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Abstract

When viewing and exploring a Virtual Reality (VR) scene, human head motion trajec-

tories are fundamentally hard to predict. Trajectories are determined following an un-

derlying stochastic component (the basic unpredictability of human behaviour), while

over the course of a single video there are a wealth of possible trajectories that could be

taken. For deep learning models aiming to predict these trajectories - to be used by VR

rendering systems, thereby allowing high quality streaming - there is significant uncer-

tainty over the accuracy of model predictions that has yet to be accounted for. In this

thesis, we aim to address this shortcoming by extending an existing deep head motion

prediction model to be capable of quantifying the uncertainty in its predictions. Specif-

ically, we enforce a deep head motion prediction model to be explicitly probabilistic,

by adding stochastic latent variables trained under an information bottleneck objec-

tive to its architecture, before using density estimation and repeated latent sampling to

quantify the uncertainty associated with head motion trajectories. To evaluate uncer-

tainty estimates, we develop an evaluation framework using real head motion trajectory

datasets, as well as generating two datasets of synthetic trajectories for evaluation with

constrained and known uncertainty in trajectories. We evaluate our model’s ability

to quantify the two main sources of uncertainty thought to be present in deep learn-

ing models, using Out-of-Distribution detection and correlation with predictive error.

Experimental results show our model is effective at quantifying aleatoric uncertainty

for real head motion trajectories, but shows success when quantifying epistemic uncer-

tainty only when tested on highly simplified synthetic trajectories. Using visualisations

of epistemic uncertainty estimates and model latent representations, we argue that fail-

ures of epistemic uncertainty estimates are due to a recently cited problem known as

feature collapse [1] in our model’s representations. Overall, our approach produces

encouraging results that invite further development - particularly emphasising investi-

gations into learned representations and development of effective representations.
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Chapter 1

Introduction

Virtual Reality (VR) is a form of immersive environment wherein a video, or simulated

scene, contains content that surrounds a viewer and can be interacted with to determine

future content. VR videos and scenes primarily occur with a full sphere (360◦ latitude,

180◦ longitude) of content around a viewer available [2]. Scenes are most commonly

observed by a viewer via a Head Mounted Display (HMD) - display headsets designed

such that viewers can actively turn and move their heads to interact with and observe

different parts of the VR environment. In recent years, viewers have predominantly

accessed immersive content via internet streaming [3] - which limits quality of experi-

ence due to the great data rate required to repeatedly render 360◦ of content [4] (effects

such as streaming delays caused by the lag between head movement and rendering are

common [5]).

To reduce the required data rate, solutions suggest rendering in high resolution only

the portion of the sphere of content viewable from the viewer’s current head position -

known as their Field of View (FoV). To ensure high resolution and smooth transition-

ing between FoVs over multiple timesteps, existing methods [6, 7] require knowledge

of viewers’ likely future head positions to render ‘tiles’ that make up future FoVs in

advance. This requires predicting the viewer’s head trajectory over future video frames

(ideally over frames > 5 seconds into the future), for use in a playback buffer that ac-

counts for network instability [8]. Deep learning methods for generating these predic-

tions treat likely future head positions (and therefore future FoVs to render) as a non-

linear function of video content over prediction timesteps and previous head positions

(i.e. the prior head trajectory). However, these methods [9, 10, 11, 5, 12, 13, 14, 15]

have been shown to perform poorly, giving predictions that are worse than always pre-

dicting no head motion [4].

1



Chapter 1. Introduction 2

Poor performance of existing head motion prediction models is hypothesised to

be due to the fact that they do not consider that, for the same input (past head motion

trajectory and current video content), the viewer’s head may take one of a diverse range

of trajectories, different from those observed at training time. Training data for head

motion prediction models will therefore necessarily be incomplete and noisy, meaning

there will be many superior mapping functions for a given model left unlearned, and

many out of distribution samples that cannot be accounted for at test time. In short,

there will be uncertainty over the accuracy of the learned model’s predictions when

deployed on samples outside of training data. Assuming confidence in such predictions

at best means overfitting to training data [16, 4], with even this case relying on the

trained network function accurately modelling the problem at hand as posed by the

training data.

This work aims to address these shortcomings, resulting in a deep learning model

for head motion prediction that robustly accounts for uncertainty in viewer behaviours.

This can be achieved by extending existing models to generate, in parallel with pre-

dictions, estimates for their predictive uncertainty (uncertainty estimates). Uncertainty

estimates in effect provide a confidence interval over predictions at each timestep, that

will allow streaming systems to render a ‘halo’ of tiles in high fidelity (proportional

in size to estimated uncertainty) around predicted FoVs when models are applied for

use in real-world immersive experiences. In this way, the impact of incorrect model

predictions on experiences will be reduced [9]. The challenge of this task is in gen-

erating uncertainty estimates that are well calibrated [17] with the true uncertainty

associated with a given video and past head trajectory - where uncertainty refers to

both the inherent uncertainty of the data at hand and how it relates to the training data

distribution.

In practise, this work extended a deep head motion prediction baseline model (in-

troduced in Chapter 2), the position-only baseline [4], that shows comparable (if not

superior) performance to all existing head motion prediction models besides the cur-

rent State of the Art (TRACK [4]), with extensions easily applicable to all existing

models (existing models and the position only baseline are described in sections 2.1.2

and 2.1.3). We extended the baseline (see Chapter 3) to be capable of generating un-

certainty estimates (capable of Uncertainty Quantification, or UQ) using an approach

based on density estimation over model hidden layer activations. We developed an

evaluation framework (see Sections 4.3 - 4.4) for uncertainty estimates, and compared

the results of different approaches taken for UQ using this framework (with experi-
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mental results presented in Chapter 4). Furthermore, finding that existing head mo-

tion datasets largely did not differ substantially enough in their data distributions for

testing of uncertainty estimates, we generated two datasets of synthetic head position

trajectories (see Sections 4.1.1 and 4.1.2) that offer different levels of difficulty in the

uncertainty estimation task. This allowed explicit control over what was included in

the training data, and evaluation of uncertainty estimates using samples generated to

be outside the training distribution.

Specifically, we approached developing an uncertainty aware position-only base-

line by adding stochastic latent variables and an information bottleneck training objec-

tive [18, 19] to the model (see Sections 3.1 and 3.2.1), alongside a density estimating

marginal over latent variables. Our evaluation used Out-of-Distribution (OoD) detec-

tion with varying distributional shifts, and correlation of uncertainty estimates with

test-set error (explained in Section 3.3) to investigate our models’ abilities to quantify

different forms of uncertainty. Our findings show that density estimation over hidden

layer activations is a valid method for uncertainty estimation in deep head motion pre-

diction models, giving good results on the correlation task (Section 4.4) and on the

OoD task (Section 4.3) when uncertainty in trajectories is constrained to be simple

and known. However, we find that uncertainty in real OoD head motion trajectories

is not clearly identified - a problem we reveal may be due to feature collapse [1] (see

Chapter 5) in model representations after visualising representations and uncertainty

estimates.



Chapter 2

Background and Proposed Approach

2.1 Head Motion Prediction Models

2.1.1 Problem Formulation, Assumptions & Saliency

Formally1, (adopting notation used in [4]) for our interests the task of head motion

prediction is: given some VR video or scene viewed at current timestamp t, predict a

sequence of future coordinates {Pτ = [θτ,ψτ]}t+H
τ=t+1 that indicate the predicted center

of the viewer’s FoV (correlated with their head position) for each video frame occur-

ring within a window H seconds following t. Note that this means we make multiple

predictions per second - for example if the video sampling rate is 25 frames per sec-

ond, prediction timesteps τ ∈ [t : t +H] will fall evenly over 0.04 second intervals in

this window. We call the prediction window H the prediction horizon, with prediction

times τ ∈ [t : t +H] referred to as timesteps, and times in the video itself (i.e. times

from which H timesteps of predictions will be made) referred to as timestamps. As

described in chapter 1, existing deep learning models predict future timestep coordi-

nates by learning a non-linear mapping function from previous head coordinates Pt
t−M

(where M is a historical context window such that Pt
t−M represents a viewer’s prior

head trajectory) as well as previous and future VR video content Vt+H
t−M, to future head

position coordinates. This is based on 2 key assumptions [4]:

(A0): That future head positions are correlated with the history of previous head posi-

tions.

(A1): That future head positions are correlated with visual content in VR videos or

scenes.
1Note that some of the material in this chapter is adapted from my earlier informatics project proposal

4



Chapter 2. Background and Proposed Approach 5

Following investigations in [4] and [20], we can conclude models based on A0 and

A1 are in combination sufficient to accurately predict head positions in a period up

to H = 5s in length following some timestamp t for a variety of 360◦ videos. A0

corresponds to the idea of motion continuity (inertia - viewer’s heads will move in line

with previous motion), while A1 indicates viewers will move their heads (and therefore

FoVs) aligned with their gaze coordinates, fixating on regions of interest in VR scenes

(i.e. salient regions that capture their attention). For predicting future head positions,

both [4] and [20] indicate that inertia is a good indicator for head positions during the

first 2-3 seconds after prediction time, while visual content indicates head positions

from that point.

Finding salient regions in images has been the subject of much historical computer

vision research. Convolutional Neural Networks (CNNs) that output ‘saliency maps’

(i.e. a set of labels for input image pixels indicating their saliency) are the current

standard approach for automatic saliency detection [21, 22, 23]. Deep head motion

prediction models tend to model saliency by pre-processing video content to be in the

form of a series of said saliency maps.

2.1.2 Previous Approaches & Architectures

The objectives of existing neural network architectures for head motion prediction of-

ten vary slightly from the problem formulation in this project. These include models

for predicting gaze coordinates (from which FoVs can be derived) [11] and for predict-

ing ‘tiles’ (relevant to current methods for VR streaming - see chapter 1) that will be

active in future FoVs [5, 13, 14, 15]. Prediction horizons for these models generally

vary from 30ms - 2.5s.

The first neural network model for head motion prediction, introduced in [9], con-

sidered only head position coordinates occurring in a fixed window before prediction

timesteps as input to a static 3-layer feed-forward architecture. Fan et al. in [15] in-

stead explicitly modelled head positions as a time series, also combining coordinates

with video saliency information to predict whether tiles would be in future FoVs. A

CNN derived from VGG-16 [24] extracted saliency maps from VR videos, which were

concatenated with head position coordinates and fed into a single LSTM (Long Short

Term Memory) [25] network (a commonly used form of RNN - see [26, Section 6.2-

6.3] for more on RNNs and LSTMs). The architecture used is shown in Appendix A.

Xu et al. in [11] used a similar architecture for gaze prediction, but instead used head
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positions alone as input to the LSTM. LSTM outputs were then concatenated with

saliency maps from current video content, and fed as input to a feed-forward neural

network. Varying on these approaches, Nguyen et al. in [5] passed saliency maps for

each video frame to an LSTM, with head position information encoded as a mask on

maps. Similar to the formulation described in Section 2.1.1, saliency maps and head

positions from the previous M video frames were used to make predictions for the next

H timesteps via the LSTM in these autoregressive models [5, 11, 15].

Alternative approaches to modelling our task have been taken - for example using

deep reinforcement learning [10]. However, a unified comparison of models was not

possible - due to their differing problem formulations, evaluation metrics and dataset

formats - until Rondon et al. introduced their evaluation framework in [2] (covered

in more detail in sections 2.1.3 and 4.1). In their subsequent work, Rondon et al.

then showed that all prior deep learning models had worse prediction accuracy than

a no-motion baseline (predicting viewers’ heads would never move in response to

VR scenes) [4]. Following investigations regarding why such poor performance had

occurred, Rondon et al. leveraged flaws found to design TRACK - a head motion

prediction model that outperformed all existing models and the no-motion baseline.

Specifically, they found that a failure to model video saliency as a time series (i.e. by

processing video content with an individual LSTM) led to degradation in performance.

As a result, the TRACK architecture uses individual doubly-stacked LSTMs to process

both head positions and VR video content at every timestep. Outputs of these RNNs

are concatenated and fed to another doubly-stacked LSTM. Predictions are generated

by passing the final LSTM outputs to a feed-forward network layer, whose outputs are

added with the head position from the previous timestep (in the manner of a residual

network [27] - see Appendix A for an architecture diagram).

2.1.3 Evaluation

Evaluation methods for the models described in Section 2.1.2 vary widely - with direct

comparisons between models and metric results facilitated by work conducted by Ron-

don et al. in [2, 4]. Fundamentally, metrics generally function by comparing predicted

(derived either from predicted coordinates or from predicted active tiles) and ground

truth FoVs. In common with evaluation in wider deep learning models, Fan et al. in

[15] use Accuracy (the percentage of correctly predicted active tiles against the total

number of predicted and groundtruth tiles), F1-score (the mean of precision and recall,



Chapter 2. Background and Proposed Approach 7

where precision is the ratio of correctly predicted active tiles against total number of

predicted tiles, and recall is the ratio of ground truth active tiles correctly predicted

by the model - as defined in [2]), as well as Ranking Loss (“the number of tile pairs

that are incorrectly ordered by probability normalized to the number of tiles” [15]) as

metrics. Nguyen et al. in [5] similarly use accuracy alone as a metric.

