
Deep Feature Extraction and

Music Language Modelling for

Amateur Vocal Percussion

Transcription

Dmitrii Mukhutdinov

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2020

Abstract

Vocal Percussion Transcription (VPT) is a particular instance of Automatic Music

Transcription problem. It is a problem of transcribing vocal imitations of percus-

sive beats, also commonly known as beatbox, into a symbolic representation, such

as MIDI. Since vocal imitation is arguably the most accessible form of musical ex-

pression, an efficient method for vocal percussion transcription would be a valuable

and accessible tool for music production. However, few systems for vocal percussion

transcription exist, and they have limited usability as music production tools. This

work investigates how the modern deep learning approaches can be combined with

classic signal processing approaches in order to improve the accuracy and efficiency of

vocal percussion transcription. We show that audio features extracted by convolutional

autoencoders (CAEs) trained on an unlabeled dataset of miscellaneous musical sounds

and vocal imitations allow for more accurate classification of individual vocal percus-

sion sounds when compared to classic audio feature descriptors. We also investigate

how a deep generative language model for drum tracks can be applied for vocal per-

cussion transcription and discuss the challenges which emerge on an attempt of such

application.

i

Declaration

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Dmitrii Mukhutdinov)

ii

Acknowledgements

I would like to thank my supervisor, Dr Kartic Subr, for providing invaluable advice

and guidance over the course of this project. Also, many thanks to my friends and

family for their love and moral support.

iii

Table of Contents

1 Introduction 1

2 Background and Related Work 3
2.1 Music Information Retrieval . 3

2.1.1 Onset detection . 3

2.1.2 Tempo estimation . 5

2.2 Automatic Music Transcription . 6

2.2.1 MLMs for automatic music transcription 6

2.2.2 Drum Transcription . 7

2.3 Vocal Percussion Transcription . 8

2.3.1 Classification-only . 9

2.3.2 Segment-and-classify . 9

2.3.3 Speech-recognition-like . 10

2.3.4 Conclusion . 11

3 Methodology and Implementation 12
3.1 Proposed approach . 12

3.1.1 Research hypotheses . 12

3.1.2 System architecture . 13

3.2 Implementation . 15

3.2.1 Onset detection and segmentation 15

3.2.2 Tempo estimation and beat alignment 15

3.2.3 Feature extraction . 16

3.2.4 Segments classification . 19

3.2.5 Language model . 20

3.3 Data for system evaluation . 21

3.3.1 Amateur Vocal Percussion Dataset 21

iv

3.3.2 Synthesized data . 23

3.4 Training of deep models . 23

3.4.1 CAE feature extractors . 23

3.4.2 DNN classifiers . 25

4 Evaluation and Discussion 26
4.1 Onset detection . 26

4.2 Model and feature selection for classification 27

4.2.1 k-NN classification . 27

4.2.2 DNN classifiers validation 28

4.2.3 Discussion . 28

4.3 Transcription of AVP dataset . 31

4.3.1 Experiments . 31

4.3.2 Discussion . 32

4.4 Influence of the language model . 33

4.4.1 Experiments . 33

4.4.2 Discussion . 35

5 Conclusion 39
5.1 Summary . 39

5.2 Future work . 40

Bibliography 41

A Replication of Mehrabi’s results 50

v

Chapter 1

Introduction

Vocal percussion is a form of musical expression which involves imitation of a percus-

sive instrument via one’s mouth. Elements of vocal percussion are used in a number of

musical genres, and it also exists as an independent art form, most commonly referred

to as beatboxing. It is also one of the most accessible forms of musical expression,

since a crude imitation of a simple percussive beats can be done by almost anyone.

Due to this, a system which is capable of transcribing an audio recording of vocal per-

cussion into a symbolic musical form, such as MIDI, would be a valuable tool in the

music production toolkit. Such a tool would provide an accessible and versatile way

of rapid prototyping of percussive tracks.

Developments in the larger field of automatic music transcription (AMT) make one

believe that such a system should definitely be possible. A substantial body of research

exists on automatic transcription of instrumental music, such as piano performances,

and a wide variety of approaches have been utilized for this task. Drum transcrip-

tion, which is a task conceptually similar to vocal percussion transcription, has been

extensively studied as well [80]. In recent years, as in many other applications, end-

to-end deep learning models have become state of the art both for polyphonic music

transcription [32, 67, 36] and drum transcription [77, 78].

Nevertheless, when one attempts to implement a system for vocal percussion tran-

scription (VPT) using approaches borrowed from a wider body of research on auto-

matic music transcription in general, one quickly encounters unique challenges which

are not characteristic for other AMT tasks. The most substantial of those challenges is

the extreme scarcity of annotated vocal percussion recordings. There are very few such

datasets openly available, which prohibits the application of end-to-end deep learning

models to VPT due to known dependency of such models on large amounts of data for

1

Chapter 1. Introduction 2

successful training. As a consequence, all existing studies on VPT are based on classic

signal processing and machine learning techniques, and virtually all of them perform

training and evaluation using relatively small datasets collected by authors themselves.

Another unique challenge stems from the substantial diversity of vocal imitations of

percussive sounds produced by people, which exceeds the diversity of sounds produced

by different musical instruments of the same type, e.g. different pianos or drum kits.

This diversity is especially significant in the case of amateur vocal percussion; yet,

being able to transcribe amateur vocal percussion is essential if one aims to implement

a music production tool which is accessible to a broad range of users. Those two prob-

lems exacerbate each other, since both of them make it harder to produce a VPT model

which generalizes well: on the one hand, the underlying distribution of audio data is

more complex, and on the other hand, one has less data samples from this distribution.

This work aims to address those challenges and produce a better method for tran-

scription of amateur vocal percussion recordings using particular transfer learning ap-

proaches. The first approach is using deep autoencoders trained on unlabeled audio

for audio feature extraction, which was recently reported to produce promising results

on the related problem of query by vocalization [43]. The second one is exploiting

the regular rhythmic structure of vocal percussion via application of deep generative

musical language model trained on symbolic MIDI recordings of regular drum tracks

[72]. We attempt to combine those approaches with classic methods of onset detection

and classification in order to produce a system which does not require larger amounts

of annotated vocal percussion data to train than existing VPT systems but produces

more accurate transcriptions.

This study was largely enabled by the recent emergence of AVP Dataset (section

3.3.1), a largest annotated dataset of amateur vocal percussion so far. Even though

this dataset is still too small to be suitable for training of end-to-end deep learning

models, it is large enough to perform a comprehensive model performance analysis,

and its existence allowed us to conduct this study without collecting data on our own,

which seems exceptional for studies on VPT. This dataset fits our purposes very well,

since it contains short recordings produced by people with little to no experience in

vocal percussion, and transcribing such recordings well is the primary purpose of VPT

method if it is intended to be used as a tool for quick production of drum loops.

Chapter 2

Background and Related Work

In this section, we begin with an overview of two fundamental problems in music in-

formation retrieval (MIR) which appear as subproblems in our proposed method for

VPT: onset detection and tempo estimation. Then, we make a review of musical lan-

guage models and their applications to music transcription. We follow with a short

overview of a problem of drum transcription and a comprehensive literature review of

existing research on vocal percussion transcription. We assume that the reader is famil-

iar with basic digital audio processing techniques (e.g. short-time Fourier transform

(STFT), standard feature representations like MFCCs, etc.) and with machine learning

methods, including deep learning, in general.

