/what-is-unstructured-data-and-

why-is-it-so-important-to-businesses-an-easy-explanation-for-

anyone/, 2019. Last accessed: 2021-04-14.

http://www.lesfleursdunormal.fr/static/index_en.html
http://www.lesfleursdunormal.fr/static/index_en.html
http://owlready.8326.n8.nabble.com/Owlready-2-0-13-td756.html
http://owlready.8326.n8.nabble.com/Owlready-2-0-13-td756.html
https://owlready2.readthedocs.io/en/latest/sparql.html
https://owlready2.readthedocs.io/en/latest/sparql.html
https://docs.google.com/document/d/1u62251KnRURztDyBbxo77yfGGBpjxjzlWBlSinArxX0/edit#heading=h.mhz5evrki0j1
https://docs.google.com/document/d/1u62251KnRURztDyBbxo77yfGGBpjxjzlWBlSinArxX0/edit#heading=h.mhz5evrki0j1
https://docs.google.com/document/d/1u62251KnRURztDyBbxo77yfGGBpjxjzlWBlSinArxX0/edit#heading=h.mhz5evrki0j1
https://docs.google.com/document/d/1bh2CzZJOUOYL_1nPJI8f5hcokHYxB1m9NHr9owWq_F0
https://docs.google.com/document/d/1bh2CzZJOUOYL_1nPJI8f5hcokHYxB1m9NHr9owWq_F0
https://www.solarwinds.com/database-performance-monitor
https://www.solarwinds.com/database-performance-monitor
https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html
https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html
https://www.forbes.com/sites/bernardmarr/2019/10/16/what-is-unstructured-data-and-why-is-it-so-important-to-businesses-an-easy-explanation-for-anyone/
https://www.forbes.com/sites/bernardmarr/2019/10/16/what-is-unstructured-data-and-why-is-it-so-important-to-businesses-an-easy-explanation-for-anyone/
https://www.forbes.com/sites/bernardmarr/2019/10/16/what-is-unstructured-data-and-why-is-it-so-important-to-businesses-an-easy-explanation-for-anyone/
https://www.forbes.com/sites/bernardmarr/2019/10/16/what-is-unstructured-data-and-why-is-it-so-important-to-businesses-an-easy-explanation-for-anyone/

Bibliography 49

[81] Kevin McCusker and Sau Gunaydin. Research using qualitative, quantitative

or mixed methods and choice based on the research. Perfusion, 30(7):537–542,

2015.

[82] Jim Melton and Alan R Simon. SQL: 1999: Understanding relational language

components. Elsevier, 2001.

[83] Tilman Michaeli and Ralf Romeike. Improving debugging skills in the class-

room: The effects of teaching a systematic debugging process. In Proceedings

of the 14th workshop in primary and secondary computing education, pages

1–7, 2019.

[84] Robert B Miller. Response time in man-computer conversational transactions.

In Proceedings of the December 9-11, 1968, fall joint computer conference, part

I, pages 267–277, 1968.

[85] Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1994.

[86] Maria A Nieto-Santisteban, Aniruddha R Thakar, Alexander S Szalay, and Jim

Gray. Large-scale query and xmatch, entering the parallel zone. arXiv preprint

cs/0701167, 2007.

[87] Hewlett Packard. Failing to meet mobile app user expectations: a mobile user

survey. Tech. rep., 2015.

[88] Eric Pardede, J Wenny Rahayu, and David Taniar. Mapping methods and query

for aggregation and association in object-relational database using collection. In

International Conference on Information Technology: Coding and Computing,

2004. Proceedings. ITCC 2004., volume 1, pages 539–543. IEEE, 2004.

[89] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity

of sparql. In International semantic web conference, pages 30–43. Springer,

2006.

[90] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity

of sparql. ACM Transactions on Database Systems (TODS), 34(3):1–45, 2009.

[91] Eric Prud’Hommeaux, Andy Seaborne, et al. Sparql query language for rdf.

w3c. Internet: https://www.w3.org/TR/rdf-sparql-query/, 2008. Last accessed:

2021-07-29.

Bibliography 50

[92] Giuseppe Psaila. A database model for heterogeneous spatial collections: Def-

inition and algebra. In 2011 International Conference on Data and Knowledge

Engineering (ICDKE), pages 30–35. IEEE, 2011.

[93] Hongbin Qiu, Aihua Zhou, Bin Hu, Bo Chai, Yan Song, and Rui Chen. Design

and Implementation of Power Grid Graph Data Management Platform based

on Distributed Storage. In IOP Conference Series: Earth and Environmental

Science, volume 234, page 012026. IOP Publishing, 2019.

[94] Raghu Ramakrishnan, Johannes Gehrke, and Johannes Gehrke. Database man-

agement systems, volume 3. McGraw-Hill New York, 2003.

[95] Pat Research. Top 27 Graph Databases. https : / / www .

predictiveanalyticstoday.com/top- graph- databases/. Last ac-

cessed: 2021-07-30.

[96] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases: new opportu-

nities for connected data. O’Reilly Media, Inc., 2015.

[97] Pablo Romero, Benedict Du Boulay, Richard Cox, Rudi Lutz, and Sallyann

Bryant. Debugging strategies and tactics in a multi-representation software envi-

ronment. International Journal of Human-Computer Studies, 65(12):992–1009,

2007.

[98] Masoud Salehpour and Joseph G Davis. Knowledge Graphs for Processing

Scientific Data: Challenges and Prospects. arXiv preprint arXiv:2004.06203,

2020.

[99] Christie Schneider. The biggest data challenges that you might not even know

you have. IBM Watson, 2016.

[100] Ascii Set. ASCII characters 0 to 127. http://asciiset.com/, 2019. Last

accessed: 2021-07-26.

[101] GauravVaswani ShefaliPatil and Anuradha Bhatia. Graph databases-an

overview. 1Student, ME Computers, Terna College of Engg, Navi Mumbai,

2:657–660, 2014.

[102] Arie Shoshani, Frank Olken, and Harry Kwing Tong Wong. Characteristics of

scientific databases. 1984.

https://www.predictiveanalyticstoday.com/top-graph-databases/
https://www.predictiveanalyticstoday.com/top-graph-databases/
http://asciiset.com/

Bibliography 51

[103] Aisha Siddiqa, Ahmad Karim, and Abdullah Gani. Big data storage technolo-

gies: a survey. Frontiers of Information Technology & Electronic Engineering,

18(8):1040–1070, 2017.

[104] Josep Silva. A survey on algorithmic debugging strategies. Advances in engi-

neering software, 42(11):976–991, 2011.

[105] SmartBear Software. LoadNinja. https://loadninja.com/, 2021. Last

accessed: 2021-07-25.

[106] solidIT GmbH. DB-Engines Ranking of Graph DBMS. https://db-

engines.com/en/ranking/graph+dbms, 2021. Last accessed: 2021-07-30.

[107] Peter Sondergaard. Big data fades to the algorithm economy. Retrieved from

Forbes: http://www.forbes.com/sites/gartnergroup/2015/08/14/big-data-fades-

to-the-algorithm-economy, 2015.

[108] Alexander S Szalay, Peter Z Kunszt, Ani Thakar, Jim Gray, Don Slutz, and

Robert J Brunner. Designing and mining multi-terabyte astronomy archives:

The sloan digital sky survey. ACM SIGMOD Record, 29(2):451–462, 2000.

[109] The University of Edinburgh. dispel4py 2015.06 documentation. https://

pythonhosted.org/dispel4py/, 2014. Last accessed: 2021-07-25.

[110] William Van Lepthien and Kenneth M Anderson. A metainformatical view of

collections. In Proceedings of the 2005 symposia on Metainformatics, pages

16–es, 2005.