Rondon et al. in [2] compared these models and metrics, firstly by standardis-

ing model datasets such that they held shared formats and sampling rates. Crucially,

they then introduced two baseline models to compare all prior models against: (1)

the No-motion and (2) Position-only baselines. These were models that (1) assumed

the viewer’s head stayed still for the duration of all prediction horizons, and (2) pre-

dicted future head position coordinates using past position coordinates alone as input

to an LSTM respectively. Subsequently, they showed these baselines outperformed

all prior models, when evaluated on all described metrics and trained on the relevant

datasets [4]. Similarly, when evaluating their model (TRACK), Rondon et al. in [4]

compared its performance to prior models on the described metrics in the same manner

as used with baselines - allowing direct comparison of models and showing TRACK

outperforms all rivals. Motivated by the fact that there is a conversion factor (that may

encounter noise in reality) between head coordinate predictions and predicted FoVs,

they additionally evaluated the quality of predicted head position coordinates directly

using Average Orthodromic Distance as a metric. This is a measure of the shortest

distance between 2 positions on the surface of a unit sphere [28].

2.2 Uncertainty Quantification

Total uncertainty in deep learning model predictions (predictive uncertainty) is derived

from two sources: epistemic and aleatoric uncertainty. Aleatoric uncertainty (some-

times referred to as data uncertainty) refers to inherent, irreducible randomness in

the data. In our case, aleatoric uncertainty describes how, given some current video

content and head position history input, future head positions are determined with an

irreducible stochastic component (related to the unpredictability of human behaviour).

Epistemic uncertainty (sometimes known as knowledge uncertainty) refers to uncer-

tainty in predictions due to a lack of knowledge about the best possible model (i.e. the

best possible model parameter settings), and can be reduced with additional informa-

tion - such as additional training data or a more suitable model architecture [29, 30].

Modelling uncertainty in deep neural networks requires formulating networks as
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probabilistic models, such that outputs (predictions) y are samples from a distribution

p(y|x,ωωω) - where x and ωωω are model inputs and parameters respectively. Often this

formulation is made explicit, by introducing random variables or activations into the

network (forming a stochastic neural network) [31, 32]. Optimisation of implicit or

explicit probabilistic models aims to maximise similarity between p(y|x,ωωω) and the

true distribution mapping inputs to outputs on some task.

2.2.1 Density Estimation for Uncertainty Quantification

Historically, Bayesian Neural Networks (BNNs) have been the main form of stochastic

model used to estimate uncertainty. BNNs draw network weights from a prior distri-

bution and generate outputs from the sampled model, with weights repeatedly sampled

during training and inference (for use in uncertainty estimation). They aim to learn the

true Bayesian posterior distribution p(ωωω|x) for the task at hand, such that at test time

the variance in the learned posterior, for a given input, represents epistemic uncertainty

[33]. However, in practise BNNs are difficult to train, perform poorly on tasks with

high dimensional inputs [34, 35, 36], and often fail to model the full problem distribu-

tion in multi-modal problems [37]. A valid alternative method consists of building an

ensemble of deterministic network models that output both mean predictions and pre-

dictive variances (with variance representing uncertainty), with uncertainty estimates

generated by averaging over ensemble outputs [35]. However, for real-world applica-

tions this is not practical as it includes specialised adversarial training processes and

training of multiple models in parallel [38].

Variational Autoencoders (VAEs) [39, 40] are an alternative family of stochastic

networks that hold similar probabilistic properties, without suffering from these prob-

lems. In an encoder-decoder architecture, they introduce a set of latent random vari-

ables z drawn from a latent conditional distribution p(z| f (x)) between encoder and

decoder (where f (x) represents the model encoder), trained to model (point-wise) a

transformed probability density function of the input data distribution, in a manner

useful for modelling the true output density function. In their original formulation,

VAEs aimed to reconstruct their inputs (i.e. ground truth outputs were perfect recon-

structions of inputs) - such that, given a test input, the likelihood of that input could

be estimated. VAEs therefore can be usefully classed as density estimating models -

they approximate the density of an unknown training distribution given limited sam-

ples from that distribution. VAEs are significant in this respect because they can also
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be trained using conventional optimisation methods, treating density estimation as a

Variational Inference problem [30].

For generating uncertainty estimates, the idea of density estimation from VAEs has

seen much work in recent years. Given a density estimating model of the task input

data distribution, the epistemic uncertainty associated with a predicted output can be

estimated by observing the likelihood of the test input under the density model [41].

However, VAEs rely on using simple gaussian priors over latent variables - which is

limiting for complex data distributions - and approximations in the variational infer-

ence process limit the quality of learned latent distributions p(z|x) if they are high

dimensional [42]. As a result, work on density estimation for UQ (Uncertainty Quan-

tification, or for the similar task of OoD detection) has increasingly focused on devel-

oping density estimation methods for deterministic networks [43, 44, 45] or variational

models that maintain quality of high dimensional latent variables [46, 18, 19, 36, 46]

(note that we consider only techniques compatible with regression problems, as is the

case with head motion prediction).

The concept of the Information Bottleneck (IB) [47] has been used with variational

neural network models to reduce the dimensionality of latent distributions while main-

taining effectiveness. Specifically, the IB method achieves this by constraining latent

representations to have minimal mutual information with network inputs, while hav-

ing maximal mutual information with network outputs [48]. Alemi et al. in [18] and

[19] have been the primary source of developments in this respect. They developed

a variational encoder-decoder model that used the IB principle in [18] (calling it the

Variational Information Bottleneck, or VIB) to ensure the quality of latent variables

in approximate distributions inserted between encoder and decoder, while ensuring

the model could be trained via standard optimisation methods as in VAEs. They then

utilised these effective latent variables for UQ via density estimation in [19], intro-

ducing a learned marginal distribution mφ(z) modelling the density function of latent

encodings over the training distribution (allowing computation of test input likelihoods

under the marginal).

An important development upon Alemi et al.’s work saw Sinha et al. in [36] demon-

strating that aleatoric uncertainty estimates can be generated from the VIB model by

repeatedly sampling from the latent encoding distribution for a test input, generating

the corresponding network outputs and observing their empirical variance. Further-

more, Postels et al. in [43] theoretically and empirically proved that the VIB density

estimating marginal could be used to express epistemic uncertainty. Postels et al. also
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developed a method of density estimation for UQ that was applicable to arbitrary de-

terministic neural networks, extracting training set hidden layer activations and fitting

both a Conditional Normalizing Flow [49] and Gaussian Mixture Model (GMM) to

these latent encodings. Density estimation, with uncertainty estimates generated as

described previously using likelihoods, was achieved using the outputted GMM and

normalizing flow as density models. Although alternative methods for density estima-

tion using GMMs (often in the form of Mixture Density Networks) have been devel-

oped in the UQ literature, practical issues have been found with these models such as

non-convergence for high-dimensional problems [50] and mode collapse [51].

2.3 Proposed Approach

As described in sections 2.1.1 and 2.1.2, the current standard in deep learning mod-

els for head motion prediction accept a sequence of video frames alongside a history

of head positions as input. This comprises a high-dimensional input sequence, which

would normally require relatively high dimensional representations in a deep learn-

ing model for processing - for example, the position-only baseline model [2] utilises

LSTMs with 512 dimensional hidden layers. In Section 2.2.1, we have seen such

high dimensions will cause problems with UQ-capable architectures using conven-

tional variational inference. Furthermore, given models will be deployed in real-time

for VR streaming, it is important that uncertainty estimates can be generated efficiently

by our head motion prediction model.

For efficiency, and to allow handling of a high dimensional input sequence, we

therefore consider Alemi et al.’s VIB model for generating uncertainty estimates, as

implemented in their 2018 paper [19] using density estimation. This can generate

epistemic uncertainty estimates with a single forward pass and handles high input di-

mensionality via training with an IB objective. Aleatoric uncertainty estimates can be

generated with a minimal number of forward passes through the VIB decoder using

Sinha et al.’s approach.

To validate the results generated from implementing Alemi et al.’s VIB model, we

also implemented the main alternative method to the VIB approach, as introduced by

Postels et al. in [43], wherein they fit a Conditional Normalizing Flow to training set

activations. This allows exact evaluation of the log likelihood of test inputs [42, 52].

However, Postels et al.’s approach was found to be unsuitable in its current form for

our purposes, as their method assumes a uniform distribution over the output space



Chapter 2. Background and Proposed Approach 11

(which is not the case for the head motion prediction task).

Figure 2.1: The position-only baseline head motion prediction model from Rondon et

al. in [4]. Pt indicates head position coordinates [θt ,ψt ] at timestep t.

Ideally, we would implement the VIB approach in order to extend the State of

the Art in deep head motion prediction models, TRACK [4]. However, as described

in Section 2.1.2, TRACK utilises 3 separate deep encoder-decoder LSTM networks

in its architecture. Since the VIB UQ approach relies on inserting latent variables

between an encoder and decoder, in a deep architecture with parallel computation (i.e.

in the processing of video and head position history using parallel encoder-decoder

LSTMs) such as TRACK, there is significant uncertainty over where best to place

latent variables.

As a result, to reduce the number of unknowns necessary to explore in this work, we

extend the Position-only baseline head motion prediction model. This model consists

of only a single encoder-decoder LSTM architecture (shown in figure 2.1), such that

there is a single eligible position to insert latent variables.

Using the baseline model allows us to focus on which elements of the VIB ap-

proach may be problematic (or most important to tune) in general, and when used in

conjunction with the head motion prediction task (particularly recalling that the ma-

jority of head motion prediction models from recent literature are at least partially au-

toregressive, which may be problematic). Theory and implementation details of these

approaches will be described in Chapter 3.



Chapter 3

Methods

In this chapter, we introduce the theory and practicalities associated with our VIB

approach (Section 3.1) as motivated and defined in Section 2.3. We then describe

our methodology for adapting the VIB approach to the position-only baseline in Sec-

tion 3.2.1.

3.1 Variational Information Bottleneck

The VIB seeks to replicate the capability of VAEs to generatively model a data distri-

bution using latent variables, in a supervised learning formulation. Specifically, VIB

maximises the log likelihood of outputs log p(y|x), to learn a set of stochastic latent

variables z that model the factors of inputs x that are generative for outputs y. Note

that stochastic z also mean outputs are treated as random variables, with an encoder

for latent variable inference and a decoder for output value generation. The IB ob-

jective is used in conjunction with this architecture, to reduce the dimensionality of

latent encodings (and motivated by the success of information theoretic constraints in

the β-VAE architecture [53]) - shown in equation 3.1.

max I(z;y) subject to I(z;x)≤ Ic (3.1)

The IB objective states that the mutual information between inputs and latent encod-

ings, shown as I(z;x), should not exceed some constant Ic - while latent encodings

should still be maximally informative, and thereby effective, for computation of out-

puts. Effectiveness is enforced in the objective by maximising mutual information

between encodings and outputs I(z;y). These constraints allow encodings to be sig-

nificantly lower dimensional than would otherwise be the case, by penalising the pres-

12
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ence of excess information from inputs. The IB objective can be written as an objective

function using a langrange multiplier β:

max I(z;y) − βI(z;x) (3.2)

where β≥ 0 controls the amount information from inputs is penalised (i.e. the “size of

the information bottleneck” [19]).

In practise, calculating I(z;y) and I(z;x) analytically requires computation of diffi-

cult and intractable integrals. As a result, the original VIB architecture is made up of a

stochastic encoder eθ(z|x) from which latent variables (i.e. encodings) can be sampled,

a stochastic decoder qψ(y|z) from which outputs can be generated, and a variational

marginal distribution over latent variables mφ(z) [18]. These factors can be combined

for optimisation under a single objective:

max
θ,φ,ψ

Ep(x,y)eθ(z|x)

[
logqψ(y|z)−β log

eθ(z|x)
mφ(z)

]
(3.3)

To allow for uncertainty estimation, note that the variational marginal mφ(z) is pa-

rameterized by φ. This is an innovation from Alemi et al. [19] that means the marginal

can be trained (in parallel with the encoder-decoder model parameters during training)

to model the distribution of latent encodings over the training data (meaning mφ(z)
models the density of the training data distribution in the lower dimensional encoding

space). mφ(z) can be used for UQ by computing the log-likelihood of samples from

the encoder distribution under the marginal (evaluating their density within the training

distribution). For a deeper understanding of the theory behind the VIB model, and how

it quantifies uncertainty, see Appendix B.1.

To measure aleatoric uncertainty in the VIB, Sinha et al.[36] (albeit in a different

model formulation) use the intuition that if we sample multiple M latent encodings

from eθ(z|x) and generate corresponding predictions from the decoder, the set of out-

puts {yi}M
i=1 approximates those from an ensemble [18, 35]. As a result, the variance

of these predictions represents aleatoric uncertainty.