2.1 Music Information Retrieval

2.1.1 Onset detection

Figure 2.1: Diagram of a typ-

ical sound envelope of a mu-

sical event. Source: [9]

Onset detection is the task of detecting the starts of dis-

tinct acoustic events in the audio signal, such as a mu-

sical note. Musical acoustic events can typically be di-

vided into an initial attack phase — the short sudden

change in the signal — and a longer decay phase, when

the signal gradually return to a steady state. The short

period of quick non-linear change which includes the at-

tack and the beginning of the decay is called transient,

and usually contains the most information about the na-

ture of the signal. Onset is the moment in time where attack begins (Fig. 2.1).

3

Chapter 2. Background and Related Work 4

So, the problem of onset detection is reduced to the problem of finding the peaks

of the function which represents how signal ”changes” (and then finding the preceding

local minima). The question is then how to define such function, called onset novelty

function, in a meaningful way. The most straightforward (and the oldest) approach

is using changes in local mean energy of the signal (usually formulated as root mean

square energy), calculated with some window size and hop length [62]. However,

energy-based onset functions are quite noisy and usually require extensive audio pre-

processing to work well.

Functions based on spectral sound representation (STFT) usually work better. High-

frequency content (HFC) function [40] is a simple examle of such function, defined as:

HFC(n) =
1
N

N

∑
k=0

k|Xk(n)|2, (2.1)

where n is time frame and k is a frequency bin of short-time Fourier spectrogram

X . HFC is good at modeling percussive onsets, which usually happen as short bursts of

noise across a wide range of frequencies. Another popular function is Specflux [40],

which is basically a rectified Euclidean distance between consecutive frames of the

spectra:

SF(n) =
N

∑
k=0

max(0, |Xk(n)|− |Xk(n−1)|)2 (2.2)

The rectification is done to only detect increases in frequency magnitudes and ig-

noring decreases (which are associated with offsets). A variety of modifications and

preprocessing techniques exist for Specflux [25, 14], which were shown to perform

quite well on different types of pitched musical events, and is one of the most popular

signal processing methods for onset detection nowadays.

While those methods take into account only magnitudes of spectrograms, a Com-

plex method [10] considers both magnitude and phase information. It is based on the

fact that frequency phases for the consecutive frames of spectrogram change linearly

for a steady-state signal. The onset novelty function is calculated as the magnitude of

complex difference between current frame X(n) and ”expected” frame X̂(n) predicted

by phases and magnitudes of previous frames. This method has shown good results on

detecting vocal percussion onsets [19].

The process of determining suitable local maxima of onset novelty function is

called peakpicking and involves thresholding (often relative to a local median of the

function) in order to remove small insignificant maxima. Minimum delay time be-

Chapter 2. Background and Related Work 5

tween onsets is also usually applied to filter out onsets which are too close to each

other. The good parameter values for thresholding and inter-onset delay are usually

determined empirically, and existing implementations of onset detection methods usu-

ally have default values which work well on large datasets of music [16, 41].

There are numerous ways to define an onset novelty function other than we de-

scribed [9]. Deep learning approaches also exist: some focus on onset detection only

[12, 63], some perform onset detection and event classification jointly [32, 77, 78].

However, they are way more computationally expensive, and in [19] it has been shown

that HFC and Complex methods easily outperform DNNs when detecting vocal per-

cussive onsets. In [54], Specflux has been shown to perform well on vocal percussion

as well. Therefore, we consider those three methods for the purposes of our project.

2.1.2 Tempo estimation

The tempo is a fundamental characteristic of a musical piece which determines the

perceived speed of performance. It is usually measured in beats per minute (BPM).

Tempo defines how close in time musical events corresponding to the same beat are,

and therefore can be estimated by using the information about time positions of musical

events, provided by onset novelty function.

There are two most popular ways of performing such estimation. The first one is

via using the autocorrelation function (ACF) of onset novelty function [18, 27, 7, 45].

Autocorrelation R f f (t) measures how similar the given signal f is to a copy of itself

shifted in time by t. For a discrete real-valued signal f (n), autocorrelation is defined

as

R f f (t) = ∑
n∈Z

f (n) f (n+ t) (2.3)

In practice, of course, signal f is finite, so the sum range is bounded to the length of

the signal and the signal is padded with a copy of itself. Maxima of the autocorrelation

of an onset novelty function are the values of delay for which onset novelty function is

the most similar to itself, and therefore correspond to the dominant intervals between

onsets. Since tempo and inter-beat interval are interchangeable values, tempo can be

inferred via finding the maximum of ACF.

Another popular method works with picked onset positions instead and is called

inter-onset interval (IOI) clusterization [22, 23]. The name is self-descriptive: the

method is based on clustering times between pairs of onsets (not necessarily succes-

sive ones) and selecting the mean of the largest cluster as a dominant interval, which

Chapter 2. Background and Related Work 6

determines the tempo.

Depending on the structure of the musical piece, both methods can (and usually

do) produce several tempo candidates which are multiples of each other, e.g. 60 BPM

and 120 BPM. In order to choose only one candidate, some prior restriction on the

tempo is usually assumed, either in the form of the range of accepted tempos or a prior

distribution.

Both approaches can be used to estimate either global or local tempo (e.g. using

windowing for the latter), and many methods for tempo estimations are based on them.

There is, of course, alternative approaches, such as based on joint probabilistic models

for tempo and onset timings [48, 47] or deep neural networks [64, 13].

2.2 Automatic Music Transcription

Automatic music transcription (AMT) is a task of transcribing music from audio form

to a symbolic form. There exist several levels of music transcription which are defined

by the properties and complexity of the target symbolic representation. Frame-level

transcription produces the estimates the target value (e.g. pitch) for each of short (e.g.

10ms) regular timeframes which span the duration of the musical piece. Note-level

transcription produces a series of notes — distinct musical events, each having an as-

sociated onset time and a target value (pitch or class), and possibly additional attributes

(duration, loudness) as well. Stream-level transcription produces several disjoint se-

quences (streams) of notes; each stream is usually associated with a particular instru-

ment’s voice. Finally, notation-level transcription produces a human-readable musical

score (staff notation) [11]. Polyphonic piano transcription is arguably the most studied

type of AMT, and state-of-the-art deep models achieve impressive results on that task

[32, 67].

We will not review the literature on automatic music transcription at large: it is not

necessary for understanding our work and conflicts with the concept of the page limit.

We will focus only on relevant topics of musical language models for AMT and drum

transcription.

2.2.1 MLMs for automatic music transcription

Natural language models, including deep ones, have been applied extensively for im-

proving the accuracy of speech recognition [74, 38, 65]. Attempts to apply language

Chapter 2. Background and Related Work 7

models trained on symbolic music data (music language models, MLMs) to the task of

automatic music transcription in a similar manner have also been made.

Bourlanger-Lewandowski et al. [15] proposed a combination of RNN and re-

stricted Boltzmann machine (RNN-RBM) as a language model for polyphonic MIDI

tracks and demonstrated that how using such model for postprocessing of the output of

probabilistic multi-pitch estimator leads to better transcription accuracy. Sigtia et al.

[66] presented a similar study, which used neural autoregressive distribution estimators

(NADEs) [76] instead of RBMs in the similar combined RNN-NADE language model.

