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Abstract

As e-learning platforms continue to develop, a new trend of intelligent tutoring sys-

tems begin to emerge in the form of adaptive pedagogical agents. These AI driven

platforms enable a more individualised learning experience that adapts to the user’s

evolving pedagogical needs throughout a course. In this report we create a Reinforce-

ment Learning (RL) based pedagogical agent that is able to optimize the sequencing of

learning materials to maximize learning as measured by expected future student per-

formance. We conduct the training completely offline based on the publicly available

dataset EdNet, a large-scale hierarchical dataset of diverse student activities collected

by an online learning platform, Santa [9]. We confront the challenges of offline RL

through the construction of a student model in the form of a Markov Decision Process

derived from observations in the dataset. A feature pool is created from the raw logs

in EdNet, from which, different state representations are formed by sampling greedily

using an iterative augmentation procedure. Our model-based policies were trained us-

ing Policy Iteration and evaluated using the Expected Cumulative Rewards (ECR), or

the average of the expected return at the initial state under the policy.

Our goal was to explore the influence of the state representations on the perfor-

mance of the RL agent and its robustness towards perturbations on the environment

dynamics. We show that a larger, more complex representation constituting of more

features, yields better policy performance. We also show that the policies derived from

the larger representations are more robust towards perturbations in the expected envi-

ronment induced by students with different learning characteristics i.e. stronger and

weaker learners. We then explore an alternative model-free offline RL approach util-

ising the Conservative Q-learning algorithm. Performance comparisons between the

model-based and model-free approaches were made using two Offline Policy Evalua-

tion techniques, Importance Sampling and Fitted Q Evaluations. The behaviour policy

was estimated as a reference baseline. We demonstrate that at least one of the two

methods outperformed the baseline in most metrics.
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Chapter 1

Introduction

1.1 Motivation

E-learning platforms have seen a surge in popularity over the last decade [19], spurred

on by the increased internet penetration into developing communities [6]. The target

demographic has expanded beyond casual users/students as more organizations adopt

e-learning to train their workforce and actively engage them in life-long learning [61].

E-learning platforms come with intrinsic advantages over traditional learning. These

include its high accessibility and its on-demand nature making it a more convenient ex-

perience relative to its face-to-face counterpart [39]. While e-learning (and its different

forms) has been omnipresent since the mid-late 20th century, the concept of ’intelli-

gent’ learning platforms has recently emerged as a new trend within this domain [26].

These platforms are driven by expansion of research into applied artificial intelli-

gence (AI) and have been addressed in literature under various names such as ’Intelli-

gent Tutoring Systems’ (ITS) [11] or ’Pedagogical Agents’ [58]. The common objec-

tive is to create an adaptive learning environment, with an emphasis on ’generativity’

or the ability to generate customized problems, hints, or support for each individual

student [61]. Traditional self-paced online courses, such as those used in MOOCs

(Massive Open Online Courses), create a static learning path often without contextu-

alized feedback or personal adaptive guidance. In such scenarios, a user might feel

disinclined to progress through the course material if they encounter difficulties in fol-

lowing the generic course structure. This will often lead to them losing interest and

disengage from the course by dropping out, as is so often observed in distance edu-

cation [61]. Therefore, there is a growing need for a personalized sequencing of con-

tents/support that can adapt to the individual differences of the student as well as their
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Chapter 1. Introduction 2

evolving pedagogical requirement throughout the course progression [49]. Intelligent

tutoring systems, pedagogical agents and the like, are the proposed solution within the

applied AI in education community. With large educational datasets becoming more

prevalent[9][44], these AI-driven solutions become more feasible.

1.2 Problem Statement

Research in cognitive science has long demonstrated the strong correlation between

topic sequencing and learning [47]. Static e-learning platforms lack the capacity to re-

spond to a student’s ’cognitive state’ and therefore perform poorly relative to a human

tutor [61]. A students’ cognitive state is a term used to describe an explicit represen-

tation of their learning characteristics [28]. It can be composed of multiple features

such as a student’s general competency or aptitude, learning style and confidence level

[61]. One of the main difficulties in constructing an intelligent learning environment,

is approximating this cognitive state since it is not directly observable [17]. However,

a more achievable goal is to model this state to a degree where an agent can leverage

the information to provide effective sequencing [61]. This model can be constructed

in a variety of ways and is commonly referred to as the ’student model’ in literature

[28][61]. The fidelity of the model could significantly impact the agent’s performance

since a more complex representation of the cognitive state will provide more informa-

tion to the pedagogical agent [61].

While constructing a model is usually the first challenge, another that soon follows

is the need for an optimization algorithm to utilise the model in enhancing learning.

Reinforcement learning (RL) provides the perfect mathematical machinery to optimize

a learning sequence towards this predefined objective [17]. RL is a class of machine

learning algorithms, that optimize a control problem where an ’agent’, learns an op-

timal ’policy’ that maps ’states’ to a given ’action’ in such a way as to maximized a

’reward’ function [55]. One can quickly observe the relevance of such algorithms in

the context of ITS. Here, a learning sequence is optimized based on a numerical re-

ward (for example test marks) by a pedagogical agent that prescribes actions (adaptive

feedback/sequence) based on different states (approximations of the cognitive states).

Although RL directly addresses our goal oriented problem, its major shortcoming

lies with its requirement for ’online’ training [30]. Online training refers to an inter-

leaved process of training (or deriving a policy) and collecting more data, where the

data collection distribution depends on the current policy. This cycle occurs repeatedly
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for many iterations. In many applications (including this project), online training is

not feasible due to its expensive and potentially dangerous implications [35]. One can

imagine the severe costs of an untrained RL agent interacting in an autonomous vehicle

setting to collect more data. This online procedure is clearly different than the highly

successful supervised learning setting where the data collection process only occurs

once before training commences [35]. The ongoing efforts in redesigning RL to lever-

age big data, has led to a new field of research known as offline RL [43][22][34]. In

offline RL, the learning is performed only on a fixed dataset that was collected once

before training. As we will later explore, different algorithmic modifications are pro-

posed to correct for estimation errors that result from inability to train online.

1.3 Objectives

In this project, we are developing an adaptive RL based pedagogical agent that is able

to optimize the sequence of learning materials (questions and lectures) to maximize

student performance as measured by the expected ability to answer questions correctly

at varying levels of difficulties. This agent will have the capacity to respond to a stu-

dent’s current state as they progress through the learning material. More importantly

the agent will be trained completely offline using the EdNet dataset, an extensive col-

lection of student logs from an online learning platform, Santa [9]. To address the chal-

lenges of offline RL, we will first create a model in the form of a data-driven Markov

Decision Process (MDP) and utilise a Dynamic Programming based algorithm, Policy

Iteration, to derive an optimal policy. We will then explore a more direct model-free

approach and compare the performance. Our objective can be broken down into several

components:

• Investigate the impact of the state representations on the agent’s performance

and choose an optimal representation accordingly. To achieve this, we will be-

gin with a base representation consisting of simple features to form a base MDP

model. Policy Iterations uses the model to obtain an optimal policy, which can

subsequently be evaluated. A greedy iterative augmentation procedure (visu-

alized in figure 1.1) is then employed to augment the representation space, by

incrementally adding new features and choosing the best performing representa-

tions greedily.

• Analyse the robustness of the policies from the different representations against
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Figure 1.1: Greedy iterative feature augmentation pipeline

perturbations in the model dynamics corresponding to students with varying

learning characteristics.

• Explore an alternative model-free approach to compare with the model-based

policies and a baseline behaviour policy (data gathering policy) under several

Offline Policy Evaluation (OPE) techniques. These techniques estimate real-

world performance using only the collected dataset i.e. without empirical testing.

We show that a larger, more complex representation constituting of more features,

yields better policy performance and is more robust towards perturbations in the model

induced by students with different learning characteristics. We also demonstrate that

at least one of the two methods (model-based and model-free) outperformed the be-

haviour policy in the OPE metrics.

1.4 Document Structure

The remainder of this dissertation is organized as follows. Chapter 2 will cover the

background of Reinforcement Learning and Markov Decision Processes and their ap-

plications in the ITS domain. Chapter 3 will cover the derivation of the action space

and reward function and the features used in forming the state representations. Chap-

ter 4 will address the student model (data-driven MDP) construction, Policy Iteration

training, greedy iterative augmentation pipeline and the model-free approach. Chapter

5 covers the different Offline Policy Evaluation techniques and finally, Chapter 6 will

present all results and accompanying discussion.



Chapter 2

Background

2.1 Reinforcement Learning & Markov Decision

Processes

Reinforcement Learning (RL) is a group of machine learning algorithms that deal with

optimal control problems [55]. RL involves deriving an optimal strategy or policy that

maximizes a numerical scalar ’reward’. The policy consist of a prescribed ’action’ at

each ’state’ in the state space. Traditionally, training an RL agent involves repeated

interactions with an environment, where at each time-step, the agent can observe the

changes in the environment through the information constituting the ’state’. This is

knows as online training. The agent interacts with the environment using an ’action’

selected from a finite set of available actions. In doing so, the environment yields a

numerical ’reward’ and transitions into a following state, where the process repeats.

The RL framework is governed by a Markov Decision Process [55][34][8] that is

defined by the tuple of (S ,A ,P ,R ), where S = s1, ..,sn defines the complete space of

every possible state, A = a1, ..,an represents all available actions, P : S ×A × S →
[0,1] designating the transition probabilities between states conditioned on an action

and R : S ×A × S → R denotes the reward function that is conditioned on the state,

action and observed next state. Figure 2.1 shows a depiction of the agent interacting

with the environment at each time step t within the MDP framework.

The goal of the agent is to maximize the cumulative reward it accumulates from

each state. This cumulative reward is usually discounted by a factor γ raised to the

power of t, to represent a lower perceived value for rewards received further in the

future. The policy is a mapping of optimal actions to each state in S . The discounted

5
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Figure 2.1: Visual depiction of the MDP framework [55]

cumulative reward is denoted as the ’return’, and the return from a particular state is

associated with a policy π and the transition dynamics P . The reward function ties

the agents optimization goal with the modeller’s actual objective. Therefore its design

must ensure those two criteria are aligned. Note that the policy can be stochastic where

it prescribes a distribution of actions at each state. The return of a state (or the state

value) under a policy π can be defined as V (s) = Ea∼π,r,s∼P [∑
inf
t=0 γtr(st ,at)|s0 = s].