[111] Guido van Rossum, Barry Warsaw, and Nick Coghlan. PEP 8 – Style

Guide for Python Code. https://www.python.org/dev/peps/pep-0008/

#programming-recommendations, 2013. Last accessed: 2021-07-28.

[112] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Lau-

rens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert.

Triple pattern fragments: a low-cost knowledge graph interface for the web.

Journal of Web Semantics, 37:184–206, 2016.

[113] Jing Wang, Nikos Ntarmos, and Peter Triantafillou. Graphcache: A caching

system for graph queries. 2017.

https://loadninja.com/
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://pythonhosted.org/dispel4py/
https://pythonhosted.org/dispel4py/
https://www.python.org/dev/peps/pep-0008/#programming-recommendations
https://www.python.org/dev/peps/pep-0008/#programming-recommendations

Bibliography 52

[114] Jonathan Stuart Ward and Adam Barker. Undefined by data: a survey of big

data definitions. arXiv preprint arXiv:1309.5821, 2013.

[115] Adrienne Watt, Nelson Eng, et al. Database design - 2nd Edition. BCcampus,

2014. Retrieved from https://opentextbc.ca/dbdesign01/.

[116] Jim Webber and Rik Van Bruggen. Graph Databases for Dummies. John Wiley

& Sons, Inc., 2020.

[117] Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. Novice reflec-

tions on debugging. In Proceedings of the 52nd ACM Technical Symposium on

Computer Science Education, pages 73–79, 2021.

[118] E James Whitehead Jr. Design spaces for link and structure versioning. In

Proceedings of the 12th ACM conference on Hypertext and Hypermedia, pages

195–204, 2001.

[119] E James Whitehead Jr. Uniform comparison of data models using containment

modeling. In Proceedings of the thirteenth ACM conference on Hypertext and

hypermedia, pages 182–191, 2002.

[120] Byoung-Ha Yoon, Seon-Kyu Kim, and Seon-Young Kim. Use of graph database

for the integration of heterogeneous biological data. Genomics & informatics,

15(1):19, 2017.

[121] Noel Yuhanna, Gene Leganza, and Daniel Weber. The forrester wave™: Graph

data platforms, q4 2020. Forrester Research Inc, 2020.

[122] Andreas Zeller. Why programs fail: a guide to systematic debugging. Elsevier,

2009.

https://opentextbc.ca/dbdesign01/

Appendix A

Test cases and results

A.1 Site functions

“Each DKB site, shared by users, is set up using management tools [..] [which] are

described in [DKB User Manual’s] section DKB site management. Thus, [this] con-

figures the site name used by login and other site properties. It also pre-populates the

site with a standard library of concepts to help you get started.” (Taken from the DKB

User Manual [75])

Test scenario Expected outcome Test result

DKB login1: First of all, import

the client library DKBlib via import

DKBlib as DKB before executing

the function login(‘site name’,

‘username’) on the DKB object

with site- and username and storing

the returned DKBService in object

dkb.

Success message such as

“INFO:werkzeug:localhost–[DD/MM/YYYY

HH:MM:SS]” ←[37mPOST /user/login

HTTP/1.1←[0m”200-” appearing in

the command prompt to reflect the

successful DKB login.

Success

DKB status2: On DKBService object

dkb execute the status() function to

retrieve the status information.

Printing the status information should

return a list with the following pa-

rameters and their according values:

{‘contexts available’: [‘’], ‘current context’: ‘’,

‘session id’: ‘’, ‘site name’: ‘’, ‘username’: ‘’}.

Success

1“The function login allows any user to connect to a site previously created by specifying the
site name and a username. An optional argument is session id. This function returns a DKBService.”
(Taken from DKB User Manual [75])

2“The status function returns a dictionary of information about the current use of the DKB site.
It contains the session id, the list of contexts available, the current context, and the name of the site as

53

Appendix A. Test cases and results 54

DKB logout3: On DKBService ob-

ject dkb execute the logout() func-

tion to disconnect from the DKB

server.

Success message such as

“INFO:werkzeug:localhost–[DD/MM/YYYY

HH:MM:SS]” ←[37mPOST /user/logout

HTTP/1.1←[0m”200-” appearing in the

command prompt to reflect the

successful DKB logout.

Success

Table A.1: DKB site functions

A.1.1 User Manual updates

Owlready2 warning message Depending on one’s own Owlready2 version and avail-

able modules, the following warning message may appear after the DKB server has

been started: “Owlready2 Warning: optimized Cython parser module

‘owlready2 optimized’ is not available, defaulting to slower Python implementation”.

From a functionality point of view it is not required to use the optimized module,

however, using it can result in a 20% performance acceleration for parsing ontologies

[73, 72] (please refer to Appendix C.1.1).

Windows symbolic link issue Windows users may encounter problems with using

DKB if – for instance – the ../../common path in the common.txt files is not resolving

properly (symbolic link issue). In such a case users have to manually re-create those

links as now described in the User Manual [75] (please refer to Appendix C.1.2).

well as the currently logged in user.” (Taken from DKB User Manual [75])
3“The close function records in the storage all of the information created. It terminates interaction

with the DKB started at login.” (Taken from DKB User Manual [75])

Appendix A. Test cases and results 55

A.2 Context functions

Test scenario Expected outcome Test result

Creation of new con-

text4: on DKBService

object dkb, execute the

new context(‘context name’,

‘context description’)

function with a specified context

name and description to create a

new context.

The newly created context should

be listed under the available con-

texts when executing status()

[‘contexts available’] on the

DKBService object dkb and print-

ing the results.

Success

Context status5: on DKB-

Service object dkb exe-

cute the context status(

‘optional context name’)

function both

• Without a context name

(optional parameter op-

tional context name empty)

• With a specified

context name op-

tional context name (not

current context)

to retrieve the (current/ given) con-

text’s status information.

In both cases, printing the (current/

given) context’s status information

should return a list with the follow-

ing parameters and their according

values: {‘concepts’: {‘’}, ‘identifier’: ‘’, ‘in-

stances’: {‘’}, ‘mode’: ‘’, ‘owner’: ‘’, ‘pre-

fix’: ‘’, ‘search path’: [‘’], ‘state’: ‘’, ‘title’: ‘’,

‘users’: [‘’]}.

Success

4“new context() creates a new context. The owner defaults to the current user. The new context
has a search path that is a list of contexts to search after looking for a name in the new context. Each
context has a prefix that must be unique for this site. It may have a title that indicates its purpose.”
(Taken from DKB User Manual [75])

5“The function context status() returns a dictionary of information about the current context or
any other context if an argument is provided. The dictionary contains information like: the identifier,
the owner, the prefix, the search path, the state, the title, the list of concepts and the list of instances, the
mode: ‘R’ or ‘W’, users.” (Taken from DKB User Manual [75])

Appendix A. Test cases and results 56

Switching into a different

context6: Again on DKBSer-

vice object dkb, execute the

enter(‘context name’,

‘mode’) function with both

• Read ‘R’ and

• Write ‘W’ mode

and print the re-

sult of dkb.status()

[’current context’] and

dkb.context status()[’mode’]

to verify the current context and its

access mode.

Both the current context and

its access mode should match

the parameters specified in the

enter(‘context name’,

‘mode’) function

Success

Leaving the current context7:

Execute the leave() function

on DKBService object dkb and

check with either dkb.status()

[‘current context’] or

dkb.context status() what

the current context is.

According to the DKB User Man-

ual, executing the leave() func-

tion on DKBService object dkb

should leave the user with no as-

signed context.

Differs (UMU)

Context search path: Get con-

text search path8: on DKB-

Service object dkb, execute the

get search path() function.

The expected result would be a list

of all the context prefixes which are

contained in the current context’s

search path.