3.2 Position-Only Baseline

As described in Section 2.1.3, the position-only baseline is an LSTM encoder-decoder

architecture, that for each timestamp t takes a sequence of head position coordinates (of

the form Pτ = [θτ,ψτ]) from the t−M prior timestamps as input, and makes predictions

for t +H future timesteps (using ground truth or prediction head position coordinates
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as inputs to the decoder during training or inference respectively, under a teacher forc-

ing training procedure [54]). The decoder LSTM is initialised using the final hidden

state and cell-memory state vectors ht and ct from the encoder, where t is the final

encoder timestep (see [25] for detail on the meaning of h and c vectors). We extend

the implementation of the position-only baseline as used by Rondon et al. in [2, 4]1.

3.2.1 Position-Only-VIB

We adapt the position-only baseline to be capable of UQ using the VIB approach

(naming the implemented model the “Position-Only-VIB” model) by introducing la-

tent variables between the encoder and decoder LSTMs. Given there are two vectors

passed between the LSTMs, we model both ht and ct as stochastic latent variables.

We do this by doubling the size of encoder LSTM activations from 512 to 1024, before

adding individual trainable affine layers to process the ht and ct vectors each (also 1024

dimensional). We then initialise two 512 dimensional diagonal Gaussian distributions

using the outputs of affine layers, with the first 512 affine activations being used for

distribution means, and last 512 forming standard deviations. We can then sample the

initial decoder vectors from their respective distributions. This architecture is shown

in figure 3.1.

Figure 3.1: The position-only model with stochastic latent encoding distributions for the

LSTM hidden and cell-memory states respectively p(zh,c|x), which are sampled from

to initialise the decoder LSTM.

Alemi et al.’s implementation of the VIB model in their 2018 paper uses a 3-

1Code implementing the position-only baseline was taken from https://gitlab.com/
miguelfromeror/head-motion-prediction/-/blob/master/position_only_baseline.py.

https://gitlab.com/miguelfromeror/head-motion-prediction/-/blob/master/position_only_baseline.py
https://gitlab.com/miguelfromeror/head-motion-prediction/-/blob/master/position_only_baseline.py
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dimensional, fully covariant Gaussian distribution over their encoder and a mixture of

200 3-dimensional fully covariant Gaussians for the marginal. Our model has two 512

dimensional Gaussians that generate initial decoder LSTM states (smaller dimensional

distributions were tested and resulted in significantly worse error performance). Since

these two distributions could be radically different (LSTM h and c states can encode

very different information [25]), and the VIB loss function requires encoder samples

to be compatible with the marginal (for density estimation under the marginal), we use

two distributions formed from a mixture of 512-dimensional Gaussian components -

giving two marginals mh
φ

and mc
φ

that respectively model each of the encoder distri-

butions. Note that this means our model generates two parallel epistemic uncertainty

estimates, the h-state and c-state rates. The number of components in marginal mix-

tures was set initially to 200 (mirroring the method of Alemi et al.), and was varied

over testing to observe its effect. To generate aleatoric uncertainty estimates we follow

Sinha et al.’s approach closely. We sample M sets of zh and zc tensors from encoder

distributions for a single input example and generate the corresponding H predictions

from the decoder, giving us a set of predictions {yi = [θi,φi]}M
i=1 for each timestep.

We then take the variances across θ and φ predictions individually, before generating

a single variance prediction for each timestep (the aleatoric uncertainty estimate) by

taking the mean of these two variances. The number of samples M in experiments was

varied from 4 to 50, and will be covered in chapter 4.

Training the model is achieved through maximum likelihood estimation of the ob-

jective shown in equation 3.3 (albeit we use two β values for each of the encoder

distributions: βh and βc), with the training algorithm pseudocode shown in algo-

rithm 1 (with the OrthDist computation defined in Section 4.4). Note that compu-

tations zzzh,c ∼ µµµh,c +ΣΣΣ
2
h,c · εεε,εεε ∼ N (0, I) document the reparameterisation trick. This

was the method introduced by Kingma & Welling [39] for training parameters of dis-

tributions through samples, for use with VAEs.

The code implementation used here is written using Tensorflow and Keras, and

is adapted from a GitHub repository by Alex Alemi2 that demonstrates the use of

the original (i.e. without uncertainty quantification [18]) VIB method for the MNIST

dataset. Additionally, we adapted code for the marginal mφ(z) from a sample supplied

by Ian Fischer [55], a co-author of the VIB papers. The original and adapted versions

of VIB code are available in Appendix C.1.

2Alemi GitHub repository: https://github.com/alexalemi/vib_demo

https://github.com/alexalemi/vib_demo
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Algorithm 1 Training procedure for the position-only-VIB model. Note that qψ(zh,c)

represents a decoder LSTM initialised with zh and zc, with affine layers over out-

puts. eh,c
θ

represent the affine layers used over the encoder LSTM to generate h and

c distributions respectively. log prob(a|b) represents calculating the log likelihood

(evaluating the density) of sample a’s occurrence under distribution b.

Input: Head position history Pt
t−M, Target output Pt+H

t+1

Output: VIB Loss LV IB

Encoder : eh,c
θ
(x)

Decoder : qψ(zh,zc)

Marginals : mh,c
φ
(zh,c) = ∑

N
i=0 αi ·N (µµµi,ΣΣΣi), ∑

N
k=0 αk = 1

x← Pt
t−M

µµµhhh,ΣΣΣhhh← eh
θ
(LSTM(x))

µµµccc,ΣΣΣccc← ec
θ
(LSTM(x))

εεε∼N (0, I)

zh ∼ µµµhhh +ΣΣΣ
2
h · εεε, zc ∼ µµµccc +ΣΣΣ

2
ccc · εεε

Prediction P̂t+H
t+1 ← qψ(zh,zc)

LV IB← OrthDist(Pt+H
t+1 , P̂

t+H
t+1 )

+βh
(
log prob(zh|N (µµµhhh,ΣΣΣhhh))−log prob(zh|mh

φ
)
)

+βc
(
log prob(zc|N (µµµccc,ΣΣΣccc))−log prob(zc|mc

φ
)
)

Calculate gradients with respect to LV IB and adjust parameters to minimise

3.3 Evaluation

In this section we introduce the means through which we evaluate model performance.

As defined in Section 2.2, there are generally considered to be two sources of un-

certainty in deep learning model predictions: epistemic and aleatoric uncertainty. In

sections 3.1 and 3.1 we have described how our position-only-VIB model will estimate

each of these uncertainties. To evaluate this model, we must evaluate epistemic and

aleatoric uncertainty estimates by their calibration - how well model-generated epis-

temic and aleatoric uncertainty estimates align with the true epistemic and aleatoric

uncertainty associated with test inputs respectively. Sections 3.3.1 and 3.3.2 introduce

the ideas behind evaluation for epistemic and aleatoric uncertainty estimates respec-

tively.
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3.3.1 Epistemic uncertainty calibration

Epistemic uncertainty describes model uncertainties that depend on reducible factors

such as choice of training data (from which model parameters are derived) or model

architecture. Since we cannot feasibly test the uncertainty associated with our chosen

model architecture, the most effective way to test and evaluate epistemic uncertainty

estimates is to consider how well they express (calibrate with) the similarity of a test

example to those within the training data distribution (in-distribution, or iD, samples).

Intuitively, this is because iD test samples will exhibit behaviours seen previously,

and therefore predictions should be accurate with high confidence (i.e. uncertainty

estimates should be small). By contrast, test samples that are increasingly distant from

the training distribution (increasingly OoD) may exhibit behaviours increasingly less

similar to those seen during training - meaning uncertainty associated with predictions

for those samples should be higher [1].

A “good” uncertainty-aware model will generate epistemic uncertainty estimates

that calibrate well with this intuition. Testing for calibration is conducted by repeat-

edly using test sets compiled from a mix of iD and OoD input samples and generating

uncertainty estimates in response to samples. We then threshold estimates to see how

well input iD and OoD samples can be classified correctly based on the magnitude

of uncertainty estimated by the model. Repeated test sets use OoD samples drawn

from distributions increasingly distant from the training distribution with repetitions.

Calibration is then assessed by observing if classification performance increases pro-

portionally with the size of OoD samples’ distributional shift (shifts away from the

training distribution should give similar improvements in classification performance,

as uncertainty estimates for OoD samples should increase in magnitude while iD esti-

mates remain constant, meaning the classification task is increasingly simple).

In practise, uncertainty estimates generated under the VIB approach are not cal-

ibrated themselves (in that per-instance rate values are meaningful only in how they

vary in response to iD or OoD samples). As a result, to set up the binary classifi-

cation task as described it is common practise to use the Area Under the Receiving

Operating Characteristic (AUROC) as a threshold independent metric [19, 43, 1]. The

AUROC score treats a continuous input signal as a predictor for a set of ground truth

binary labels, and integrates over possible thresholds in the signal to test how well it

discriminates between binary labelled cases. For each threshold True Positive (TPR)

and False Positive (FPR) Rates are generated, with the AUROC score expressed by the
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area under the curve for TPR against FPR. AUROC scores range from 0-1, with 0.5

indicating the input signal is a random classifier, 1 indicating a perfect classifier (100%

classification accuracy), and 0 indicating a perfectly incorrect classifier (in our case,

the signal labels all iD cases as OoD, and vice versa).

The process of testing uncertainty estimate AUROC scores on OoD samples that

are close to being iD, while incrementally shifting samples away from the training

distribution, is known as evaluation via distributional shift [43]. Testing uncertainty

estimates on their ability to discriminate between iD input samples and OoD samples

far from the training distribution is known as Out-of-Distribution detection. We will

describe our approach to these evaluation methods in Section 4.3.

3.3.2 Aleatoric uncertainty calibration

Aleatoric uncertainty describes model uncertainty that is caused by inherent uncer-

tainty or noise in the data, and is therefore irreducible. Assuming a well-fitted model,

this uncertainty causes fluctuations in the model’s performance within the training data

distribution. For this reason, a good method for evaluating aleatoric uncertainty esti-

mates is by calculating the correlation between estimates and predictive error for iD

test samples [43], over a set of sampled error and uncertainty prediction values. The

intuition of this is that, over a test set of iD samples, any increase or decrease in predic-

tive error should be matched by a similar increase or decrease in the generated aleatoric

uncertainty estimate - in effect “explaining” the fluctuation in performance.

For evaluating VIB aleatoric uncertainty estimates we simply generate uncertainty

estimates from our model and calculate their correlation with predictive error over a set

of iD test samples. To measure predictive error we use average orthodromic distance

between ground truth and predicted coordinates as a metric - calculated for a pair of

predicted ŷ = [θ̂, φ̂] and target y = [θ,φ] coordinates described in terms of Euler angles

following Rondon et al.’s implementation in [2, 4]:

OrthDist =

√
(cos φ̂ · sinδθ)2 +(cosφsin φ̂− sinφcos φ̂cosδθ)2

sinφsin φ̂+ cosφcos φ̂cosδθ

δθ = arctan
(

sin(θ− θ̂)

cos(θ− θ̂)

) (3.4)

We calculate orthodromic distances between corresponding target and predicted posi-

tions for sets of H predictions made on each timestamp. Our experiments and results

for evaluating aleatoric uncertainty are presented in Section 4.4.
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Experiments & Results

4.1 Data

The dataset used for conventional training and testing of all models was that compiled

by David et al. in [56] (following notation in [2, 4] we will refer to this as the David-

MMSys18 dataset)1. It contains 19 high definition dynamic 360◦ videos collected

from YouTube, all at least 4K in resolution (3840× 1920 pixels) sampled at 90 frames

per second. Each video was viewed by 57 subjects (25 women, 32 men) wearing

HTC VIVE headsets, allowing viewing of scenes with 110◦ horizontal by 110◦ verti-

cal FoV [56]. Headsets have built-in head position tracking sensors, from which 3D

(x,y,z) coordinates corresponding to the centre of viewer FoVs for each video frame

were recorded (giving ground truth head position data for all subjects viewing videos).

Gaze position data for each head position (such that eye orientations can be calculated

relative to head positions) were calculated using an SMI (SensoMotoric Instrument)

eye-tracker with a precision of 0.2◦. Videos are all 20 seconds in length, are filmed

using both fixed and moving camera views, and contain content including panoramas,

drone flights and water park rides (see [56, Table 1] for more details). During viewing,

subjects were instructed to freely explore scenes as naturally as possible. We utilise

the framework introduced by Rondon et al. in [2] to process the dataset, standardising

videos to include 0.2 second intervals between neighbouring frames (as done by Ron-

don et al. - see [2, Section 3.1] for details of the subsampling process). Pre-processing

in this way was implemented so that position-only baseline’s performance was directly

comparable with previous work in [4, 2]. Example frames from videos in the dataset

are shown in figure 4.1, displayed in equirectangular projections (the format they were

1Available for download from ftp://ftp.ivc.polytech.univ-nantes.fr/

19

ftp://ftp.ivc.polytech.univ-nantes.fr/
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used in our implemented models).

