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Abstract

The use of a function approximation model to represent the value function has

been a major contributor to the success of Reinforcement Learning methods. Despite

its importance, the choice of model defaults to either a linear- or neural network-based

approach mainly due to their good empirical performance, vast amount of research,

and available resources. Still, these conventional approaches are not without limita-

tions and alternative approaches could offer advantages under certain criteria. Yet,

these remain under-utilised due to a lack of understanding of the problems or require-

ments where their use would be beneficial. This dissertation provides empirical results

on the performance, reliability, sample efficiency, training time, and interpretability of

non-conventional value function approximation methods, which are evaluated under a

consistent evaluation framework and compared to the conventional approaches. This

allows the identification of the relative strengths and weaknesses of each model that is

highly dependent on the environment and task at hand. Results suggest that both the

linear and neural network models suffer from sample inefficiencies, whilst alternative

models –such as support vector regression– are significantly more sample efficient.

Further, the neural network model is widely considered a black-box model whilst al-

ternative models –such as decision trees– offer interpretable architectures. Both limita-

tions have become increasingly important in the adaptation of Reinforcement Learning

models in real-world applications where they are required to be efficient, transparent

and accountable. Hence, this work can inform future research and promote the use of

non-conventional approaches as a viable alternative to the conventional approaches.
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Chapter 1

Introduction

Reinforcement Learning (RL), a class of methods for modelling and solving problems

of sequential decision making in stochastic environments, has seen an increased inter-

est in recent years due to the wide range of possible real-world applications [87, 43,

57, 76]. RL methods utilise the experience from environment interactions to derive an

optimal acting policy for solving the given problem. This policy specifies the optimal

action that should be selected at each environment state and thus demands a quantifica-

tion of the long-term value of each action given that state. This numerical description

is expressed for each state-action pair through the notion of a value function [88].

The estimation of the value function can either be done explicitly for each possible

state or state/action pair, or implicitly through function approximation. The focus of

this project is on the latter. Function Approximation (FA) in RL aims in establishing

a generalisable relationship between the agent’s simulated experience and the value

of the state/action function. This allows the consideration of large or even infinite

state/action spaces and, by extension, offers increased flexibility in problem modelling

which has been a major contributor to the recent successes of RL methods [5, 96, 14].

FA is an extensively researched topic in the more general Machine Learning (ML)

discipline with different approaches developed, each offering relative advantages and

disadvantages [45, 67]. Despite this wealth of research, only a small number of ap-

proaches have been widely used in the RL context and are considered conventional,

with all using either linear or (deep) neural network models. The domination of these

approaches is attributed to their good performance but also to their parametric nature

which allows their natural application in an online and incremental fashion, as is re-

quired within the RL framework. Yet, these methods are not without limitations, with

most notable the lack of interpretability and sample inefficiencies that these exhibit.

1



Chapter 1. Introduction 2

These limitations have become increasingly important in recent years with the

surge of real-world applications. Why, then, have alternative approaches –which do

not suffer from these limitations– remained under-utilised? It is first noted that al-

ternative approaches are not under-researched. There have been significant efforts in

adapting non-conventional FA approaches in the RL context and demonstrating their

applicability as viable alternatives. Hence, what is currently lacking from the liter-

ature and what restricts the wider application of alternative approaches is a lack of

understanding of the types of situations where these offer comparable advantages.

This gap in the literature has motivated the central research hypothesis of this

project, which is that under certain problems or environments, there exist non-conventional

function approximation methods which offer advantages compared to the conventional

methods, mainly in terms of interpretability and sample efficiency, and which perform

comparably in terms of performance. To test this hypothesis, a systematic evaluation

framework is created which enables their comparison under different problems.

The main contribution of this project is the implementation and empirical evalua-

tion of the considered approaches. The analysis of the experimental results and their

comparison with the conventional methods offers insights on the relative strengths and

weaknesses of each approach. In particular, it is observed that these highly depend on

the task at hand, on the environment state and action spaces, on the sparsity of the re-

ward signal, and on the amount of exploration that each problem requires. As expected,

the conventional methods have outperformed the non-conventional methods in almost

all environments in terms of their performance on the given task. Yet, a notable differ-

ence in sample efficiency was observed, with most non-conventional models managing

to reach certain levels of performance in significantly less time-steps, and thus using

less data, than the conventional models. Finally, a number of important limitations

and modelling considerations on the use of non-parametric models in the RL context

is discussed based on empirical experimentation.

The remainder of this dissertation is structured as follows. Chapter 2 introduces

the basics of the RL framework. Chapter 3 introduces each function approximation

method that is explored as part of this project and surveys related research. Chapter 4

focuses on the adaptation of these methods and the implementational details. Chap-

ter 5 covers the evaluation framework and explains the choice of environments and

evaluation criteria. Chapter 6 presents and analyses the results for each of the environ-

ments and models considered. Finally, Chapter 7 summarises the key insights from the

experiments, discusses future work and concludes the project.



Chapter 2

Reinforcement Learning Framework

2.1 Markov Decision Processes

RL methods are approaches to solving sequential decision problems which are mod-

elled as Markov Decision Processes (MDPs) [9]. MDPs are characterised by a tu-

ple (S ,A ,R ,P,γ) representing the state (S ), action (A) and reward (R : S ×A 7→ R)

spaces in the environment, the state transition probabilities (P) and the discount factor

γ ∈ (0,1] [88]. Such problems can be described as the effort of an agent to optimise its

behaviour in an environment by interpreting the resulting reward signal. This process

is naturally split into time-steps, where at each time-step, t, the agent observes the cur-

rent environment state, St , takes an action, At , and observes a reward, Rt , along with

the next state, St+1 [48].

2.2 Optimal Behaviour

The actions taken by the agent are dictated by a policy function, π, which maps states

to actions, π : S 7→ A [48]. The objective, then, is to derive a policy which specifies

the optimal action at each state, such that the agent’s expected return is maximised.

The return is defined as the discounted cumulative reward: Gt = ∑
∞
k=0 γkRt+k+1. To

allow comparison between actions, an action-value function (or q-function) is used to

quantify the long-term value of each state-action pair, defined as: qπ(s,a)=Eπ[Gt |St =

s,At = a] [88]. This represents the return the agent expects to receive when action a

is taken at state s, and assuming the policy π is followed thereafter. Based on this

formulation, the action-value function of an optimal policy is maximal, and, hence, the

optimisation of the action-value function leads to deriving an optimal policy.

3



Chapter 2. Reinforcement Learning Framework 4

2.3 Solution Approaches

A distinction is made between tabular and approximate solution approaches for opti-

mising the q-value function. Tabular methods explicitly estimate its value at each pos-

sible state-action pair, but are of limited use due to their inability to tackle problems

with large or infinite state/action spaces [88]. Conversely, approximate solution meth-

ods establish a mapping between state-action pairs and an estimated q-value through

function approximation: q̂(s,a) : S ×A 7→ R. These will be the focus of this project.

A further distinction between model-based and model-free approaches is made.

Model-based approaches depend on a model which is used to predict how the en-

vironment will respond to the agent’s actions whilst model-free approaches do not.

Instead, they rely on real interactions with the environment to learn and derive an opti-

mal policy. FA is used in both, but the scope of this project is limited to consider only

model-free approaches.

2.4 Q-Learning

This section introduces the Q-learning algorithm [95], a model-free tabular solution

method for deriving the optimal action-value function, which is the central idea behind

the algorithms that are considered as part of this project. Q-Learning belongs to the

more general class of Temporal Difference (TD) methods. TD methods can learn from

raw experience without requiring knowledge of the environment’s dynamics. They

store estimates of the q-value for each state-action pair and update these sequentially

at every time-step using the estimates of the previous time-step:

Qt+1(St ,At) = Qt(St ,At)+α [∆t−Qt(St ,At)] (2.1)

Here, α represents the learning rate and ∆t represents the TD target at time t. Dif-

ferent TD targets have been used, but for the purpose of this project the Q-learning TD

target is used:
∆t = Rt + γ max

a∈A
Qt(St+1,a) (2.2)

This is defined in terms of the immediately observed reward, Rt , and the 1-step-

discounted q-values of the subsequent state, St+1. Q-Learning has been particularly

effective on a wide range of tasks but most importantly, it has been successfully com-

bined with function approximation approaches [65, 14]. This has allowed the emer-

gence of methods which hold impressive modelling capabilities and can handle large,

or even infinite, state and action spaces.



Chapter 3

Function Approximation in

Reinforcement Learning

FA has been an indispensable part of the RL framework [88, 14]. The action-value

function approximation problem provides an instance of a supervised regression prob-

lem. Supervised regression refers to the task of learning a function mapping between

inputs and outputs when the model has access to a training dataset consisting of (input,

output) pairs and when the output is a continuous-valued variable. In the RL setting,

the following set, D = {(x(i), q̂(i))}n
i=1, where x(i) = (s(i),a(i)) is a state-action pair and

q̂(i) its predicted q-value, is considered as the training dataset.