In most cases, the transition dynamics P are not known. If interaction with the

environment is possible, then this information is not needed since the samples it draws

from the environment will follow the environment dynamics [55]. RL algorithms that

are designed to perform this way are known as model-free. An important element for

these algorithms is some mechanism to trade-off between ’exploration’ and ’exploita-

tion’. Exploration refers an agent’s preference to take random actions to explore the

unknown environment and learn about the expected returns from different states [55].

Exploitation describes the agent’s preference to maximize its returns using its current

information. Intuitively, most model-free RL algorithms are designed to be more ex-

plorative at the start and progressively taper to a more exploitative behaviour. During

the exploration phase, it must be noted that a large amount of interaction is required

for the agent to have accurate information on the environment [55][42].

In ’tabular’ RL, a state value is updated only from the experiences that involve the

state [55]. If a state is not encountered in the agent’s past experiences, then nothing can

be said about its value. ’Function Approximation’ can help alleviate this problem, by

generalizing a state’s value based on features i.e. states with similar features will have

similar values. As in supervised learning, parametrized function approximators learn

weight vectors that approximate a state’s value from its features. Even with function

approximation, online model-free RL algorithms are generally appropriate for domains

where environment interaction is computationally cheap and feasible [30].

The alternative to model-free RL is model-based RL. These approaches are more

prevalent in domains where environment interactions are cost prohibitive [30][35].
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Model-based RL requires a model that holds information regarding the environment

dynamics i.e. the transition probabilities P and reward function R . The model mimics

the behaviour of an environment and allows inferences about how the environment will

respond to actions [55]. In approaches where the model is driven by sample data from

the environment, model-based RL tends to be more sample efficient than model-free

RL [31][45]. However, an important caveat to model-based RL is that the real-world

performance will be heavily influenced by the quality of the model [30].

2.2 Previous work in RL Based Pedagogical Agents

The majority of work in this domain involves creating some form of student model (or

simulator) to utilise in training the RL-agent [17]. A common approach in prior work

is to integrate learning/cognitive theory into the construction of the student model. This

imparts domain knowledge into the workflow and is shown to yield positive results

[17]. An example of such approach is the work by Bassen et al. [2]. Their objective

was to optimize the sequencing of learning material from different knowledge compo-

nents (KCs), to ’maximize learning’. Their reward function is based on the difference

between a post-test score (taken by users after completing the course) and a pre-test

score (taken before the course). This metric is denoted as the Normalized Learning

Gain (NLG). Training the agent with human participants is far too resource intensive.

Instead their training is performed on a ’simulated learner’ based on Bayesian Knowl-

edge Tracing (BKT), a cognitive model that aims to estimate a learner’s mastery of

different skills. The learner’s response to a particular question can be simulated based

on the mastery of the related skill. The parameters of the BKT were set based on do-

main knowledge. Segal et al. [49] also utilised a similar cognitive based model, Item

Response Theory (IRT) [25] to simulate student responses to questions of different

level of difficulty. This is especially relevant since their objective was to sequentially

deliver questions of differing levels of difficulty (rather than KCs) to maximize learn-

ing gains.

Other approaches forgo the framework of established learning models and instead

manually design their simulators further integrating domain expertise. Dorça et al. [16]

employed a probabilistic model to simulate the learning process. Instead of sequenc-

ing activities by KCs or difficulties, they sequenced activities based on its associated

learning style i.e. visual, verbal etc. Therefore, their simulator was manually designed

based on research surrounding these principles. Iglesias et al. [28] utilised an expert
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Figure 2.2: Expert derived MDP [28]. Actions and states (in circles) are encoded by

integers and transition probabilities are provided in the parentheses.

derived artificial Markov Decision Process to act as the student model. This entails

manually describing the state space, transition probabilities and rewards. A subset of

the artificial MDP is shown in figure 2.2. Similar to previous student models, this MDP

can be used to simulate student responses to train the RL agent.

The works described so far do not utilise historical data to derive their student

model. While integrating expert knowledge can be beneficial, a completely data-free

proposition could impart strong biases. In our implementation, we take an alternative

approach in using a purely data-driven model. There are existing literature which also

do the same. For example, the authors of [52][56][7][48] employed data-driven MDPs

as their student model. Different than the handcrafted MDP in [28], the transition

probabilities and reward functions in these MDPs were obtained from the aggregated

statistics observed in the dataset, further elaborated in section 4.1.1. Data-driven stu-

dent models in literature were not only limited to data-driven MDPs. For instance,

Beck et al. [3] utilised a linear regression model denoted as Population Student Model

(PSM). PSM was trained on student trace data from a learning software and could

simulate time taken and probability of a correct response.

Data-driven simulators require a quality training corpus that is sufficiently large

and varied [52][30]. In contrast to EdNet (a massive dataset collected over several

years), the authors of these papers were limited to much smaller scale datasets that

were collected from a single cohort. To the best of our knowledge, our implementation

is the first in RL based pedagogical agents to utilise a large scale MOOC dataset.



Chapter 3

Exploration of EdNet & Feature

Extraction

3.1 Data Description

EdNet is massive dataset of student logs from a MOOC learning platform in South

Korea, Santa, collected by Riiid! AI Research1. Santa covers a preparation course

for the TOEIC (Test of English for International Communication) English proficiency

exam. There are a total of 131,441,538 interactions collected from 784,309 students

on the e-learning platform. Each student’s interaction log is stored on an individual csv

(Comma-Separated Values) file. These consist of user records of questions attempted,

lectures watched and explanations reviewed, along with other meta information. EdNet

logs are presented at 4 levels of hierarchy with higher levels providing higher fidelity

logs. These levels are denoted as KT1 - KT4. The most coarse hierarchy, KT1, has

logs that capture only question-answer pairs and their elapsed times (see example in

the appendix in table 8.1).

Progressing into the next fidelity level, KT2 logs now also show answer oscillations

before the student submits a final answer on a question. KT3 includes logs of lectures

watched and the explanations reviewed. These are recorded in real time to provide an

accurate chronological record of the students’ interaction with the platform. At highest

hierarchy, KT4 records detailed actions such as playing/pausing lectures and payment

related information.
1https://www.riiid.co/

9
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Figure 3.1: Unique question distribution in ’parts’ vs ’skills’ grouping

3.2 Data Exploration: Action Space

The main incentive in exploring the data is to observe potential candidates for the ac-

tion space, state features and reward function. EdNet provides a total 13,169 questions

and 1,021 lectures tagged with 293 types of skills [9]. Each question and lecture is

segregated into one unique ’part’, with 7 parts in total: part 1 to part 7. No specific in-

formation is provided on the part grouping criteria, however we assume that each part

was grouped based on some meaningful domain criteria like the KCs in Bassen et al.

[2]. Note some parts are limited to paying users on the platform [9]. The distribution

of the total number of unique questions available in each part is shown in figure 3.1.

Apart from part 5, every other part is fairly balanced in terms of questions available.

EdNet offers a finer grouping of question/lectures according to the ’skills’ (293 in to-

tal) they entail. Each question/lecture is tagged with 1 or more of these skills. Both

options represent good candidates for the action space since they group the numerous

questions/lectures in a domain meaningful manner. Simply assigning each unique ac-

tivity (question/lecture) a discrete action in the action space is not feasible due to the

enormous and diverse support it requires from the dataset (further explained in sec-

tion 4.1.1). However, even the 293 unique classes observed in skills is far too granular.

Additionally, as shown in figure 3.1, the question bank is more unevenly distributed

with respect to the skills grouping, which can lead to difficulties in getting equal sup-

port (or supporting observations) for each class from the dataset. Therefore, ’part’ was

chosen on the basis that its 7 unique classes is more manageable.

However, this means that our pedagogical agent can only control which part to

present to a user in its sequencing, and some other algorithm would decide which of

the many possible activities within a part is actually chosen. A balance must be made

between a manageable action space size and a useful pedagogical agent. Considering
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the large support available in EdNet, we decided to extend the action space, discretizing

the questions in terms of difficulty, similar to that in Segal et al. [49]. Now the agent

can prescribe the part and also the level of difficulty of the activity. The difficulties

was quantized into 4 levels ranging from 1-4. Unfortunately EdNet does not classify

questions/lectures into difficulty levels, meaning that they would need to be inferred

from the student logs. One way of achieving this is to measure the percentage of

correct answers submitted for a question and compare it with other questions in the

question bank. A distribution of question difficulties can be created with each item

being a unique question in the question bank. Quantiles can then be derived from this

distribution to evenly split the questions into 4 levels. An example of this is shown in

figure 3.2. There was no way to estimate a lecture’s level of difficulty, and so lectures

were assigned a default difficulty of ’0’. With the level of difficulty incorporated, the

action space now extends to a size of 35 (7 parts × 5 levels of difficulty). Note that

lectures have 2 additional part tags (general and unspecified), therefore increasing the

action space to 37.

3.3 Data Exploration: Reward function

The reward function ties our agents optimization objective with our domain objective.

NLG is commonly used in this field of research [2][7][56] since it is easily measured

with tests and provides an succinct quantification of learning gain [10][40]. However,

EdNet does not provide any post-test/pre-test record for their users. Therefore, the

reward can only be a function of what is present in the logs. With this limitation in
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(a) (b)

Figure 3.3: Returns distribution. Reward function: symmetrical (a) punitive (b).

mind, we chose our reward function to be some sort of proxy to student performance

and base it on the correctness of a student’s response towards an activity. We also

integrate the activity’s difficulty into the reward design such that correct responses

on harder levels indicate stronger performance and attain higher rewards. Inversely,

incorrect responses on easier levels attain a larger punishment (negative reward). This

is to avoid the agent abusing the reward function by always assigning easy questions.