The same authors later elaborated on their results, combining RNN-NADE language

model with several types of deep acoustic models for polyphonic piano music [67].

While the aforementioned works focused frame-level transcription — i.e. split-

ting the timeline into short regular timeframes and assigning — the study by Wang

et al. [79] presented a note-level transcription system, which produced sequences of

events in form (time, pitch). They used an RNN-RBM model adapted to such music

representation together with a CNN-based onset detector and pitch estimator.

The study by Ycart et al. [81], which is, to the best of our knowledge, is the latest

study which investigates the application of MLMs to transcription, extends previous

approaches by introducing a concept of blending model — an additional feed-forward

neural network which is trained to combine the predictions of acoustic and language

models in an adaptive manner. They used a CNN-based acoustic model for piano

transcription and LSTM-based language model. They demonstrated that introduction

of the blending model improves the overall transcription quality.

All of the aforementioned works are focused on polyphonic piano transcription.

To the best of our knowledge, there are no similar studies on other types of music

transcription which involve deep MLMs. Nevertheless, those results are encouraging

and suggest that the application of MLMs can be also beneficial for transcribing other

forms of music.

2.2.2 Drum Transcription

Drum transcription is conceptually different from the transcription of pitched music

because all percussive sounds usually contain a wide range of frequencies and differ

from each other primarily in timbre. Thus, while pitched melodies can be transcribed

purely using signal processing techniques, such as fundamental frequency estimation

[39], reliable drum transcription usually requires some kind of machine learning. Drum

Chapter 2. Background and Related Work 8

transcription is predominantly note-level. Early approaches to drum transcription can

be roughly split into the following categories, suggested in [52]:

• Segment-and-classify: separate the audio into segments using onset detection

and attribute one or more drum classes to each segment [46, 61, 30];

• Separate-and-detect: separate the audio into separate signals for each of the

drum classes and detect onset times for each signal separately [20, 21];

• Match-and-adapt: match the whole signal against some predefined acoustic pat-

terns for each drum class, update the patterns to be closer to the best matches,

repeat until convergence [84, 82].

The fact that most drum tracks are polyphonic, i. e. several drums can be hit

simultaneously, poses the key challenge in drum transcription since the spectra of si-

multaneous percussive sounds intersect a lot. This problem is tackled in various ways;

e.g. segment-and-classify methods often utilize onset detection in multiple frequency

bands [46].

There exist some works which use probabilistic models like HMMs to learn and

employ prior knowledge of the rhythmic structure of drum tracks for transcription [68,

26]. However, with an emergence of more recent end-to-end deep learning methods

[77, 78] this direction of research have been seemingly abandoned.

2.3 Vocal Percussion Transcription

Vocal percussion transcription can be (and often is) viewed as a kind of drum tran-

scription. On the one hand, vocal percussion transcription is simpler than the general

drum transcription, since vocal percussion is almost always monophonic: most people

cannot convincingly imitate two percussive sounds happening in the same time due

to the limitations of human vocal tract. Due to this, a simple ”segment-and-classify”

approach is the most popular design pattern for VPT systems [33, 35, 34, 58]. On the

other hand, VPT is more challenging in terms of the correct classification of percussive

sounds due to the higher acoustic diversity of vocal imitations in comparison to real

drum sounds and a smaller amount of openly available annotated data. Some of the

works [69, 70] focus only on the task of individual beatbox sound classification, omit-

ting the onset detection and segmentation steps, and thus do not propose an end-to-end

transcription system. Other works approach VPT more like a speech recognition task

Chapter 2. Background and Related Work 9

rather than a music transcription task [49, 28] and utilize models commonly applied

to speech recognition. In fact, the existing literature on VPT can be split into three

categories: classification-only, segment-and-classify and speech-recognition-like

2.3.1 Classification-only

A study by Sinyor et al. [69] aimed to figure out a combination of classification method

and a feature set which would work the best for the classification of beatbox sounds.

In order to do that, they utilized ACE [42]: an early Auto-ML library designed for

music information retrieval tasks. They recorded a dataset of 1192 samples in total

produced by three professional and three amateur beatboxers, each sample belonging

to one of the five classes: kicks, p-snares, k-snares, opened and closed hi-hats. Using

AdaBoost algorithm with C4.5 decision tree as base learners, a large set of spectral and

temporal statistical features and a genetic feature selection algorithm, they achieved

cross-validation 95.5% cross-validation accuracy for 5-class classification and 98.15%

for 3-class classification (conflating different classes of snares and hi-hats together).

Stowell and Plumbley [70] investigated how well different acoustic features, cal-

culated over a time frame with different delays since the true event onset, can separate

the audio events into three classes: kicks, snares and hi-hats. They analyzed the perfor-

mance of each feature independently by measuring KL-divergence of classes and also

evaluated naive Bayes classifier with feature selection. The aim of the study was to

determine a classification delay time which would yield good classification accuracy

while still being acceptable for real-time VPT purposes. More importantly, for the

purposes of this study, they collected beatboxset1 [2] — a dataset of 14 professional

beatbox recordings, which is currently the oldest openly available dataset of annotated

vocal percussion.

2.3.2 Segment-and-classify

Kapur et al. [35] used energy-based onset detection and a neural network classifier

with only a single feature (zero-crossing rate) to transcribe an input vocal imitation

into a drum pattern of three classes: kicks, snares and hi-hats. They presented a GUI

application which allowed user to train a classifier using individual imitations of each

class. They reported cross-validation accuracy of 97.3% for their classifier; however,

their test set only included 75 samples in total, recorded by two different people, which

makes the generalizability of their method questionable. They also did not report any

Chapter 2. Background and Related Work 10

metrics on full track transcription with onset detection.

BillaBoop system by Hazan [33] used a hybrid onset detection method based on

HFC and mean energy for several frequency bands. It splits the detected events into

separate attack and decay parts and extracts sets of feature descriptors from them sepa-

rately. Classification to three classes (kick, snare, hi-hat) is performed using a random

forest classifier. The system reported 90% accuracy on the test set of 62 utterances

using 242 samples for training; however, no results on full transcription with onset

detection were reported as well.

Hipke et al. [34] developed BeatBox, a GUI app which allows a user to provide

personal imitations for a user-defined number of drum classes and uses k-NN classifier

and an energy-based onset detection method to transcribe the vocal input. The paper

does not report any quantitative metrics on the chosen transcription method, however,

and instead focuses on a study of users’ interaction with the app and their feedback.

Ramires [58] implemented an Ableton Live plugin for VPT called LVT which is

capable of near real-time transcription. It uses HFC method for onset detection and

uses a sequential forward feature selection method (SFS) when training a k-NN clas-

sifier on a user-specific dataset of imitations of three classes (kicks, snares, hi-hats).

The study analyzes the importance of classifier personalization and actually measures

the performance of the full system using F1-score on the dataset of 13 short recordings

by 13 different participants, each recorded by three different microphones, which ap-

parently makes this study one of the most comprehensive works on VPT for the time

being. Also, the dataset used in this study is available online.

2.3.3 Speech-recognition-like

Nakano et al. [49] use HMM acoustic model for speech recognition trained on the

speech recognition dataset in order to recognize beat patterns of onomaetopoeic phonemes

(e.g. ”din-don”). They only used two drum classes (kick and snare), to each of which

a number of corresponding phonemes was attributed, so that the phoneme sequence

produced by acoustic model could be turned into a sequence of class events. The latter

was then used to extract a matching fixed drum pattern from the database, so no direct

transcription of the input audio to symbolic form was actually performed.