Success

6“The enter() function allows you to switch between contexts, leaving your current one and enter-
ing the one specified in the argument a prefix. The second argument specifies whether you are entering
in reading mode or writing mode. It accepts two values ‘R’ and ‘W’.” (Taken from DKB User Manual
[75])

7“The leave function quits the current context. It leaves you with no context set and therefore you
are prevented from creating new concepts or instances until you enter another context.” (Taken from
DKB User Manual [75])

8“The get search path() function returns the list of prefixes that are in the search path of the
current context.” (Taken from DKB User Manual [75])

Appendix A. Test cases and results 57

Context search path: Set con-

text search path9: Enter an existing

context in both

• Read ‘R’ and

• Write ‘W’ mode

and afterwards execute

the set search path(

‘new search path‘) func-

tion on DKBService object dkb

with both a(n)

• Existing context names as

‘new search path’ and

• Invented context names as

‘new search path’.

Check the result by running

dkb.get search path().

• Write mode: search path

matches (list) of given con-

text prefixes

• Read mode: user not able to

adjust context search path

• Existing context name(s):

search path matches (list) of

given context prefixes

• Invented context names: er-

ror message Context ‘xyz’

cannot be found, unexisting

or access not granted. Func-

tion set search path failed.

Success

Context freeze10: Enter an existing

context in both

• Read ‘R’ and

• Write ‘W’ mode

and afterwards execute

the context freeze(

‘optional context name’)

function on DKBService object

dkb, both

• Without a context name

(optional parameter op-

tional context name empty)

• With a specified

context name op-

tional context name (not

current context).

For all context states and no matter

whether a optional context name

has been entered or not, the result

should be the same:

• Write mode: the context

state changed to ‘frozen’

• Read mode: the context

state is unchanged.

Success

9“The set search path() function replaces the search path of the current context with the one
provided (new search path).” (Taken from DKB User Manual [75])

10“The function context freeze() freezes the current context or the specified context into a state
that doesn’t permit any further modifications to instances in this context nor to the search path. A method
may use this to ensure that the state of a context is preserved for diagnostic and audit purposes. Since

Appendix A. Test cases and results 58

Additionally, check func-

tion context freeze(

‘optional context name’)

on contexts in different states:

• ‘active’

• ‘new’

Finally, check the result by run-

ning dkb.context status(

‘optional context

name’)[‘state’]).

Failure (AB)

Context deprecate11: Enter an ex-

isting context in both

• Read ‘R’ and

• Write ‘W’ mode

and afterwards execute

the context deprecate(

‘optional context

name’) function on DKBService

object dkb, both

• Without a context name

(optional parameter op-

tional context name left

empty)

• With a specified

context name op-

tional context name (not

current context).

For all context states except

‘frozen’: no matter whether a

optional context name has been

entered or not, the result should be

the same:

• Write mode: the context

state changed to ‘depre-

cated’

• Read mode: The context

state is unchanged.

Success

that method itself may be being debugged, context reset() is still permitted.” (Taken from DKB User
Manual [75])

11“The function context deprecate() changes the state of the context to ‘deprecated’. This still
allows the user to enter and modify the context, but on entry they will be warned that the context is soon
to be discarded.” (Taken from DKB User Manual [75])

Appendix A. Test cases and results 59

Additionally, check func-

tion context deprecate(

‘optional context

name’) on contexts in different

states:

• ‘active’

• ‘new’

• ‘frozen’

Finally, check the result by run-

ning dkb.context status(

‘optional context

name’)[‘state’]).

Success

Context reset12: enter an existing

context in both

• Read ‘R’ and

• Write ‘W’ mode

and afterwards execute

the context reset(

‘optional context name’)

function on DKBService object

dkb, both

• Without a context name

(optional parameter op-

tional context name left

empty)

• With a specified

context name op-

tional context name (not

current context).

For all context states and no matter

whether a optional context name

has been entered or not, the result

should be the same:

• Write mode: the context

state changed to ‘discarded’

• Read mode: the context

state is unchanged.

Failure (AB)

12“The function context reset() discards the context, making its prefix available to be reused. All
concepts and instances in this context are marked ‘discarded’ and therefore their names and identities
may be recreated. This is designed to support development and debugging, as a new version of that the
code that created the context and its contents can now be rerun.” (Taken from DKB User Manual [75])

Appendix A. Test cases and results 60

Additionally, check func-

tion context reset(

‘optional context name’)

on contexts in different states:

• ‘active’

• ‘new’

• ‘frozen’

• ‘deprecated’

Finally, check the result by run-

ning dkb.context status(

‘optional context

name’)[‘state’]).

Failure (AB)

Table A.2: DKB context functions

A.2.1 Application bug

Discarding (resetting) a frozen context As of now, it is not possible to

context reset a ‘frozen’ context (figure A.1(b)) since such a context – with state

‘frozen’ – cannot be entered (enter()) in write mode ‘W’ (as figure A.1(a) illustrates).

This however is (currently) required to discard the context via context reset.

A.2.2 User Manual updates

Context naming convention Some information regarding the context naming con-

vention have been added (e.g., no whitespace allowed, else a DKBException: Identi-

fierWrong is thrown (please refer to Appendix C.3).

Entering a context One is not able to enter() a context – neither in write ‘W’ nor

in read ‘R’ mode – if another user is currently logged into the same context in write

‘W’ mode (‘MultiUser’ DKBException). The fact, that this only works if both (or all)

users access the context in read mode ‘R’ has been added to the User Manual (please

refer to Appendix C.3).

Leaving the current context According to the DKB User Manual, executing the

leave() function on DKBService object dkb should leave the user with no assigned

context.

Appendix A. Test cases and results 61

(a) Enter frozen context

(b) Reset frozen context

Figure A.1: DKB: entering and resetting a ‘frozen’ context

However, instead of leaving the user with no context, the user is being assigned to the

first context ever created (“default” context) and does not leave the user with no context

at all; Thus, it is still possible to create concepts and instances and therefore the User

Manual has been updated accordingly (please refer to Appendix C.3).

Freeze(), Deprecate() and Reset() a context None of the three func-

tions context freeze(), context deprecate() and context reset() works if

the given context has not been entered in Write mode ‘W’. Trying to do so results in

a WritingPermissionDeniedError. Therefore, this information has been added to the

User Manual (please refer to Appendix C.3).

Appendix A. Test cases and results 62

A.3 Concept functions

Test scenario Expected outcome Test result

Creation of new concept13: on

DKBService object dkb, execute the

new concept(‘concept name)

function with a specified concept

name to create a new concept.

Additionally, create concepts which

contain at least one the following

parameters each time:

• specialises

• mutability

• required

• recommended

• optional

• translation

• description

• methods

• py class.

Thereafter verify the created

concepts by printing the re-

sults of dkb.context status()

[‘concepts’].

All created concepts should be listed

under context status’ ‘concepts’.

Success

13“The function new concept() creates and stores a new concept developed by the user. A concept
is specified by a name, it can be a subclass of another concept, specified by specialises. And have
multiple optional arguments that are defined below. The concept created belongs to the context it has
been created in but can be accessed from any context, normally one with it in its search path.” (Taken
from DKB User Manual [75])

Appendix A. Test cases and results 63

Get concept14: On DKBSer-

vice object dkb execute the

get(‘concept name’ OR

‘concept PID’) function with

both

• Concept name concept name

• Concept PID concept PID

to retrieve the specified concept.

Moreover, test the two optional pa-

rameters (separately and together):

• ‘only these’ (empty15 OR se-

lection of

– specialises

– mutability

– required

– recommended

– optional

– translation

– description

– methods

– py class.