This project considers conventional the use of neural networks and linear models

and non-conventional any approach which does not involve these two models. Even

though the main reason for this distinction is the extensive use and breadth of research

of these conventional models, their parametric nature is also highlighted as one of the

major contributors for their wide adaptation in RL. A parametric model uses a fixed

number of parameters a priori which are independent of the training data [14]. As such,

they can be optimised in an incremental fashion through stochastic parameter updates

which does not require access to the full training dataset from onset. This enables their

natural adaptation in the RL context, where the training data is acquired as the agent

interacts with the environment. Conversely, non-parametric models depend on the

training dataset to form the model structure [14] and, thus, cannot be naturally used in

a fully online way, even though there have been recent efforts in adapting such models

in online algorithms (discussed later in the chapter). The remainder of this chapter,

introduces both the parametric and non-parametric models which are explored as part

of this project, and surveys related research.

5



Chapter 3. Function Approximation in Reinforcement Learning 6

3.1 Parametric Models

A parametric action-value function approximation model is considered, q̂(s,a,w), with

parameters w = [w1, ...,wd]. This parameterisation allows for an optimisation proce-

dure which updates the model’s parameters using an update rule based on gradient

descent, a first-order iterative optimisation algorithm [79]. In the context of the RL

framework, this can be applied at every time-step by using an update target, Ut , and a

learning rate, denoted a, which controls the rate of change:

wt+1 = wt +α [Ut− q̂(St ,At ,wt)] ∇q̂(St ,At ,wt) (3.1)

For the purpose of this project, the Q-Learning TD target introduced in (2.2) is

used as the update target and the following conventional parametric algorithms are

considered, which act as baselines for the experiments:

3.1.1 Linear Models

Linear FA represents the action-value function as a linear combination of features or

basis functions [72]: q̂(s,a,w) = w>x(s,a) = ∑
d
i wi xi(s,a). This produces a para-

metric function approximation model where w = [w1, ...,wd] represents the model’s

weights and x(s,a) = [x1(s,a), ...,xd(s,a)] represents any choice of feature representa-

tion defined in terms of the state (and action). Linear models demand a significant

amount of feature engineering and model design which is in most cases problem-

specific due to their parametric nature which defines the model structure (and rep-

resentational capacity) a priori [14].

Research on linear FA in RL has mainly focused on the choice of feature rep-

resentation which includes polynomial and radial basis functions [10, 91], tile cod-

ing [88, 82], kernel-based features [71, 7] and Fourier basis features [50]. Related

work has shown that the success of these feature representations depend largely on the

problem at hand [88, 72]. As such, for the problems considered as part of this project,

a number of different approaches is implemented and evaluated.

3.1.2 Neural Networks

Neural networks (NNs) is a broad class of parametric non-linear FA models which

consist of a number of interconnected and organised into layers artificial computa-

tional elements, called neurons [81]. NNs hold impressive representational capabil-

ities due to their flexible model structure which may contain an arbitrary number of
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layers and neurons and the application of a non-linear transformation on the outputs

of each layer. For the purpose of this project, we consider the traditional feed-forward

fully-connected architecture but we note the development of an impressive number of

different architectures. We refer the reader to Le Cun et al. [53] for a review.

NNs have been used as FA models in RL since early work on the field [8, 89].

More recently, the use of deep architectures has given rise to a class of Deep RL ap-

proaches [5, 66, 94], whose performance and generalisation abilities have made them

the conventional choice in many tasks. Despite their wide adaptation and success,

NNs have long been considered as ”black-box” models due to their non-interpretable

inference processes [55]. This constitutes an important limitation, especially in the

deployment of RL models in domains such as finance and healthcare [6, 3].

3.2 Non-Parametric Models

There have been various attempts at adapting non-parametric models as value function

approximators in RL. A non-parametric model offers several advantages despite its

unnatural application in the online setting of the RL framework. Firstly, it does not

specify the model structure a priori, and thus does not require significant design effort

and prior knowledge about the system [22]. Second, it allows increased flexibility by

automatically selecting the most informative features from the data. Lastly, it involves

a reduced numbers of hyperparameters to tune, thus often requiring less computational

resources to train. The remainder of this section introduces the non-parametric models

that have been considered and experimented with as part of this project.

3.2.1 Decision Trees

Decision Trees (DTs) are non-parametric, non-linear models with a flow-chart struc-

ture which consists of ordered binary conditions imposed on the feature space, as de-

picted in Figure 3.1. This set of conditions is derived from the training data and can

be used for classification or regression [12]. DTs are specified by the split criterion (or

loss function) which measures the quality of a split. For a given split, P = {P1,P2},
and a loss function, L, the quality of the split is defined as: Q(P) = p1L(P1)+ p2L(P2),

where pi denotes the proportion of samples in partition i. The tree is then constructed

through the iterative selection of partitions which optimise this criterion. For regres-

sion problems, the mean squared function is usually used as the loss function.
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Figure 3.1: A simple decision tree, where b() denotes a binary condition imposed on a

particular feature of the input space.

DTs were one of the first non-parametric models which have been adapted as

action-value function approximators [92, 42]. These early approaches focused on

the discretisation of the state space which assumed the presence of less useful state

regions. Later work [29, 15], used DTs and ensembles of trees –such as Random

Forests [11], Extremely Randomised Tree [34] etc– along with the Fitted-Q Iteration

algorithm (Section 3.3) achieving good performance on specific problems, but lacked

an empirical comparison between these and alternative FA models. More recently,

Silva et al [83] proposed the adaptation of Differentiable DTs (DDTs) [85] in an on-

line action-value approximation algorithm which achieved performance comparable to

a neural network on several tasks but the increased complexity resulted in a less inter-

pretable model, a significant limitation given that one of the main advantages of using

DTs is their interpretable inference processes. Nevertheless, the authors suggested and

demonstrated the discretisation of these DDTs back to an interpretable form.

3.2.2 Support Vectors

Support Vector (SV) algorithms are non-linear supervised learning models for classi-

fication and regression that are based on the derivation of a high-dimensional hyper-

plane. For regression, this is constructed based on an underlying optimisation problem

which tries to minimise the distance of all training examples, which lie outside a certain

distance, ε, from the plane:

min
α,α∗

1
2
(α−α

∗)>K(α−α
∗)+ ε e>(α+α

∗)− q̂>(α−α
∗), (3.2)

subject to e>(α−α
∗) = 0, ai,a∗i ∈ [0,C]. (3.3)

Here, Ki j = k(xi,x j) is the kernel function which maps examples to a higher di-

mensional space, e is a vector of all ones, and C is a regularisation parameter. Given a
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new example, xn+1, the algorithm uses the support vectors that were used to derive the

hyper-plane for making predictions:

q̂n+1 = ∑
i∈SV

(ai−a∗i ) k(xi,xn+1)+b (3.4)

Early work on the adaptation of SV algorithms in the RL framework argued about

their increased flexibility in modelling the action-value function, but lacked an empiri-

cal evaluation of their performance and a comparison with alternative approaches [24,

51]. Maclin et al. [58] adapted a knowledge-based SV regression algorithm which

incorporated prior information provided by the user, thus requiring a good understand-

ing of the problem and of the optimal behaviour in the environment from onset. Their

algorithm outperformed a simple SV regression approach but was not compared to

alternative models. Later work, adapted SV clustering and classification algorithms

for discretising the state-space [37, 59], but lacked a comprehensive empirical evalua-

tion. More recently, efforts have been focused on developing online algorithms. Lee et

al. [54] proposed an online SV regression algorithm for approximating the action-value

function. Their algorithm was tested on a 4-chain walk and the cart-pole balancing

problems indicating promising results but was only compared against tabular solution

methods. Esposito et al. [30] proposed an approximate policy iteration algorithm us-

ing SV regression to model the value function. They provided a theoretical analysis

of their algorithm and empirical results on the mountain-car and balancing-bicycle

problems for both batch and online implementations, but did not compare it with al-

ternative approaches. Finally, An et al. [4] have adapted an SV classification model as

the actor component of an actor-critic algorithm, but their analysis was limited to finite

state-space problems.

3.2.3 k-Nearest Neighbours

K-Nearest Neighbours (kNN) is a class of supervised regression and classification

methods which make predictions based on the location of the test example in the fea-

ture space in relation to the locations of the training examples. A key characteristic

of the algorithm is that there is no training phase involved but, rather, all calculations

are performed during prediction. Given a distance measure and an integer number, k,

the kNN algorithm finds the k training examples which are nearest to the test example

according to the specified distance measure, and uses their labels to derive its predicted

value. In regression problems, the predicted value is the (distance-weighted) average
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of the k-nearest training examples’ labels.

The use of a kNN perception field as an action-value function approximation in

RL has been one of the first successful adaptations of the algorithm [63]. The ini-

tially proposed kNN-TD algorithm [61] used a set of uniformly-distributed-across-

the-state-space points as the neighbours, which maintained a q-value estimate for each

action and were updated incrementally. Given a new state, the algorithm predicted a

weighted-average value according to the stored estimates of the k-nearest neighbours

in the state-space. This was extended to use eligibility traces [62] and handle continu-

ous action spaces [46]. Later work built upon these models to apply them successfully

on real-world applications [78], and analyse their theoretical properties [75].

3.2.4 Gaussian Processes

Gaussian Processes (GPs) are non-parametric models which define distributions over

functions and consist of a number of multivariate random variables, any finite number

of these having a joint Gaussian distribution [77]. A GP, denoted f ∼ GP (m,k), is

fully characterised by its mean, m(·), and covariance, k(·, ·), functions.