Lectures do not have a correct/incorrect responses and so a default reward of ’0’ is

assigned. One might wonder why an agent will choose an action that always yields

a ’0’ reward. Our argument is that other actions, i.e. presenting a question, have a

probability of yielding a negative reward and so in expectation might produce negative

rewards. Another argument is that the agent is not myopic and will decide its actions

based on the future return (cumulative rewards) rather than the immediate reward.

Initially, a symmetrical reward function was designed with rewards for questions

ranging from 1 to 4 if answered correctly or -1 to -4 if answered incorrectly, depending

on the level of difficulty. However, this led to a right-skewed cumulative reward dis-

tribution across the population of users, suggesting that the reward design was some-

what too generous. As we wanted this distribution to mimic a normal distribution

usually exhibited in student grades [24], we doubled the penalty of incorrect answers

transforming the range towards -2 to -8. This consequently led to a more bell shaped

distribution (see figure 3.3).

3.4 Data Exploration: State features extraction

The dataset in EdNet is longitudinal, where observations are made on the same subjects

(users) across a period of time [15]. Most of the state features derived in this section

will be longitudinal/temporal in nature too since not much can be derived from a single
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isolated observation.

Several studies have shown the significant impact of the representation choice on

the final agents performance, with some arguing it is just as influential as optimization

algorithm itself [56][51]. This aligns with the theoretical understanding of why human

tutors usually outperform their computer counterparts, in that they are able to adapt to

certain cues exhibited by the student during learning [61]. The representations consist

of features that infer such ’cues’ from the dataset. To investigate the impact of the

representation on performance, we first create a feature pool, from which different

representations are formed using the greedy iterative augmentation algorithm.

We begin with base features that are widely seen in similar RL driven ITS imple-

mentations [2][28][56][7]. We also chose these features as they were readily derivable

from the coarsest hierarchy, KT1. This sets a reasonable minimum requirement for

the data gathering process, should this implementation be repeated with other datasets.

Three base features were constructed:

1. ’correct so far’ 2. ’av time’ 3. ’topic familiarity’

’correct so far’ measures the ratio of correct responses to the number of activities

attempted. The ratio then needs to be quantized so that a finite MDP can be formed.

Four bins were constructed for this purpose, with the bin limits derived from the 1st,

2nd and 3rd quantiles. This is to ensure an equal division of the entire dataset to avoid

sparse regions of feature space. ’av time’ is derived based on cumulative average of

the elapsed time measured at each activity. This too is quantized into 4 bins.

Although actual topic familiarity is difficult to infer from the logs, a proxy could

be derived in the form of the amount of activities covered per topic. However, since

there are 7 parts, we would need 7 ’sub-features’ to measure the current familiarity of

each. If each sub-feature has 4 bins, this would quickly lead to an explosion in size

of the state space. Therefore, we propose 3 alternative features that could approximate

the information captured by ’topic familiarity’ in a more condensed format.

1. ’av fam’ 2. ’topic fam’ 3. ’part fam’

’av fam’ is the average part familiarity across all the 7 parts. ’topic fam’ only

captured the part familiarity of the previously chosen action and disregards the fa-

miliarity of other parts. ’part fam’, is the dimensionally reduced representation of

’topic familiarity’ using a deep autoencoder. Further details on the autoencoder di-

mensional reduction implementation is provided in the appendix section 8.1. By eval-

uating the policy performance of the representations consisting of these three features

separately, ’topic fam’ was eventually chosen and included in the base representation.
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Feature Pool Bins Description

”prev correct” 3
A flag to indicate whether the user answered correctly

in the previous question. Fixed value for lectures.

”expl received” 4 Cumulative count of explanations reviewed by the user.

”ssl” 8
A count of the number of steps since the current part

was last encountered.

”sec guess” 4
The cumulative count of answer oscillations across

the user’s history, normalized by the activities consumed.

”lects consumed” 4 A cumulative count of the lectures consumed by a user.

”slow answer” 2

A flag to indicate whether the user’s elapsed time

for the preceding question was above the average elapsed

time for that question.

”steps in part” 4
The cumulative count of how many steps a user

has spent in the current part.

Table 3.1: Feature pool (not including ’topic fam’ & ’part fam’)

Following this, 7 more features were constructed and added to a feature pool, ta-

ble 3.1. These were excluded from the base MDP, since: 1) they were derived from

the higher fidelity levels, or 2) they were variants closely related to the base features.

These features were inspired by the utility of the domain information it captures. For

instance, ’ssl’ (or ’steps since last’) was designed to proxy a user’s ’forgetting’ of

the associated part, an important factor of learning from a psychological perspective

[17]. Like ’part fam’, ’ssl’ was dimensionally reduced using an autoencoder, since it

was part specific. Meanwhile, ’sec guess’ and ’slow answer’ were proxies to uncer-

tainty/confidence, which are important cues in tutoring [5]. Relative to prior ITS work,

our feature space can be considered to be much more larger since existing approaches

usually limit the feature size to be binary [2][38][56]. With each user covering on

average 440 activities in their learning period [9], a binary split would lose a lot of

information on the evolution of a feature value throughout the course. Our features in

contrast, have up to 8 bins. This ultimately imposes a necessity for a quality training

corpus that can provide sufficient support for each of the many unique combinations

within the feature space. This is where the scale of EdNet provides a distinct advantage

relative to previous implementations.



Chapter 4

Model Construction and Training

4.1 Model-based Offline RL

4.1.1 Student model MDP construction

With the feature pool derived, the subsequent step in the pipeline is to derive an MDP

student model. The methodology chosen is based on the works of [56][52] where the

transition probabilities are modelled as multinomial distributions derived from state

transition counts observed in the dataset as shown in equation 4.1. Intuitively, this

means that a particular outcome si, of enacting action ak in state s j has a probability

given by to the number of times that outcome was observed in the dataset, normalized

by the sum of all possible outcomes observed under the same conditions.

p̂(si|s j,ak) =
c(si,s j,ak)

∑
n
i=1 c(si,s j,ak)

(4.1)

Where c(si,s j,ak) is the count of observed transitions where enacting action ak in

state s j and leads to the next state si. This provides the transition probabilities com-

ponent of the MDP student model for each (s,a,s′) or the three argument dynamic

[55]. The other component is the reward function. In many standard MDP definitions

[56][52][7], the reward function is also defined in terms of the three argument dynamic

i.e. R : S ×A × S → R. This assumes a deterministic environment reward with re-

spect to a given (s,a,s′), which cannot be said about our proposed reward design in

section 3.3. Recall that our rewards are a function of the student’s correctness and

the level of difficulty and can take values r ∈ {−8,−6,−4,−2,0,1,2,3,4}. While the

level of difficulty is captured by the action in the (s,a,s′) tuple, the correctness is only

captured in the states when ’prev correct’ (refer table 3.1) is included in the represen-

tation. Without it, the reward function is stochastic with respect to a given (s,a,s′) . A

15
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solution for this is to consider the ’four argument’ (s,a,r,s′) environment dynamics as

described by [55] in equation 4.2:

p(s′,r|s,a) = Pr{St = s′,Rt = r|St−1 = s,At−1 = a}, (4.2)

The estimated dynamics, p̂(si,r|s j,ak), can be derived from the data, in a similar

fashion with the three argument dynamics i.e. equation 4.1, with small changes to the

count arguments. Using the four argument dynamics, an expected reward can then be

calculated for the three argument reward function, r(s,a,s′) = E[Rt |St−1 = s,At−1 =

a,St = s] as shown in equation 4.3[55].

r(si|s j,ak) = ∑
r∈R

r
p̂(si,r|s j,ak)

p̂(si|s j,ak)
(4.3)

Where R is the discrete set of all the possible rewards (9 in total). With this,

our MDP model consisting of the three argument transition probabilities and reward

function is defined. Note that we prioritise a three argument dynamic instead of four

since it is more standard in relevant literature and is the required format for the Policy

Iteration library [12] used in the training the agent.

Another important point to note is that the transition probabilities are entirely de-

pendent on the transition counts observed in the dataset. Consider the case where the

transition probability estimate p̂(si|s j,ak), calculated using equation 4.1, has ∑
n
i=1 c(si,s j,ak)=

10. Compare this to a another estimate but with ∑
n
i=1 c(si,s j,ak) = 1000. It is clear

that the latter has much more support (supporting observations) from the dataset and

the resulting estimate is more reliable [56]. If the training corpus is small, then such

unreliable estimates are hard to avoid. In cases like this, the state feature representation

must be simple/coarse enough so that sufficient support can be provided from the small

dataset. However, this also means that the pedagogical agent will have limited knowl-

edge (of the student) to respond effectively and might perform poorly in the real world

[61]. This is a why a larger training corpus such as EdNet is vital for constructing a

sufficiently complex student model, at least under this data-driven MDP methodology.

The massive number of observations means that even large and complex representa-

tions could have sufficient support to yield reliable transition probability estimates.

For the base representation, the support for each unique state in the feature space rep-

resentation is shown in figure 4.1. Note that the minimum state support within this

representation is around 41,000 observations.
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Figure 4.1: Distribution of support for each unique state (integer encoded) in the base

MDP

As we continuously augment the representations, the support for each unique state

will inevitably fall due to further division of the observations. Another factor in pro-

viding a balanced distribution of support within the transitions, is the variety of actions

chosen in each state. This ultimately depends on the action space (described in sec-

tion 3.2) and the behaviour policy used to obtain the dataset. A higher fidelity action

space will lead to a blowup in the size transition space i.e. the unique combinations of

(s,a,s′). The behaviour policy is the strategy used in taking the actions observed in the

dataset. Although it is unknown in most cases, it is important that the behaviour policy

is sufficiently varied in terms of its action choices to ensure a balanced distribution of

support. Because of this, a random behaviour policy fits the objective well [52]. Since

users in EdNet are allowed to select the ’part’ and the type of activity they work on [9],

we can make an assumption that this random criteria is partially fulfilled. The caveat

here is that not all users have access to all parts i.e. free users are limited to parts 2 and

5 only.