• ‘ignore discarded’ (Boolean)

Additionally, check the

get(‘concept’) function on

concepts in different states (same

state as context they belong to):

• ‘active’

• ‘new’

• ‘frozen’

• ‘deprecated’

• ‘discarded’

In any of the described cases, the

according concept together with its

specified parameter(s) should be re-

turned.

Partial failure

14“The get() function allows the user to look for a specific concept or instance given an identity
passed as a parameter. It returns a dictionary of the attributes of the concept or instance. The identity
parameter can be a name only, a name with the context specified, or a PID. If it is only the name, the
search paths determine where to look if it is not found in the current context. The function has two
optional parameters: only these which allows selection of attributes the user wants returned. And
ignore discarded which allows it to include concepts and instances that have been discarded.” (Taken
from DKB User Manual [75])

15‘only these’ = [] solely verifies that the concept exists

Appendix A. Test cases and results 64

Find concept16: Again, on

DKBService object dkb execute

the find(‘query’) function.

The query should look as fol-

lows: ‘(operator, search criteria,

search value)’, where operator can

take ‘==’, ‘isa’ and ‘isa exactly’

values and the search criteria can

be anything from ‘PID’, ‘prefix’,

‘description’, ‘state’,

‘mutability’, ‘timestamp’,

‘translation’, ‘method’ and

‘py class’. Moreover, test the

three optional parameters (sepa-

rately and together):

• ‘pid only’ (Boolean)

• ‘only these’ (selection of

– specialises

– mutability

– required

– recommended

– optional

– translation

– description

– methods

– py class.

• ‘ignore discarded’ (Boolean)

Additionally, check

find(‘query’) on concepts in

different states (state alike context

they belong to):

• ‘active’

• ‘new’

• ‘frozen’

• ‘deprecated’

In any of the described cases (and

with any parameter selection and

combination), the matching con-

cept(s) together with its/ their spec-

ified parameter(s) should be re-

turned.

Partial failure

16“The find() function allows the user to query the knowledge base about any instances (con-
cepts included) that exist. It takes a query and three optional arguments: pid only, only these and

Appendix A. Test cases and results 65

• ‘discarded’

Finally, test also more complex

queries, concatenated either by

‘AND’ or ‘OR’ (e.g., query =

(‘AND’, (cond1, cond2)) with

cond1 = cond2 = ‘(operator,

search criteria, search value)’ as

described above.

Partial failure Partial failure

Table A.3: DKB concept functions

A.3.1 Application bugs

General find() and get() concept issue after DKB server restart Once the

DKB server had been restarted via the command prompt17, it was no longer possible to

access the previously (during the former DKB server session) created and meanwhile

saved concepts and instances with the get() and find() functions: For concepts,

get() and find() returned an “Internal Server Error”, as illustrated in figure A.2.

This error has meanwhile been corrected: previously created concepts are now also

selectable after a DKB server restart.

Figure A.2: DKB: accessing previously created concept after server restart

ignore discarded. These last two arguments work the same way as for get. The query supports
different operations.” (Taken from DKB User Manual [75])

17 Server shut down: CTRL + C for quitting, Server start: dkb server command

Appendix A. Test cases and results 66

Find concept issues Previously, find() concepts did not work for the search crite-

ria name, description, state, mutability, timestamp, translation, method and

py class - solely PID and prefix returned the expected outcome. The other parameter

either issued an empty result or one of the following errors (as depicted in figure A.3):

• TypeError

– Unhashable type: ‘dict’, []

– Unhashable type: ‘IndividualValueList’, []

– get instance() missing 1 required positional argument:‘name’, []

• Internal Server Error

After debugging and correcting the error, find() now returns the specified concepts

and instances without any such error message.

(a) Name and description (b) State, mutability and translation

Figure A.3: DKB: find concept issues

A.3.2 Functionality deficiencies

Concepts creation: limited attribute types Currently only ‘string’ and ‘integer’

types can be set during the concept attribute specification (e.g., specifying a Boolean

variable returns InstanceNotFoundError: The instance for : ‘variable type’ does not

exist or cannot be found. Function resolve failed.)

Appendix A. Test cases and results 67

(c) Py class, methods and timestamp

Figure A.3: DKB: Find concept issues (cont.)

Concepts creation: lacking default values Moreover, no default values (such as

Boolean = True) can be specified during the concept attribute specification.

Find concepts So far, the find() functionality (to query data from the database)

has been rather limited in regards to lookup parameters and operators:

• For concepts, solely PID and prefix worked.

• Moreover, equality (‘==’) checks have been implemented but no inequality or

range selection

Now, the following parameters and operators are in place:

• For concepts: in addition to the above two parameters, description, state, muta-

bility, timestamp, translation, method and py class are also working.

• Operators: an inequality (‘!=’) and various range operators (‘<’, ‘<=’ or ‘=<’,

‘>’, ‘>=’ or ‘=>’) have been added.

Appendix A. Test cases and results 68

A.3.3 User Manual update

Find concepts The general User Manual find() chapter has been extended through

sections

• “Available property search criteria and expected values” and

• “Range sort: selection according to ASCII sort order”,

which explain the available input parameters and expected values as well as the way

the range selection works for ‘string’ values (please refer to Appendix C.2).

A.4 Instance functions

Test scenario Expected outcome Test result

Creation of a new instances18: on

DKBService object dkb, execute the

new instance(‘concept name’,

‘inst name’) function with the

name of the concept, of which an

instance called inst name should

be created. Additionally, create

instances which contain at least one

the following parameters each time:

• specialises

• mutability

• required

• recommended

• optional

• translation

• description

• methods

• py class.

Thereafter verify the created

instances by printing the re-

sults of dkb.context status()

[‘instances’].

All created instances should be

listed under context status’ ‘in-

stances’.

Failure

18“The function new instance() creates an instance of a concept, by specifying the concept name,
and filling attributes. In particular, required attributes are mandatory, but they can be filled with None,
and later be updated.” (Taken from DKB User Manual [75])

Appendix A. Test cases and results 69

Get instance14 On DKB-

Service object dkb execute

the get(‘inst name’ OR

‘inst PID’) function with

both

• Instance name inst name

• Instance PID inst PID

to retrieve the specified instance.

Moreover, test the two optional pa-

rameters (separately and together):

• ‘only these’ (empty19 OR se-

lection of

– specialises

– mutability

– required

– recommended

– optional

– translation

– description

– methods

– py class.

• ‘ignore discarded’ (Boolean)

Additionally, check the

get(‘instance’) function on

instances in different states (same

state as context they belong to):

• ‘active’

• ‘new’

• ‘frozen’

• ‘deprecated’

• ‘discarded’

In any of the described cases, the

according instance together with its

specified parameter(s) should be re-

turned.

Partial failure

Find instance16 Again, on DKB-

Service object dkb execute the

find(‘query’) function. The

query should look as follows:

In any of the described cases

(and with any parameter selection

and combination), the matching in-

stance(s) together with its/ their

Partial failure

19‘only these’ = [] solely verifies that the instance exists

Appendix A. Test cases and results 70

‘(operator, search criteria,

search value)’, where opera-

tor can take ‘==’, ‘isa’ and

‘isa exactly’ values and the

search criteria can be anything

from ‘PID’, ‘prefix’, ‘state’,

‘mutability’ and ‘timestamp’.

Moreover, test the three optional pa-

rameters (separately and together):

• ‘pid only’ (Boolean)

• ‘only these’ (selection of

– specialises

– mutability

– required

– recommended

– optional

– translation

– description

– methods

– py class.

• ‘ignore discarded’ (Boolean)

Additionally, check

find(‘query’) on instances

in different states (state alike

context they belong to):

• ‘active’

• ‘new’

• ‘frozen’

• ‘deprecated’

• ‘discarded’

Finally, test also more complex

queries, concatenated either by

‘AND’ or ‘OR’ (e.g., query =

(‘AND’, (cond1, cond2)) with

cond1 = cond2 = ‘(operator,

search criteria, search value)’.

specified parameter(s) should be re-

turned.