Figure 4.1: Example video frames from the David-MMSys18 dataset (clockwise, frames

are from videos titled: 1 PortoRiverside, 3 PlanEnergyBioLab, 4 Ocean, 14 Warship,

16 Turtle, 18 Bar)

Figure 4.2 shows the Cumulative Distribution Function (CDF) for maximum angu-

lar distances from initial to final head positions in position window lengths (equivalent

to the prediction horizons defined in Section 2.1.1) H ∈ 0.2,0.5,1,2,5,15 seconds,

for viewers in the David-MMSys18 dataset. To visualise these viewing behaviours,

figure 4.3 displays a trace of head (and gaze) position coordinates in 3D space for a

subject exploring a video in the David-MMSys18 dataset. For conventional training

and testing of models, the David-MMSys18 dataset is randomly split into 14 videos

for training, each viewed by 29 subjects, with 5 videos for testing, each viewed by 28

subjects.

Figure 4.2: Cumulative Distribution Function expressing the motion distribution of view-

ers in the David-MMSys18 (left) and Xu-CVPR18 (right) datasets. Generated using

code from [2].
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Figure 4.3: Diagram showing an example trace (represented in the unit sphere) that

follows the (x,y,z) coordinates of viewer 24’s head when watching video ’4 Ocean’,

extracted from the David-MMSys18 dataset. Generated using code from [2].

For evaluation on OoD detection, we used an additional dataset to David-MMSys18

that acted as a source of ‘true OoD’ trajectories when testing epistemic uncertainty es-

timates. For this, we used the dataset compiled by Xu et al. in [11] (following notation

in [2] and [4] we will refer to this as the Xu-CVPR18 dataset)2. It contains 208 high

definition dynamic 360◦ videos collected from YouTube, all at least 4K in resolution

sampled at 25 frames per second. Head position data was collected in the same manner

as in David-MMSys18, and eye-tracking data was recorded similarly using a 7inven-

sun a-Glass eye tracker. Videos varied in length from 20 - 60 seconds, and contain a

similar variety of contents to David-MMSys18, again with a mix of fixed and moving

camera views. Each video was viewed by at least 31 subjects (from a pool of 45 po-

tential viewers) who were instructed to explore scenes freely. We pre-processed data

using Rondon et al.’s framework as for David-MMSys18. The CDF for maximum an-

gular distances from initial to final head positions (as seen for David-MMSys18) for

Xu-CVPR18 is shown in figure 4.2.

4.1.1 Hard Synthetic Data

To supplement experiments conducted using real head motion trajectories from the

David-MMSys18 and Xu-CVPR18 datasets, we generated further datasets of synthetic

head motion trajectories wherein the uncertainties associated with each trajectory were

2Instructions for downloading the dataset can be obtained from https://gitlab.com/
miguelfromeror/head-motion-prediction/tree/master

https://gitlab.com/miguelfromeror/head-motion-prediction/tree/master
https://gitlab.com/miguelfromeror/head-motion-prediction/tree/master
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manually constrained. Since the model we are implementing considers only positions

as input, synthetic trajectories can be arbitrarily generated without consideration of

video content. Particularly, generated trajectories do not need to be consistent in featur-

ing the same positions, as the position-only-VIB model is coordinate independent. For

the ‘Hard Synthetic Trajectories Dataset’ (HSTD), we constructed a single constrained

synthetic training set, and multiple test sets wherein constraints on OoD trajectories

were relaxed to varying extents, allowing distributional shift.

All trajectories generated have the same form as those used from David-MMSys18

and Xu-CVPR18 - each featuring 100 (x,y,z) head positions on the surface of a unit

sphere, the equivalent of one head position for each frame in a 20 second video sam-

pled at 5 frames per second. We construct each trajectory by generating a population of

2000 random candidate positions on the surface of a unit sphere, and sequentially se-

lecting a limited number of positions (this varies over training and test sets, between 2

and 10 positions following the initial position) that will be members of the final trajec-

tory. Candidate positions are sampled and added to the trajectory if they meet a series

of 3 constraints. Once a full set of positions has been collected, a trajectory is gen-

erated by interpolating between selected positions using spherical linear interpolation

[57]. The 3 constraints on positions are as follows (the motivations behind constraints

are described in Section 4.3.1):

1. Distance constraints: We limit selected positions in the trajectory to be close

to the equator of the unit sphere. Positions selected across training and test sets

are constrained to be less than 22.5◦ (π

8 radians) elevated from the equator of the

unit sphere (in terms of Euler angles, −22.5◦ < φ < 22.5◦).

2. Angular constraints: Any one position selected to be within the trajectory (ex-

cluding initial positions) must have an angle of rotation from the previous portion

of the trajectory that is within set bounds (see the left of figure 4.4, where any

position p3 - for which c is a candidate - must have an angle θ with respect to

the trajectory p1→ p2 that is within set bounds).

3. “Speed” constraints: The perceived “speed” of a synthetic trajectory is con-

strained via the number of positions selected to occur in it (i.e. a trajectory with

2 selected positions, excluding the initial position, is “slower” than one with 10

separate selected positions).

Constraints 1 and 3 are simple to implement. In practise, we implement constraint 2

by calculating the rotational angle between the plane formed by the 2 prior selected
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Figure 4.4: Diagram showing 2 synthetic head positions p1, p2 that are already mem-

bers of a generated synthetic trajectory, with a 3rd candidate position c. (Left) θ is the

angle between p1, p2 and c that we constrain in the trajectory. (Right) In practise we

express θ as the rotational angle between the planes constructed from p1, p2 (shown

in blue), and p2,c (shown in red)

positions, and the plane formed by the last selected position and a candidate position

(see right of figure 4.4). We calculate the line equations of the normal to each plane

by taking the cross product of vectors describing the points it is formed from, and then

calculate the angle between planes following equation 4.1.

θ = cos−1 |A1 ·A2 +B1 ·B2 +C1 ·C2|√
A1

2 +B1
2 +C1

2 ·
√

A2
2 +B2

2 +C2
2

(4.1)

Where the plane normals are described by equations Ax+By+Cz. For the first selected

position following the initial position, no previous trajectory segment is available. In

this case we enforce the angle constraint by defining an axis from the initial position

to some candidate position, calculating the rotation around the axis in terms of euler

angles, and ensuring pitch and yaw angles fall within the angle constraints (discarding

candidates that do not meet these specifications).

For the training set, we generated 1000 trajectories composed from a sequence of

4 positions (the speed constraint) with angles between planes of consecutive segments

(the angular constraints) 50◦ < θ < 60◦ - an example of these trajectories is displayed

in figure 4.5. For testing, we generated 200 trajectories for each test set, preserving the

distance constraint from training conditions throughout. We generated test sets varying

on the speed constraint - with trajectories made up from one of 2,4,5 or 10 positions

in each set - as well as separately varying on the angular constraint - with trajectories

containing angles θ in a range from one of 0◦− 30◦,30◦− 50◦,50◦− 60◦,50◦− 80◦

or 70◦− 180◦ (in total forming 8 test sets including an in distribution set, see Ap-

pendix D.1 for visualisations of example trajectories). In OoD experiments using

HSTD, test sets consisted of one SSTD test set mixed with 200 generated samples

following training set constraints.
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Figure 4.5: Diagram showing an example trace (represented in the unit sphere) that fol-

lows the (x,y,z) coordinates of a synthetic trajectory extracted from the Hard Synthetic

Trajectories Dataset. It uses angular constraints 50◦ < θ < 60◦ and is generated by

interpolating between 4 selected positions via spherical linear interpolation (the speed

constraint).

4.1.2 Simple Synthetic Data

The synthetic trajectories dataset described in the previous section constitutes a set of

constrained trajectories for which it is “hard” for an uncertainty-aware model to ac-

curately class trajectories’ exact associated uncertainty. This is because, although un-

certainty is constrained via the enforcement of constraints on angles between selected

positions and number of positions (speed), the exact uncertainty associated with a tra-

jectory is hidden, defined as some function of angle, distance and speed constraints.

As a result, modelling this uncertainty is still challenging - hence the dataset title.

For this reason, we introduce the “Simple Synthetic Trajectories Dataset” (SSTD)

to supplement the HSTD. This is a dataset of synthetic head motion trajectories, where

the uncertainty associated with any one trajectory is entirely known and defined by a

single source. This is achieved by setting trajectories to be based around only three

positions (expressed in Euler angles) on the unit sphere: A = (7π

8 , π

6 ),B = (π, π

4 ),C =

(9π

8 , π

6 ). Trajectories in the dataset are constructed by generating a random combination

of these coordinates (for example, possible trajectories could be ABCA, BCAB, and

so forth), such that there are 6 possible trajectories that appear in the dataset. This is an

entirely deterministic process, as we simply linearly interpolate between known points

in the θ and φ axes. However, trajectories are not generated directly from positions

A,B and C - they are instead generated by interpolating between points within some
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Figure 4.6: Diagram showing example training (σpos = 0.01, left) and test (σpos = 2,

right) traces (represented in the unit sphere) that follow the (x,y,z) coordinates of syn-

thetic trajectories extracted from the Simple Synthetic Trajectories Dataset.

fixed standard deviation of A, B and C. This is the only source of uncertainty in the

trajectory (meaning standard deviation magnitude determines trajectory uncertainty).

In the training set for the SSTD, we set the standard deviation over positions to be

0.01. As in the HSTD, we generate 1000 trajectories for training, with each trajectory

selected from our 6 candidate trajectories. All trajectories have the same form as those

from the HSTD, David-MMSys18 and Xu-CVPR18 datasets. An example training

trajectory is shown in figure 4.6. As for the HSTD, we generate multiple training

sets with varying levels of uncertainty - each containing 200 trajectories. We vary the

standard deviation over positions A, B and C between values σpos ∈ [0.05,0.1,0.5,1,2]

(an example of a trajectory with a standard deviation of 2 is also shown in figure 4.6).

OoD experiments mix test and training samples as for the HSTD.

4.2 Experimental Setup

For all experiments, we implement models that predict future head coordinates for a

prediction horizon of H = 5 seconds. Since videos are sampled at 5 frames per sec-

ond, this means predictions encompass the 25 future timesteps following a timestamp t.

Similarly, findings in [20] suggest viewers of a new VR scene generally spend the first

period of viewing exploring the scene - meaning this period is highly unpredictable.

For this reason we do not generate predictions for the first 6 seconds of any input tra-

jectory (chosen to replicate experiments undertaken by Rondon et al. in [4]). Given

each video in the David-MMSys18 dataset is 20 seconds long, equating to 100 times-
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tamps after subsampling, our model makes 45 sets of H = 25 predictions for each input

trajectory.

All models were trained using the ADAM optimizer with a learning rate of 5×10−4

and otherwise default parameters [58]. Models are trained to convergence, with an

early stopping scheme employed to prevent model overfitting (i.e. training is stopped

if validation error consistently increases), and a batch size of 128.

4.3 OoD Detection

Section 3.3.1 described how epistemic uncertainty is best evaluated by incrementally

shifting the test data distribution away from the training distribution, and setting up re-

peated binary classification tasks using AUROC score as a metric. However, there is no

clear way to measure the distributional shift between two head trajectories in response

to VR scenes. We therefore hypothesised that discrete incremental distributional shifts

could be implemented by first introducing test trajectories from viewers who were not

in the David-MMSys18 training set (we call this the ‘Users’ OoD case), but who were

watching the same training set videos (i.e. viewers might exhibit behaviours outside

of the training distribution, but would follow the same regions of interest as in training

trajectories). A second shift would be to introduce trajectories from viewers in the

David-MMSys18 training set, but instead exploring VR videos outside of the train-

ing set (videos from the David-MMSys18 test set - such that viewers would exhibit

behaviours seen in the training distribution, but videos may include OoD content).

We call this the ‘Videos’ OoD test case. A third, further, shift would be to use OoD

trajectories where neither viewers or videos are featured in our model’s training set tra-

jectories (OoD trajectories are extracted from the David-MMSys18 dataset such that

subjects and videos do not intersect with the training set). We call this the ‘Videos

& Users’ OoD case. Finally, the most extreme shift would be to use test trajecto-

ries extracted from an entirely different dataset - for this we use trajectories from the

Xu-CVPR18 dataset. We refer to this as ‘True OoD’.

The conventional David-MMSys18 test set is made up of 145 trajectories (5 videos,

each viewed by 29 subjects). We set each of our OoD test sets to be 20% larger than

this (arbitrarily chosen), containing 174 trajectories. For the ‘Users’ case, we take

145 trajectories from the David-MMSys18 training set, and add 29 trajectories from

prior unseen subjects watching iD videos (videos were randomly selected). We do

the same for the ’videos’ case, randomly selecting and adding 29 trajectories from



Chapter 4. Experiments & Results 27

10 5 10 4 10 3 10 2

Beta value

0.44

0.46

0.48

0.50

0.52

0.54

0.56

AU
R

O
C

Videos
Users
Videos & Users
True OOD

10 5 10 4 10 3 10 2

Beta value

0.44

0.46

0.48

0.50

0.52

0.54

0.56

AU
R

O
C

Videos
Users
Videos & Users
True OOD

Figure 4.7: AUROC results evaluating (left) c-state and (right) h-state per-instance

rates, generated by the position-only-VIB model when tested on different OoD test

cases, when β values are varied from 1×10−5 to 1×10−2.

iD subjects watching unseen videos. This fashion continues, selecting 29 additional

trajectories that match the constraints of each OoD case and augmenting a training set

of previously seen, iD trajectories. As these 4 datasets progressively deviate from the

training data, we hypothesise that AUROC scores should progressively increase.