Picart et al. [54] presented a study on onset detection and sound class recognition

for beatbox performances. They collected a dataset which featured vocal imitations

of pitched instruments as well as percussive imitations, featuring 1835 percussive of 5

Chapter 2. Background and Related Work 11

classes and 1579 pitched imitations of 9 classes in total. The participants were profes-

sional beatboxers. They trained and evaluated an HMM acoustic model implemented

using HTK Toolkit [83] in a manner similar to speech recognition systems, treating

sequences of class events as word sequences, and achieved 9% word error rate (WER).

However, the transcribed sequences did not contain musically relevant information,

such as event onset times, and thus could not be considered a symbolic representation

of music.

The most recent work on VPT (2020) by Evain [28] focused on recognizing indi-

vidual beatbox sounds, which authors called boxemes, to a special alphabet for such

sounds called Vocal Grammatics [4]. They used an HMM-GMM acoustic model im-

plemented using Kaldi ASR toolkit [55] and recorded a dataset containing 80 different

boxemes produced by one professional and one amateur beatboxers using five different

microphones. The best result showed by the system was 15% boxeme error rate (BER,

a metric equivalent to word error rate), which is impressive given the large number of

different boxemes. However, the recordings only contained isolated repeated boxemes

with pauses, and, as in the study by Picart et al., no information about onset times and

rhythm was provided in the transcriptions.

2.3.4 Conclusion

Overall, comparing to other types of automatic music transcription, there is not much

work done on vocal percussion transcription — the list of studies reviewed in this

section seems to be virtually exhaustive. Most of these works are also quite similar

in terms of design patterns: in fact, we observe only two major patterns in end-to-end

VPT systems — ”segment-and-classify” and ”speech-recognition-like”. None of those

works feature modern deep learning techniques, and virtually all of them involve the

collection and annotation of custom datasets (which usually end up to be quite small);

however, for some reasons, only for two of those studies [70, 58] the datasets are cur-

rently openly available. These are the two facets of the same problem of data scarcity.

We found only one study which presented a system suitable for music production pur-

poses together with comprehensive end-to-end evaluation results, and for which the

system implementation itself and the evaluation dataset are available online — which

is Ramires’ study [58]. This motivates us to use the method proposed by Ramires as a

baseline.

Chapter 3

Methodology and Implementation

3.1 Proposed approach

3.1.1 Research hypotheses

We attempt to improve upon existing results in two conceptually different ways. The

first way is to improve the classification accuracy of individual imitations of percus-

sive sounds by using better audio feature representations. Despite a high acoustic vari-

ability of vocal percussive imitations, human listeners can reliably understand which

percussive sound is imitated, at least when the number of options is limited (e.g. it is

very easy to tell a kick drum imitation from a hi-hat imitation, but telling a ride cym-

bal imitation from a crash cymbal imitation can be challenging). Therefore, a feature

representation which places sounds which are perceptually similar from a human per-

spective close to each other in the feature space should allow for a reliable classification

of vocal imitations. Recently, Mehrabi et al. performed a comparative study of acous-

tic feature representations for percussive sounds and their vocal imitations in terms

of perceptual similarity [44, 43]. They conducted a human listening study to collect

perceptual similarity ratings for pairs of real drum sounds and their vocal imitations

from human listeners and compared several feature representations by how well the

distance between two sounds in the feature space predicts a human-reported similar-

ity rating. They found out that features extracted by deep convolutional autoencoders

(CAEs), trained on a dataset of various synthesized and real musical sound as well as

vocal imitations, perform significantly better than classic features like MFCCs in that

sense, and propose to use them for query-by-vocalization (QBV) task — fetching the

sound most similar to the vocal imitation from the database. Our first research hypoth-

12

Chapter 3. Methodology and Implementation 13

esis is that such features will improve the classification accuracy for vocal percussion

transcription purposes as well.

Our second research hypothesis is based on the fact that vocal percussive perfor-

mances exhibit the same musical and rhythmical structure as real drum tracks, except

for the fact that they are essentially monophonic. This brings us the idea that us-

ing the musical language model for real drum tracks to provide a prior distribution

on possible percussive event sequences can improve the quality of vocal percussion

transcription. Such a musical language model can be trained independently on MIDI

recordings of real drum tracks, which are abundant [31, 56], unlike annotated beatbox

recordings. The facts that an application of LSTM-based MLM have been shown to

improve performance of polyphonic piano transcription [67, 79] and that there exist

good LSTM-based generative models for drum tracks [72] suggest that this idea is

worth considering.

3.1.2 System architecture

Onset detection/
segmentationAudio Timed

segments

Tempo tracking Tempo

Beat alignment
Frame-wise
observation
probabilities

Feature extraction
(e.g. CAEs)

Unlabeled
drum/vocal/misc
samples (large)

Feature vectors
+ times

Classifier
Class

observation
probabilities +

times

Language model +
beam search

MIDI drum tracks

Maximum likelihood
event sequence

Labeled vocal
percussion samples

(small)

Figure 3.1: Diagram of proposed system architecture. White solid ovals represent the

data flow in evaluation time, gray rectangles represent functional parts of the system,

dashed ovals represent data necessary in training time.

Most of the existing VPT methods are based on “segment-and-classify” approach,

which involves onset detection followed by segmentation of the audio between onsets

and classifying each segment. Such approach results in a note-level transcription: a

Chapter 3. Methodology and Implementation 14

series of classifier prediction probabilities p(γT |xT), where each classified segment xT

is associated with its precise start time T .

We propose a way to refine those predictions using a frame-based RNN language

model, which operates on frames associated with positions of 16-th notes along the

beat. The probability distribution over event sequences Γ represented by such model

factorizes as:

p(Γ) = p(γ1,γ2, . . . ,γn) = p(γ1)
n−1

∏
t=1

p(γt+1|γk<t+1), (3.1)

where t is discrete time (a frame number), and γk<t are all the events preceding γt .

If we have a way of obtaining frame-level observation probabilities p(xt |yt) for

each frame, we then can infer the most likely event sequence given observations and a

prior distribution p(Γ) modeled by RNN via maximizing the posterior:

argmax
Γ

p(Γ|X) = argmax
Γ

p(X |Γ)p(Γ)

= argmax
Γ

p(γ1)p(x1|γ1)
n−1

∏
t=1

p(γt+1|γk<t+1)p(xt+1|γt+1)
(3.2)

Here is how we can obtain those frame-level probabilities from note-level tran-

scription produced by ”segment-and-classify” method. First, we need to transform

precise onset times to discrete frame numbers. We do so by estimating a global tempo

of the recording and quantizing onset times to the nearest beginning of a 16th note

accordingly to the estimated tempo. This gives us probabilities p(γt |xt) for each dis-

crete time frame t, where, if denoting a silence event (the absence of detected onset)

as /0, p(/0|xt) = 1 for each time frame t which does not have an associated onset and

p(/0|xt) = 0 for each t which has one. Second, we notice that

p(xt |γt) =
p(γt |xt)p(xt)

p(γt)
(3.3)

However, the marginal observation probabilities p(xt) do not depend on event se-

quence Γ, so they can be omitted when maximizing (3.2). Therefore, after taking a

logarithm for computational reasons, (3.2) becomes

argmax
Γ

[
log p(γ1|x1)+

n−1

∑
t=1

[log p(γt+1|γt ,ht)+ log p(γt+1|xt+1)− log p(γt+1)]

]
(3.4)

Chapter 3. Methodology and Implementation 15

The only part of this equation which is not yet known is marginal probabilities of

event classes p(γt). They can be estimated simply via counting class occurrences in a

large set of symbolic drum tracks (e.g. [31]). However, during the model evaluation,

we (surprisingly) found out that using a naive assumption that class probabilities are

uniform works better. Having all the probability estimates, we can compute an approx-

imate solution to (3.4) via beam search algorithm (similarly to [67]). We use the beam

size of 10 and number of 2 forward steps per iteration as hyperparameters for beam

search throughout all experiments with the language model. The resulting maximum

likelihood event sequence Γ is the output of transcription procedure.