Partial failure

Table A.4: DKB instance functions

Appendix A. Test cases and results 71

A.4.1 Application bugs

General find() and get() instance issue after DKB server restart Once the

DKB server had been restarted via the command prompt17, it was no longer possible to

access the previously (during the former DKB server session) created and meanwhile

saved concepts and instances with the get() and find() functions: for instances,

get() and find() resulted in various TypeErrors, as illustrated in figure A.4.

This error has meanwhile been corrected: previously created instances are now also

selectable after a DKB server restart.

Figure A.4: DKB: accessing previously created instance after server restart

Find instance issues Previously, find() instance did not work for the search crite-

ria name, state and mutability - solely PID, prefix and timestamp returned the ex-

pected outcome. The other three parameter returned a TypeError stating “get instance()

missing 1 required positional argument:‘name’, []” (also exemplified in figure-A.5.

After debugging and correcting the error, find() now returns the specified concepts

and instances without any such error message.

Appendix A. Test cases and results 72

(a) Name

(b) State and mutability

Figure A.5: DKB: find instance issues

A.4.2 Functionality deficiency

Find instances So far, the find() functionality (to query data from the database)

has been rather limited in regards to lookup parameters and operators:

• For instances only PID, prefix and timestamp returned results.

• Moreover, equality (‘==’) checks have been implemented but no inequality or

range selection

for instances Now, the following parameters and operators are in place:

• For instances: besides the above three parameters, one can now find instances

via their state and mutability.

• Operators: an inequality (‘!=’) and various range operators (‘<’, ‘<=’ or

‘=<’, ‘>’, ‘>=’ or ‘=>’) have been added.

Appendix A. Test cases and results 73

A.4.3 User Manual update

Find instances The general User Manual find() chapter has been extended through

sections

• “Available property search criteria and expected values” and

• “Range sort: selection according to ASCII sort order”,

which explain the available input parameters and expected values as well as the way

the range selection works for ‘string’ values (please refer to Appendix C.2).

A.5 Performance

To measure each of the above described site, context, concept and instance functions’

execution time, the Python’s built-in datetime library has been utilized. For this rea-

son, the datetime functionality has been called before and after executing each function

to track the execution performance, just as figure A.6 exemplifies.

Figure A.6: DKB login performance

A.5.1 Site functions

The performance tests revealed, that the login and logoff time increased with the

amount of data stored in the database. As figures A.7 illustrate, both the login and

logoff time took around 75 seconds for around 390 MB of data.

Appendix A. Test cases and results 74

(a) DKB login performance

(b) DKB logoff performance

Figure A.7: DKB site function performance

A.5.2 Concept and instance functions

As figure A.8(a) presents, get() with PID takes around 13 times longer than with

name, which – in any case – still is less than one second.

(a) Get() with PID vs. name

Figure A.8: DKB: get() function performance

Appendix A. Test cases and results 75

Furthermore the tests showed, that the execution time for get() has risen with the

size of the concept (refer to figure A.9(b)).

(b) Get() with large concepts

Figure A.8: DKB: get() function performance (cont.)

Lastly, the system analysis uncovered that find() with prefix took around 30

times longer than with PID, as figure A.9 demonstrates.

(c) Find() with PID

Figure A.9: DKB: find() function performance

Appendix A. Test cases and results 76

(b) Find() with prefix

Figure A.9: DKB: find() function performance (cont.)

Appendix B

Application bug fixes

The following chapter includes all the code corrections for the observed application

bugs (to be precise, the ‘instance creation’, ‘concept and instance lookup (find)’ as

well as the ‘concept and instance data access (find and get) after a DKB server restart’

issue). The below code extracts have been taken from the according Gitlab files

storage.py [57] and DareKB.py [52].

B.1 Instance creation issue
‘Storage.py’ file, line 518 ff.:

def on_new_instance(self, instance: Instance, session):

def create_owl_instance(ins, session:):

with self._namespace as ns:

owl_instance = self._get_owl_entry_by_pid(ins.cls)

(self._normalise_name(ins.pid))

owl_instance =

self._namespace.Instance(self._normalise_name(ins.pid)) ##

Alternative

owl_instance.name_dkb = ins.name

owl_instance.prefix = ins.prefix

owl_instance.pid = ins.pid

owl_instance.state = ins.state

owl_instance.mutability = ins.mutability

owl_instance.timestamp = ins.timestamp

owl_instance.predecessor = ins.predecessor

owl_instance.successor = ins.successor

77

https://gitlab.com/S2057482/dare_kb/-/blob/master/src/server/dare_kb/server/storage.py
https://gitlab.com/S2057482/dare_kb/-/blob/master/src/server/dare_kb/server/DareKB.py

Appendix B. Application bug fixes 78

owl_instance.instance_last_updated = 1

owl_instance.session = self._ontology.search(pid = session)

ERROR, causing instance creation issue

owl_instance.session = self._ontology.search(pid = session)[0]

Correction, take list element

for k, v in ins.extras.items():

owl_k = ns[k] # FIXME: what if name conflict

if not owl_k: # If the property doesn’t exist (not owl_k),

ignore it. TODO: Improve this behaviour

continue

if v is None:# If the value is null (‘v == None‘, thus

‘not v‘), do not store it because owlready doesn’t allow

to store a null value. This behaviour is needed for

future update (e.g., circular dependencies), so it

should be no harm

continue

if issubclass_owlready(owl_k, owl.ObjectProperty):

if (v == ’’):

to be set later

owl_instance.__setattr__(k, ns._nil)

comment[owl_instance, owl_k, ns._nil] = [’pid’]

continue

check if v is a pid

if (not is_pid(v)):

owl_obj = self._find_pid_given_name(v)

comment[owl_instance, owl_k, owl_obj] = [’name’]

else:

owl_obj = self._get_owl_entry_by_pid(v) # v is the

PID of the Instance

comment[owl_instance, owl_k, owl_obj] = [’pid’]

owl_instance.__setattr__(k, owl_obj)

else: # It is a data property

owl_instance.__setattr__(k, v)

return owl_instance

owl_instance = create_owl_instance(instance, session)

instance.my_instance = owl_instance

Appendix B. Application bug fixes 79

Test
‘Storage.py’ file, line 398 ff.:

def on_new_concept(self, c: Concept, session) -> None:

def create_owl_concept_basic(c, session):

with self._namespace:

paren_concept = self._get_owl_entry_by_pid(c.sub_class)

my_concept =

types.new_class(self._normalise_name(c.identifier),

(paren_concept,))

my_concept.class_description=c.description

my_concept.class_pid=c.identifier

my_concept.class_name=c.label

my_concept.class_prefix=c.prefix

my_concept.class_state=c.state

my_concept.class_mutability=c.mutability

my_concept.class_timestamp = c.timestamp

my_concept.class_methods = json.dumps(c.methods)

my_concept.class_translation = json.dumps(c.translation)

my_concept.class_py_class=c.py_class

if (session is not None):

my_concept.session = self._ontology.search(pid =

session) ## ERROR, causing instance creation issue

my_concept.session = self._ontology.search(pid =

session)[0] ## Correction, take list element

return my_concept

B.2 Data access after DKB server restart

B.2.1 Find and get instance
‘Storage.py’ file, line 505 ff.: new get instance by pid method

NEW code beginning

New method to get instance by PID, resolving ’TypeError:

("get_instance() missing 1 required positional argument: ’name’", []),’

one gets one using the above ’get_instance’ method with PID

Appendix B. Application bug fixes 80

def get_instance_by_pid(self, pid: PID):

Get instance with PID

res = self._get_owl_entry_by_pid(pid)