GPs can be used for supervised regression through Bayesian inference. Given a

training dataset, D , the dependent variable can be modelled as q̂ = f (x)+ ε, with ε∼
N (0,σ2

n) representing the noise that is present in the training observations, and f (x)

defined as a GP. Given a new state-action pair, xn+1, we can compute the conditional

distribution of the function at that test point as: fn+1|D,xn+1 ∼N (E( fn+1),V( fn+1)),

where:

E( fn+1) = k>n+1[K(x,x)+σ
2
n I]−1y, (3.5)

V( fn+1) = k(xn+1,xn+1)−k>n+1[K(x,x)+σ
2
n I]−1kn+1 (3.6)

Here, kn+1 denotes the vector containing the covariances between the new obser-

vation, xn+1, and all training observations. Equations (3.5) and (3.6) constitute the

key predictive equations for regression with GPs. Still, the inversion of the covariance

matrix constitutes an expensive computation. To circumvent this limitation, there have

been efforts in developing sparse online GP algorithms which iteratively update the

model’s mean and covariance functions [20].

The work of Engel et al [27, 28] has been one of the first attempts at adapting

GPs as FA models in the RL context. This focused on policy evaluation through the

development of a Gaussian Process TD (GPTD) algorithm. Later work focused on
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the use of GPs for both model-based [77, 23, 21, 22] and model-free [44, 2] RL,

but did not take advantage of the variance estimation that GPs offer. More recent

work attempted to utilise this property in an effort of developing sample efficient al-

gorithms. Jung et al. [47] introduced the GP-RMAX algorithm, a model-based RL

algorithm which incorporated an exploration strategy based on the GP uncertainty es-

timates. Chung et al. [18] incorporated an information gain measure in the action

selection process to encourage early exploration. More recent work, have adapted GPs

in online algorithms taking advantage of sparsification techniques developed outside

of RL [17, 38, 44] achieving significant reductions in the amount of computational

resources required. Xuan et al. [97] implemented a Bayesian Deep RL model which

adopted neural networks as the kernel function of the GP, but the empirical evaluation

of their algorithm showed great instability in terms of performance. Finally, the re-

cent work of Ghavamzadeh et al [35] provided one of the first successful attempts at

using GPs alongside policy-gradient and actor-critic approaches. Their work included

both theoretical and empirical results on their proposed algorithms’ performance and

convergence properties.

3.3 Fitted-Q Iteration

Fitted-Q Iteration (FQI) is a framework for adapting general supervised regression

models as action-value function approximators in RL introduced in [29], borrowing

ideas from the interpolated value iteration method discussed by Gordon [36]. The

high-level idea is to keep re-fitting a supervised regression model at each time-step. In

essence, at every time-step, a training set is created, T S = {x( j),y( j)}b
j=1, where b is

the batch size. The data are created using a set of 4-tuples, (s: state, a: action, s’: next

state, r: reward), and are defined as follows:

x( j) = (s( j),a( j)) (3.7)

y( j) = r( j)+ γ max
a′

Q̂prev(s( j)′,a′) (3.8)

Here, Q̂prev denotes the model fitted in the previous time-step and γ is the discount

rate of the MDP. This dataset is then used to fit a new model. The FQI algorithm has

been successfully applied on a wide range of applications [70, 15, 90, 33, 64, 80]. Yet,

it contains no theoretical convergence guarantees due to the continual re-fitting of the

model which is highly dependent on the sampled batch at each time-step [14]. This

may result in unstable training performance or convergence to sub-optimal solutions.
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3.4 Related Work

Surveying related work in the adaptation of non-conventional value FA approaches has

revealed two notable observations. First, there is a significant amount of work in this

area with early work focusing on the development of batch algorithms, whilst recent

work focuses on the adaptation of incremental implementations to be used in the on-

line data generation framework of RL. Second, despite this breadth of research, there

is not, currently, a consistent evaluation of the proposed methods either in terms of the

evaluation criteria used or in terms of the environments these were tested on. In addi-

tion, there is a distinct lack of comparison between the proposed approaches and any

alternatives. Hence, the work of this project –i.e. the implementation, evaluation, and

comparison of these different methods under a consistent and systematic evaluation

framework– would be an important contribution towards understanding the relative

strengths and weaknesses of each model and towards their wider use.

Related work to this project is limited. The work of Busoniu et al. [14] contains a

comprehensive survey of approaches to FA in the RL context, covering both parametric

and non-parametric models. They focus on the theoretical analysis of the considered

algorithms, yet they include limited empirical results. Similarly, Lange et al. [52]

also focus on theoretical analysis, though they narrow their scope around batch ap-

proaches. Their work provides insights as to the use of the Fitted-Q Iteration algorithm

and kernel-based models. Despite lacking empirical results as well, Xu et al. [96] pro-

vide a valuable review of recent advances and applications in this area, including the

use of tree-based and kernel-based approaches. Finally, Melo et al. [65] provide an

analysis on the theoretical convergence guarantees of several FA models within RL,

but their work does not include any non-parametric model.
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Methodology

4.1 Implementation of Parametric Models

Some general ideas from the Deep-Q Network framework as proposed in [66] are

adapted. An experience replay buffer is used to store a set of 4-tuples, (s, a, s’, r), which

represent the state, action, next state and reward, as generated from the environment

interactions, and then to uniformly sample batches of fixed size at every time-step for

updating the model’s parameters. Two model instances are maintained for this purpose.

The primary model is updated at every-time step and is used in action selection and

in the prediction of the q-value of the current state-action pair. The target model is

updated every a fixed number of steps with the parameters of the primary model and is

used in the prediction of the next state-action pairs, as used in the max-operator of the

q-learning update rule. The loss function is then defined as follows, where θ denotes

the parameters of the model:

L(θ) = [r+ γ max
a′

Q̂target(s′,a′)− Q̂(s,a)]2 (4.1)

The use of experience replay and a target model reduce correlations in the data

which arise due to their sequential generation, thus achieving more stable training

performance [66]. The Pytorch library [73] is used for constructing the models. These

are optimised through batch gradient-descent using the Adam optimisation algorithm

with default parameters [49] and the loss function defined above.

For the neural network model, a simple feed-forward fully-connected architecture

is used with an arbitrary number of layers and neurons (depending on the problem)

and ReLU units applied at the output of each layer (apart from the output layer). The

model takes as inputs the state description directly and outputs the predicted q-values

13
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for each action in the environment. The linear model consists of a single layer of

linearly combined basis functions which are constructed from the state variables. Two

kinds of feature representations are constructed: linear and polynomial [82]. These are

implemented and tested on each of the problems that we consider. Table 4.1 shows

the hyperparameters of these models which were optimised according to the procedure

described in Section 4.4.

Parameter Description

gamma

batch size

learning rate

target update f req

lr reduct

lr reduct f req

hidden size (for Neural Network)

poly degree (for Linear Model)

γ parameter of the MDP

Batch size

Learning rate used in Adam optimisation

Frequency of target network updates

Rate of reduction of the learning rate

Frequency of reduction of the learning rate

Sizes of hidden layers

Degree of polynomial for polynomial features

Table 4.1: Description of parameters for the parametric models.

4.2 Implementation of Non-Parametric Models

4.2.1 Fitted Q-Iteration

As previously discussed, non-parametric models cannot be naturally applied in the on-

line setting of RL. Hence, these are implemented using the Fitted-Q Iteration (FQI)

framework introduced in the previous chapter. Similarly with the parametric models,

an experience replay buffer is used to store environment observations and then uni-

formly sample a batch at each time-step. To stabilise the performance of the algorithm,

experiments were conducted with storing the fitted models at intermediate checkpoints

and using a weighted average of the outputs of the stored models for making predic-

tions. This mitigated the risk of using a single model which was fitted with samples

that do not cover the state-action space sufficiently. In addition, thresholding the addi-

tion of new observations in the replay buffer was tested as an alternative approach. This

threshold specified the minimum distance (Euclidean distance) between a new obser-

vation and all stored observations that needs to be satisfied for the new observation to
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be added and could be helpful in environments with sparse reward signals. Of course,

the use of thresholding presents two limitations. First, the relationships of data points

in high-dimensions is not well-understood and metrics such as the Euclidean distance

may be problematic [1]. Second, bias may be introduced in the sampling process since

the proportions of observations in the replay buffer of particular state-action regions

will have changed. Thence, when thresholding is applied, the models are trained with

all observations in the replay buffer. Despite these limitations, it was observed that

in environments where significant exploration is demanded, the use of thresholding

significantly aids these models to explore more effectively.

The Scikit-learn library [74] was used to implement the various models that were

considered within the FQI framework. These models were selected based on the good

empirical results reported in related work as identified in the previous chapter. A num-

ber of parameters were kept fixed across all environments after their empirical evalua-

tion and the consideration of results from related work. For the kernel function used by

the SV Regression and GP models, the Radial Basis Function (RBF) was selected, de-

fined as: k(x(i),x( j)) = σ2
f exp[−1

2 ∑d (x
(i)
d − x( j)

d )2/l2
d ]. All tree-based algorithms used

the Mean Squared Error as the loss function. The rest of the parameters (shown in

Table 4.2) were tuned according to the procedure described in Section 4.4. In addition,

the replay threshold, model save f req, model save capacity, batch size and gamma

parameters are tuned for all FQI-based models.