The full system diagram is shown on Figure 3.1. Following the structure of our

primary evaluation dataset, AVP Dataset (section 3.3.1), we aim to support four basic

percussive event classes: kick drum (kd), snare drum (sd), closed hi-hat (hhc) and

opened hi-hat (hho).

3.2 Implementation

3.2.1 Onset detection and segmentation

We consider three onset novelty functions: HFC, Specflux and Complex (see 2.1.1).

All of those are spectral methods calculated over the STFT of the audio signal. We

use the implementation from Aubio library [16] for each method, using default library

parameters for audio preprocessing and peak picking (since those parameters are un-

available via Python bindings to Aubio). We consider several values for STFT window

size and hop length for each method and select the best combination of method and

values of those parameters (see Section 4.1).

Since the peaks of onset novelty function can appear during the attack phase of the

musical event, making a given segment start exactly at the detected onset time may

result in the small (and probably important) part of the event beginning not included

into the segment. To avoid this, we employ backtracking — shifting the onset time

back to the nearest local minimum of onset novelty function — and segment the audio

between backtracked onset positions.

3.2.2 Tempo estimation and beat alignment

If application of language model is enabled, we perform quantization of detected on-

sets to the nearest 16-th note accordingly to estimated global tempo. We use tempo

Chapter 3. Methodology and Implementation 16

estimation routine provided by Librosa library [41], which is based on the autocorre-

lation of onset novelty function (see 2.1.2), and uses log-normal distribution with a

given mean as a prior for the tempo (we use prior mean of 90 BPM). We used the same

onset novelty function as for onset detection, depending on the chosen onset detection

method.

We assume that the time of the first onset is the beginning of the track (so the first

detected onset is always quantized to the first 16-note of the first bar). If two or more

onsets are quantized to the same note, only the first of them remains, the latter are

discarded. The original onset times of remaining onsets are remembered, since they

are matched against the ground truth onsets during evaluation.

3.2.3 Feature extraction

3.2.3.1 Baseline features

The first baseline feature set we use throughout our experiments is the set of first 20

MFCCs extracted from the first 4096 frames of the sound segment. MFCCs are com-

puted over a single FFT frame of length 4096 obtained using a Hanning window. The

choice of this feature set is due to the extensive use of MFCCs in speech recognition

and existing VPT systems alike [35, 33, 49, 28]

The second baseline feature set is the one used by Ramires in his LVT system [58].

It is a set of two temporal and 52 spectral features calculated over the first 4096 frames

of the audio segment. Temporal features are root mean square energy and number of

zero crossings. Spectral features are:

• Statistical moments of the spectra: centroid; spread; skewness; kurtosis;

• Spectral form descriptors: slope; decrease; 95% roll-off ; spectral flux; spectral

flatness measured individually for each of the four frequency bands (250-500

Hz, 500-1000 Hz, 1000-2000 Hz, 2000-4000 Hz);

• 20 MFCCs and 20 BFCCs — the latter being the same as MFCCs but using Bark

frequency scale instead of Mel scale.

This feature set is originally intended to be used with a nearest neighbors classi-

fier which uses Euclidean distance metric. Also, the original LVT system applies a

Sequential Forward Selection (SFS) feature selection algorithm during training. Since

the original LVT software is implemented as a Max for Live plugin for a proprietary

Chapter 3. Methodology and Implementation 17

DAW Ableton Live, evaluating the original system requires the purchase of the DAW.

However, the re-implementation of the system in Python is simple, since it is based on

the same segment-and-classify approach as our system, and using the k-NN classifier

trained with SFS feature selection without a language model in our architecture yields

a system which is conceptually identical to LVT. We perform this re-implementation

using scikit-learn [53] and mlextend [59] libraries. Both of the baseline feature sets are

implemented using Librosa library [41].

3.2.3.2 Deep feature extractors

For deep feature extraction, we use convolutional autoencoders proposed by Mehrabi

et al [43]. It is a family of symmetric fully convolutional neural networks with the

same basic architecture which differ in the sizes of strides and kernels. They are sup-

posed to take the two-dimensional time-frequency audio representation (such as Mel

spectrogram) as an input. The basic model architecture is a fully convolutional autoen-

coder with four 2D convolutional layers in its encoder/decoder. The encoder layers 1-4

have 8, 16, 24 and 32 kernels respectively, and the encoder layers, symmetrically, have

32, 24, 16 and 8 kernels. Each of the (de)convolutional layers is followed by a batch

normalization layer and ReLU activation layer. In the decoder, deconvolutional layers

are implemented as a bilinear 2D upsampling layer followed by a convolutional layer

with stride (1, 1). A single-channel convolutional layer with stride (1, 1) is used as an

output layer after the last ReLU activation of the decoder.

All the convolutional layers except the first encoder and last decoder layers are

reported to have the same kernel size (10, 10) in the original paper. However, we note

that using an even kernel size leads to incorrect size ratios between input and output

tensors: e.g. for the decoder convolutional layer after the upsampling layer, the input

and output tensors should have the same W ×H dimensions, but using a kernel size

(10, 10) with padding (5, 5) results in an increase of tensor size by 1 in each dimension.

It could be resolved via an asymmetric padding, but we chosen to simply use kernel

size of (9, 9) instead. Mehrabi et al do not report padding settings and the kernel size

of an output convolutional layer, so we used symmetric zero padding for all layers and

the output kernel size of (5, 5).

The original paper investigates 11 different subtypes of this basic architecture,

which differ in the kernel size of the first encoder and last decoder layers and the

stride sizes of internal convolutional layers of the encoder (upsampling layers in case

of the decoder). They can be divided in three subgroups: square, tall and wide (Ta-

Chapter 3. Methodology and Implementation 18

Type
L1/8

kernel

Strides of conv./upsampling layers Encoded layer size

(128×128 input)L1/8 L2/7 L3/6 L4/5

square-1 (5, 5) (2, 2) (2, 2) (2, 2) (2, 2) 2048

square-2 (5, 5) (2, 2) (2, 2) (2, 2) (4, 4) 512

square-3 (5, 5) (2, 2) (2, 2) (4, 4) (4, 4) 128

tall-1 (5, 3) (2, 2) (2, 2) (2, 2) (2, 4) 1024

tall-2 (5, 3) (2, 2) (2, 2) (2, 4) (2, 4) 512

tall-3 (5, 3) (2, 2) (2, 4) (2, 4) (2, 4) 256

tall-4 (5, 3) (2, 2) (2, 4) (2, 4) (4, 4) 128

wide-1 (3, 5) (2, 2) (2, 2) (2, 2) (4, 2) 1024

wide-2 (3, 5) (2, 2) (2, 2) (4, 2) (4, 2) 512

wide-3 (3, 5) (2, 2) (4, 2) (4, 2) (4, 2) 256

wide-4 (3, 5) (2, 2) (4, 2) (4, 2) (4, 4) 128

Table 3.1: Summary of types of CAE architectures

ble 3.1). Square ones have symmetric kernel and stride sizes of different scales; tall

ones have kernels which are larger in the frequency dimension and strides which are

larger in time dimension; wide ones are the opposites of tall ones. Therefore, tall ones

are expected to preserve more spectral information, while wide ones are expected to

preserve more temporal information.