If no instance for given PID was found, an ’InstanceNotFoundError’

is raised

if not res:

raise InstanceNotFoundError(f’{pid}’, ’get_instance’)

Return the instantiated instance

return self._instantiate_python_instance(res)

NEW code end

‘DareKB.py’ file, line 531 ff.:

Instance functions

def _load_python_instace_from_storage(self, pid: PID):

inst_kb = self._storage.get_instance(pid) ## Error: ’TypeError:

("get_instance() missing 1 required positional argument: ’name’",

[]),’ when using the ’get_instance’ method with PID

inst_kb = self._storage.get_instance_by_pid(pid) ## Correction: New

method ’get_instance_by_pid’

self._cache_instance(inst_kb)

B.2.2 Get concept
Due to timestamp-related problems: ‘DareKB.py’ file, line 566 ff.:

get and find and update functions

@__require_open_dkb

def get_concept(self, pid: PID, ignore_discarded) -> Concept:

if (not self._concept_loaded_pid(pid)):

self._load_python_concept_from_storage(pid)

conc = self.pid_concepts[pid] ## OLD code

NEW code beginning: Resolving the get() concept issue (Part 1, due

to AttributeError: ’strftime’ is not a language code)

conc = self.pid_concepts[pid]

Retrieved timestamp is a list after the concept has been

flushed to the DB

Appendix B. Application bug fixes 81

Thus, additional check whether timestamp is of type

’IndividualValueList’

if isinstance(conc.timestamp, owlready2.prop.IndividualValueList):

In this case: Take list element

conc.timestamp = conc.timestamp[0]

Issue does not occur if concept is not loaded from the DB, thus

code as before

else: conc = self.pid_concepts[pid]

NEW code end

if (conc.state == instance_state_list[4] and not ignore_discarded):

raise InstanceNotFoundError(pid, ’get’)

return conc

Due to empty (self) properties: ‘storage.py’ file, line 259 ff.:

def get_concept_by_pid(self, pid: PID) -> Concept:

owl_concept = self._get_owl_entry_by_pid(pid)

subclass = owl_concept.is_a[0]

assert self.owl_root_concept() in subclass.ancestors(), f"{pid} is

not a regular Concept as its super class is not its first type.

{owl_concept.is_a}" # TODO: Improve the retrieval of super Concept

if subclass == self.owl_root_concept():

subclass = self.id_for_root_concept()

else:

subclass = subclass.class_pid

required = {}

recommended = {}

optional = {}

New lists for storing the ’required’, ’recommended’ and ’optional’

attributes as DataProperties

requ = {}

recomm = {}

opt = {}

Only the direct constraints are retrieved here. Indirect ones are

dealt with in MyContext

Appendix B. Application bug fixes 82

with self._ontology as onto:

If ’with ... as’ variable assignment is not working

if onto is None:

onto = self._ontology

for sup in onto.get_parents_of(owl_concept):

if isinstance(sup, Restriction):

OLD code beginning

if issubclass_owlready(sup.property,

onto.dkb_data_property):

p_name = sup.property.name

p_range = sup.value

elif issubclass_owlready(sup.property,

onto.dkb_object_property):

p_name = sup.property.name

p_range = sup.value.pid

else:

continue # Unknown. Probably other subclass-of

restrictions, so we ignore them.

if sup.type == 26: # exactly

required[p_name] = p_range

elif sup.type == 28: # max

if (’optional’ in sup.property.comment):

optional[p_name] = p_range

if (’recommended’ in sup.property.comment):

recommended[p_name] = p_range

OLD code end

NEW code beginning: Resolving the get() concept issue

(Part 2, due to empty ’self.properties’)

Approach similar to instances:

First of all check whether attribute is object property

if issubclass_owlready(sup.property, owl.ObjectProperty):

Check for object property

p_name = sup.property.name

p_range = sup.value.pid

Else it is a data property

else:

Appendix B. Application bug fixes 83

p_name = sup.property.name

p_range = sup.value

Check for attribute type

Required == 26

if sup.type == 26: # exactly

Dictionary containing the ’required’ values, used for

Concept creation

required[p_name] = p_range

A new ’MyDataProperty’ object for storing the

’required’ information

requ[p_name] = MyDataProperty(p_name,

owl_concept.class_pid[0], p_range, True,

sup.property.comment[0])

Optional and recommended == 28

elif sup.type == 28: # max

Distinguish between ’optional’ and ’recommended’

attributes (’property.comment’ stores information)

if (’optional’ in sup.property.comment):

Dictionary containing the ’optional’ values, used

for Concept creation

optional[p_name] = p_range

A new ’MyDataProperty’ object for storing the

’optional’ information

opt[p_name] = MyDataProperty(p_name,

owl_concept.class_pid[0], p_range, True,

sup.property.comment[0])

if (’recommended’ in sup.property.comment):

Dictionary containing the ’recommended’ values,

used for Concept creation

recommended[p_name] = p_range

A new ’MyDataProperty’ object for storing the

’recommended’ information

recomm[p_name] = MyDataProperty(p_name,

owl_concept.class_pid[0], p_range, True,

sup.property.comment[0])

Move ’else’ (belonging to restriction check: ’if

Appendix B. Application bug fixes 84

isinstance(sup, Restriction)’) to appropriate part

else:

continue # Unknown. Probably other subclass-of

restrictions, so we ignore them.

NEW code end

translation = owl_concept.class_translation

if translation:

translation = json.loads(translation[0]) ## Type <class

’owlready2.prop.IndividualValueList’>

else:

translation = {}

methods = owl_concept.class_methods

if methods:

methods = json.loads(methods[0]) ## Type <class

’owlready2.prop.IndividualValueList’>

else:

methods = {}

concept = Concept(owl_concept.class_prefix[0],

owl_concept.class_name[0], subclass,

owl_concept.class_mutability[0], owl_concept.class_state[0],

required = required,

recommended = recommended,

optional = optional,

translation = translation,

identifier = owl_concept.class_pid[0],

timestamp = owl_concept.class_timestamp,

methods = methods,

py_class = owl_concept.class_py_class)

concept.my_concept = owl_concept

NEW code beginning

Dictionary of dictionaries containing ’direct’ and ’indirect’

DataProperties

concept_properties = {

Appendix B. Application bug fixes 85

’direct’: {

’required’: requ,

’recommended’: recomm,

’optional’: opt,

},

’indirect’: {

’required’: {},

’recommended’: {},

’optional’: {},

}

}

Adding the above created DataProperty dictionary to the previously

created concept

concept.add_properties(concept_properties)

NEW code end

return concept

B.3 Find issue
‘Storage.py’ file, line 71 ff.:

self._proj_instance = {

’pid’: ’pid’,

’prefix’: ’prefix’,

’name’: ’name_dkb’,

’state’: ’state’,

’mutability’: ’mutability’,

’timestandamp’: ’timestamp’, ## Typo, resulting in empty find()

results for concept timestamp search

’timestamp’: ’timestamp’, ## Correction

}

‘Storage.py’ file, line 635 ff.:

def find_tuple(self, t, type):

op = t[0]

prop = t[1]

Appendix B. Application bug fixes 86

value = t[2]

les_pids = []

if type == MixType.CONCEPT:

prop = self._proj_concept[prop]

pids = self._ontology.search(** {prop : value})

pids = self._ontology.search(** {prop : str(value)})

for pid in pids:

OLD code beginning

if (pid.class_pid is not None):

les_pids.append(pid.class_pid) ## Causing TypeError:

unhashable type: ’IndividualValueList

OLD code end

NEW code beginning

Check if ’.class_pid’ returns a list (contains elements)

if (pid.class_pid[0] is not None):

If so, add the element the final list ’les_pids’

les_pids.append(pid.class_pid[0])

Else check whether ’.class_pid’ contains an entry

elif (pid.class_pid is not None):

If so, add it to the final list ’les_pids’

les_pids.append(pid.class_pid)

NEW code end

Appendix C

User Manual updates

All the DKB tests and discussions have also revealed some necessary User Manual

updates. The following lists the sections and (paragraph) adjustments which have been

added and performed to the User Manual [75].