Model Parameter Description

Decision Tree

max depth

min samples split

min samples lea f

Maximum tree depth

Min samples required for a split

Min samples required at a leaf

Random Forest

Extra Trees

n estimators

max depth

min samples split

min samples lea f

Number of trees in the ensemble

Maximum tree depth

Min samples required for a split

Min samples required at a leaf

Support Vectors C Regularisation parameter

K-Neighbors
n neighbors

weights

Number of neighbours

Weight function used in prediction

Gaussian Process length scale Parameter of the RBF kernel

Table 4.2: Description of parameters for the models used within the FQI framework.
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4.2.2 Online Gaussian Processes

Based on related work [44, 38, 17], the adaptation of an online algorithm based on

Gaussian Processes is particularly attractive as it fits the online data generation of the

RL framework, and its uncertainty estimates can be used as part of an informed explo-

ration strategy. Similarly with the cited papers, the sparsification algorithm proposed

in Csato and Opper [20] is used. The algorithm maintains a dictionary of basis points,

Z ∈ Rd×d , which adequately represent the state-action space, and a vector, α ∈ Rd ,

along with a matrix, C ∈ Rd×d , which are updated incrementally and are used for pre-

diction. Given a new example, xt+1, its mean and variance are calculated as:

m(xt+1) = α
>
t k(Z,xt+1) (4.2)

Σ(xt+1) = k(xt+1,xt+1)+k(Z,xt+1)
> Ct k(Z,xt+1) (4.3)

Here, k(·, ·) represents the kernel function and k(Z,xt+1) a vector containing the

covariances between the new example and all examples in the dictionary. Details of

the algorithm along with the procedure for updating α and C given a training example

and the construction of the dictionary can be found in Appendix A. In essence, each

new example enters the basis only if it satisfies a certain criterion. Hence, the dictio-

nary is constructed as data are generated and stores those which are deemed useful. A

parameter, epsilon tol, controls the threshold for adding a new example in the dictio-

nary, which acts as a hyperparameter of the model. As with the FQI-GP algorithm, an

RBF kernel is used with its length scale parameter defined a priori and act as a hyper-

parameter. Finally, it was observed that the initial values of α and C impact the model’s

performance significantly, and hence these are also treated as hyperparameters.

4.3 Exploration Strategy

The exploitation-exploration dilemma is a key consideration of the RL framework. It

describes the fine balance between exploration in the environment as to discover opti-

mal behaviour, and exploitation of the knowledge that has been already accumulated

by the agent [39, 88]. All models considered utilise an ε-greedy exploration strategy.

This is implemented in the action selection component of the RL agent, which, at ev-

ery time-step during training, selects an action randomly out of those available with

probability ε, or otherwise selects the greedy action, i.e. the action with the high-

est estimated q-value. The value of ε is reduced over-time. This is controlled using
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two hyperparameters: eps max reduct, which represents the maximum reduction, and

eps decay, which controls the rate of reduction.

In addition to ε-greedy, the use of the uncertainty estimates of the Gaussian Pro-

cess models as an alternative exploration strategy is also explored. Intuitively, high

uncertainty indicate regions in the state-action space which may be beneficial to ex-

plore. The experimentation is based on work from the area of Bayesian Optimisa-

tion –whereas the tradeoff between exploration and exploitation is also a significant

challenge– and makes use of an acquisition function for determining which data point

should be evaluated next [84]. The value of the acquisition function at a given observa-

tion can then be used instead of its predicted mean in the action selection process. For

the purpose of this project, experiments were conducted using the Upper Confidence

Bound (UCB) acquisition function, defined as follows:

αUCB(xt+1;D,θ) = m(xt+1)+κ Σ(xt+1) (4.4)

Here, κ is a hyperparameter which controls the balance between exploration and

exploitation. However, the use of this alternative exploration strategy instead of the

ε-greedy strategy that is conventionally used, has resulted in significant performance

drops in all of the environments considered. Hence, it was not adopted for the final

models which are presented in Chapter 6.

4.4 Hyperparameter Tuning

The hyperparameters of each model were tuned according to the following procedure.

For each environment, a maximum number of steps was selected that each algorithm

would train for. This was chosen based on empirical results which showed that all

considered models appeared to converge at a stable policy by that time. Then, each

parameter setting was used in 3 training runs (random seeds) and the policy at the end

of each run was evaluated over 3 episodes where the policy was followed determinis-

tically. The resulting average evaluation returns constituted the model’s performance

under the given parameter setting. The parameter setting which performed the best was

then selected for each model and environment. A number of different values, chosen

through grid-search, was tested for each parameter.
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Evaluation Framework

The primary objective of this project is the systematic evaluation of non-conventional

value function approximation approaches and their comparison with the conventional

ones. A number of environments and evaluations metrics were selected which would

evaluate each method in terms of their performance on the given task, sample effi-

ciency, reliability and training time. These are introduced and explained in the remain-

der of this chapter.

5.1 Environments

All environments that were used in this project were adapted or taken directly from the

OpenAI gym library [13]. This is a library consisting of environment implementations

of various problems from the RL literature, and its use is considered conventional. This

offers the advantages of standardisation and comparability with related research. The

environments were selected such that the strengths and weaknesses of the models can

be assessed. These are introduced below and depicted in Figures 5.1 and 5.2:

SimpleGridworld: This is a simple 5× 5 gridworld where the objective is for

the agent to reach a goal located in one of the grids. Both starting and goal

positions are deterministic. Both state and actions spaces are discrete. The state

is described in terms of a 25-dimensional one-hot vector, which describes in

which of the 25 grids the agent is located. The agent can take four actions: move

up, right, down, or left. The agent receives a reward of −1 on every transition.

The episode ends either when the agent reaches the goal or when a maximum of

50 steps were taken. If the agent takes an action that would bring it outside of

the grid, it remains on the same position.

18
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WindyGridworld: This is an implementation of the WindyGridworld prob-

lem [88], a 7× 10 gridworld. Both state and actions spaces are discrete. The

state is described in terms of a 70-dimensional one-hot vector, which describes

in which of the 70 grids the agent is located. The rest of its characteristics are

the same as in simple gridworld, apart from the existence of a south-blown wind

which passes through the middle grid columns. This causes any actions that

would originally take the agent on one of these grids, to instead take it a number

of grids up instead. The number of grids can either be 0, 1 or 2, depending on

the wind speed as shown in Figure 5.1. The episode ends either when the agent

reaches the goal or when a maximum of 500 steps were taken.

CartPole: This is an implementation of the Pole-Balancing problem [8]. The

objective in the CartPole environment is to balance a pole which is standing

on top of a cart by moving the cart left or right. The state space is continuous

whilst the action space is discrete. The environment state is described in terms

of four continuous-valued variables: CartPosition∈ [−4.8,4.8], CartVelocity∈
(−∞,∞), PoleAngularVelocity∈ (−∞,∞) and PoleAngle∈ [−0.418,0.418] (in

rad). These are initialised by uniformly sampling in the interval [−0.1,0.1]. The

agent can take two actions: push cart to the right or left. The agent receives a

reward of +1 at every time-step until the episode ends. The episode ends if either

|PoleAngle|> 0.21, |CartPosition|> 2.4, or if 200 time-steps have passed.

LunarLander: The objective in this environment is landing a spaceship on the

moon surface. The state space is continuous whilst the action space is dis-

crete. The environment state is described in terms of eight variables. Six of

these are continuous-valued ∈ (−∞,∞): AngularSpeed, HorizontalCoordinate,

VerticalCoordinate, HorizontalSpeed, VerticalSpeed, and Angle, and two are

binary: FirstLegContact, SecondLegContact. The agent can take four actions:

do nothing, fire left engine, fire right engine, or fire main engine. The agent

receives reward for successfully landing the spaceship and bringing it to rest.

It receives a negative reward for crushing it. The episode ends either when the

lander crashes, comes to rest or when 500 time-steps have passed.
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(a) Simple Gridworld (b) Windy Gridworld

Figure 5.1: Gridworld environments. Black arrows indicate optimal path to the goal.

(a) CartPole (b) LunarLander

Figure 5.2: Classic control RL environments.

5.2 Evaluation Criteria

The models are evaluated in terms of their performance on the given tasks, reliability,

sample efficiency and training times. For all algorithms considered, a maximum num-

ber of time-steps is defined for each task. This is chosen based on empirical results

which show that all models appear to converge at a stable policy by that time. The

terminology introduced in [16] which describes three axes of variability –during train-

ing: within runs, during training: across runs and after training– is used, and metrics

which capture all three axes are adopted. A further distinction between (training) runs

and (evaluation) rollouts is made. A run involves episodic environment interactions for

a maximum number of time-steps, during which the agent learns and updates its pol-

icy. A rollout involves a single-episode interaction where the given policy is followed
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deterministically and there is no learning. Evaluating across multiple runs allows for

the quantification of the stochasticity induced by the random seed and the initialisa-

tions of the environment and optimisers. Evaluating across multiple rollouts allows for

the quantification of the stochasticity induced by the environment and the optimisation

process. Finally, the evaluation metrics used are defined below. It is denoted as qa the

a-th percentile, and Q1 = q25 and Q3 = q75 as the first and third quartiles respectively.

Importantly, the reported results were measured using the same model specifications

across all metrics.

(1) Average evaluation returns: This is the average return the agent receives across

ten evaluation rollouts. It is measured after certain number of time-steps and it

therefore assesses after-training variability. To ascertain a reliable measure of

this quantity, it is recorded for thirty runs, initialised with different seeds. The

median, Q1 and Q3 across all runs are then reported, which provide a measure

of centrality and dispersity.