The time-frequency audio representation we use as an input to CAEs follows Mehrabi

et al. We construct the magnitude spectrogram using the window size of 4096 frames

(∼93ms) and hop size of 512 frames. Then we apply Bark filterbank with 128 bands

to the spectrogram and scale the magnitudes of the resulting barkgram using Tern-

hardt’s ear model equal-loudness curve [73]. The barkgram computation routine was

implemented using Librosa library [16], and CAEs themselves were implemented us-

ing PyTorch.

Since the encoders are fully convolutional, they can accept barkgrams of any time

length, and the size of encoded representation would change accordingly (Fig. 3.2).

During training, we use barkgrams with the time length of 128 frames; the barkgrams

computed over audio segments are either truncated or padded with zeros to that size.

During the evaluation, we test different barkgram lengths and evaluate how does it

affect the classification quality.

Chapter 3. Methodology and Implementation 19

8 16 24 32 64 128
Barkgram length

32
64

128
256
512

1024
2048

Si
ze

square

8 16 24 32 64 128
Barkgram length

tall

8 16 24 32 64 128
Barkgram length

wide

1
2
3
4

Figure 3.2: Correspondence of different lengths of input spectrograms to resulting sizes

of feature representations for different CAE architectures, in log scale.

3.2.4 Segments classification

3.2.4.1 k-NN classifiers

The primary type of classifier we use is the k-nearest neighbours classifier which uses

Euclidean distance metric and inverse-distance weighting of the neighbours. The mo-

tivation for this choice is twofold. First, in the original paper by Mehrabi et al., the

Euclidean distance between CAE feature representations was used to predict human-

reported similarity ratings, which suggest that exactly this type of distance metric

should be used if we want to determine which sounds from the training set are the most

perceptually similar to the query sound. Second, this is the classifier used by several

previous works on vocal percussion transcription, including the Ramires’ [58] LVT

system, which we reimplement in Python and use as a baseline. The choice of inverse-

distance neighbours weighting is motivated partially by the first of the aforementioned

facts, and partially by the need for obtaining class probabilities for classified segments

when using a language model: using only class counts for obtaining probability esti-

mates from k-NN classifier results in only a small finite set of possible probabilities

for each class, which is likely to restrict the extent of influence of the language model.

We evaluate k-NNs with different numbers of neighbours k. Regardless of the

feature set, we use normalization of training data before k-NN training. As has been

mentioned in section 3.2.3.1, we also use SFS feature selection during training the

k-NN with Ramires’ features.

Chapter 3. Methodology and Implementation 20

3.2.4.2 Deep neural network classifiers

The second type of classifier we use is the deep neural network built on top of the con-

volutional deep feature extractor (Section 3.2.3.2). We obtain the classifier network for

a given type of autoencoder architecture and a given length of input via taking the con-

volutional encoder, flattening its output and passing it to the smaller fully-connected

network with three hidden layers of size 512 with ReLU activations. The motivation

for considering this type of classifier is the following. On the one hand, we would

like to test whether or not deep networks can generalize well when trained on a limited

number of annotated vocal percussion samples available. On the other hand, the perfor-

mance of k-NN classifiers is known to deteriorate when the feature space dimension-

ality grows, due to so-called ”curse of dimensionality” [37], and the CAE-extracted

features can be significantly high-dimensional for certain types of CAE architectures

and input lengths (Fig. 3.2). Therefore, we hypothesize that if the dimensionality of

CAE features would turn out to be high enough to significantly negatively affect the

performance of the k-NN classifier, the DNN classifier would surpass it.

3.2.5 Language model

We use a pre-trained DrumsRNN model as a language model in our experiments [72].

DrumsRNN is one of the models present in the Google Magenta library [71], which

uses TensorFlow [5] as backend. It is a recurrent neural network with three LSTM

layers, each having 256 recurrent cells. DrumsRNN is originally designed for mod-

elling polyphonic drum tracks which include nine types of drums: kick, snare, closed

hi-hat, open hi-hat, low tom, mid tom, high tom, crash cymbal and ride cymbal. To

model polyphonic drum events (the ones which include several different drums struck

simultaneously), each possible subset of drum classes is modelled as a separate event

type, resulting in 29 = 512 distinct event types, including the silence event. Those are

encoded using one-hot encoding before being passed as an input to NN. Apart from the

encoded event type, DrumsRNN also receives six binary counters, which encode in-

formation about the next event’s position along with the beat, quantized to a sixteenth

note (a semiquaver). If the next event is starting in position of n-th semiquaver since

the beginning of the track, then i-th binary counter (indexing from 0) has the value

of n/2i mod 2. Therefore, in case of tracks in 4/4 meters, six such binary counters

provide unique encodings for positions of all semiquavers across four bars. For each

time step t, the model outputs softmax probability estimates P(ct+1 = i|ct, ht) for each

Chapter 3. Methodology and Implementation 21

of 512 possible event types for next event ct+1. Here, ht is RNN’s hidden state.

Since amateur beatbox performances are essentially monophonic, the language

model designed for polyphonic drum tracks has to be modified to produce probability

estimates for monophonic percussive events. We do so by interpreting each polyphonic

event ct as an intermediate event in a process of sequence generation, s.t. given that

ct happened, each of the monophonic events γt ∈ ct is equally likely to happen. More

formally,

P(γt |ct) =

1/|ct|, if γt ∈ ct

0, otherwise.
(3.5)

Therefore, probability estimates for monophonic events can be obtained as follows:

P(γt+1|γt ,ht) = ∑
ct+1

P(γt+1|ct+1)P(ct+1|ct = {γt}, ht) = ∑
ct+13γt+1

P(ct+1|{γt}, ht)

|ct+1|
(3.6)

Moreover, since we do not aim to support such drum events as toms and cymbals,

we interpret those events as equivalent to musically most similar events among sup-

ported ones: low toms are equivalent to kicks, mid and high toms are equivalent to

snares, cymbals are equivalent to opened hi-hats.

Such modifications may seem arbitrary and not necessarily preserving of the learned

rhythmic structure of drum tracks; however, we found that the modified model is capa-

ble of producing monophonic drum tracks which sound believable. This is, of course,

does not prove that such a model is representative of the rhythmic structure of beatbox

recordings; this fact can only be checked during evaluation.

3.3 Data for system evaluation

3.3.1 Amateur Vocal Percussion Dataset

Amateur Vocal Percussion (AVP) dataset [19] is, to the best of our knowledge, cur-

rently the largest openly available dataset of annotated vocal percussion recordings.