4.1.2 Training the agent: Policy Iteration

With the data-driven MDP ready, we can utilize a Dynamic Programming (DP) method

to train the agent. The DP library by Cross [12] provides two algorithms for this pur-

pose, Policy Iteration (PI) [27] and Value Iteration. Some empirical studies show that

the latter posses faster convergence properties [55], however in our applications, PI

reached convergence in much fewer steps. Therefore, PI was used in all the DP experi-

ments that follow. PI can be broken down into two repeating phases. The first involves

evaluating the value of every state in the finite MDP under the current policy. This is

known the Policy Evaluation phase and utilises the Bellman Equation as follows:
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V (s) = ∑
s′

p(s′|s,π(s))[r(s,a)+ γV (s′)] (4.4)

Where π(s) is the action prescribed by the policy π at state s and γ is the discount

factor, set at 0.99. Formally, γ ∈ [0,1) is a requirement for continuing MDPs [55] i.e.

those without terminating states (more on this in section 5.2). For our purposes, we

also do not intend to heavily discount future student performance and therefore set a

suitably high γ. The policy at the start is instantiated to a random policy (prescribes

equal probability mass to all possible actions). The transition probabilities and reward

function are provided by our MDP. The Bellman equation/operator is applied to all

states s ∈ S repeatedly until the difference between the calculated state value at subse-

quent iterations dips below a threshold. This convergence property is guaranteed due

to the Bellman operator being a contraction mapping with γ ∈ [0,1) [55].

What follows is the second phase of PI, where the current policy is made greedy

with respect to the current state values. This, ’policy improvement’ phase uses the

Bellman Optimality equation to derive a new policy as follows:

π(s) = argmaxa ∑
s′

p(s′|s,a)[r(s,a)+ γV (s′)] (4.5)

Once the greedy actions are selected at each state s ∈ S , a comparison is made

between this ’new’ policy and the ’old’ policy of the previous iteration. If the actions

prescribed differ in any states, then another iteration of policy evaluation and policy

improvement is performed. The algorithm terminates when the ’new’ policy and ’old’

policy are identical. At this point, under the policy improvement theorem, the policy is

the optimal policy π∗ for this MDP [55]. Note that the optimal policy is deterministic.

4.2 Evaluating the policies: ECR

As part of the pipeline, an evaluation metric for π∗ is required for each representation at

every iteration. Offline policy evaluation (OPE), i.e. the performance estimation of an

RL policy without empirical testing, is a field of research in itself, with many proposed

techniques and each with their unique advantages/disadvantages [59][46][18][37]. We

will pursue a more in-depth analysis of the different applicable OPE techniques in

chapter 5. However, as a quick evaluation tool (realtive to other OPEs) for repeated

usage in the pipeline, the Expected Cumulative Reward (ECR) metric was chosen.



Chapter 4. Model Construction and Training 19

The ECR computes the average of the expected return (or cumulative reward) under

the policy, across all initial states in the dataset:

ECR = Es0∼D,π∗Q(s0,π
∗(s0)) (4.6)

The Q(s,a) function is simply the ’action value’ of taking action a in state s and

thereafter following π, and s0 is the initial state. In each state representation, the ini-

tial state of every user in the EdNet is the same. This is because we lack any prior

information of the user before they begin the course on Santa. Traditionally in ITS

implementations, the initial state would capture information from the students pre-test

scores and so would vary across the students in the dataset. For EdNet, the ECR is

simply the state value of the unique initial state of each representation ECR =Vπ∗(s0).

4.3 Selecting an Optimum Representation

We now explore a methodology for selecting an ’optimal’ representation. As described

in the problem statement (section 1.2), the agent’s capacity to provide an adaptive

learning environment, depends on its ability to leverage information on the student’s

current cognitive state. This information is inferred from features extracted from the

logs. With more features in the representation, one should expect a better approxi-

mation of the students cognitive state and consequently a better equipped pedagogical

agent to provide effective sequencing. We utilise a greedy ’wrapper’ approach in ob-

taining our optimal representation [51]. This involves a search of the feature space and

generation of several candidate feature subsets. Each of these subsets will be evalu-

ated based on its corresponding policy derived from the DP algorithm. The complete

procedure is outlined in algorithm 1. Note the limit on the number of features N can

be based off a computational limit or a threshold of minimum support for every unique

combination in the feature space.

While our search procedure involves exhaustively looping through every remaining

feature in the feature pool Ω to form the subsets, one can alternatively employ a dif-

ferent search algorithm such Monte Carlo tree search [23] or correlation based feature

selection [51] to create more informed subsets that are likely to be better candidates.

These techniques would be useful in limiting the number of iterations needed in larger

feature pools.
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Algorithm 1 Greedy iterative feature augmentations
Input: Feature pool Ω, Dataset D , Max. number of features N (optional)

Set: Optimal feature representation S∗ to be base representation.

while size(S∗)≤N do
for ωi ∈Ω do

Set: Si = S∗+ωi

MDP =Construct MDP(Si,D)

π∗ = Policy Iteration(MDP)

ECRi =Calculate ECR(π∗)

end for
Set S∗ = Si with highest ECRi.

Remove feature from pool Ω = Ω−ωi

end while

4.4 An Alternative: Model-Free Offline RL

In model-based RL, the purpose of the model is to provide an idea of ’what will hap-

pen’ if we choose actions according to our policy instead of following the observed

trajectories. In our case, these estimations are guided by observations in the dataset.

However, not all estimations are of equal uncertainty. Some might be more robust than

others owing to the stronger support from the dataset. When rolling out our policy

from the initial state, our actions might lead to state visitations that are out of distri-

bution (OOD) [62]. These are states that are infrequently observed in the dataset and

therefore induce a high level of uncertainty in the model.

If we simply eliminate the model and use standard model-free methods directly

on the dataset, studies show that the policies will now gravitate towards OOD actions

[62][21][33] (further discussed in section 6.2). To combat this issue, several solutions

have been proposed, including constraining the target policy to limit its deviation from

the behaviour policy (the policy used in gathering the data). This is known as batch

constrained RL [22]. However, as our behaviour policy could potentially be random,

we are less inclined to constrain our target policy towards it. Instead we utilize another

family of solutions which involve regularising the action values of OOD state-action

pairs. This solution can be implemented with model-based techniques such as the

MOPO algorithm [62] or with model-free algorithms as the Conservative Q-learning

(CQL) algorithm [33]. To work within time constraints, we opted for the simpler
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model-free CQL. CQL is built on top on the widely popular model-free online Q-

learning algorithm [60]. In Q-learning, the agent learns the action value function,

Q(s,a), as it interacts with the environment by minimizing the loss δ(s,a) shown in

equation 4.7. The policy is then the argmax of the Q-functions over the actions in

every state s ∈ S .

δ = ‖Q(s,a)− (r(s,a)+ γmax
a′

Q(s′,a′))‖2 (4.7)

Applying Q-learning directly on the collected dataset will lead to the OOD action

issues described above. Therefore, several modifications are introduced in CQL to

enable it to perform reliably in the offline setting. Note that in the offline setting,

the state action tuples are not obtained by interacting with the environment, but are

sampled from the pre-collected dataset D .

δQL = Es,a∼D [‖Q(s,a)− (r(s,a)+ γmax
a′

Q(s′,a′))‖2] (4.8)

δCQL = δQL(s,a)+α(Es∼D,a∼π[Q(s,a)]−Es,a∼D [Q(s,a)]) (4.9)

CQL adds a regularization term alongside the Q-learning loss, δQL (see equa-

tion 4.9). The minimization of this modified loss expression means that we are actively

trying to minimize the erroneously high Q-values in our policy and maximize Q-values

of state-action pairs that occur more frequently in the dataset [33]. The end result is

a more conservative Q-value estimate which implicitly encourages the policy to stick

with more familiar actions (as opposed to the explicit constraints of Batch Constrained

RL). Additionally, using CQL also means there is no need to estimate the unknown

EdNet behaviour policy, further avoiding a potential source of error [43].

In our CQL implementation, we utilize a publicly available offline RL library,

D3RLPY [50]. We limit our state features to mirror the optimum representation se-

lected from the pipeline. This is to allow for a fair comparison of the two approaches

(model-based vs model-free) during the OPE phase. The CQL function in the library

is built on top of a ’DQN’ implementation, a deep-learning variant of the Q-learning

algorithm [57]. Several configurations were varied in the experiments, including the α

hyperparameter in equation 4.9, the presence of batch normalization [29] and dropout

[54] in the network architecture and different Q-functions ranging from traditional to

distribution reinforcement learning [4][14]. The details of the Double-DQN algorithm

and the configuration related parameters such as Dropout, Batch Normalization and

Distributional RL can be referred to in their original papers. However, a discussion on

their impact on the CQL performance will be conducted in section 6.2.
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Offline Policy Evaluation

Previous RL applications have been successful in domains such as board games [53],

video games [41] and robotics [32]. In these fields, the optimal policy (or set of poli-

cies) can be evaluated accurately and inexpensively through simulators or by direct

interaction with the environment. However, when the domain involves human interac-

tion, the evaluation becomes more challenging, with live interaction being expensive

[37]. Developing simulators is also not straightforward as it could potentially induce

some form of bias and have questionable real world accuracy, especially when it comes

to complex subjects such as the human mind. The problem becomes amplified when

there are multiple policies to evaluate (as there usually are), further increasing the cost

of empirical evaluations [30]. Therefore, the offline policy evaluation (OPE) field has

been developed specifically to address this issue, where an evaluator needs to provide

reliable estimates of policy performance using only the collected data [37].

5.1 Importance Sampling

Importance sampling (IS) is a range of methods that in general estimate the expected

values under one distributions given samples from another [55]. A wide range of RL

literature have adopted this method as a way of evaluating a target policy (the policies

derived from the RL algorithms) given samples derived from the behaviour policy

(the policy used to gather the data) [30]. In this work we explore three (IS) variants;

Ordinary IS (OIS), Weighted IS (WIS) and Per-Decision IS (PDIS).