C.1 Running the DKB

For example, the “How to run the DKB (only in self-managed use)” chapter was ex-

tended by two sections to address potential installation and DKB run issues (sections

and their content following below).

C.1.1 Owlready2 warning message [75]

“Depending on one’s own Owlready2 version and available modules, the following

warning message may appear after the DKB server was started: “Owlready2 Warning:

optimized Cython parser module ‘owlready2 optimized’ is not available, defaulting to

slower Python implementation”.

Figure C.1: DKB set-up: Owlready2 warning message

As elaborated by Jean-Baptiste Lamy, the inventor of Owlready2, it is not required

to use the optimized module (the functionality will be the same) [73]. However, Cython

is used to optimize some code in C, thus if Cython is available during the Owlready

installation it can result in a 20% performance boost when parsing ontologies [72, 73].

To benefit from the performance boost, one has to:

87

https://docs.google.com/document/d/1u62251KnRURztDyBbxo77yfGGBpjxjzlWBlSinArxX0/edit#heading=h.mhz5evrki0j1
https://docs.google.com/document/d/1u62251KnRURztDyBbxo77yfGGBpjxjzlWBlSinArxX0/edit#heading=h.mhz5evrki0j1
https://docs.google.com/document/d/1u62251KnRURztDyBbxo77yfGGBpjxjzlWBlSinArxX0/edit#heading=h.6pe71ygytjrz

Appendix C. User Manual updates 88

• Install Cython (pip install Cython)

• As well as a C Compiler (such as GCC for instance)

• Before forcing a re-installation of owlready2” [75]

C.1.2 For Windows users only: potential run issues [75]

“In case you are a Windows user and are encountering problems when using DKB

(e.g., the ../../common path in the common txt file is not resolving properly (symbolic

link issue)) you might want to consider the following:

1. First of all, it is important to run the python setup.py develop command

from the Windows command prompt (cmd). In case you have installed an Ubuntu

app (e.g.) this shouldn’t be used to perform the client and server installation.

2. Now, the two common files in the ../dare kb/src/client/DKBlib and

../dare kb/src/server/dare kb directories have to be deleted.

(a) Server folder (b) Client folder

Figure C.2: DKB set-up: common txt file location

3. Thereafter, command mklink /d this-link-points-to c:/that-directory

can be utilized to manually re-create the symbolic links (“symlink”). You should

again use the Windows cmd, cd into the ../dare kb/src directory and then run the

following two commands:

(a) mklink /d client/DKBlib/common ../../common

(b) mklink /d server/dare kb/common ../../common

This will create two linked directories, pointing to ../dare kb/src, e.g.:” [75]

Figure C.3: DKB set-up: linked directory

Appendix C. User Manual updates 89

C.2 Find() search criteria and expected values

Moreover, the “find()” chapter has been expanded by two sections which explain the

available input parameters and expected values as well as the way the range selection

works for ‘string’ values (sections and their content following below).

C.2.1 Available property search criteria and expected values [75]

C.2.1.1 Concept

Property Expected value Example
‘name’ String surrounded by ‘ ’ ‘TestCon’

‘prefix’ String surrounded by ‘ ’ ‘ex3KB:kb:1:Concept’

‘pid’ String surrounded by ‘ ’ ‘ex3KB:amelie3:0:TestCon’

‘description’ String surrounded by ‘ ’ ‘This is a concept with description’

‘state’ String surrounded by ‘ ’ ‘active’

(Other possible states: ‘new’,

‘frozen’, ‘deprecated’, ‘discarded’)

‘timestamp’ Timestamp string surrounded

by ‘ ’, in format ‘YYYY-MM-

DDTHH:MM:SS.MMMMMM’

‘2021-06-29T17:05:27.792212’

‘mutability’ String surrounded by ‘ ’ ‘mutable’

‘translation’ Dictionary string surrounded by ‘ ’;

It is important to additionally sur-

round string dictionary keys/ values

with “ “

‘{“name”: “String”}’

‘py class’ String surrounded by ‘ ’ ‘String’

‘methods’ Dictionary string surrounded by ‘ ’;

It is important to additionally sur-

round string dictionary keys/ values

with “ “

‘{“OneMethod”: “String”}’

Table C.1: DKB find: Concept search parameters, expected values and examples (as

added to [75])

https://docs.google.com/document/d/1u62251KnRURztDyBbxo77yfGGBpjxjzlWBlSinArxX0/edit#heading=h.fo704oyn2ua8

Appendix C. User Manual updates 90

C.2.1.2 Instance

Property Expected value Example
‘pid’ String surrounded by ‘ ’ ‘ex3KB:amelie3:0:tc1’

‘prefix’ String surrounded by ‘ ’ ‘ex3KB:amelie3:0:TestCon’

‘name’ String surrounded by ‘ ’ ‘tc1’

‘state’ String surrounded by ‘ ’ ‘active’

(Other possible states: ‘new’,

‘frozen’, ‘deprecated’, ‘discarded’)

‘timestamp’ Timestamp string surrounded

by ‘ ’, in format ‘YYYY-MM-

DDTHH:MM:SS.MMMMMM’

‘2021-06-29T17:05:27.792212’

‘mutability’ String surrounded by ‘ ’ ‘mutable’

Table C.2: DKB find: instance search parameters, expected values and examples (as

added to [75])

C.2.2 Range sort: selection according to ASCII sort order [75]

“Please be aware that the String range selection is based on the below illustrated

ASCII sort order (http://asciiset.com/). This means for instance, that all up-

percase letters come before the lowercase letters (e.g., C <b, thus Cat <bear) or that

curly brackets { } came after all letters (uppercase and lowercase) and round brackets

() as well as inverted commas ” before all letters (uppercase and lowercase).” [75]

Figure C.4: DKB find: string range results in accordance with ASCII sort order [100]

http://asciiset.com/

Appendix C. User Manual updates 91

C.3 Added notes

Additionally, a few notes have been added to avoid misunderstandings and increase

clarity:

• Context naming convention: “Please respect the naming convention: whites-

paces are not allowed, otherwise a DKBException: IdentifierWrong is thrown ”

[75]

• Entering a context: “Please note: You are only allowed to enter() a context

– either in read ‘R’ or write ‘W’ mode – if no other user is currently logged

into this context in write mode ‘W’. Otherwise, a ‘MultiUser’ DKBException is

thrown:” [75]

Figure C.5: DKB enter context: MultiUser exception

• Leaving the current context: “The leave function quits the current context. It

leaves you with the first context ever created (“default” context).” [75]

• Freeze(), Deprecate() and Reset() a context: “Please note: You are only

able to freeze() a context, if this context was entered in write mode ‘W’.

Otherwise, a WritingPermissionDeniedError will be thrown.” [75]

Appendix D

Survey questionnaire

This chapter contains the seven question long questionnaire, which is split into four

sections – namely,

• A. Functionality deficiencies,

• B. Application bug fixes,

• C. User Manual updates and

• D. Any other comments

– as well as the survey outcome, the information sheet and (plain) user consent form.