It contains recordings of 28 participants with little to no prior experience with vocal

percussion. All of the recordings in the dataset were recorded using MacBook Pro’s

built-in microphone.

Chapter 3. Methodology and Implementation 22

AVP dataset consists of two subsets: Personal and Fixed. In each of those, there are

five recordings provided per each of the included participants. Four of those recordings

containing repeated utterances which imitate one of the four drum classes: kick (kd),

snare (sd), closed hi-hat (hhc) and opened hi-hat (hho). The fifth recording features

participants’ free rhythmic improvisation. The distinction between Personal and Fixed

subsets is the following. In the Personal subset, participants used imitations of drum

sounds they came up with themselves and were most comfortable with. In the Fixed

subset, participants used predefined phonemes to imitate each of the drum classes:

”pm” for the kick drum, ”ta” for the snare drum, ”ti” for the closed hi-hat and ”chi”

for the opened hi-hat. The dataset contains 9780 individual vocal imitations in 280

recordings in total.

0.5

0.0

0.5

Or
ig

in
al

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Beats

0.5

0.0

0.5

Qu
an

tiz
ed

Figure 3.3: Sample improvisation recording from AVP Dataset. Red lines indicate on-

sets positions in time, gray lines indicate positions of semiquaver notes accordingly to

detected tempo. Lower plot shows how the implied regular rhythmic structure breaks

down after onsets quantization due to inaccuracies in the participant’s performance —

note how all the onsets are shifted one semiquaver behind the beat in the second part

of the track.

We use recordings which contain repeated utterances as a source of individual

sound segments for classifier training and use recordings of improvisations as eval-

uation data. However, we notice that although improvisation tracks in AVP Dataset

are conceptually simple drum loops, many of them exhibit irregularities in tempo and

rhythmic structure, since participants have little experience in vocal percussion. This

may result in beat alignment which does not represent implied rhythmic structure (Fig.

3.3), and an inaccurate beat alignment, in turn, is likely to cause the language model

to produce misleading transition probabilities for observed events.

Chapter 3. Methodology and Implementation 23

3.3.2 Synthesized data

We mentioned before that there are two key concerns regarding the application of the

language model designed for polyphonic drum tracks to the analysis of vocal percus-

sion performances. The first concern is that such a language model may not neces-

sarily represent typical vocal performances well enough. The second concern is that

the performance of the language model may be disrupted by inaccuracies in the beat

alignment, which are likely in case of amateur vocal percussion performance.

In order to understand whether or not those concerns are valid, we synthesized

additional sets of audio files using vocal percussion samples from AVP Dataset. The

procedure to synthesize the files was as follows. A set of vocal imitations of drum

sounds, produced by the same person, was prepared. For each of four drum classes, two

utterances were manually selected, one shorter than another. A percussive SoundFont

file [60] was then manually created out of resulting 8 utterances using the Polyphone

SoundFont editor [3]. Then, ten monophonic percussive MIDI tracks were generated

randomly using the modified DrumsRNN language model, each track having the length

from 4 to 8 bars and tempo in a range between 80 and 100 BPM. Audio files were

then synthesized from generated MIDI tracks via Fluidsynth synthesizer [51] using the

prepared SoundFont.

The procedure was repeated for the first five participants from both Fixed and Per-

sonal subsets of AVP dataset. This resulted in two sets of synthesized vocal percussion

tracks, each containing 50 tracks: AVP-gen Fixed and AVP-gen Personal.

Since all of the synthesized tracks have known tempos and do not exhibit irreg-

ularities in onset timing, the beat alignment procedure should not produce irregular

rhythmic patterns when applied to those tracks. Moreover, since their ground truth

symbolic representations (MIDIs) were directly sampled from the language model it-

self, the language model is clearly representative of their structure. Thus, we can use

this synthesized data in order to determine whether or not the application of the lan-

guage model as proposed can improve transcription accuracy in principle.

3.4 Training of deep models

3.4.1 CAE feature extractors

In order to train convolutional autoencoders which are capable of representing real

(or synthesized) drum sounds as well as vocal imitations, we need training data of

Chapter 3. Methodology and Implementation 24

both kinds. We construct our training set via processing and combining data from

four openly available datasets: beatboxset1, ENST-Drums, 200 drum machines and

VocalSketch.

beatboxset1 [2] is the oldest annotated dataset of vocal percussion recordings avail-

able online. It contains 14 tracks in total produced by 14 different participants, all of

which are experienced beatboxers. For each track, two variants of ground-truth an-

notations containing onset times and classes of events are provided by two different

experts. Besides of common imitations of kicks, hi-hats and snares, the recordings

also contain breathing sounds, humming, singing and miscellaneous other vocaliza-

tions which do not fall into any particular category. Therefore, the precise transcription

of those recordings is a challenging task which is out of the scope of this project. We

use this dataset only as a source of vocal percussion samples produced by professional

beatboxers for training our deep models. We obtain individual samples via segmenting

the recordings using the first variant of ground truth onsets and extracting only the seg-

ments which correspond to supported event classes (kicks, snares, opened and closed

hi-hats). This yields the dataset of 2317 utterances: 627 kicks, 703 snares, 882 closed

hats and 105 opened hats.

ENST-Drums [29] is the dataset of annotated real drum performances which are

recorded using separate microphones for each drum. We use this dataset as a source

of individual drum sounds for deep feature extractors training, which we obtain via

segmenting the recordings of kick, snare and hi-hat drums by ground truth onsets,

obtaining 1376 individual samples. We do not include samples which correspond to

any other drum class to our training set

200 drum machines [1] is the dataset of 6749 synthesized drum sounds produced

by 200 different drum machines, including standard drum classes (kicks, snares, hats,

cymbals, etc.) as well as more acoustically diverse sounds.

VocalSketch [17] is the large dataset of vocal imitations of various sounds, includ-

ing imitations of drums, other musical instruments, synthesized sounds and every day

sounds like a bird chirping. It contains 4429 vocal imitations in total. Mehrabi et al.

also use this dataset as part of the training set in their original paper.

This results in a mixed dataset of 14817 real, synthesized and vocally imitated

sounds. We randomly split it into training and validation sets, allocation 10% of data

for validation.

All the samples in training and validation sets are transformed to 128×128 bark-

grams as described in section 3.2.3.2. We train the autoencoders to reconstruct the

Chapter 3. Methodology and Implementation 25

barkgrams using Adam optimizer with learning rate 10−3, batch size 50 and mean

squared error (MSE) loss for 25 epochs and select the model with best validation loss.

The training process is repeated for all 11 variants of CAE architectures described in

section 3.2.3.2.

Since our training set is different and smaller than the one used by Mehrabi et al.

(which is reported to contain∼ 39k individual sounds, more than twice larger than our

dataset of ∼ 15k sounds), and also since unreported nuances of implementation could

differ between our and the original CAE variants, we partially replicated the results

of the original paper using the same data and methodology in order to make sure that

those differences do not lead to a significant drop in the quality of the features. Those

efforts are reported in Appendix A.

3.4.2 DNN classifiers

The training set for DNN classifiers is comprised of individual utterances from both

Fixed and Personal parts of AVP Dataset (3317 and 2875 samples respectively, ex-

cluding utterances from improvisations), as well as utterances from beatboxset1 (2317

samples). The resulting dataset contains 8509 vocal percussion samples, each one be-

longing to one of four classes (kd, sd, hhc, hho). 10% of this dataset are randomly

allocated for validation.