OIS =
1
N

N

∑
i=1

[(
Ti

∏
t=0

πe(ai
t |si

t)

πb(ai
t |si

t
)(

Ti

∑
t=1

γ
tri

t)] (5.1)
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WIS =
∑

N
i=1[(∏

Ti
t=0

πe(ai
t |si

t)

πb(ai
t |si

t
)(∑

Ti
t=1 γtri

t)]

∑
N
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Ti
t=0

πe(ai
t |si

t)

πb(ai
t |si

t

(5.2)

PDIS =
1
N

N

∑
i=1

[
T

∑
t=1

γ
t

t

∏
j=0

πe(ai
j|si

j)

πb(ai
j|si

j
)ri

t ] (5.3)

Note that N represents the number of users in the dataset and Ti is the trajectory

length observed for user i. A key feature in all three variants is the importance sam-
pling ratio ∏

Ti
t=0

πe(ai
t |si

t)

πb(ai
t |si

t
, which considers the differences in action probabilities be-

tween the target policy πe and the behaviour policy πb. The product of the individual

ratios across ti = 0→ T quantifies whether a given sequence is more (or less) likely

under πe than πb and therefore weights the returns accordingly. Averaging this across

the entire dataset has the effect of adjusting the expected return sampled from the

distribution generated by πb to estimate the expected return sampled from πe.

A well documented problem with IS estimators is the high variance induced by

the importance sampling ratio due to: 1) a large difference between the two policies

or 2) a long horizon length for the trajectories [59]. WIS reduces this variance by

utilizing a weighted average instead of the simple average in OIS [55]. PDIS modifies

the importance sampling ratio so that the likelihood of a reward at time step t should

only depend on the preceding steps (Notice the product in equation 5.3 spans only until

the current t). This too has an effect of reducing the variance [55]. All these methods

rely on the available knowledge of the behaviour policy. Since we do not have explicit

information on this, πb must be estimated from the dataset, D as shown in equation 5.4.

π̂b(a|s) =
∑s,a∈D 1[s = s,a = a]

∑s∈D 1[s = s]
(5.4)

5.2 Rollouts: Monte Carlo Policy Evaluation

Alternative to Importance Sampling, ’Direct Methods’ focus on regression based tech-

niques to directly estimate the value function under a given target policy [59]. Most

of these methods do not need an estimation of the behaviour policy. In this section

we implement a model-based direct method, Monte Carlo (MC) Policy Evaluation.

This involves performing ’rollouts’ from the initial states using the target policy until

episode termination. The observed returns from each state in the rollout are averaged

across many rollouts to yield the value function of the state. To ’rollout’ our policy
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we would need to interact with the environment. However, as the name ’model-based’

suggests, a model (in our case is the data-derived MDPs) acting as simulator allows us

to perform these rollouts offline.

A key requirement for MC policy evaluation is an episodic environment, one

where the episode terminates at a finite step at a ’terminating state’ [55]. Although

the user episodes in EdNet are finite, our data-derived MDPs are continuing i.e. with-

out a terminating state. While a default terminating state could have easily been created

for this purpose, it is unclear as to which ’action’ would transition the final observed

state to this terminating state and what ’reward’ it would receive in the process. The

choice of reward, could inadvertently impact our agents decisions at the earlier states.

Hence our MDPs were designed to be continuing to avoid this ambiguity.

This poses a problem with MC policy evaluation since the returns are only calcu-

lated when the episode ends. A potential workaround was to manually terminate the

episode at a fixed length of rollout and calculate the returns from there. We chose

a rollout length of 1000 steps and show that because of the discounting, any reward,

r ∈ R , received past this step, will have a negligible influence on the return of the

initial state i.e. maxr(γ
1000‖r ∈ R ‖)≈ 3.5×10−4. Hence this rollout length provides

a good approximation of the long term return, since any future actions will have min-

imal influence on the value of the initial state, i.e. the only state value of concern in

our analysis. However, this assumption will only work with the ’first-visit’ variant of

MC policy evaluation (equation 5.5), where only the returns of a state when it was

first encountered in the episode are considered and averaged across the rollouts [55].

This is opposed to the ’every-visit’ variant which considers all the returns from a state

every time it is visited in the episode. A fixed rollout length will not be suitable in

the latter variant, since the initial state could be encountered more than once during

the rollout. For example, if s0 was encountered again at the 500th time step, then its

return estimate for the second visit is based only on the remaining 500 future steps.

Implementing the first-visit variant ensures that all V (s0) estimates are derived from

observations spanning 1000 time steps ahead.

V MC
πe

(s0) =
1

Nrollouts

Nrollouts

∑
i

1000

∑
t=1

γ
trt

i (5.5)

5.3 Fitted Q Evaluation

The evaluator in the previous section was dependent on a model and therefore can be

biased. Furthermore, the model in our case in unable to predict the outcomes of unseen
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state-action pairs (in the dataset). This means that if there are any such pairs in the

policy then the model-based evaluation might fail. For instance consider a step in the

rollout where in the current state s, an action ax is prescribed by the target policy. When

the model is required to predict the outcome of enacting action ax in state s, it will fail if

(s,ax) was never observed in the dataset. If there are many unseen state-action pairs in

the policy, a model-free OPE, like IS, is preferred. In this section, we explore another

model-free estimator, Fitted Q Evaluation (FQE), as a low-variance alternative to IS

[59]. FQE fits a Q-function under a given policy based on observations in the dataset

[34]. It treats the evaluation as a supervised learning problem and utilises function

approximators in the process. In its original implementation FQE learns a sequence of

approximators Q̂(s,a) = limk→∞ Q̂k(s,a), where at each k:

Q̂k = argmin
f
( f (si,ai)− yi)

2 (5.6)

The target, yi is defined as yi = ri + γQk−1(s′i + πe(s′i)) where f is the function

approximator. Since, FQE uses function approximation, it can estimate the value of

unseen state-action pairs. Also note that the Q-values are approximated only by the

observed reward and value of the following state. This method of estimation is known

as bootstrapping, and is different to the IS estimators, which utilise the entire return of

an episode [55]. By bootstrapping, FQE avoids the compounded noise on the value

estimates over long episodes, thereby exhibiting a lower variance [55] than the IS

estimators.

We again employ the D3RLPY library for our FQE implementation. Its function

approximator is a 2-layer neural net with 256 hidden units and ReLU activations. Two

separate neural nets are initialized. A ’value-net’ is trained at every iteration when

the loss is minimized as in equation 5.6. A ’target-net’ is trained at specified inter-

vals by performing a hard-copy of the ’value-net’ parameters. Note that the target

value, yi is derived using the target-net, not the value-net. This dual network design in

deep Reinforcement Learning was popularized by the double Q-learning architecture

in Van Hasselt et al. [57], and has since been widely used to avoid the non-stationarity

problem [57]. The FQE loss under this function approximator design is shown in ex-

pression 5.7, with the value net parameters noted as θ and target net parameters θ′.

δ(θ) = Es,a,r,s′∼D [(Qθ(s,a)− (r+ γQθ′(s
′,πe(s′)))2] (5.7)

After training the network, we can then use the function approximators to predict

the value of the initial state under a given target policy. This value can then be com-

pared across different target policies.
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Results & Discussion

The presentation and discussion of results is broken down into 4 subsections. Sec-

tion 6.1 will cover results pertaining only to the Policy Iteration algorithm while sec-

tion 6.2 will cover only CQL related results. Following this, section 6.3 will compare

applicable OPE results across both methods and finally section 6.4 will present some

notable domain related findings.

6.1 Policy Iteration Results

6.1.1 Expected Cumulative Rewards Across Representations

A summary of the results from the greedy iterative augmentations is provided in ta-

ble 6.1. The feature description for the corresponding MDP representations are given

in table 6.2. Note that the base MDP as discussed in section 4.1.1 is denoted as

’MDP lp’. The ’ECR Diff.’ column shows the percent improvement in ECR relative to

Round Representation ECR ECR Diff. (%)
Representation

Size

Base MDP lp 238.44 - 64

1 MDP aug4 283.63 18.95 256

2 MDP aug46 387.42 36.6 2048

3 MDP aug468 392.05 1.19 4096

4 MDP aug4687 396.00 1.01 16384

5 MDP aug46873 396.00 0 65536

Table 6.1: ECR results showing best performing representation at each iteration

26
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Representation Features

MDP lp topic fam, correct so far,av time

MDP aug4 topic fam, correct so far,av time,expl received

MDP aug46 topic fam, correct so far,av time,expl received, ssl

MDP aug468
topic fam, correct so far,av time,expl received, ssl,

prev correct

MDP aug4687
topic fam, correct so far,av time,expl received, ssl,

prev correct,av fam

MDP aug46873
topic fam, correct so far,av time,expl received, ssl,

prev correct,av fam, time in part

Table 6.2: Representation Description

the smaller representation preceding it. The ’Representation Size’ column illustrates

the size of the state feature space. This is dependent on each constituent feature’s bin

size, i.e. the number of discrete bins allocated. Note that results presented here are

only showing the best performing representation at each round of the feature augmen-

tation. The full results of the greedy iterative augmentations, including the preliminary

experiment to decide the base MDP, are provided in the appendix (table 8.2).

The largest spike in ECR followed at the second round of augmentations with the

addition of the ’ssl’ feature with an increase of 36.6% over the preceding represen-

tation. ’ssl’ measures the number of steps or activities (questions/lectures) consumed

since the current part was last encountered. This feature is inferring the ’forgetting’

element during the learning process and was inspired by the ’spacing effect’ described

in Ebbinghaus [20]. Early research in instructional sequencing in language learning

used models of forgetting to great success [1]. Our findings concur with this, in that

by including ’ssl’ into the feature space, we dramatically increased the agent’s per-

formance. One could argue that this ECR increase was more influenced by the larger

bin allocation to ’ssl’ (8 relative to 4 for most other features) rather than the actual

utility of the domain information it is measuring. However, if that were the case, then

we would expect ’ssl’ to be the first feature added to the base representation. This

was not the case since the best performing feature in the first round of augmentations

was ’expl received’, a 4-size bin feature. Nonetheless, further exploration is needed to

concretely rule out the factor of the larger bin size.