These OoD test cases form our initial evaluation framework for uncertainty esti-

mates for an uncertainty-aware head motion prediction model. Above this, the position-

only-VIB model has two factors influencing uncertainty estimation performance: num-

ber of mixture components N in the marginal distributions mh,c
φ
(z) and the β values con-

trolling the amount information from inputs in latent encodings is penalised. To con-

strain the search space over possible setups of these two hyperparameters, we only con-

sider cases where β values and mixture component numbers are the same for both the h
and c distributions (i.e. βh = βc and N is constant for mh,c

φ
(zh,c) = ∑

N
i=0 αi ·N (µµµi,ΣΣΣi)).

We vary β ∈ [1× 10−5 : 1× 10−2], and vary number of components N ∈ [60 : 200]

(values lower than 60 were tested, but always produced NaN loss results during model

training). Note that for all experiments we present both the h and c-state rates. Fig-

ure 4.7 shows AUROC results from experiments on our OoD evaluation framework

for varying β with fixed N = 200. We present results only for N = 200 as there was

not found to be any significant change across varying N for all values of β. This fig-

ure shows that the per-instance rate is poor at indicating whether trajectories are iD

or OoD, with varying distributional shifts. AUROC scores remain close to 0.5, indi-

cating no threshold on rate predictions exists that is close to dissecting iD and OoD

ground truth examples correctly (rates could be random with respect to binary labels).

Furthermore, AUROC scores are not calibrated with the relative sizes of distributional
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Figure 4.8: Average angular velocity of iD and OoD trajectories for different OoD test

cases in our evaluative framework.

shift we hypothesised each OoD case would have. To verify the cause of this failure,

we calculate the average angular velocity of iD and OoD trajectories from each OoD

test case. We hypothesise that, because the position-only-VIB model considers only

a sequence of positions, a difference in velocities may be indicative of distributional

shift between iD and OoD trajectories, and that our OoD cases are not significantly

different in this respect. Figure 4.8 shows the results of this calculation - iD and OoD

trajectories are all extremely close in angular velocity (generally less than 0.2 rad/s

from one another) besides those in the True OoD test case. This suggests that the True

OoD case may in fact offer a significant distributional shift from the training data, but

all other OoD cases are not different enough from training data to be detected by the

position-only-VIB model.

4.3.1 Synthetic Data

From the results in figure 4.8, we hypothesise that generally our initial experiments

were not an effective test of epistemic uncertainty estimates, because distributional

shifts between iD and OoD samples were not large enough. This motivates the eval-

uation of uncertainty estimates on OoD test cases where distributional shifts between

iD and OoD samples can be controlled (and forced to be large) - allowing us to test

if uncertainty estimates are effective, what distributional shift they are effective from,

and how calibrated they are when effective. Furthermore, figure 4.8 suggested ‘True

OoD’ trajectories did represent a significant distributional shift from iD trajectories,

that the position-only-VIB did not account for in its uncertainty estimates. Locating
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Figure 4.9: Results from OoD experiments on the SSTD dataset, with OoD samples

generated using σpos ∈ [0.05,0.1,0.5,1,2]. These consist of AUROC scores (left) when

varying number of components N in the marginal mixture mh,c
φ

, and (right) when varying

the IB coefficient β. Upper figures are AUROC results using the h-state per-instance

rate, while lower figures use the c-state per-instance rate.

where uncertainty estimates are effective (expressed through high AUROC scores) us-

ing known uncertainties demonstrates whether ‘True OoD’ trajectories are OoD, and

the model is failing, or whether they are not truly OoD at all.

For this task, we train and test the position-only-VIB using trajectories from the

HSTD and SSTD described in Sections 4.1.1 and 4.1.2 respectively. Within the SSTD

training and test sets (recalling it includes one training set and 5 test sets, with varying

standard deviations used across test sets) distributions, and therefore uncertainty, are

exactly known. This means we can exactly test the per-instance rate’s viability as

an epistemic uncertainty estimate for varying amounts of uncertainty, by observing

its calibration with differing distances from the training distribution. The values for

SSTD test set standard deviations [0.05,0.1,0.5,1,2] (see Section 4.1.2 were chosen

because they represent a range of trajectories varying from those near-to the training

distribution (σpos = 0.05), to those far from the training distribution (σpos ∈ [1,2]) -

showing the diversity in test cases that is hypothesised to be important by Postels et al.
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Figure 4.10: Results from OoD experiments using test trajectories with varying (left)

speed and (right) angular constraints (shown as ranges expressed in degrees) from

the HSTD. We test the per-instance rate’s ability to differentiate between iD and OoD

samples - with higher ”speed” and angular ranges distant from 50−60◦ indicating OoD

samples are further from the data distribution.

in [43]. We supplement experiments on the SSTD with those on HSTD trajectories,

as these represent a body of synthetic trajectories that are more realistic, but can still

be used to control distributional shift in OoD test cases (although the exact magnitude

shift, and therefore the exact quantity of uncertainty associated with a given shift,

between training and test distributions is not known).

The three constraints set on HSTD trajectories are designed to ensure this partial

faithfulness to real trajectories. The distance constraint is enforced to replicate the fact

that viewers generally take up head positions close to the equator within their possible

sphere of positions [20]. The angular constraint is enforced to create in-distribution tra-

jectories that are largely continuous, replicating the fact that real viewers tend to follow

continuous trajectories with their heads. The fact that trajectories are manually created

means that we can remove the stochastic component of human behaviour, that will

occasionally violate this continuity (making modelling epistemic uncertainty a harder

task) within in-distribution trajectories from the David-MMSys18 dataset. Finally,

speed constraints are enforced to test if our model can account for distributional shifts

represented by change in average angular velocity (as between the David-MMSys18

and Xu-CVPR18 datasets) in its uncertainty estimates.

AUROC results on HSTD test trajectories mirror those from our original OoD ex-

periments, in that, for various speed and angular constraints in all test cases, AUROC

on the per-instance rate remains near to 0.5 (see figure 4.10). This is true for all β

and N values, indicating that the position-only-VIB model cannot effective estimate
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Figure 4.11: Visualisations of (left) samples zc from the c-state encoding distribution (ec
θ
)

for iD and OoD input trajectories from the SSTD dataset, with (right) the per-instance

rate values generated using these samples. Upper figures display results for σpos = 1,

while lower figures display results for σpos = 0.1.

epistemic uncertainty for real or pseudo-real head motion trajectories. By contrast,

AUROC results using SSTD test trajectories are far more successful, and are displayed

in plots for different values of β and N in figure 4.9. We see AUROC scores increase in

line with increasing σpos, which indicates the position-only-VIB is capable of detecting

the distance of a given test input from its training data distribution. For extremely OoD

samples (for example, σpos = 2), we even see AUROC scores of more than 0.9. More-

oever, it is notable that, for σpos ≤ 0.1, in the majority of cases we see the per-instance

rate in effect acts as a random classifier (AUROC scores tend to 0.5). From plots of

traces, trajectories with σpos ≤ 0.1 likely fall within a range of noise that we might

expect from a slightly OoD human head motion trajectory - that our model should be

able to predict with confidence (whereupon AUROC scores should tend to 0.5). Over-

all, SSTD experimental results indicate the per-instance rate is a moderately effective

uncertainty estimate at a wide range of distances from the training distribution - when

trajectories contain a single source of uncertainty.
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Figure 4.12: Visualisations of (left) samples zc from the c-state encoding distribution

(ec
θ
) for iD and OoD input trajectories, with (right) the per-instance rate values generated

using these samples. Upper figures display results for trajectories from the ‘True OoD’

David-MMSys18 OoD test case, while lower figures display results for trajectories from

the HSTD dataset, for the OoD case with 10 selected positions per trajectory.

To interpret AUROC results, we visualise in 2D the distributions of iD and OoD

activations (extracting both the sampled zh and zc vectors generated for iD and OoD

test trajectories) over SSTD test cases, as well as HSTD and David-MMSys18 test

cases for comparison, using the t-distributed Stochastic Neighbor Embedding (t-SNE)

method [59], alongside the distribution of rate values generated using these activations.

Details of the t-SNE method are described in Appendix D.3.1. Figure 4.11 shows

examples of these visualisations for an SSTD OoD test case in which outputted rates

gained high AUROC scores (σpos = 1), and a case (σpos = 0.1) where rate signals

generally gained low AUROC scores (tending towards 0.5), while figure 4.12 shows the

same plots for example HSTD and original David-MMSys18 OoD test cases. Further

examples can be found in Appendix D.3, noting that visualisations of activations are

not comparable with one another as t-SNE reduces dimensionality of activations using

methods individual and local to each set of activations.
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Figure 4.13: A plot of average estimated aleatoric uncertainty against average ortho-

dromic distance generated from mean position-only-VIB model predictions. Numbers

labelled on the curve indicate the future timestep τ ∈ [1 : H = 25] uncertainty estimates

and predictions were made for to generate data points.

From these visualisations, we note that iD and OoD distributions (in terms of ac-

tivations and rate value distributions for these test examples) are extremely similar for

all HSTD and David-MMSys18 test cases, and are generally similar (although there

are some differences between distributions) for SSTD test cases using small σpos. For

SSTD test cases using larger σpos, we begin to see iD and OoD distributions diverge,

with distributions extremely different for σpos ≥ 1.

4.4 Aleatoric Uncertainty

As described in Section 3.3, evaluation of aleatoric uncertainty estimates is conducted

by calculating the correlation between average orthodromic distance and aleatoric un-

certainty estimates over the iD test set. We do this by treating the David-MMSys18

test set as a collection of iD trajectories (figure 4.8 shows David-MMSys18 train and

test set trajectories share similar angular velocities, suggesting this is a valid assump-

tion), and simply correlating aleatoric uncertainty predictions and error over the test

set. To quantify correlation, we use Pearson’s and Spearman’s rank correlation coeffi-

cients as metrics - expressing a measure of the linear correlation between two sets of

data and extent to which datasets’ relationship forms a monotonic function respectively

[60]. The position-only-VIB model generates aleatoric uncertainty estimates in paral-

lel with mean regression predictions for each timestep τ ∈ [t + 1 : t +H]. As a result,

for evaluation we can directly correlate uncertainty estimates with model error. For
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Figure 4.14: Scatter plot for predicted aleatoric uncertainty (defined as the empirical

variance of predictions over M latent samples) against orthodromic distance mean pre-

diction error results, averaged over trajectories from the videos (left) ’1 PortoRiverside’

and (right) ’14 Warship’. Lower plots contain the same data as those in the top row, but

exclude data points where predictive variance exceeds 1×10−4.

each subject viewing each video, we have 45 sets of predictions to correlate, while for

each video we have 28 subjects. To generate a base correlation score for uncertainty

estimates, we first simply average over predicted uncertainty and mean predictive or-

thodromic distance error results for each timestep over all timestamps (giving us 25

pairs of uncertainty estimates and error values, each the average of 45 timestamps, for

each subject on each video), over all subjects for each video (providing 25 pairs of

results averaged over 28 viewers), and finally over all videos. We then correlate the

two averaged sets of results. Note that the all results here are generated by repeatedly

sampling M = 4 times from the encoder distribution and generating the corresponding

outputs. However, we see minimal difference in uncertainty results when using up to

50 samples (with experiments abandoned above M = 50 due to the sheer time required

for inference). The position-only-VIB model used to generate these results was the

best performing model from OoD Experiments - with a mixture of N = 200 Gaussians

for the marginal and β values set to 1×10−4.
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Video Pearson Correlation Spearman Correlation

1 PortoRiverside 0.135 0.661

3 PlanEnergyBioLab 0.294 0.722

5 Waterpark 0.394 0.709

14 Warship 0.373 0.745

16 Turtle 0.254 0.814

Table 4.1: Pearson and Spearman correlation results calculated between all aleatoric

uncertainty estimates (empirical variances) and mean predictive error results, averaged

over trajectories for individual videos in the David-MMSys18 test dataset.

Base correlation experiments produce Pearson and Spearman correlation scores of

0.912 and 0.794 respectively. A plot of orthodromic distance against uncertainty (av-

eraged over videos) visualising this trend is shown in figure 4.13. We can see from

correlation scores and figures that correlation between predicted aleatoric uncertainty

and error is strong over the test set, implying we have generated effective aleatoric

uncertainty estimates. To verify this at an increased level of granularity, we also cal-

culate correlation between uncertainty and error for each video - with results shown in

table 4.1, and scatter plots visualising data for two sample videos shown in figure 4.14.

These results suggest that correlation is much lower per-video than when averaged

over the whole test set, and that there are quite large fluctuations between videos.