(2) Average training returns: This is the average return the agent receives within

a training run. To ascertain a reliable measure of this quantity, it is recorded

for thirty runs, initialised with different seeds. The median, Q1 and Q3 across all

runs are then reported for certain intermediate time-steps. Given the stochasticity

induced from the exploration strategy which is active during training, the train-

ing return is expected to be noisier than the evaluation return. Nevertheless, the

shape of the training curve should indicate that the agent is learning. This metric

ascertains both during-training axes of variability. The reported quartiles mea-

sure the dispersity of the cumulative training returns across runs (random seeds)

whilst the shape of the training curves provide an indication for the stability of

training performance within runs.

(3) Worst-case average evaluation returns: This is a reliability measure, which

uses the 5-th percentile, q5, as the measure of the (1-in-20) worst-case average

evaluation return the agent may receive. A q5 value close to the median is a

strong indication of the robustness of the given model. Conversely, a value sig-

nificantly lower than the median indicates that the model is prone to occasionally

converging at sub-optimal policies.

(4) Number of time-steps required to reach certain performance: This is a sam-

ple efficiency measure, quantifying the amount of training data required for the
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model to reach certain performance levels. These are environment-specific and

are selected to reflect optimal behaviour. This is measured by assessing the re-

sulting policy after each episode within a training run. If the average returns it

achieves across ten evaluation rollouts satisfies the required performance level,

then the number of time-steps elapsed are recorded. This is repeated for thirty

runs, after which the box-plot of the resulting sample is reported.

(5) Training time: The actual time taken for the program to run (wall-clock time),

measured in seconds, is used to quantify the training time of each model.

5.3 Model Comparison

In addition to the evaluation of each model, statistical analyses are conducted to com-

pare the models’ average evaluation return achieved after the maximum number of

training time-steps have elapsed. The result of a Welch’s t-test is reported, as sug-

gested by Colas et al. [19], for each pair of models. The Welch’s t-test, in contrast with

t-test, does not assume equal variances between the two random variables, a more real-

istic condition for the project’s setting. For two given models, denote the true means of

these quantities as µ1 and µ2 respectively. Then a statistical test is performed to assess

whether their difference, µ1−µ2, is greater than 0. Under this test, the null hypothesis

is: H0 : µ1−µ2 = 0 and the alternative hypothesis is: Ha : |µ1−µ2|> 0. The test uses

a numerical quantity calculated from the sampled observations, called a test statistic,

defined as follows:

t =
|x̄1− x̄2|√

s2
1+s2

2
n

(5.1)

Here, x̄i and si are the sample mean and sample standard deviation of model i

respectively, and n is the sample size. Based on this test statistic, a p-value is calculated

which denotes the probability under the null hypothesis of observing results which are

at least as extreme as the ones observed already. Small p-values are an indication that

the null hypothesis is wrong, but the confidence level under which one can confidently

reject the null hypothesis is debatable [40, 86]. For the purpose of this project, a rather

conservative confidence level of 0.01 is used.
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5.4 Interpretability

Assessing the interpretability of a Machine Learning model is a challenging task due to

the lack of a precise definition of the term and the ambiguity in its evaluation [26, 69].

Yet, it constitutes an essential requirement, especially for the deployment of the model

in real-world applications, considering its correlation with accountability, robustness

and trust [55, 26, 68, 32]. For the purpose of this project, a model is considered inter-

pretable when its prediction mechanism is transparent and can be interpreted on a high

level by a human [55, 26, 60]. To compare between the different models that are con-

sidered in this project, these are allocated into two classes; sufficiently interpretable

and not sufficiently interpretable. A more comprehensive assessment of how inter-

pretable each model is is considered outside this project’s scope. For the allocation,

results from related work are used. In essence, a model is considered sufficiently in-

terpretable if there is a general consensus in the literature as to its good interpretability

properties, and vice versa.

Out of the seven model architectures that are implemented, only the Linear and

Decision Tree models are considered sufficiently interpretable. The Linear model has

one of the simplest and most intuitive model structures, but this depends on the choice

of feature representation [55]. Nevertheless, the two feature representations that are

implemented (linear and polynomial) are all instances of relatively simple additive

models and, hence, maintain the good interpretability properties of the model [56]. The

Decision Tree model, an instance of a rule list architecture, is widely considered one

of the most interpretable model structures due to its intuitive prediction process [25,

83, 32]. The rest of the models, are considered not sufficiently interpretable either

due to their large number of parameters (Neural Networks) [32, 60, 69], ensemble

status (Random Forests) [93, 41, 31], general-purpose (complex) architectures (Neural

Networks, Support Vectors, Gaussian Processes) [32, 60], or use of kernels (k-Nearest

Neighbours, Gaussian Processes) [32, 60, 1].
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Results and Discussion

6.1 Performance

Figures 6.1 and 6.2 show the average return for each model and environment under

evaluation and training modes respectively. As expected, both parametric models, –

i.e. the Linear and Neural Network (NN)– were able to converge at an optimal policy

consistently in all of the environments considered, apart from LunarLander where the

Linear model was unable to do so. On the other hand, the non-parametric models’

performance varied depending on the task.

In SimpleGridworld, all models were able to find the optimal path consistently

by the end of the maximum 5,000 training steps. Notably, the Decision Tree (DT-

FQI), Random Forest (RF-FQI), Support Vector Regression (SVR-FQI) and k-Nearest

Neighbours (kNN-FQI) models were able to efficiently converge at an optimal policy

and maintained that performance consistently throughout the training process. The

Gaussian Process (GP-FQI) and Online Gaussian Process (GP-On) required a higher

number of time-steps to learn a useful policy and were more unstable as indicated by

their training curves.

Experiments on WindyGridworld, showed that none of the non-parametric models

were able to find an optimal policy. This was due to two main reasons. First, the

sparse reward signal of the environment demands a significant amount of exploration.

Since the FQI-framework fits a new model at each time-step, if none of the random

exploration steps results in reaching the goal, then the data which are constructed from

these observations will not be useful in training the model. Second, the state-action

space of this environment is discrete and there is only a limited number of unique

observations. Hence, even if the goal is reached and those observations are added in

24
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the replay buffer, it is still difficult for these to be sampled and not constitute a small

minority of the batch that is used as training data. These two limitations of the FQI-

framework are addressed by applying a threshold of zero for adding new samples in the

replay buffer, which enabled the tree-based methods to explore the environment more

effectively and ultimate reach an optimal policy. However, the SVR-FQI, kNN-FQI,

GP-FQI and GP-On models were still unable to formulate an appropriate input-output

mapping, despite managing to explore the environment sufficiently, as seen from their

training curves. This was due to their reliance on the use of kernels to define the

similarity between two points using a distance metric, e.g. the Euclidean distance. In

this environment this is problematic as the feature space is high-dimensional [1] and

consists of binary variables whose position in the feature space is not representative

of the actual distances in the grid since the Euclidean distance between any pair of

one-hot vectors is the same.

In CartPole, the performances of the DT-FQI, SVR-FQI and GP-On models were

comparable with the conventional models in terms of median returns. The rest of

the non-conventional models achieved slightly lower median performance but with a

significantly larger dispersion around this median and more unstable training curves.

Nevertheless, all models appear to be able to solve the given problem, indicating that

environments with a dense reward signal, no significant exploration required, and a

state-space described by continuous-valued variables, fits into the strengths of these

non-parametric models.

LunarLander is the most challenging of the considered environments due to the

complex relationships between the state variables and actions. The agent needs to learn

to avoid crushing the lander, land it efficiently, and bring it to rest after landing. These

events would result in episodic returns of around 0, 100 and 200 respectively. The plot

of the evaluation returns shows that the most complex models are able to formulate an

appropriate relationship between the state-action pairs and q-values whilst the simpler

models struggle. The SVR-FQI model converges at a policy that lands the spaceship

reliably but sometimes fails to bring it to rest, as a result of insufficient exploration.

The DT-FQI converges at a suboptimal policy and fails to explore the environment

sufficiently. The RF-FQI, GP-FQI, GP-On and kNN-FQI models seem to be unable to

represent an appropriate input-output relationship and thus fail the task.