At the final round of iteration, the best performing representation ’MDP aug46873’
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only equals the performance of preceding representation ’MDP aug4687’. Though

we did not have a specified limit imposed on the number of features, N , the perfor-

mance plateau exhibited at this final round indicated a suitable termination point for the

augmentation algorithm. And since ’MDP aug4687’ produced equal performance to

’MDP aug46873’ with a smaller representation size, it was chosen to be the optimum

representation within this feature pool. Notice that ’av fam’ (a rejected candidate for

topic familiarity in the baseline representation) was reintroduced into the feature pool

before the greedy iterations algorithm commenced and was automatically selected at

the fourth round of augmentations. This was done to leverage its interpretable prop-

erties for further domain related analysis such as in section 6.1.5 (unlike ’part fam’

which is less interpretable due to the autoencoded feature space).

6.1.2 Policy Support Analysis

The optimal policy derived from the Policy Iteration algorithm is deterministic, where

a single action is prescribed at each state. Meanwhile, the estimated behaviour policy

(see section 5.1) is stochastic, where a distribution across actions is provided at each

state. A comparison of the two policies, one from ’MDP lp’ (denoted as PI) and the

behaviour policy (denoted as BP) is shown in table 6.3. Note for comparison purposes,

the most common action (with greatest probability mass) in each state in displayed

from the stochastic BP policy. 10 random states were sample for this comparison. The

actions under each policy is integer encoded and can be interpreted from the action en-

coding dictionary in the appendix (table 8.3). The most common actions under the BP

policy are mostly within part 5. This is because a large portion of the user population

(free users) are limited to certain parts. ’PI Prob’ illustrates the conditional probabil-

ity of observing the prescribed action under ’PI Policy’ given the state in the dataset.

’PI Support’ provides the actual number of observations in the dataset supporting the

(s,πPI(s)) tuple in the dataset. ’State Support’ is the number of times the state was

observed in the dataset. Note that PI Prob = PI Support
State Support . ’BP Prob’ is the probability

mass of the most common action under the stochastic behaviour policy.

From some states, we can observe very low supporting observations for actions pre-

scribed by the PI Policy. This finding demonstrate that model-based methods can be

very statistically biased. In a noisy environment like human learning, the policy’s per-

formance might be vulnerable to the uncertainties of the model. An investigation into

the sensitivity of the different representations to noise is performed in section 6.1.5.
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State PI Policy PI Prob State Support PI Support BP Policy BP Prob

212 35 0.000079 304915 24 22 0.172337

344 4 0.028779 384241 11058 24 0.11656

141 32 0.000486 372520 181 24 0.378449

211 35 0.000086 266083 23 22 0.159525

223 35 0.000082 291366 24 24 0.146513

123 9 0.045657 133190 6081 24 0.22811

132 1 0.008887 143803 1278 24 0.262401

444 4 0.025812 675238 17429 29 0.0617

312 35 0.000076 144888 11 22 0.160441

234 3 0.011005 211817 2331 24 0.130688

Table 6.3: Comparison of policy support for ’MDP lp’ (PI) and behaviour policy (BP)

from 10 randomly sampled states.

6.1.3 Penalising Uncertainties: Avoiding Unseen Actions in the

Policies

Continuing this analyses, we proceed to check if any policies were enforcing unseen

state-actions pairs, with 0 support from dataset. This should not occur under policies

derived from tabular methods as explained in section 2.1. By default, our PI algorithm

prescribes state-action pairs a value of 0 if it was never observed. Upon inspection, we

discovered that some of the larger representations yielded policies with unseen actions.

The policy derived from ’MDP aug4687’ prescribed unseen actions in 10 states. While

this was a small fraction of the total state space (around 65,000), unseen actions are an

important issue to address because, in the tabular case, any state-action value estimates

must be derived only from related experiences [55].

We discovered that the problematic states had very little support in the dataset

and were only observed transitioning to themselves, before the episode ends. In the

few times the state was visited, a negative or 0 reward was produced. Since these

states would only transition to themselves, the values of these valid actions were either

negative (or 0). Hence, from the algorithms perspective, an invalid (unseen) action

with a default value of 0, was preferable (or equal) to the observed actions.

To combat this issue, we modified the MDP representations to strongly penalise

the rewards from unseen state-action pairs, in the form of a -9999 reward. This dis-
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couraged the agent from choosing such actions even if the only valid actions yielded

0 or negative returns (The worse case is bounded from below at ∑k→∞ γk× (−8) and

is clearly higher than ∑k→∞ γk× (−9999)). With these changes in place, we observe

no unseen actions in any of the policies. The performance rank of representations

remained constant with the ECR changes almost negligible (see table 8.2 in the ap-

pendix). This is because the states involved were observed very infrequently and oc-

cupied a small probability mass in the transition probabilities. Although this fix was

not significant to our results, we wanted to demonstrate a technique in handling the

uncertainty induced by unseen or out of distribution (OOD) actions in model-based

RL. Interestingly, research by [36] implemented a ’pessimistic policy iteration’ that

similarly penalises insufficiently supported state-action tuples (filtered by a threshold).

Note the analyses that follow will utilise the penalised representations.

6.1.4 Monte Carlo Policy Evaluation

In this section we evaluate the policies under the MC Policy Evaluation. A curve is

plotted for the returns (cumulative rewards) from the initial state as the rollout pro-

gresses until the 1000th step for a total of 100 rollouts. The 95% confidence intervals

are plotted around the mean value of the rollouts. This analysis is shown in figure 6.1.

As with the ECR, we can see that the improvements start to diminish significantly af-

ter the second round of augmentations. This graph also adds another dimension to the

analysis by showing how the value of s0 changes as the episode progresses. The 95%

interval windows also demonstrate how the policy’s performance might vary owing to

the stochasticity of the environment as exhibited in the dataset. The performance of

the estimated stochastic behaviour policy under this simulation is also illustrated as a

baseline. The values of in figure 6.1 shows the expected student performance from the

initial state under a given policy of instructional sequencing. From this comparison,

one can expect much better student performance under the RL policies than the base-

line, signalling that the adaptive behaviour of the agent under RL framework is superior

than the strategies used in the behaviour policy. We can also conclude that the larger

representations exhibit better performance, potentially owing to a better approximation

of the cognitive state as hypothesized.
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Figure 6.1: Returns from the initial state s0 as the episode progresses under the policies

from the associated representations

Feature to Perturb Strong Weak

Topic fam ωs′ > ωs ωs′ = ωs

Correct so far ωs′ ≥ ωs ωs′ < ωs

Avg time ωs′ ≤ ωs ωs′ > ωs

Table 6.4: Domain perturbation filters,ψ for each feature in Ω̄ for the ’Strong’ and ’Weak’

perturbed MDPs, P̄ respectively

6.1.5 Evaluating Performance with Different Student Types

A follow up is to test the robustness of the original policies under perturbations of the

environment dynamics. These perturbations are domain informed and are designed

to correspond to ’stronger’ and ’weaker’ students types. Algorithm 2 was created to

introduce these domain informed perturbations.

The filter ψ is a set of domain informed filters for each perturbed feature. In our

implementation we perturb three base features that were common in all representa-

tions i.e. ”topic fam”, ”correct so far” and ”av time”. The domain rules for the two

separate perturbations ’Strong’ and ’Weak’ are defined in table 6.4. For example, take

the feature ”correct so far” and the ’Strong’ user case. Here we set the filter to cap-

ture transitions where the next state s′ registers a greater or equal value relative to the

current state s. When this filter is inputted in algorithm 2, the transitions that satisfy

this filter will be boosted by the constant c. This ultimately has the effect of increas-
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Algorithm 2 Domain informed perturbations
Input: Set of features to perturb Ω̄, MDP transition probabilities PMDP, set of do-

main filters for each feature ψ, positive perturbation constant c = 0.05

for ps,a,s′ ∈ PMDP do

∆s,a,s′ = ps,a,s′+∑ω∈Ω̄
∆ω Where ∆ω =

c, if ωs,ωs′ satisfies ψω

0, else
end for
Adjust ∆s,a,s relative to others within the s,a pair

∆s,a,s = ∆s,a,s− 1
|ψ|∑s′ ∆s,a,s ∀∆s,a,s′

Set perturbed transition probabilities P̄MDP = PMDP

for ps,a,s′ ∈ P̄MDP do
ps,a,s′ = max(ps,a,s′+∆s,a,s,0)

end for
ps,a,s′ =

ps,a,s′
∑s′ ps,a,s′

∀ps,a,s′

Return: P̄MDP

ing the probability mass of this transition, perturbing the original MDP to make such

transitions more likely. The results of performing these two separate perturbations are

visualised by performing the MC policy evaluation algorithm with the original policy

but under the perturbed MDPs (Strong & Weak) as the simulators.

Figure 6.2 shows the results of this analysis for the different representations. Notice

that in all the representations, the original MDP always yielded the best performance.

This is expected, since the original policy was derived to perform optimally on the

original MDP. However, as the representation size increases, the effects of the pertur-

bations becomes less pronounced, almost becoming negligible past ’MDP aug46’. To

determine if the larger representation would be affected with more features perturbed,

we conducted another round of perturbations, this time only on ’MDP aug4687’ and

with all of its features (barring ’ssl’) perturbed. The new domain filters are shown in

the appendix (table 8.5). Surprisingly, the performance of the policy as shown in the

bottom right panel in figure 6.2 is not affected by the perturbations. This could mean

that the larger representations are more robust towards deviations from the expected

dynamics derived from the data. Hence, we can have more confidence that such poli-

cies would be robust in the real-world setting, maintaining its performance for students

that exhibit different learning characteristics from our observations in EdNet.
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Figure 6.2: MC Policy Evaluation of the original policy under the perturbed MDPs

6.2 Conservative Q-learning

Following our investigation into the model-based policies, we shift our attention to the

model-free CQL results. Several runs of the CQL algorithm were performed using the
features from the ’MDP aug4687’ representation as input features. The dataset

was split to a 80:20 train-validation ratio and the ECR and TD-error metric on the

validation set is measured during training as shown in figure 6.3. The run are encoded

and their hyperparameter settings are given in the appendix (table 8.4). The TD-error

measures the level of overfitting observed in the function approximators [50].

errorT D = Es,a,r,s′∼D [(Qθ(s,a)− (r+ γmax
a′

Qθ(s′,a′))2] (6.1)

We first compare the influence of the Q-function on the results. The mean Q-

function (CQL 0) registered a higher ECR however, reported similarly high TD-errors.