Observing the pattern of aleatoric uncertainty estimates in figure 4.14, we note that

a large number of uncertainty estimates appear close to zero (on inspection values av-

erage at ∼ 1× 10−5) - with a smaller number of estimates that are extremely large in

comparison. We hypothesise that lower correlation results are associated with these

estimates (evidenced by the more linear relationship between uncertainty and ortho-

dromic distance in thresholded lower half plots in figure 4.14), and that it is some

parameter of videos that is causing these large uncertainty estimates. To test this hy-

pothesis, we conduct an experiment wherein we threshold aleatoric uncertainty predic-

tions to be above or below 16 values in the range 1× 10−5 to 0.02. We then use the

fact that uncertainty estimates and orthodromic distance should be strongly correlated

(and thereby large uncertainty estimates should only occur when a large orthodromic

distance is expected), by treating orthodromic distance values as a predictor for the bi-

nary classification task of whether aleatoric uncertainty values exceed each threshold

using AUROC as a metric.

The results of this experiment, shown in figure 4.15, confirm our hypothesis. Not
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Figure 4.15: AUROC results for using or-

thodromic distance as a predictor on the

binary classification task of whether es-
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videos in the David-MMSys18 test set.
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Figure 4.16: Average angular velocity

of trajectories that generated predicted

aleatoric uncertainty estimates over a

threshold of 0.018 when used as input to

the position-only-VIB model, compared

to average angular velocity of all other

trajectories.

only do AUROC scores at high thresholds align roughly with correlation scores from

table 4.1 (i.e. videos with low correlation scores align with those that have low AUROC

scores at high thresholds), but they also align roughly with number of uncertainty esti-

mates above high thresholds (see Appendix D.4 for the counts of uncertainty estimates

exceeding some example thresholds for each video).

Finally, to allow qualitative conclusions to be made about what the hypothesised

parameter of videos causing these failures might be, we inspect uncertainty estimates

made per-viewer (i.e. for individual trajectories on videos). We extract those test tra-

jectories where an uncertainty estimate of high magnitude (over a threshold of 0.018

- chosen as, heuristically, there are unlikely to be many accurate uncertainty estimates

made over this threshold) has been predicted. We then compute the average angular

velocity exhibited over these trajectories, and compare it to the rest of test and training

examples - with results shown in figure 4.16. This figure shows extracted “unnaturally

high predicted uncertainty” trajectories display significantly lower average angular ve-

locity than the David-MMSys18 dataset at large. Qualitatively, this indicates low ve-

locity trajectories may be problematic for the position-only baseline to predict future

head positions for.
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Discussion & Conclusions

5.1 Discussion

5.1.1 Epistemic uncertainty & per-instance rate

Results from Section 4.3 indicate that the per-instance rate, as an uncertainty estimate,

is not well calibrated with the true epistemic uncertainty associated with head motion

trajectories drawn from foreign data distributions (with respect to the position-only-

VIB training distribution). Furthermore, visualisations show the per-instance rate does

not behave as a simple uncertainty estimate (as hoped at the beginning of experiments),

where increased uncertainty in trajectory results in increased rate value. Instead, it ap-

pears that low uncertainty and in-distribution trajectories (i.e. trajectories similar to

those from the training distribution) result in rate values that do not vary greatly, and

lie closely (with a small amount of noise) on well defined manifolds. Notably, these

manifolds are more clearly defined for larger values of β (see Appendix D.3.4 for

a demonstration of this finding), although our results indicate larger β do not result

in better uncertainty estimates. Our results, from experiments on the SSTD dataset,

indicate that increasingly uncertain trajectories then generate rate values that appear

initially more noisy on manifolds, before diverging from manifolds. Divergence from

manifolds often presents as rate values spreading to much lower magnitudes (for ex-

ample, spreading from 84 for iD trajectories to -300 for extremely OoD trajectories).

This divergence of rate values from the ‘iD manifold’ was never observed for actual

human head motion trajectories, and can be observed minimally for extremely OoD

HSTD trajectories (for trajectories with a “speed” of 10, shown in Appendix D.3). For

VR streaming systems using the rate signal to account for uncertainty, without diver-

37
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gence from the manifold it is impossible for them to differentiate between high and low

uncertainty trajectories. As a result, we say the per-instance rate is not well-calibrated

with epistemic uncertainty, because values never diverge from the iD manifold where

they should. This qualitative analysis is based upon generated visualisations of rate dis-

tributions, and, significantly, agrees with our AUROC results from OoD experiments

using the David-MMSys18 and HSTD datasets, where we saw consistent AUROC

scores of close to 0.5. This non-divergence of OoD rate values from the iD manifold

for real and pseudo-real (HSTD) trajectories, combined with the divergence we ob-

served for SSTD trajectories (where the number of modes in the data to be learned by

the model was very small), suggests that the position-only-VIB model is not learning to

correctly emphasise the aspects of trajectories that are key sources of epistemic uncer-

tainty in representations. For example, distributional shifts in the angular velocity of

OoD trajectories were not detected in ‘True OoD’ experiments on the David-MMSys18

dataset, and, furthermore, t-SNE visualisations of activations regularly show OoD tra-

jectories are represented using similar feature tensors as iD trajectories in all test cases.

This may be related to the problem of feature collapse (introduced by van Amersfoot et

al. in [1]) - wherein out-of-distribution input data is mapped to in-distribution feature

representations, meaning their likelihoods will be similar under marginals mh,c
φ

.

Finally, our AUROC results show that neither of samples from the c-state and h-

state stochastic encoding distributions are consistently more effective for generating

uncertainty than one another. With respect to the role played by the hyperparameters

β and number of mixture coefficients N, our results show that larger N (we gained

best results using N = 200) and moderate values of β (our best AUROC results were

observed for β= 1×10−4) work best to generate effective uncertainty estimates. These

findings suggest that a moderate amount of information from model inputs is necessary

to estimate uncertainty associated with outputs (i.e. we cannot penalise too heavily

information from inputs being present in latent encodings), and that the distribution

over activations being fitted by variational marginals is highly multi-modal. Note that,

for values of N ≥ 200 inference of the per-instance rate becomes significantly slower,

meaning there may be a trade-off between uncertainty estimate quality and efficiency.

5.1.2 Aleatoric Uncertainty

Our results from Section 4.4 indicate that the empirical variance of position-only-VIB

predictions, generated from multiple samples from encoding distributions, is an ef-
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fective estimate of model aleatoric uncertainty for head motion prediction. These es-

timates correlate strongly with the orthodromic distance between ground truth and

predicted future head positions. However, our results show that aleatoric uncertainty

estimates under this method are unable to account for low velocity head movement

trajectories - with artificially large estimates for these trajectories being generated by

the position-only-VIB model.

Observing figure 4.13, we can also see that the strong correlation between ortho-

dromic distance and aleatoric uncertainty falls steeply after prediction step τ = 16.

This indicates aleatoric uncertainty estimates are not effective over longer prediction

horizons. In combination with aleatoric uncertainty estimates failing for low velocity

trajectories, we believe that this is not a failure of the UQ method itself - but rather a

failure of the position-only baseline model. Findings in [2], [4] and [20] indicate that

head positions for prediction horizons longer than 2 - 3 seconds (corresponding to 10-

15 timesteps when sampled at 5 frames per second) start to become largely determined

by visual content in VR videos, rather than previous head positions. This information

directly explains the fall in correlation we see in our experiments, as the position-

only-VIB model ignores visual content, meaning it is likely not effective for prediction

horizons longer than 15-16 timesteps. Similarly, we hypothesise that low velocity pe-

riods in trajectories could be as a result of subjects inspecting visual content in VR

videos, which again cannot be accounted for under the position-only-VIB model. This

hypothesis is validated by the fact that videos with the greatest number of artificially

large aleatoric uncertainty estimates (‘1 PortoRiverside’ and ‘3 PlanEnergyBioLab’)

are known as Exploration videos (as defined by Almquist et al. in [61]) wherein video

content incentivizes users to explore and inspect different aspects of VR visuals. Head

positions in Exploration videos are therefore more likely to be determined by video

content.

5.2 Conclusions

This thesis investigated extending a deep learning model for head motion prediction

in VR environments to be capable of quantifying uncertainty in its predictions. The

model was comprised of an encoder-decoder LSTM architecture that accepted a se-

quence of past head position coordinates as input. The extension to this model intro-

duced stochastic latent variables constrained under an information bottleneck objective

- such that at test time the likelihood of input head motion trajectories could be evalu-
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ated to estimate epistemic uncertainty. The variance of predictions made from sampled

latent variables acted as an aleatoric uncertainty estimate. We developed an evalua-

tion framework for epistemic uncertainty estimates based on distributional shift and

out-of-distribution detection using existing head motion trajectory datasets, and intro-

duced two datasets of synthetic trajectories with constrained uncertainty and varying

amounts of faithfulness to real head motion trajectories. We evaluated aleatoric un-

certainty estimates using correlation with model mean predictive error on real head

motion trajectories.

Results on the baseline evaluation framework showed our model’s epistemic un-

certainty estimates could not clearly distinguish between in and out-of distribution

(with varying distributional shift) head motion trajectories, a finding that was repeated

for our dataset of realistic synthetic trajectories. However, for our dataset of simplified

synthetic trajectories, generated with a single constrained source of uncertainty, our re-

sults show epistemic uncertainty estimates clearly distinguish between in-distribution

and out-of-distribution trajectories, given a sufficient difference between distributions.

With visualisations of the distributions of epistemic uncertainty estimates, and the la-

tent encodings they were generated from, we hypothesise that failures of epistemic

uncertainty estimates are due to feature collapse - where in and out-of distribution

samples are mapped to similar feature representations.

Evaluation of generated aleatoric uncertainty estimates showed they have strong

correlation with model predictive error up to prediction horizons of roughly 3 sec-

onds. However, we show aleatoric uncertainty estimates struggle for low velocity head

motion trajectories - hypothesising that this failure, and failures in estimates past pre-

diction horizons of 3 seconds, are due to the influence of VR video content on head

positions. This factor can’t be accounted for under our chosen prediction model.

Given our model’s failures, the main concern of future work should be first to in-

vestigate the problem of feature collapse in the position-only-VIB model, identifying

if this is the cause of issues found here, before exploring possible methods for ensur-

ing latent encodings are sufficiently different for in-distribution and out-of-distribution

input head motion trajectories. Ideas from [1] may be useful for treating this prob-

lem. Similarly, if the problem of feature collapse is treated, future work should adapt

the successful method for use with TRACK, the current state of the art in deep head

motion prediction models. This will require some additional exploration of the opti-

mal positions to place latent variables, taking care that aleatoric uncertainty estimates

correlate well with head motion strongly influenced by VR video content.
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[29] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty
in machine learning: An introduction to concepts and methods. Mach Learn,
110:457–506, March 2021.

[30] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu,
Mohammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Ra-
jendra Acharya, Vladimir Makarenkov, and Saeid Nahavandi. A review of uncer-
tainty quantification in deep learning: Techniques, applications and challenges.
In 35th AAAI conference on Artificial Intelligence, Virtual Conference, Feb. 6-9
2021.

[31] Andreas Damianou. Deep Gaussian Processes and Variational Propagation of
Uncertainty. PhD thesis, University of Sheffield, 2015.

https://mathworld.wolfram.com/GreatCircle.html
https://mathworld.wolfram.com/GreatCircle.html


Bibliography 44

[32] C. Turchetti. Stochastic Models of Neural Networks. IOS Press, NLD, 2004.

[33] Laurent Valentin Jospin, Wray Buntine, Farid Boussaid, Hamid Laga, and Mo-
hammed Bennamoun. Hands-on Bayesian Neural Networks – a Tutorial for Deep
Learning Users. arXiv e-prints, page arXiv:2007.06823, July 2020.

[34] Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran,
Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian
Nowozin. How good is the Bayes posterior in deep neural networks really? In
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Appendix A

Previous Head Motion Prediction
Models

Figure A.1: Deep head motion prediction model architecture used by Fan et al. in
[15]. Head positions static saliency maps are concatenated for input to an LSTM for
processing as a time series. Pt indicates active tile coordinates at timestep t.
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Figure A.2: TRACK head motion prediction model from Rondon et al. in [4]. Pt and
Vt indicate head position coordinates [θt ,φt ] and saliency maps (from visual content)
respectively at timestep t.



Appendix B

Theoretical motivations behind
models

B.1 VIB

One of the key innovations of VAEs is that, under an objective of maximising the log
likelihood of data samples log p(x), they can learn a set of stochastic latent variables
z that model the generative factors of the data, drawn from an approximate posterior
eθ(z|x) (regarding density estimation, they model the data density via a learnt distri-
bution over latent variables, along with a transformation from latent space). Crucially,
this process is driven by an encoder eθ(z|x) for latent variable inference, and a decoder
qψ(x|z) for generation from latent variables, with parameters θ,φ learned as neural net-
works.