Chapter 6. Results and Discussion 26

500
1000

1500
2000

2500
3000

3500
4000

4500
5000

Timesteps

50

40

30

20

10

Ep
iso

di
c 

Ev
al

ua
tio

n 
Re

tu
rn

s

Neural Network
Linear Model
Decision Tree (FQI)
Random Forest (FQI)
K-Neighbours (FQI)

500
1000

1500
2000

2500
3000

3500
4000

4500
5000

Timesteps

50

40

30

20

10

Ep
iso

di
c 

Ev
al

ua
tio

n 
Re

tu
rn

s

Neural Network
Linear Model
Support Vectors (FQI)
Gaussian Process (FQI)
Gaussian Process (Online)

(a) Simple Gridworld

2000
4000

6000
8000

10000
12000

14000
16000

18000
20000

Timesteps

500

400

300

200

100

0

Ep
iso

di
c 

Ev
al

ua
tio

n 
Re

tu
rn

s

Neural Network
Linear Model
Decision Tree (FQI)
Random Forest (FQI)
K-Neighbours (FQI)

2000
4000

6000
8000

10000
12000

14000
16000

18000
20000

Timesteps

500

400

300

200

100

0

Ep
iso

di
c 

Ev
al

ua
tio

n 
Re

tu
rn

s

Neural Network
Linear Model
Support Vectors (FQI)
Gaussian Process (FQI)
Gaussian Process (Online)

(b) Windy Gridworld

2000
4000

6000
8000

10000
12000

14000
16000

18000
20000

Timesteps

25

50

75

100

125

150

175

200

Ep
iso

di
c 

Ev
al

ua
tio

n 
Re

tu
rn

s

Neural Network
Linear Model
Decision Tree (FQI)
Random Forest (FQI)
K-Neighbours (FQI)

2000
4000

6000
8000

10000
12000

14000
16000

18000
20000

Timesteps

25

50

75

100

125

150

175

200

Ep
iso

di
c 

Ev
al

ua
tio

n 
Re

tu
rn

s

Neural Network
Linear Model
Support Vectors (FQI)
Gaussian Process (FQI)
Gaussian Process (Online)

(c) CartPole

20000
40000

60000
80000

100000
120000

140000
160000

180000
200000

Timesteps

400

300

200

100

0

100

200

Ep
iso

di
c 

Ev
al

ua
tio

n 
Re

tu
rn

s

Neural Network
Linear Model
Decision Tree (FQI)
Random Forest (FQI)
K-Neighbours (FQI)

20000
40000

60000
80000

100000
120000

140000
160000

180000
200000

Timesteps

400

300

200

100

0

100

200

Ep
iso

di
c 

Ev
al

ua
tio

n 
Re

tu
rn

s

Neural Network
Linear Model
Support Vectors (FQI)
Gaussian Process (FQI)
Gaussian Process (Online)

(d) LunarLander

Figure 6.1: Median (solid line) and IQR (shaded region) over thirty runs (seeds) of the

average episodic evaluation return (over 10 rollouts) for each model and environment.
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Figure 6.2: Median (solid line) and IQR (shaded region) over thirty runs (seeds) of the

episodic training return for each model and environment.
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6.2 Statistical Analysis

Figure 6.3 shows heatmaps which represent the p-values of Welch’s t-tests between

each pair of models and for each environment. In SimpleGridworld, there is no sta-

tistically significant difference between the evaluation returns after 5,000 time-steps

of any model. In WindyGridworld, the difference between the evaluation returns after

20,000 time-steps of any of the Linear, NN, DT-FQI and RF-FQI models and any of

the SVR-FQI, kNN-FQI, GP-FQI and GP-On is statistically significant as expected. In

CartPole, the difference of the evaluation return after 20,000 time-steps between the

Linear model and any other model, and the difference of the return between the NN

model and any other non-parametric model are statistically significant. There are no

statistically significant differences between the returns of any pairs of non-parametric

models. Finally, in Lunarlander, the difference of the return between the NN or SVR-

FQI models and any other model is statistically significant as expected. There is also

statistically significant difference between the return of the two, with the NN model

outperforming the SVR-FQI model.

6.3 Reliability

Figure 6.4 presents the 5-th percentile of the evaluation return over thirty runs (ran-

dom seeds) averaged over ten evaluation rollouts measured at intermediate time-steps.

Overall, it seems that the parametric models are more reliable considering this metric.

It is observed that the FQI framework suffers from occasional convergence to subop-

timal policies. This is because of the reliance of the framework on the construction of

an appropriate training dataset at each time-step, since the model is fitted anew. This

dataset is constructed from observations sampled from the replay buffer. If these hap-

pen to not sufficiently represent the state-action space, then the fitted model trained

on these will provide unhelpful predictions resulting in a drop in performance. This

limitation is addressed with the use of a replay buffer threshold and by storing the fit-

ted models at intermediate time-steps and using them for predictions, as explained in

Section 4.2.1 which stabilises training performance but may still result in insufficient

exploration. A similar argument applies for the GP-On model which depends on suffi-

cient exploration to add useful observations in its set of support points. The occasional

convergence of the model at suboptimal policies is a result of under-exploration.
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Figure 6.3: Heatmap of Welch’s t-test p-values for each pair of models on the difference

of their average evaluation returns after the maximum number of training time-steps.

A small p-value provides evidence for the rejection of the null hypothesis –that this

difference is zero– at the given significance level.

6.4 Sample Efficiency

Figure 6.5 presents boxplots for the number of steps required for each model to reach

a certain level of performance in each of the considered environments. The target

performance is environment specific. For the SimpleGridworld and WindyGridworld

environments, this was set to an episodic evaluation return of at least -6 and -15 respec-

tively, reflecting the optimal path to the goal. In the CartPole environment, this was set

to an episodic evaluation return of at least 195, again reflecting optimal behaviour. In

the LunarLander environment, the target performance was set to an episodic evaluation

return of at least 100. Even though this is not representative of solving optimally the

given problem (which would require a return of at least 200), it was deemed a more in-
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Figure 6.4: 5-th percentile (q5) over thirty runs (seeds) of the average episodic evalua-

tion return (over 10 rollouts) for each model and environment.

formative measurement given that most models, both parametric and non-parametric,

struggled in this environment.

In SimpleGridworld, the Linear, kNN-FQI and SVR-FQI models were able to reach

an optimal policy within less than 500 time-steps consistently whilst the rest of the

models required slightly more than 500 time-steps according to the median and IQR

of the collected samples. The DT-FQI, RF-FQI and GP-On models had also runs

where the required performance was not reached at all. In WindyGridworld, the Lin-

ear Model seems to be the most reliable with the vast majority of its runs reaching the

target within 5,000 time-steps. The kNN-FQI, SVR-FQI, GP-FQI and GP-On models

did not reach the target performance in any of the runs. Interestingly, both DT-FQI and

RF-FQI models outperform the parametric models in terms of median number of steps

required, but the right tails of their distributions are significantly longer due to having

runs where the required performance was not reached. Nevertheless, this shows that if

the environment is explored sufficiently, these models are able to utilise the collected

data more efficiently. In CartPole, all non-parametric models outperformed the para-

metric ones in terms of median number of steps. The DT-FQI, RF-FQI, GP-FQI and

GP-On had a few runs where the required performance was not reached. On the other

hand, the RF-FQI and SVR-FQI models not only achieved the required level of perfor-

mance consistently, they were also able to reach it within 1,000 time-steps in the vast
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majority of their runs, vastly outperforming all other models. This is a strong indica-

tion of how sample efficient these models are, in environments where the reward signal

is dense and no significant exploration is required. Finally, in LunarLander, none of the

Linear, DT-FQI, RF-FQI, kNN-FQI, GP-FQI and GP-On models reached the required

level of performance in any of their runs. The NN and SVR-FQI models on the other

hand, were able to do so consistently. In addition, the SVR-FQI model seems to be

significantly more sample efficient than the NN model when the median and IQR of

the number of samples required to reach the target performance is taken into account.

This is consistent with what was observed on CartPole, despite the LunarLander envi-

ronment requiring considerable higher levels of exploration.

6.5 Training Time

Table 6.1 shows the wall-clock time required for each model to complete a training

run for each of the environments considered. As expected, the conventional models’

training times is significantly lower due to, first, the use of a highly optimised library

for their implementation, second, the continual model fitting that is required for the

non-conventional models under the FQI-framework and, third, the manual implemen-

tation of the calculations required by the GP-On model. The Linear model required

more time than the NN model on CartPole, despite being a simpler model, due to the

manual implementation of the polynomial feature representation that was used and the

small number of hidden layers (2) and units (32 each) of the NN model. This was not

the case on LunarLander, where the large number of hidden units of the NN model

(256 and 128 for the first and second hidden layers respectively) required more train-

ing time than the Linear model, despite also using polynomial features. Within the

non-conventional models, the DT-FQI model required less time than the more com-

plex models of RF-FQI, SV-FQI and GP-FQI as expected. The kNN-FQI model, re-

quired the most training time due the large batch size, which has a large impact on

the the prediction time of the model. The GP-On model required significantly less

training time than most FQI-based models, indicating the effectiveness of the sparsi-

fication technique that was used. Further, comparing the two GP-based models, there

was a considerable difference in training times, yet no significant performance dif-

ferences. Finally, thresholding the addition of observations in the replay buffer on

WindyGridworld and LunarLander for the FQI-based models, reduced significantly

the training time of these models.
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Figure 6.5: Boxplots of the number of time-steps required by each model to reach

certain levels of performance in the considered environments. The target levels of per-

formance are episodic returns of at least 195, -6, -15 and 100 for the SimpleGridworld,

WindyGridworld, CartPole and LunarLander environments respectively.
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Model
Environment Simple

Gridworld
Windy

Gridworld
CartPole

Lunar
Lander

Linear Model 4 15 96 361

Neural Network 7 31 26 615

Decision Tree (FQI) 37 34 106 1432

Random Forest (FQI) 122 79 464 8762

K-Neighbors (FQI) 572 134 632 12225

Support Vectors (FQI) 214 25 423 5253

Gaussian Process (FQI) 280 26 550 10400

Gaussian Process (Online) 56 260 356 4142

Table 6.1: Training time (wall-clock time) for each model in seconds.