The latter fact would indicate that the ECR estimation is potentially unreliable. The

other two Q-functions, Quantile Regression (QR) (CQL 1) and Implicit Quantile Net-

works (IQN) (CQL 2) are from the family of distributional Reinforcement learning

[14][13]. Briefly, these methods predict a distribution of returns rather than a single

expected return as we have seen so far. The reason for doing so is improved stability

and convergence when used with function approximations [4]. Indeed when examin-

ing the TD-error we can observe that the QR and IQN runs are plateauing in TD-error

near the 10th epoch while CQL 0’s error continues to rise. We selected the QR model
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Figure 6.3: CQL Results. Left: Initial State Value Estimate (ECR). Right: TD-Error.

Note some runs were terminated before completion due to the server run time limit.

due to its favourable balance between ECR and TD-error and proceed with testing the

impacts of dropout (rate 0.5) and batch normalization. Adding these features to the

network architecture both improved the ECR and lowered the TD-error.

Next, we wanted to observe the influence of the α hyperparameter in the CQL

algorithm (see equation 4.9). Lowering α to 0.5 (CQL 5) yields marginal difference

in the results, however setting it at 0 (CQL 6) shows a dramatic increase in both ECR

and TD-error. In CQL 6, we are effectively running a standard DQN algorithm on

the dataset, removing the conservative element in CQL. Conversely, increasing α to

5 (CQL 7) reduces the TD-error and ECR i.e. making the model more conservative.

Surprisingly, we discovered that implementing dropout has a strong impact the variety

of actions prescribed, with CQL 4 opting to choose only 2 of the 37 actions in the

action space. Further analysis showed that some actions were highly dominant in the

EdNet (see figure 8.3), due to the parts limitation imposed on free users. This action

imbalance and the regularization effect of dropout led to a limited action variety in the

policies. Meanwhile policies without dropout were fairly varied in action choices.

Finally, we wanted to see the extent of OOD actions within the policy space. The

results were extreme relative to the PI policies, with the runs registering thousands of

OOD actions in their policies, the worst being the standard DQN variant with 5500 (see

full results in the appendix in table 8.6). In retrospect, this is not surprising since value

function approximators combined with offline RL is heavily prone to OOD actions

[21]. Indeed the purpose of function approximation is to generalize across unseen
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states/state-action pairs. The problem as pointed out by Levine et al. [35], is that the

values of these unseen state-actions are usually overestimated in the offline setting.

In online RL, these overestimations would be corrected once the agent begins to query

these OOD actions. Algorithms such as CQL were developed to minimize these offline

overestimations and reduce the attractiveness of such actions. This claim is observed

to be true in our results, where increasing α has an inverse effect on the number of

OOD actions. To this extent, we can conclude that the CQL algorithm has fulfilled

its purpose. However, the natural question is whether such conservative behaviour is

beneficial within our domain of ITS. OOD actions are not necessarily bad if the domain

does not impose strict restrictions on action choices. Nonetheless they are challenging

to accurately evaluate, requiring empirical testing and policy deployment with actual

users. However, we can get some insights into the relative policy performance using

the data we have. This leads us to the results in Offline Policy Evaluation.

6.3 Offline Policy Evaluation

Three OPE methods were presented in section 5, MC Policy Evaluation, Importance

Sampling and Fitted Q Evaluations. ECR is also technically an OPE method, and from

this metric alone, the PI policies significantly outperform the CQL policies and the

behaviour policy (where the ECR is simply the average of the returns in the dataset at

7.4). However, the big caveat is that ECR is statistically inconsistent for the model-

based methods owing to the bias induced by the student model [37]. MC Policy Eval-

uation was already discussed for the PI policies in section 6.1.4. Unfortunately, the

same methodology cannot be used to evaluate the CQL policies as the large number

of OOD actions exhibited in the policy prevents us from doing so, as explained in sec-

tion 5.3. Therefore, to fairly compare the two approaches, we implement Importance

Sampling and Fitted Q Evaluations.

6.3.1 Importance Sampling

The results of several policies from each approach are shown in table 6.5. For ref-

erence, the behaviour policy achieves an average return of 7.4. Immediately, we can

see that OIS and PDIS have wildly varying results. An inspection into the variance of

the associated IS estimators reveals extreme figures especially within the model-based

policies. This variance does decrease as the representation increases in size, indicat-



Chapter 6. Results & Discussion 36

OIS OIS Var PDIS PDIS Var WIS

MDP lp -2.21E+05 2.43E+15 3.86E+09 5.92E+23 -4.146

MDP aug4 -1.03E+06 5.35E+16 6.43E+16 2.07E+38 -0.940

MDP aug46 -6.96E+04 2.42E+14 8.50E+03 3.58E+12 -4.382

MDP aug468 6.39E-02 2.21E+02 -7.67E+00 3.53E+06 4.319

MDP aug4687 6.52E-02 1.88E+02 3.97E-01 2.49E+03 4.910

CQL 0 6.00E+00 9.92E+04 4.24E+05 9.02E+15 3.871

CQL 1 6.28E+00 1.04E+05 -2.93E+00 1.31E+06 4.055

CQL 4 1.09E+01 1.03E+06 -1.04E+04 8.53E+12 6.772

CQL 6 3.86E-03 1.32E-01 1.48E+02 2.36E+09 0.003

CQL 7 1.09E+01 1.03E+06 -1.03E+04 8.53E+12 6.751

Table 6.5: Importance sampling results for model-based & model-free policies

ing a more level performance across the set of users, concurring with the analysis in

section 6.1.5. The WIS exhibits less noisy results owing to its weighted averaging pro-

cedure. Here we can observe that the larger MDP representations for the most part,

show better performance, The CQL policies barring CQL 6 (the standard DQN) in

general perform better than the model-based policies, possibly indicating an advantage

of the conservative behaviour. However, these results must be taken with a grain of

salt, since it is well known that IS estimators perform poorly for long horizon episodes

[59] like that observed in EdNet with Ti (in equation 5.1) averaging 440 steps. Together

with the observed strong disparity between πb and πe i.e. ( πe
πb

<< 1) 1 and the product

of the IS ratios, ∏
Ti
t=0

πe(ai
t |si

t)

πb(ai
t |si

t
, vanishes to near zero.

6.3.2 Fitted Q Evaluation

Considering the unstable IS results, we turn to the FQE estimator as suggested by

Voloshin et al. [59]. FQE was shown to be a more appropriate offline evaluation tool for

long horizon episodes with larger policy mismatches [59]. The estimates of the initial

state value under the respective policies, Q(s0,π(s0)), are given for several policies in

figure 6.4. The losses (equation 5.6) for each run are also provided. The performance

of the estimated behaviour policy (BP) is included as a reference baseline. The PI

1Note that a large policy mismatch might also yield ( πe
πb

>> 1). However, this is less likely to happen,
since πb would have to be very low i.e. making such observations rare in the dataset.
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Figure 6.4: Left: FQE results on initial state values, Q(s0,π(s0)). Right: FQE loss

policy derived from ’MDP aug4687’ is superior to most other CQL policies. CQL 6

(the standard DQN) produced the highest Q(s0,π(s0)) estimate of all policies but its

validation loss was relatively higher (and more unstable) than the PI and CQL policies,

thereby introducing more uncertainty in its Q(s0,π(s0)) estimate. The BP policy was

significantly outperformed by the RL policies, although the same caveat with respect

to the losses apply here too, since the BP loss was far lower than the rest. In general,

the FQE results show that the RL policies are superior to the baseline BP. However,

more tuning on the FQE architecture/hyperparameters is necessary to reduce the losses,

thereby ensuring a level ground comparison.

6.4 Domain Related Findings

By observing the state values and policies derived from the RL algorithms, we can dis-

cover interesting insights in how the agent perceives the information in the states and

how it behaves accordingly. In figure 6.5, we plot the derived state values against two

features in ’MDP lp’. Based on our reward design, the state values indicates the fu-

ture user performance. From the agent’s perspective, the expected future performance

is much higher when the student has a high correct-incorrect answer ratio. However,

the relationship between the average time is more complex. At higher values of ’cor-

rect so far’, a higher ’av time’ entails a larger state value, but when ’correct so far’

is low, the opposite is true. Even if the policies themselves are not used, findings like

this can inform us of useful features and their relationships in predicting future user

performance.

Looking in the action choices in the policies, we discover that the RL algorithms
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Figure 6.5: State values vs features
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Figure 6.6: Conditional action distribution given the feature value for topic fam. The x-

axis captures the feature value of topic fam with 1 being the lowest and 4, highest. Red

bars represents lecture, while blue represent questions at increasing levels of difficulty.

tend to put preference on question level 4 actions. Indeed these do yield the highest

reward and the lowest punishment in our reward design. One possible extension is

to investigate how a change in the reward function design would impact the policy

preferences. A conditional distribution on the action selection for a given feature and

its values is shown in figure 6.6. The top figure shows the analysis for the CQL 1

policy while the bottom for the PI policy of MDP aug4687. For both policies, we can

observe that at all levels of ’topic fam’, the policy predominantly chooses the hardest

question. Interestingly, for CQL 1 the policy decreasingly prescribes lectures when

the topic familiarity goes up. Again even if the policies are not deployed, such patterns

can be useful as a technique in letting the data guide pedagogical strategies. The results

for other features and other policies are given in the appendix section 8.3.



Chapter 7

Conclusions

In this project we approached the challenge of designing an adaptive RL based peda-

gogical agent that can provide an optimized sequencing of learning materials to max-

imize learning. Training an RL agent with actual users is far too resource intensive.

Therefore, we simultaneously tackle the problem of training and evaluating an RL al-

gorithm offline based only on pre-collected data. A purely data-driven student model

was created for this purpose. We hypothesized that a complex model is required to

capture the intricacies of human learning. To investigate this theory, a large dataset,

EdNet, was necessary to provide sufficient support for the models.