The VIB approach replicates this idea in a supervised learning formulation, max-
imising the log likelihood of outputs log p(y|x), to learn a set of stochastic latent vari-
ables that model the factors of inputs that are generative for outputs. This is identifiable
from a conventional supervised neural network, which acts discriminatively. Note that
stochastic z also mean outputs y are treated as random variables, again with an encoder
for latent variable inference and a decoder for output value generation. Additionally,
to reduce the dimensionality of latent encodings (and motivated by the success of in-
formation theoretic constraints in the β-VAE architecture [53]) the VIB approach con-
strains them to have low complexity, but be effective for output computation, using an
information bottleneck objective during training - as shown in equation B.1.

max I(z;y) subject to I(z;x)≤ Ic (B.1)

The IB objective states that the mutual information between inputs and latent encod-
ings, shown as I(z;x), should not exceed some constant Ic - while latent encodings
should still be maximally informative, and thereby effective, for computation of out-
puts. Effectiveness is enforced in the objective by maximising mutual information
between encodings and outputs I(z;y). These constraints supervise over latent vari-
ables, and allow encodings to be significantly lower dimensional than would otherwise
be the case, by penalising the presence of excess information from inputs. The IB
objective can be written as an objective function using a langrange multiplier β:

max I(z;y) − βI(z;x) (B.2)
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where β≥ 0 controls the amount information from inputs is penalised (i.e. the “size of
the information bottleneck” [19]).

In practise, calculating I(z;y) and I(z;x) analytically requires computation of dif-
ficult and intractable integrals (see Appendix B.1 for more details). As a result, the
original VIB architecture is made up of a stochastic encoder eθ(z|x) from which latent
variables (i.e. encodings) can be sampled, a stochastic decoder qψ(y|z) from which
outputs can be generated, and a variational marginal distribution over latent variables
m(z) [18]. These factors can be combined for optimisation under a single objective:

max
θ,φ,ψ

Ep(x,y)eθ(z|x)

[
logqψ(y|z)−β log

eθ(z|x)
m(z)

]
(B.3)

Calculating I(z;y) analytically relies on calculating p(y|z), defined under the fol-
lowing equation:

p(y|z) =
∫ p(y|x)p(z|x)p(x)

p(z)
dx (B.4)

This is intractable in deep learning problems, as p(y|x) is not known a priori. As a
result, the VIB model uses a variational approximation to p(y|z) that acts as the de-
coder, as in VAEs. Similarly, the mutual information term between latent variables and
inputs I(z;x) relies on computing a difficult marginal distribution over latent variables
p(z) =

∫
p(z|x)p(x)dx. As a result, the VIB approach uses a variational marginal over

latent variables m(z) [18].
The final VIB architecture is therefore doubly stochastic - formed from a stochastic

encoder eθ(z|x) from which latent variables (i.e. encodings) can be sampled, a stochas-
tic decoder qψ(y|z) from which outputs can be generated, and a variational marginal
m(z) that constrains the distribution of latent encodings over the encoding space. These
factors can be combined for optimisation under a single objective:

max
θ,φ,ψ

Ep(x,y)eθ(z|x)

[
logqψ(y|z)−β log

eθ(z|x)
m(z)

]
(B.5)

Where the term log eθ(z|x)
m(z) is used (under an expectation) when an analytic solution for

the Kullback-Leibler (KL) Divergence KL
[
eθ(z|x)‖m(z)

]
is not possible. The KL-

divergence can be thought of as a metric for the difference between two distributions -
such that minimising KL

[
eθ(z|x)‖m(z)

]
means training the encoder distribution to be

easily encoded using information theoretic arguments under the marginal. Note that
in practise Alemi et al. enforce this doubly-stochastic architecture using feedforward
neural networks for both encoder and decoder, before placing Gaussian (varying be-
tween diagonal and fully covariant) and Categorical (sometimes softmax) distributions
over the encoder and decoder network outputs respectively. To train the encoder using
gradient descent, since gradients cannot be propagated through the sampling process
z ∼ eθ(z|x), Alemi et al. use the reparameterisation trick as introduced for training
VAEs in [39]. This expresses samples z as a differentiable transformation of some ran-
dom variable εεε (which we do not require gradients for), to be generated by evaluating:

eθ(z|x) = N (µµµe,σσσ
2
e) = µµµe +σσσ

2
e · εεε;εεε∼N (0,1) (B.6)



Appendix B. Theoretical motivations behind models 51

We can then calculate gradients with respect to the encoder parameters µµµe,σσσe via stan-
dard backpropagation, since they are used as deterministic variables during sampling.

For the variational marginal, in their original 2017 paper [18] Alemi et al. used
a simple, non-parametric distribution - generally a K-dimensional spherical Gaussian
such that m(z) = N (z|0, I). However, to allow for uncertainty estimation, in their
following 2018 paper [18] they used a parametric marginal such that it could be learned
in parallel with the encoder-decoder model parameters during training. This means
that, at the end of training, the marginal now models the distribution of latent encodings
over the training data (meaning mφ(z), where φ are the marginal parameters, models
the density of the training data distribution in the lower dimensional encoding space).
Alemi et al. then use this density model for UQ by taking the KL-divergence between
it and the encoder distribution for a given test input - i.e. KL

[
eθ(z|x)‖mφ(z)

]
[19].

They call the output of this computation the per-instance rate (or rate for short). Since
mφ(z) models network behaviour within the training data distribution, and at test time
we are computing the likelihood of encodings under this distribution, as an uncertainty
estimate the rate measures epistemic uncertainty.
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Source Code

C.1 VIB Code

C.1.1 Original VIB Code

This subsection holds code imported from Alex Alemi’s GitHub demonstration1.

from tensorflow.examples.tutorials.mnist import input_data
mnist_data = input_data.read_data_sets(’/tmp/mnistdata’, validation_size

=0)
images = tf.placeholder(tf.float32, [None, 784], ’images’)
labels = tf.placeholder(tf.int64, [None], ’labels’)
one_hot_labels = tf.one_hot(labels, 10)

def encoder(images):
net = layers.relu(2*images-1, 1024)
net = layers.relu(net, 1024)
params = layers.linear(net, 512)
mu, rho = params[:, :256], params[:, 256:]
encoding = ds.NormalWithSoftplusScale(mu, rho - 5.0)
return encoding

prior = ds.Normal(0.0, 1.0)

def decoder(encoding_sample):
net = layers.linear(encoding_sample, 10)
return net

with tf.variable_scope(’encoder’):
encoding = encoder(images)

with tf.variable_scope(’decoder’):
logits = decoder(encoding.sample())

with tf.variable_scope(’decoder’, reuse=True):
many_logits = decoder(encoding.sample(12))

1Available from https://github.com/alexalemi/vib_demo/blob/master/MNISTVIB.ipynb
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class_loss = tf.losses.softmax_cross_entropy(
logits=logits, onehot_labels=one_hot_labels) / math.log(2)

BETA = 1e-3
info_loss = tf.reduce_sum(tf.reduce_mean(

ds.kl_divergence(encoding, prior), 0)) / math.log(2)
total_loss = class_loss + BETA * info_loss

C.1.2 Adapted VIB code

This subsection holds code adapted from Alex Alemi’s GitHub demonstration within
the context of the position-only baseline model.

def create_pos_only_model_7(M_WINDOW, H_WINDOW, BETA_h=1e-5, BETA_c=1e-6)
:
# Defining model structure
encoder_inputs = Input(shape=(M_WINDOW, 2))
decoder_inputs = Input(shape=(1, 2))
lstm_layer_enc = LSTM(1024, return_sequences=True, return_state=True)
lstm_layer_dec = LSTM(512, return_sequences=True, return_state=True)
h_state_mapper = Dense(1024, activation=’linear’, name=’h_state_dist’)
c_state_mapper = Dense(1024, activation=’linear’, name=’c_state_dist’)
decoder_dense_mot = Dense(2, activation=’sigmoid’)
decoder_dense_dir = Dense(2, activation=’tanh’)
decoder_params = Dense(2,activation=’relu’)
To_Position = Lambda(toPosition)

# Encoding
encoder_outputs, state_h, state_c = lstm_layer_enc(encoder_inputs)
state_h = h_state_mapper(state_h)
state_c = c_state_mapper(state_c)
mu_h, sigma_h = state_h[:, :512], state_h[:, 512:]
mu_c, sigma_c = state_c[:, :512], state_c[:, 512:]
state_h_distribution = tfp.distributions.MultivariateNormalDiag(mu_h,

softplus(sigma_h - 5))
state_h = state_h_distribution.sample()
state_h_sample = state_h
state_c_distribution = tfp.distributions.MultivariateNormalDiag(mu_c,

softplus(sigma_c - 5))
state_c = state_c_distribution.sample()
state_c_sample = state_c
states = [state_h, state_c]

states = [state_h, state_c]

# Decoding
all_outputs = []
inputs = decoder_inputs
outs_dists = []
for curr_idx in range(H_WINDOW):
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# Run the decoder on one timestep
decoder_pred, state_h, state_c = lstm_layer_dec(inputs,

initial_state=states)
outputs_delta = decoder_dense_mot(decoder_pred)
outputs_delta_dir = decoder_dense_dir(decoder_pred)
outputs_pos = To_Position([inputs, outputs_delta,

outputs_delta_dir])
# Store the current prediction (we will concantenate all

predictions later)
all_outputs.append(outputs_pos)
# Reinject the outputs as inputs for the next loop iteration as

well as update the states
inputs = outputs_pos
states = [state_h, state_c]

# Concatenate all predictions
decoder_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(

all_outputs)
marginal_h = marginal_tril_dist(’h’)
marginal_c = marginal_tril_dist(’c’)

# VIB LOSS
def vib_loss(y_true, y_pred):

class_loss = metric_orth_dist(y_true, y_pred)
info_loss_h = state_h_distribution.log_prob(state_h_sample)
info_loss_c = state_c_distribution.log_prob(state_c_sample)
marginal_loss_h = marginal_h.log_prob(tf.cast(state_h_sample, tf.

float32))
marginal_loss_c = marginal_c.log_prob(tf.cast(state_c_sample, tf.

float32))
return class_loss + BETA_h * (info_loss_h - marginal_loss_h) +

BETA_c * (info_loss_c - marginal_loss_c)

# Use custom model class so that gradients can be propagated back to
marginal distribution

class MarginalGradModel(Model):
def train_step(self, data):

# Unpack the data.
x, y = data
x1, x2 = x[0], x[1]
with tf.GradientTape() as tape:

y_pred = self([x1,x2], training=True) # Forward pass
# Compute the loss value
loss = self.compiled_loss(y, y_pred, regularization_losses=self

.losses)

# Compute gradients
trainable_vars = self.trainable_variables
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sess = K.get_session()
# Get marginal parameters in computational graph
for v in tf.compat.v1.trainable_variables():

if "mu" in v.name:
if "c" in v.name:

mus_c = v
else:

mus_h = v

elif "rho" in v.name:
if "c" in v.name:

rhos_c = v
else:

rhos_h = v

elif "mix_logits" in v.name:
if "c" in v.name:

mix_logits_c = v
else:

mix_logits_h = v

gradients = tape.gradient(loss, trainable_vars)

# calculate gradients w.r.t marginal parameters
mus_h_gradients = tape.gradient(loss, mus_h)
rhos_h_gradients = tape.gradient(loss, rhos_h)
mix_logits_h_gradients = tape.gradient(loss, mix_logits_h)

mus_c_gradients = tape.gradient(loss, mus_c)
rhos_c_gradients = tape.gradient(loss, rhos_c)
mix_logits_c_gradients = tape.gradient(loss, mix_logits_c)

# Update parameters
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
self.optimizer.apply_gradients(zip(mus_h_gradients, mus_h))
self.optimizer.apply_gradients(zip(rhos_h_gradients, rhos_h))
self.optimizer.apply_gradients(zip(mix_logits_h_gradients,

mix_logits_h))
self.optimizer.apply_gradients(zip(mus_c_gradients, mus_c))
self.optimizer.apply_gradients(zip(rhos_c_gradients, rhos_c))
self.optimizer.apply_gradients(zip(mix_logits_c_gradients,

mix_logits_c))
# Update metrics (includes the metric that tracks the loss)
self.compiled_metrics.update_state(y, y_pred)
# Return a dict mapping metric names to current value
return {m.name: m.result() for m in self.metrics}



Appendix C. Source Code 56

C.1.3 Original Marginal Distribution Code

This subsection contains code supplied during email correspondence with Ian Fischer
[55] that implements the VIB parametric marginal distribution.

def marginal_tril_dist():
n = 200
d = 3
min_variance = 1e-5
# Compute the number of parameters needed for the lower triangular

covariance matrix
tril_components = (d * (d + 1)) // 2

# Parameterize the categorical distribution for the mixture
mix_logits = tf.get_variable(’mix_logits’, [n])
mix_dist = tfd.Categorical(logits=mix_logits)

# Parameterize the means of Gaussian distribution
mus = tf.get_variable(’mus’, [n, d], initializer=tf.initializers.

random_normal())

# Parameterize the lower-triangular covariance matrix for the Gaussian
distribution

rhos = tf.get_variable(’rhos’, [n, tril_components], initializer=tf.
initializers.random_normal(-(1.0 / n), (1.0 / n)))

# The diagonal of the lower-triangular matrix has to be positive, so
transform the diagonal with a softplus and then translate it by
min_variance.