6.6 Interpretability

As discussed in Section 5.4, only the Linear and Decision Tree models were deemed

sufficiently interpretable. This section demonstrates how their prediction mechanisms

can be interpreted, by considering the CartPole environment and extracting the learned

models at the end of training. The Linear model is fully described in terms of two equa-

tions which are used for predicting the q-value of the two actions in the environment

(push left, push right) for a given state s = (spos,svel,sang,sang vel):

q̂(s, push le f t) = 18.81−10.28 spos +1.29 svel−0.34 sang +0.48 sang vel

+9.42 s2
pos +4.58 s2

vel +0.32 s2
ang−2.64 s2

ang vel

−5.16 spos svel−3.71 spos sang +3.57 spos sang vel

+11.30 svel sang−0.31 svel sang vel−10.62 sang sang vel

(6.1)

q̂(s, push right) = 18.88−14.22 spos +4.26 svel +16.59 sang +3.47 sang vel

+13.64 s2
pos +6.22 s2

vel +11.72 s2
ang−1.81 s2

ang vel

−0.54 spos svel−5.39 spos sang +8.44 spos sang vel

+12.85 svel sang +1.06 svel sang vel−6.77 sang sang vel

(6.2)

The Decision Tree model is fully described in terms of the binary conditions which

split the tree at each internal node. These are visualised in Figure 6.6. The tree has a
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maximum depth of ten and takes as inputs the four state variables of the environment

along with the two actions for a total of 6 features.

To understand what these models predict for a given state, some illustrative state

descriptions are chosen and their respective q-values under the Linear and Decision

Tree models are calculated (Table 6.2). It is observed that the linear model is biased

towards the action push right when the pole is up-right and both cart and pole are sta-

tionary (as in the first and second examples) no matter where the cart is positioned.

Intuitively, the action push left should be preferred when the cart is positioned to the

right of the centre. The rest of the examples show that the linear model behaves as

expected. As for the Decision Tree model, it seems that it is indifferent to the position

and velocity of the cart when both angle and angular velocity are zero (as in the second

and third examples), which may result in erroneous actions. The rest of the examples

indicate that the Decision Tree model behaves as expected. Nevertheless, this analysis

was only possible due to the two models being sufficiently interpretable and demon-

strates the importance of being able to test and observe the behaviour of a given model

when its robustness and reliability are important, as is the case for many real-world

applications.

State (s) q̂linear(s, le f t) q̂linear(s,right) q̂dt(s, le f t) q̂dt(s,right)

[0, 0, 0, 0] 18.81 18.88 52.58 52.58

[+1 (-1), 0, 0, 0] 17.95 (38.51) 18.30 (46.74) 52.58 (52.32) 52.58 (52.32)

[0, +1 (-1), 0, 0] 24.68 (22.10) 29.36 (20.84) 52.58 (52.01) 52.58 (52.01)

[0, 0, +1 (-1), 0] 18.79 (19.47) 47.19 (14.01) 34.97 (35.87) 48.00 (35.87)

[0, 0, 0, +1 (-1)] 16.65 (15.69) 20.54 (13.60) 21.44 (33.45) 42.95 (18.879)

Table 6.2: q-values for the actions push left and push right for different state descrip-

tions on CartPole under the Linear and Decision Tree models. Largest values in bold.

6.7 General Observations

Fitted-Q Iteration: The use of the FQI framework alongside the non-parametric mod-

els which were considered as part of this project has demonstrated the viability of

adapting these methods in the RL context. The main advantages of using the frame-

work are the flexibility in using any supervised regression model and the small number
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of hyperparameters that it involves. Its main limitations are its poor performance in

environments where a significant amount of exploration is required, the added compu-

tational and memory costs that it demands as a result of fitting a model anew at each

time-step, and the performance unreliability which results from its dependency on the

good quality of the training data.

Tree-based methods: Tree-based methods achieved good results in most of the en-

vironments tested. It was observed that the maximum depth parameter has a significant

effect on the model’s performance. It is noted that the tuning process for this param-

eter can be aided by utilising prior information on the environment where available.

For example, understanding the environment dynamics in CartPole and considering

that the model takes as input a 6-dimensional variable, one can refine the range of

parameter values considered to range between four and fifteen. Despite the ability,

in theory, of DTs of all depths considered to derive an optimal action-value function,

it was observed that shallower trees resulted in poor performance and large variance

whilst deeper trees resulted in unstable performance within runs as a result of over-

fitting. Hence, tuning successfully this hyperparameter is essential. Further, it was

observed that there is no significant improvement in performance when considering a

tree-ensemble method –such as the RF model– instead of a simple DT architecture,

but there is some evidence for improved sample efficiency based on CartPole results.

Finally, it is noted that the DT model’s main advantage lies in its interpretability status

as discussed in Section 6.6.

k-Nearest Neighbours: Experimentation with the kNN-FQI model showed some

promising results but also revealed some limitations. Its reliance on the appropriateness

of a distance measure to quantify the relationships between two points meant that its

use is inappropriate in some environments, e.g gridworlds. In addition, the model

under-performed in LunarLander as it was unable to formulate an appropriate input-

output mapping. Finally, its training time was the longest of all models considered,

with no particular advantages in terms of performance to justify this computational

burden.

Support Vectors: The SVR-FQI model was the most successful of the non-parametric

models in terms of performance on the given tasks, as it performed comparably with

the parametric models on CartPole and SimpleGridworld, and outperformed the Linear

model and underperformed compared to the Neural Network on LunarLander. How-

ever, it was unable to solve WindyGridworld due to the use of kernels and was deemed

unreliable on CartPole when its 1-in-20 worst case performance was considered, due
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to its implementation through the FQI framework. Still, its major strength seemed to

be its sample efficiency, as it was able to consistently reach the required levels of per-

formance on SimpleGridworld, CartPole and LunarLander within the least amount of

time-steps compared to the rest of the models. It is also noteworthy to mention its flex-

ibility, given that only a single hyperparameter was tuned, the regularisation parameter

C, and yet the model was able to formulate an appropriate input-output mapping in all

of the environments considered (apart from WindyGridworld).

Gaussian Processes: Two Gaussian Processes models were implemented, a batch-

based method under the FQI framework, and an incremental method which took ad-

vantage of a sparsification algorithm. Both models struggled on the gridworld envi-

ronments due to their reliance on kernels and on LunarLander due to their inability

to explore the environment sufficiently. On CartPole, both models performed well

with no statistical difference between their evaluation returns after the end of train-

ing, but their 1-in-20 worst case performance showed signs of unreliability. Further,

their training times showed that the online algorithm required significantly less time

than the FQI-based implementation as a result of the sparsification that was applied.

Finally, it is noted that the use of the variance estimations of the GP model as part

of an informative exploration strategy did not work well, despite the argument from

related work that this constitutes the main advantage of using this model in the RL

context [77, 21, 47, 18, 38].



Chapter 7

Conclusion

This research aimed to identify whether a non-conventional value function approxima-

tion approach is advantageous over the Neural Network or Linear model based methods

which have been conventionally used in the Reinforcement Learning setting. The im-

plementation of promising approaches as identified from surveying related work, and

their empirical evaluation under a consistent framework has allowed the systematic

comparison between different models. The main research hypothesis was that there

exist non-conventional models which offer advantages under certain criteria. Indeed,

even though the Linear and Neural Network models performed strongly in terms of

average evaluation returns and reliability in almost all environments, they underper-

formed in terms of sample efficiency, with the Neural Network also suffering from

a lack of interpretability. In particular, the Support Vector Regression model imple-

mented under the Fitted-Q Iteration framework vastly outperformed all other models

in terms of sample efficiency in most environments. Further, the use of Decision Trees

allowed the interpretation of the prediction process through the extraction and visuali-

sation of the fitted model, offering a strong advantage in terms of interpretability.

Nonetheless, Gaussian Processes and the utilisation of their uncertainty estimates

in an informative exploration strategy achieved poor results, contrary to previous work

suggesting otherwise [21, 47, 18, 17]. Still, the consideration of different exploration

strategies was by no means exhaustive and it focused on the adaptation of the Upper

Confidence Bound (UCB) acquisition function, in contrast with most related work,

drawing insights from the Bayesian Optimisation domain [84]. Future work could

additionally consider the use of different acquisition functions, such as Probability

of Improvement (PoI) or Expected Improvement (EI) [84], or different exploration

strategies such as the information gain-based method considered by Chung et al. [18],

38
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or the rmax-based method considered by Jung and Stone [47].

A major remark based on the experimental results of this work is that the non-

parametric nature of the non-conventional methods is both their main advantage and

limitation. Advantage because of their flexibility, small number of parameters to tune

and expressiveness. Limitation since they cannot be naturally updated incrementally

and, thus, they do not fit the online data generation framework of Reinforcement Learn-

ing. As a result of this limitation, it was deemed necessary to adapt them through the

Fitted-Q Iteration framework. Despite its wide success, the framework under-performs

in environments where significant exploration is required, and it is prone to occasional

convergence at sub-optimal policies. Nevertheless, it allows the use of any supervised

regression model taking advantage of the strengths of each method, as discussed in the

previous chapter. Moreover, the choice of which supervised regression model to use is

a major modelling choice which impacts significantly performance on the given task.

For example, the use of kernel-based methods –such as k-Nearest Neighbours, Sup-

port Vectors and Gaussian Processes– requires a well-defined and meaningful distance

measure between the state-action regions, and is, thus, inappropriate in environments

where the state-space is described in terms of binary or one-hot variables.