Our student model was constructed in the form of a data-derived MDP, with the

transition and reward dynamics estimated from the observations in the data. The raw

logs were transformed into domain inspired features. An action set was established to

delineate our agent’s possible controls and a reward function was designed to incen-

tivise the agent in maximizing learning. Without NLG, we base our measurement of

learning on the perceived student performance. By using the MDPs we then trained

our agents with the model-based Policy Iteration algorithm. To determine whether a

more complex model yields better tutoring, we employed a greedy iterative augmenta-

tion procedure. The ECR metric guided how we chose our features and demonstrated

the positive relationship between representation complexity and policy performance.

In our analyses we discovered issues with Out of Distribution actions in the policies

and presented a solution in the form of penalising rewards. We further evaluated our

policies using a modified Monte Carlo Policy Evaluation algorithm and tested their

robustness against domain informed perturbations of the dynamics. We show that the

larger representation are less impacted by the perturbations and therefore can provide

a more equal learning experience for stronger or weaker students.
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We then explore a model-free offline RL alternative. The issue of Out of Dis-

tribution actions in offline training were discussed and the Conservative Q-learning

algorithm was eventually chosen. Several CQL runs were performed under differ-

ent hyperparameter settings and Q-functions. To make fair comparisons between the

model-free and model-based methods, we utilise two Offline Policy Evaluations tech-

niques, Importance Sampling and Fitted Q Evaluations. We demonstrate that at least

one of the two RL methods outperformed the baseline in all of the policy performance

metrics1.

Throughout the course of this project, several limitations were acknowledged which

consequently opened up to further investigations. The influence of the bin-size on

feature preference in the representations was discussed briefly but lacked conclusive

evidence to rule out entirely. This work is necessary to ensure that the features are se-

lected based only on the utility of the domain information it captures. From our model-

based policy analyses we also discovered OOD actions in the policy space. Though

we managed to remedy the problems for completely unseen actions through strong

penalisation, the next course of action is to also penalise low supported actions/states

variably according to their uncertainty as was explored by [36][62]. Finally, our FQE

estimator was limited by the varying losses between the different algorithms. While

this prevented a definitive ranking between the algorithms, a longer training time with

no hardware limitations, plus more work on tuning the parameters/architecture should

yield equal losses, consequently addressing this problem.

1Barring the unstable Importance Sampling metric, where the baseline behaviour policy achieved a
marginally higher value.
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Chapter 8

Appendix

8.1 Deep Autoencoder Implementation

A deep autoencoder was used to dimensionally reduce the 7-dimensional features

’part fam’ and ’ssl’ to 1-dimensional features. The autoencoder’s encoding architec-

ture is shown in figure 8.1. The full architecture consist of the encoder plus a decoder.

The encoder has two dense layers, a (1 to 2) dense layer and a bottleneck layer. Batch

normalization is performed after the first dense layer. ReLU activations are used at each

layer. The bottleneck layer performs the compression to 1 dimension. The decoder

mirrors this architecture but in the reverse direction, taking the 1-dimensional output

from the bottleneck layer and transforming it back into the original 7-dimensions.

The target value of the data is the input value itself. By designing the loss to be

difference between the original input value and the reconstructed input value at the

output of the decoder, we can train the neural net to perform a compression of the

original input feature. The loss measures how well the compression retains useful

information, to allow the decoder to reconstruct the original input. An example of

the training and validation loss is shown in figure 8.2. After training, this compression

functionality is obtained by extracting only the encoder from the complete autoencoder

architecture. Our implementation is a simple Keras based autoencoder trained on the

7-dimensional ’part fam’ and ’ssl’ separately and limited to data from the first 100,000

users in EdNet. This is to shorten the training time required.
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Figure 8.1: Autoencoder architecture (encoder only)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.048

0.050

0.052

0.054

0.056

0.058
train
test

Figure 8.2: Autoencoder (MSE) loss in training for ’part fam’
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8.2 Main Appendix

timestamp solving id question id user answer elapsed time

1.57E+12 1 q5012 b 38000

1.57E+12 2 q4706 c 24000

1.57E+12 3 q4366 b 68000

1.57E+12 4 q4829 a 42000

1.57E+12 5 q6528 b 59000

1.57E+12 6 q4793 a 58000

1.57E+12 7 q6488 a 35000

1.57E+12 8 q356 b 23000

1.57E+12 9 q1382 c 22000

1.57E+12 10 q830 b 25000

1.57E+12 11 q11259 b 23000

1.57E+12 12 q1092 a 20000

1.57E+12 13 q524 a 22000

1.57E+12 14 q485 c 21000

1.57E+12 15 q11261 b 23000

1.57E+12 16 q1329 b 20000

1.57E+12 17 q1204 c 18000

1.57E+12 18 q4891 b 28000

1.57E+12 19 q5477 a 35000

Table 8.1: A slice of the log from user ’u1’ from KT1



Chapter 8. Appendix 50

State representation Start State ECR ECR penalised

MDP lp 111 238.44 238.44

MDP av 111 210.75 210.75

MDP ae 811 213.14 213.14

MDP aug1 1110 240.14 240.14

MDP aug2 1111 231.49 231.49

MDP aug3 1111 255.14 255.14

MDP aug4 1111 283.63 283.63

MDP aug5 1111 232.74 232.74

MDP aug6 1116 257.22 257.22

MDP aug7 1111 237.90 237.90

MDP aug8 1112 253.57 253.57

MDP aug41 11110 340.16 340.16

MDP aug42 11111 375.10 375.10

MDP aug43 11111 354.85 354.85

MDP aug45 11111 337.90 337.90

MDP aug46 11116 387.42 387.42

MDP aug47 11111 362.85 362.85

MDP aug48 11112 368.52 368.52

MDP aug461 111160 390.19 390.19

MDP aug462 111161 390.49 390.49

MDP aug463 111161 391.35 391.35

MDP aug465 111161 389.84 389.84

MDP aug467 111161 391.42 391.42

MDP aug468 111162 392.05 392.05

MDP aug4681 1111620 393.14 393.14

MDP aug4682 1111621 394.93 394.93

MDP aug4683 1111621 395.15 395.15

MDP aug4685 1111621 393.45 393.45

MDP aug4687 1111621 396.00 396.00

MDP aug46871 11116210 394.98 394.98

MDP aug46872 11116211 395.10 395.10

MDP aug46873 11116211 396.00 396.00

MDP aug46875 11116211 394.66 394.66

Table 8.2: Full results from greedy iterative augmentations. ECR penalised are ECR

values from the penalised versions of the same MDPs.
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Action Code Part Level Action Code Part Level

0 1 0 19 4 4

1 1 1 20 5 0

2 1 2 21 5 1

3 1 3 22 5 2

4 1 4 23 5 3

5 2 0 24 5 4

6 2 1 25 6 0

7 2 2 26 6 1

8 2 3 27 6 2

9 2 4 28 6 3

10 3 0 29 6 4

11 3 1 30 7 0

12 3 2 31 7 1

13 3 3 32 7 2

14 3 4 33 7 3

15 4 0 34 7 4

16 4 1 35 0 0

17 4 2 36 -1 0

18 4 3

Table 8.3: Action Encoder. Action level ’0’ indicates lecture. Part ’0’ and ’-1’ are specific

for lectures only and denote general and unspecified parts respectively
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Run Code Q-function Batch Norm Dropout Rate α

CQL 0 Mean FALSE NA 1

CQL 1 QR FALSE NA 1

CQL 2 IQN FALSE NA 1

CQL 3 QR FALSE 0.5 1

CQL 4 QR TRUE 0.5 1

CQL 5 QR TRUE 0.5 0.5

CQL 6 QR TRUE 0.5 0

CQL 7 QR TRUE 0.5 5

Table 8.4: CQL run code dictionary

Feature to Perturb Strong Weak

Topic fam ωs′ > ωs ωs′ = ωs

Correct so far ωs′ ≥ ωs ωs′ < ωs

Avg time ωs′ ≤ ωs ωs′ > ωs

expl received ωs′ > ωs ωs′ ≤ ωs

av fam ωs′ > ωs ωs′ = ωs

prev correct ωs′ = 1 ωs′ = 0

av fam ωs′ > ωs ωs′ = ωs

Table 8.5: Specific to MDP aug4687 only. Domain perturbation filters,ψ for each feature

in Ω̄ for the ’Strong’ and ’Weak’ perturbed MDPs, P̄ respectively
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Figure 8.3: Action distribution observed in EdNet
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Policy No. of OOD Actions

MDP lp 0

MDP aug4 0

MDP aug46 1

MDP aug468 3

MDP aug4687 10

MDP lp 0

MDP aug4 0

MDP aug46 0

MDP aug468 0

MDP aug4687 0

CQL 0 1723

CQL 1 1868

CQL 2 1994

CQL 3 2338

CQL 4 2334

CQL 5 2358

CQL 6 5541

CQL 7 1963

Table 8.6: OOD actions in different policies.
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8.3 Conditional Action Distribution under Policies
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Figure 8.4: Conditional action distribution given a feature value for MDP aug4687
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Figure 8.5: Conditional action distribution given a feature value for Discrete Behaviour
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Figure 8.6: Conditional action distribution given a feature value for CQL 0
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Figure 8.7: Conditional action distribution given a feature value for CQL 1
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CQL_2: Action trends at different state levels

Figure 8.8: Conditional action distribution given a feature value for CQL 2
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CQL_3: Action trends at different state levels

Figure 8.9: Conditional action distribution given a feature value for CQL 3
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CQL_4: Action trends at different state levels

Figure 8.10: Conditional action distribution given a feature value for CQL 4
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CQL_5: Action trends at different state levels

Figure 8.11: Conditional action distribution given a feature value for CQL 5
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CQL_6: Action trends at different state levels

Figure 8.12: Conditional action distribution given a feature value for CQL 6
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CQL_7: Action trends at different state levels

Figure 8.13: Conditional action distribution given a feature value for CQL 7