92

Appendix D. Survey questionnaire 93

D.1 Questionnaire

Figure D.1: Survey questionnaire: first section

Appendix D. Survey questionnaire 94

Figure D.2: Survey questionnaire: second section

Appendix D. Survey questionnaire 95

Figure D.3: Survey questionnaire: third section

Figure D.4: Survey questionnaire: fourth section

Appendix D. Survey questionnaire 96

D.2 Survey results

Figure D.5: Survey results: first section

Figure D.6: Survey results: second section

Appendix D. Survey questionnaire 97

Figure D.7: Survey results: third section

Figure D.8: Survey results: fourth section

Page 1 of 3

Participant Information Sheet

Project title: Demonstrating the power of user-controlled

contexts

Principal investigator: Malcolm Atkinson (Malcolm.Atkinson@ed.ac.uk)

Researcher collecting data: Patricia Hartmann (P.R.Hartmann@sms.ed.ac.uk)

Funder (if applicable):

This study was certified according to the Informatics Research Ethics Process, RT

number #5959. Please take time to read the following information carefully. You

should keep this page for your records.

Who are the researchers?

MSc student: Patricia Hartmann

Supervisor: Malcolm Atkinson

What is the purpose of the study?

The overall goal of the underlying MSc project is to enhance an existing application

prototype, namely the DARE Knowledge Base (DKB), which had been developed as

part of the European funded DARE (Delivering Agile Research Excellence on

European e-Infrastructures) project (https://cordis.europa.eu/project/id/777413), by

identifying and resolving a dedicated issue.

Since eventually the (scientific) user community should benefit from any of DKB’s

enhancement(s), this survey is undertaken to evaluate the value of DKB’s

adjustments. With the help of a (completely anonymous) questionnaire the

participants will be asked to review and rate DKB’s current state and the

improvement(s).

Why have I been asked to take part?

You have been invited to take part in the study since you were previously involved in

the DARE project and/ or DKB’s development (e.g., by providing requirements and

feedback).

Appendix D. Survey questionnaire 98

D.3 Information sheet

Page 2 of 3

Do I have to take part?

No – participation in this study is entirely up to you. You can withdraw from the study

at any time without giving a reason, up until the point in time you successfully

completed and submitted the questionnaire. After this point, personal data will be

deleted and anonymised data will be combined such that it is impossible to remove

individual information from the analysis. Your rights will not be affected. If you wish to

withdraw, contact the PI. We will keep copies of your original consent, and of your

withdrawal request.

What will happen if I decide to take part?

If you agree to participate in this survey, you will receive one questionnaire with

several questions regarding the DKB application. Overall, this shouldn’t take longer

than 5-10 minutes to fill in. The questionnaire will neither ask nor capture any

personal information since the aim is solely to review and rate DKB’s current state

and the implemented improvement(s).

Are there any risks associated with taking part?

There are no significant risks associated with your participation.

Are there any benefits associated with taking part?

An indirect benefit associated with this MSc project and your feedback is the

opportunity to move DKB, which initially was planned to be an integral part of the

DARE platform, towards a productive and thus more stable version, which can finally

be utilized by the DARE platform.

What will happen to the results of this study?

The results of this study may be summarised in published articles, reports and

presentations. Quotes or key findings will be anonymized: We will remove any

information that could, in our assessment, allow anyone to identify you. With your

consent, information can also be used for future research. Your data may be

archived for a maximum of four years. All potentially identifiable data will be deleted

within this timeframe if it has not already been deleted as part of anonymization.

Appendix D. Survey questionnaire 99

Page 3 of 3

Data protection and confidentiality.

Your data will be processed in accordance with Data Protection Law. All information

collected about you will be kept strictly confidential. Your data will be referred to by a

unique participant number rather than by name. Your data will only be viewed by the

researcher – Patricia Hartmann.

All electronic data will be stored on a password-protected encrypted computer, on

the School of Informatics’ secure file servers, or on the University’s secure encrypted

cloud storage services (DataShare, ownCloud, or Sharepoint) and all paper records

will be stored in a locked filing cabinet in the PI’s office. Your consent information will

be kept separately from your responses in order to minimise risk.

What are my data protection rights?

The University of Edinburgh is a Data Controller for the information you provide. You

have the right to access information held about you. Your right of access can be

exercised in accordance Data Protection Law. You also have other rights including

rights of correction, erasure and objection. For more details, including the right to

lodge a complaint with the Information Commissioner’s Office, please visit

www.ico.org.uk. Questions, comments and requests about your personal data can

also be sent to the University Data Protection Officer at dpo@ed.ac.uk.

Who can I contact?

If you have any further questions about the study, please contact the lead

researcher, Patricia Hartmann (P.R.Hartmann@sms.ed.ac.uk).

If you wish to make a complaint about the study, please contact

inf-ethics@inf.ed.ac.uk. When you contact us, please provide the study title and

detail the nature of your complaint.

Updated information.

If the research project changes in any way, an updated Participant Information Sheet

will be made available on http://web.inf.ed.ac.uk/infweb/research/study-updates.

Alternative formats.

To request this document in an alternative format, such as large print or on coloured

paper, please contact Patricia Hartmann (P.R.Hartmann@sms.ed.ac.uk).

General information.

For general information about how we use your data, go to: edin.ac/privacy-research

Appendix D. Survey questionnaire 100

Participant number:_______________________

Participant Consent Form
Project title: Demonstrating the power of user-controlled contexts

Principal investigator (PI): Malcolm Atkinson

Researcher: Patricia Hartmann (P.R.Hartmann@sms.ed.ac.uk)

PI contact details: Malcolm.Atkinson@ed.ac.uk

By participating in the study you agree that:

• I have read and understood the Participant Information Sheet for the above study,
that I have had the opportunity to ask questions, and that any questions I had were
answered to my satisfaction.

• My participation is voluntary, and that I can withdraw at any time without giving a
reason. Withdrawing will not affect any of my rights.

• I consent to my anonymised data being used in academic publications and
presentations.

• I understand that my anonymised data will be stored for the duration outlined in the
Participant Information Sheet.

Please tick yes or no for each of these statements.

1. I allow my data to be used in future ethically approved research.

 Yes No

2. I agree to take part in this study.

 Yes No

Name of person giving consent Date Signature

 dd/mm/yy

Name of person taking consent Date Signature

 dd/mm/yy

Appendix D. Survey questionnaire 101

D.4 Plain consent form

	Introduction
	The 21st century - Digital Age and Big Data era
	DARE & DKB - Coping with complex scientific data
	DKB's current limit - Research proposal

	Background and Related Work
	The DARE Knowledge Base (DKB)
	Owlready2 - Following the graph database concept
	Brief introduction to NoSQL databases
	Graph databases - One of four main NoSQL types
	Owlready2 - An optimized quadstore

	Approach, Methodology and Achievements
	Test data generation
	Synthetic test data
	Real-world test data

	System analysis
	Test case preparation
	Test case execution and results

	Project focus and literature review
	Test result assessment, Issue selection and justification
	Formulated research and development plan
	Solution approach and conceptualisation

	Software development
	Utilized methodology
	Coding style
	Accomplished developments

	Achievements and their assessment

	Closing discussion and Future Work
	Bibliography
	Test cases and results
	Site functions
	User Manual updates

	Context functions
	Application bug
	User Manual updates

	Concept functions
	Application bugs
	Functionality deficiencies
	User Manual update

	Instance functions
	Application bugs
	Functionality deficiency
	User Manual update

	Performance
	Site functions
	Concept and instance functions

	Application bug fixes
	Instance creation issue
	Data access after DKB server restart
	Find and get instance
	Get concept

	Find issue

	User Manual updates
	Running the DKB
	Owlready2 warning message Amelie2020DKBUserManual
	For Windows users only: potential run issues Amelie2020DKBUserManual

	Find() search criteria and expected values
	Available property search criteria and expected values Amelie2020DKBUserManual
	Range sort: selection according to ASCII sort order Amelie2020DKBUserManual

	Added notes

	Survey questionnaire
	Questionnaire
	Survey results
	Information sheet
	Plain consent form