The scope of this work was limited to single-agent Reinforcement Learning prob-

lems and model-free, action-value function approximation solution approaches. An

interesting direction for future work could be the consideration of multi-agent prob-

lems, which is currently lacking from the literature. Further, the expansion to model-

based solution methods seems promising, as seen from related work surveyed in Chap-

ter 3 [77, 23, 47, 21, 22]. Additionally, the framework of policy-gradient or actor-critic

methods may fit into the strengths of many of the non-parametric models that were con-

sidered in this project. For discrete action-spaces, the policy-gradient and actor-critic

methods involve instances of supervised classification problems, a class of problems

for which most of the considered models (such as tree-based methods, support vector

machines, and k-nearest neighbours) were originally designed. It would be interesting

to explore how these models perform on classification problems under such methods,

and indeed, there has been a surge in interest over recent years in this area [4, 35].

One of the main motivations for undertaking this research, was to understand why

these non-parametric models remain under-utilised –especially in applications outside

academia– despite the significant amount of research on their development and evalu-

ation. It was argued that the lack of a systematic evaluation and comparison of these

different approaches on a range of problems and environments is one of the main hin-
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drances to their wider adaptation. In fact, the work of this project has provided some

indications on the relative strengths and weaknesses of each method and will, hope-

fully, allow their use where they are deemed useful, and promote the evaluation of

future methods under a consistent framework which enables their systematic compari-

son with alternative approaches.

To conclude, the consideration of alternative to the conventional approaches has

become increasingly important in recent years due to the demand for sample efficient,

interpretable and accountable models, properties which the conventional models lack.

The work of this research can inform future work on the development of approaches

which are fit for purpose, do not suffer from the identified limitations and can be used

as viable alternatives. Based on the empirical results provided in this work, this direc-

tion seems promising.
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Appendix A

Sparse Online Gaussian Processes

The key equations of the Sparse Online Gaussian Process algorithm are provided here,

whilst the reader is referred to Csato and Opper [20] for further reading. The algorithm

maintains a dictionary of basis points, Z, which adequately represent the state-action

space. Given a new example, xt+1, its mean and variance are calculated as follows:

m(xt+1) = α
>
t k(Z,xt+1) (A.1)

Σ(xt+1) = k(xt+1,xt+1)+k(Z,xt+1)
> Ct k(Z,xt+1) (A.2)

k(·, ·) represents the kernel function and k(Z,xt+1) a vector containing the covari-

ances between the new example and all examples in the dictionary. The vector α and

matrix C are updated sequentially as follows:

αt+1 = Tt+1(αt)+q(t+1) st+1 (A.3)

Ct+1 =Ut+1(Ct)+ r(t+1) st+1 s>t+1 (A.4)

st+1 = Tt+1(Ct k(Z,xt+1))+ et+1 (A.5)

et+1 denotes the (t+1)-th unit vector, Tt+1 an operation which extends a t-dimensional

vector to a (t + 1)-dimensional one by appending zero at the end, and Ut+1 an opera-

tion which extends a (t× t) matrix to a (t +1)× (t +1) one by appending a row and a

column of zeros at the end. The following scalar quantities are used:

q(t+1) =
yt−α>t k(Z,xt)

σ2
0 +Σ(xt+1)

(A.6)

r(t+1) =− 1
σ2

0 +Σ(xt+1)
(A.7)

Here, σ2
0 is a parameter of the kernel function defined a priori and y can be defined

as the Q-learning target in the RL framework: yt = rt + γ maxa′ Q̂t(s′,a′). A new

example, xt+1, enters the dictionary if βt+1 > βtol , where:
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βt+1 = k(xt+1,xt+1)−k(Z,xt+1)
> K(Z,Z)−1 k(Z,xt+1) (A.8)

Finally, the inverse of the matrix K(Z,Z), denoted P, that is required for the calcu-

lation of βt+1 can be updated online through:

êt+1 = Pt k(Z,xt+1)
> (A.9)

Pt+1 =Ut+1(Pt)+βt+1 (Tt+1(êt+1)− et+1) (Tt+1(êt+1)− et+1)
> (A.10)

Csato and Opper [20] also describe how the dictionary can be maintained of a fixed

size through the deletion of basis points. However, it was observed that, for the purpose

of this project, this practice increased the computational cost of the algorithm with no

improvements in terms of performance. Hence, the dictionary’s size was not fixed and

no deletion of basis points was implemented.



Appendix B

Final Parameter Values

The final parameter settings that were used for the results of the models presented in

this project are summarised in the Appendix.

B.1 Linear Model

Parameter
Environment Simple

Gridworld
Windy

Gridworld
Cart
Pole

Lunar
Lander

gamma

batch size

learning rate

target update f req

eps max deduct

eps decay

lr reduct f req

lr reduct

poly degree

0.99

32

0.02

20

0.97

0.5

250

0.95

1

0.99

32

0.02

50

0.97

0.5

1000

0.99

1

0.99

32

0.02

50

0.97

0.5

1000

0.99

2

0.99

64

0.02

50

0.95

0.1

1000

0.99

4

Table B.1: Parameter values for the Linear model on each environment.
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B.2 Neural Network

Parameter
Environment Simple

Gridworld
Windy

Gridworld
Cart
Pole

Lunar
Lander

gamma

batch size

learning rate

target update f req

eps max deduct

eps decay

lr reduct f req

lr reduct

hidden size

0.99

32

0.00075

50

0.97

0.25

250

0.95

(32,32)

0.99

32

0.0007

200

0.97

0.3

1000

0.95

(64,64)

0.99

32

0.00075

200

0.97

0.25

1000

0.95

(32,32)

0.99

64

0.0015

100

0.95

0.1

1000

0.99

(256,128)

Table B.2: Parameter values for the Neural Network model on each environment.

B.3 Decision Tree (FQI)

Parameter
Environment Simple

Gridworld
Windy

Gridworld
Cart
Pole

Lunar
Lander

replay threshold

gamma

batch size

model save f req

model save capacity

max depth

min samples split

min samples lea f

eps max deduct

eps decay

-1

0.99

512

250

20

15

20

5

0.95

0.4

0

0.99

max

n/a

n/a

100

2

1

0.9

0.4

-1

0.99

512

1000

20

10

20

5

0.95

0.4

0.1

0.99

max

n/a

n/a

20

20

5

0.9

0.4

Table B.3: Parameter values for the Decision Tree (FQI) model on each environment.
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B.4 Random Forest (FQI)

Parameter
Environment Simple

Gridworld
Windy

Gridworld
Cart
Pole

Lunar
Lander

replay threshold

gamma

batch size

model save f req

model save capacity

n estimators

max depth

min samples split

min samples lea f

eps max deduct

eps decay

-1

0.99

512

250

20

10

15

20

5

0.95

0.4

0

0.99

max

n/a

n/a

5

100

2

1

0.9

0.4

-1

0.99

512

1000

20

10

10

20

5

0.95

0.4

0.1

0.99

max

n/a

n/a

10

20

20

5

0.9

0.4

Table B.4: Parameter values for the Random Forest (FQI) model on each environment.

B.5 Support Vector Regression (FQI)

Parameter
Environment Simple

Gridworld
Windy

Gridworld
Cart
Pole

Lunar
Lander

replay threshold

gamma

batch size

model save f req

model save capacity

C

eps max deduct

eps decay

-1

0.99

256

250

20

2.4

0.95

0.3

0

0.99

max

n/a

n/a

1

0.95

0.4

-1

0.99

512

1000

20

2

0.95

0.3

0.1

0.99

max

n/a

n/a

1.2

0.95

0.5

Table B.5: Parameter values for the Support Vector Regression (FQI) model on each

environment.
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B.6 k-Nearest Neighbours (FQI)

Parameter
Environment Simple

Gridworld
Windy

Gridworld
Cart
Pole

Lunar
Lander

replay threshold

gamma

batch size

model save f req

model save capacity

n neighbours

eps max deduct

eps decay

weights

-1

0.99

256

250

20

3

0.95

0.3

”distance”

0

0.99

max

n/a

n/a

5

0.9

0.4

”distance”

-1

0.99

256

1000

20

7

0.95

0.3

”distance”

0.1

0.99

max

n/a

n/a

10

0.93

0.4

”distance”

Table B.6: Parameter values for the k-Nearest Neighbours (FQI) model on each envi-

ronment.

B.7 Gaussian Process (FQI)

Parameter
Environment Simple

Gridworld
Windy

Gridworld
Cart
Pole

Lunar
Lander

replay threshold

gamma

batch size

model save f req

model save capacity

length scale

eps max deduct

eps decay

-1

0.99

256

250

20

0.5

0.95

0.3

0

0.99

max

n/a

n/a

0.5

0.95

0.3

-1

0.99

512

1000

20

0.08

0.95

0.3

0.1

0.99

max

n/a

n/a

0.3

0.9

0.4

Table B.7: Parameter values for the Gaussian Process (FQI) model on each environ-

ment.
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B.8 Gaussian Process (Online)

Parameter
Environment Simple

Gridworld
Windy

Gridworld
Cart
Pole

Lunar
Lander

gamma

epsilon tol

length scale

eps max deduct

eps decay

init

0.99

0.085

0.5

0.95

0.3

-10

0.99

0.045

0.5

0.9

0.4

-100

0.99

0.05

0.5

0.95

0.3

0

0.99

0.075

0.3

0.93

0.4

0

Table B.8: Parameter values for the Online Gaussian Process model on each environ-

ment.