scale_tril = tfb.FillScaleTriL(diag_bijector=tfb.Chain([tfb.Softplus(),
tfb.Shift(min_variance)]))(rhos)

# Make the fully covariant Gaussian distribution
comp_dist = tfd.MultivariateNormalTriL(loc=mus, scale_tril=scale_tril)

# Make the mixture distribution
dist = tfd.MixtureSameFamily(

components_distribution=comp_dist,
mixture_distribution=mix_dist,

)
return dist

C.1.4 Adapted Marginal Distribution Code

The major adaption of marginal distribution code was in transferring it from Tensor-
flow version 1 to 2, and in making it compatible for training with the position-only-
baseline model:

# Define learnable marginal distribution for UQ
def marginal_tril_dist(h_or_c=’h’):

n = 100
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d = 512
min_variance = 1e-5
# Compute the number of parameters needed for the lower triangular

covariance matrix
tril_components = (d * (d + 1)) // 2

# Parameterize the categorical distribution for the mixture
init_vals = np.random.rand(n)
init_probs = [float(i)/sum(init_vals) for i in init_vals]
mix_logits = tf.cast(np.log(init_probs), dtype=tf.float32)
mix_logits = trainable_dist_layer(mix_logits, name=’mix_logits_%s’%(

h_or_c))

mix_dist = tfp.distributions.Categorical(logits=mix_logits.return_vars
())

# Parameterize the means of Gaussian distribution
mu_init = tf.initializers.RandomNormal()
mus = tf.cast(mu_init(shape=[n,d]), dtype=tf.float32)
mus = trainable_dist_layer(mus, name = ’mus_%s’%(h_or_c))

# Parameterize the lower-triangular covariance matrix for the Gaussian
distribution

lower_tril_init = tf.initializers.RandomNormal(-(1.0 / n), (1.0 / n))
rhos = tf.cast(lower_tril_init(shape=[n,tril_components]), dtype=tf.

float32)
rhos = trainable_dist_layer(rhos, name=’rhos_%s’%(h_or_c))

# The diagonal of the lower-triangular matrix has to be positive, so
transform the diagonal with a softplus and then translate it by
min_variance.

scale_tril = tfp.bijectors.FillScaleTriL(diag_bijector=tfp.bijectors.
Chain([tfp.bijectors.Softplus(), tfp.bijectors.Shift(min_variance)
]))(rhos.return_vars())

# Make the fully covariant Gaussian distribution
comp_dist = tfp.distributions.MultivariateNormalTriL(loc=mus.

return_vars(), scale_tril=scale_tril)

# Make the mixture distribution
dist = tfp.distributions.MixtureSameFamily(

components_distribution=comp_dist,
mixture_distribution=mix_dist,
name=’marginal_dist_%s’%(h_or_c),
)

return dist

# Wrapper layer class for use with marginal distribution parameters, so
they are trainable.
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class trainable_dist_layer(tf.keras.layers.Layer):
def __init__(self, init_value, name):

super(trainable_dist_layer, self).__init__()
self.trainable_vars = tf.Variable(initial_value=init_value, name =

name)
def return_vars(self):

return self.trainable_vars
def call(self):

return self.trainable_vars
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Experiments & Results

D.1 Hard Synthetic Trajectories Dataset Examples
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Figure D.1: Trajectories with (left) 2 selected positions and (right) 5 selected positions
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Figure D.2: Trajectory with 10 selected positions

Figure D.3: Example traces (represented in the unit sphere) that follow the (x,y,z)
coordinates of synthetic trajectories that included 2, 5 and 10 selected positions. Each
of these trajectories was extracted from a separate synthetic test set.
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Figure D.4: Angular constraints (left) 0◦ < θ < 30◦ and (right) 30◦ < θ < 50◦
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Figure D.5: Angular constraints (left) 50◦ < θ < 80◦ and (right) 70◦ < θ < 180◦

Figure D.6: Example traces (represented in the unit sphere) that follow the (x,y,z)
coordinates of synthetic trajectories where selected positions are constrained to have
angles between trajectory segments (see Section ?? for more detail) in ranges 0−
30◦,30−50◦,50−80◦ and 70−180◦. Each of these trajectories was extracted from a
separate synthetic test set.
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D.2 Simple Synthetic Trajectories Dataset Examples
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Figure D.7: Trajectories with (left) σpos = 0.01 and (right) σpos = 0.05
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Figure D.8: Trajectories with (left) σpos = 0.1 and (right) σpos = 0.5
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Figure D.9: Trajectories with (left) σpos = 1 and (right) σpos = 2

Figure D.10: Example traces (represented in the unit sphere) that follow the (x,y,z) co-
ordinates of synthetic trajectories (extracted from the SSTD - see Section 4.1.2) where
positions are generated from distributions centered on three standard points, with vary-
ing standard deviations σpos. Each of these trajectories was extracted from a separate
SSTD test set.
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D.3 Visualisations of iD and OoD activation distribu-
tions

D.3.1 t-SNE Visualisation Method

The t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm [59] is a method
for visualizing high-dimensional data in two or three dimensional space. It functions
by constructing a probability density function over pairs of data points in high dimen-
sional space, such that the distribution of data points P is generated from joint probabil-
ities pi, j - with similar points being assigned high probabilities. t-SNE then generates
a low-dimensional embedding, with a similar distribution Q over pairs of data points
qi, j, and enforces this lower dimensional embedding to accurately represent high di-
mensional data by minimizing the Kullback-Leibler (KL) divergence between P and
Q. The KL divergence as a cost function here heavily penalizes using low dimensional
pairs of points qi, j that are similar to represent dissimilar high dimensional pairs pi, j.
A t-SNE mapping from high to low dimensional data is trained using gradient descent,
with an individual t-SNE model trained for each dataset being visualised. Since the
t-SNE method is based on pairwise comparisons of data points, it is capable of captur-
ing local structure in high dimensional space, and representing it in lower dimensional
embeddings. This often presents as clusters of data points in the lower dimensional
space.

The entropy of distributions P and Q is controlled by a ‘perplexity’ hyperparameter.
The authors of the original t-SNE paper [59] indicate perplexity values from 5-50 are
suitable for visualizing most datasets. However, it is well known that perplexity values,
dependent on the characteristics of the high dimensional data at hand, can artificially
generate structure in the low dimensional embedding where there is in fact none. As
a result, it is important to generate multiple visualisations using a t-SNE model with
different perplexity values, and verify that the structure of the low dimensional embed-
ding does not change significantly with varying perplexity settings.

For our visualisations, we fit t-SNE models to each set of iD and OoD zh and zc
activations (treating iD and OoD activations as belonging to a single high-dimensional
dataset), for each OoD test case from our David-MMSys18, HSTD and SSTD experi-
ments (see Section 4.3 for more detail). However, we also first reduce activations to be
50 dimensional using principal components analysis, as recommended by the authors
[62], before fitting t-SNE models to 50 dimensional activation sets. We train t-SNE
models for 1000 iterations and visualise the resulting two dimensional embeddings,
with repeated training and visualisation for different perplexity values in the range
5-50. We observe that visualisations do not vary in their fundamental structure with
perplexity - indicating that t-SNE visualisations are not introducing artificial structure
amongst activations. For all visualisations used in this thesis we use a perplexity value
of 20.

D.3.2 SSTD t-SNE Visualisations

This section includes visualisations of sampled zh and zc vectors (as defined in Sec-
tion 3.2.1) extracted from the position-only-VIB model, generated from iD and OoD
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input trajectories as defined under SSTD OoD test cases (see Section 4.3). Visuali-
sations were generated using the t-distributed Stochastic Neighbor Embedding algo-
rithm, under the implementation described in Appendix D.3.1.

Figure D.11: zc (left) and zh (right) samples for the SSTD OoD test case σpos = 0.05

Figure D.12: zc (left) and zh (right) samples for the SSTD OoD test case σpos = 0.1

Figure D.13: zc (left) and zh (right) samples for the SSTD OoD test case σpos = 0.5
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Figure D.14: zc (left) and zh (right) samples for the SSTD OoD test case σpos = 1

Figure D.15: zc (left) and zh (right) samples for the SSTD OoD test case σpos = 2
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D.3.3 SSTD per-instance rate distributions

Figure D.16: Figures showing scatter plots of generated iD and OoD per-instance rate
values in response to SSTD OoD test cases, with rate values computed from the h en-
coding distribution (eh

θ
(x)) and marginal (mh

φ
) plotted on the x axis and values computed

from the c encoding distribution (ec
θ
(x)) and marginal (mc

φ
) on the y axis. Scatter plots

for SSTD test cases with σpos ∈ [0.05,0.1,0.5,1,2] are ordered with increasing σpos
from the top to bottom of the figure, with two plots per row.
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D.3.4 SSTD per-instance rate distributions - demonstrating the man-
ifold

Figure D.17: Figures showing scatter plots of generated iD and OoD per-instance rate
values in response to SSTD OoD test cases, with rate values computed from the h en-
coding distribution (eh

θ
(x)) and marginal (mh

φ
) plotted on the x axis and values computed

from the c encoding distribution (ec
θ
(x)) and marginal (mc

φ
) on the y axis. These plots

are generated using the position-only-VIB model with information bottleneck coefficient
β = 1× 10−3, and display the ’iD manifold’ described in Section 5.1. Scatter plots for
SSTD test cases with σpos ∈ [0.05,0.1,0.5,1,2] are ordered with increasing σpos from
the top to bottom of the figure, with two plots per row.
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D.3.5 HSTD t-SNE Visualisations
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Figure D.18: zc (left) and zh (right) samples for varying HSTD ‘Speed’ constraint OoD
test cases, with speed values ∈ [2,5,10] displayed from the top to bottom of the figure
(see Sections 4.3 and 4.1.1 for definitions of OoD test cases and speed constraints
respectively)
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Figure D.19: zc (left) and zh (right) samples for varying HSTD ‘angular’ constraint OoD
test cases, with angles constrained to be in ranges [0− 30◦,30− 50◦,50− 80◦,70−
180◦] displayed from the top to bottom of the figure (see Sections 4.3 and 4.1.1 for
definitions of OoD test cases and angular constraints respectively)
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D.3.6 HSTD per-instance rate distributions

Figure D.20: Figures showing scatter plots of generated iD and OoD per-instance rate
values in response to varying HSTD ‘speed’ constraint OoD test cases, with rate values
computed from the h encoding distribution (eh

θ
(x)) and marginal (mh

φ
) plotted on the x

axis and values computed from the c encoding distribution (ec
θ
(x)) and marginal (mc

φ
)

on the y axis. Scatter plots for HSTD ‘speed’ constraints ∈ [2,5,10] are displayed
clockwise in this order.
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Figure D.21: Figures showing scatter plots of generated iD and OoD per-instance rate
values in response to varying HSTD angular constraint OoD test cases, with rate values
computed from the h encoding distribution (eh

θ
(x)) and marginal (mh

φ
) plotted on the x

axis and values computed from the c encoding distribution (ec
θ
(x)) and marginal (mc

φ
)

on the y axis. Scatter plots for HSTD angular constraint ranges [0−30◦,30−50◦,50−
80◦,70−180◦] are displayed in this order from the top to bottom of the figure, with two
plots per row.
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D.3.7 David-MMSys18 t-SNE Visualisations

Figure D.22: zc (left) and zh (right) samples for the David-MMSys18 ‘Videos’ OoD test
case (see Section 4.3 for definitions of OoD test cases)

Figure D.23: zc (left) and zh (right) samples for the David-MMSys18 ‘Users’ OoD test
case

Figure D.24: zc (left) and zh (right) samples for the David-MMSys18 ‘Videos & Users’
OoD test case
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Figure D.25: zc (left) and zh (right) samples for the David-MMSys18 ‘True OoD’ OoD
test case
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D.3.8 David-MMSys18 per instance rate distributions
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iD vs OoD rate values for David-MMSys18 trajectories, OoD case: Videos & Users
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Figure D.26: Figures showing scatter plots of generated iD and OoD per-instance rate
values in response to David-MMSys18 OoD test cases, with rate values computed from
the h encoding distribution (eh

θ
(x)) and marginal (mh

φ
) plotted on the x axis and values

computed from the c encoding distribution (ec
θ
(x)) and marginal (mc

φ
) on the y axis.

Scatter plots for David-MMSys18 test cases ‘Videos’, ‘Users’, ‘Videos & Users’, ‘True
OoD’ are displayed in this order from the top to bottom of the figure, with two plots per
row.
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D.4 Aleatoric Uncertainty Results

Video Num. uncertainty estimates over threshold
Threshold 0.013 0.014 0.015 0.018 0.02

1 PortoRiverside 375 328 225 225 225
3 PlanEnergyBioLab 204 204 202 201 182

5 Waterpark 61 61 61 61 60
14 Warship 230 228 223 204 173
16 Turtle 106 105 91 91 91

Table D.1: Counts of uncertainty estimates made above thresholds
[0.013,0.014,0.015,0.018,0.02] used to calculate AUROC results in section 4.4.
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Figure D.27: Scatter plots for aleatoric uncertainty estimates vs Orthodromic distance
on David-MMSys18 videos
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