Since the DNN classifiers we use are based on CAEs which we train separately in

an unsupervised way, we initialize the weights of convolutional part of DNN classifier

with the weights of previously trained encoder part of the CAE of the corresponding

architecture before training. Then, we train the network in a supervised manner by

minimizing cross-entropy loss using Adam optimizer. During training, the dropout

layer with probability p = 0.2 is applied after each fully-connected layer, and the batch

size of 50 is used.

We split the supervised training process into two phases, each lasting for 30 epochs:

FCN head training and fine-tuning. During the first phase, the learning rate is 10−3 and

only the parameters of fully-connected layers are updated. During the second phase,

the learning rate is 2 ·10−4 and all layers, including the convolutional ones, are updated.

The model which achieves the best classification accuracy on the validation set over

all epochs is chosen as the best one.

Chapter 4

Evaluation and Discussion

We evaluate the performance of onset detection and transcription using precision, recall

and F1 metrics. During the evaluation, we match estimated onsets with ground truth

using a tolerance window of 50 ms, following the established standard of MIREX

onset detection challenge [24]. We use routines from mir eval Python library [57] for

calculation of the scores.

4.1 Onset detection

Onset detection is the first step in our system’s pipeline, which defines which audio

segments are passed further to the feature extraction and classification steps. Since our

pipeline is built in such a way that each detected onset corresponds to an audio segment

which then gets classified, onset detection is a bottleneck — even if the classification

is perfect, the performance of the whole system cannot exceed the performance of the

onset detection method. Therefore, we should choose the best onset detection method

among available ones and use it as a default.

We compare three methods (HFC, Complex and Specflux) by their precision, recall

and F1-score on the whole AVP dataset (both Personal and Fixed parts, including hits-

only recordings). All three of those methods accept window size and hop size of STFT

as parameters. We perform a grid search for each method using values (512, 1024,

2048) for window size and values (128, 256, 512) for hop size. The results are shown

in Fig. 4.1. We see that Complex method is the best in terms of precision, but is

the worst in terms of recall, which means that it yields less false positives but more

false negatives. However, all methods do significantly better in terms of recall than in

terms of precision, which means that each method yields more false positives than false

26

Chapter 4. Evaluation and Discussion 27

128 256 512
Hop size

0.5

0.6

0.7

0.8

0.9

Sc
or

e

Precision

128 256 512
Hop size

0.95

0.96

0.97

0.98

0.99
Recall

128 256 512
Hop size

0.7

0.8

0.9

F1
hfc (512)
hfc (1024)
hfc (2048)
complex (512)
complex (1024)
complex (2048)
specflux (512)
specflux (1024)
specflux (2048)

Figure 4.1: Precision, recall and F1 score for three onset detection methods with differ-

ent window sizes and hop sizes.

negatives. Since Complex method wins more in precision than it loses in the recall, it is

consistently better in terms of F1-score, and it yields the best F1-score with a window

size of 2048 and hop size of 256. Therefore, we choose Complex method with those

parameters as a default onset detection method used throughout the experiments that

follow.

4.2 Model and feature selection for classification

4.2.1 k-NN classification

We compare the performances of k-NN classifiers using different audio feature rep-

resentations in the task of classification of isolated utterances of AVP Fixed and AVP

Personal datasets, excluding utterances from improvisations recordings. Since the re-

sulting datasets are balanced (∼ 800 utterances per class for Fixed, ∼ 700 — for Per-

sonal), we use 5-fold cross-validation accuracy as metric.

All eleven architectures of CAE feature extractors are first compared using 3-NN

classifier with several input spectrogram lengths (Fig. 4.2). The best configurations

from each of the three CAE families (square, tall and wide) were then compared with

the baseline features (20 MFCCs and Ramires’ features) (Fig. 4.3). In the case of

Ramires’ features, SFS feature selection based on 5-fold cross-validation score has

been applied on the dataset before computing the final validation score.

Chapter 4. Evaluation and Discussion 28

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96

Ac
cu

ra
cy

 (P
er

so
na

l)

square

1
2

3

tall

1
2

3
4

wide

1
2

3
4

8 16 24 32 64 128
Barkgram length

0.88

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

 (F
ix

ed
)

1
2

3

8 16 24 32 64 128
Barkgram length

1
2

3
4

8 16 24 32 64 128
Barkgram length

1
2

3
4

Figure 4.2: 5-fold cross-validation scores of k-NN (k = 3) with deep feature extractors

using different lenghts of input spectrograms (top row: AVP Personal segments, bottom

row: AVP Fixed segments) Lines indicate mean scores over 5 folds, bands indicate

standard error of the mean score.

4.2.2 DNN classifiers validation

DNN classifiers based on the ”largest” CAE architectures from three families (square-

1, tall-1, wide-1) were trained on the combined dataset of utterances from AVP Dataset

and beatboxset1 as described in Section 3.4.2. DNN architectures corresponding to

input barkgram lengths of (24, 32, 64, 128) were compared by their best validation

scores. The results are summarized in Table 4.1.

4.2.3 Discussion

On the Figure 4.2, we see that cutting/padding the input barkgram of the classified to

24 time frames yields the best classification accuracies for almost all variants of CAE

feature extractors on both datasets. This pattern is also seen in the validation scores of

DNN classifiers: longer inputs generally lead to lower accuracy on the validation set,

with the two out of three CAE encoder types reaching the best scores with the input

length of 24 frames.

Chapter 4. Evaluation and Discussion 29

3 5 7 10 15
Num. of neighbors

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97

Ac
cu

ra
cy

AVP Personal

3 5 7 10 15
Num. of neighbors

0.94

0.95

0.96

0.97

0.98

0.99
AVP Fixed

MFCC
Ramires (+SFS)
square-1 (24 fr.)
tall-1 (24 fr.)
wide-1 (24 fr.)

Figure 4.3: 5-fold cross-validation accuracy scores for k-NN with baseline features and

with three best CAE feature sets. Results are given for different numbers of neighbors

k. Lines indicate mean scores over 5 folds, bands indicate standard errors of the mean

score. CAE features outperform baselines on both datasets.

CAE type
Input barkgram length

24 32 64 128

square-1 0.9683 0.9647 0.9612 0.9506

tall-1 0.9718 0.9765 0.9659 0.9518

wide-1 0.9718 0.9683 0.9612 0.9542

Table 4.1: Best accuracy scores on validation set during training of different configura-

tions of DNN classifiers. Best scores for each CAE type are in bold.

This can be explained by the fact that vocal imitations of percussive sounds are

generally short, and that for each particular audio segment, the most relevant acoustic

information is at its beginning: during the attack and transient phases of the sound.

Cutting or padding the barkgram of a classified segment to 24 frames corresponds to

taking into account only the first∼ 0.28 seconds of the segment (for sample rate 44100

Hz). The mean duration of the segment is 0.456 s for AVP Fixed and 0.433 s for AVP

Personal. Thus, using 24 frames of the segments’ barkgram means taking into account

the first 2/3 of the classified segment on average. Apparently, providing less or more

audio information to the CAE leads to less informative feature representations: there is

not enough information when the barkgram is shorter and there is too much irrelevant

data (or zero padding) when it is longer. The validation scores of DNN classifiers also

suggest that the problem with longer barkgram lengths is not the curse of dimensional-

Chapter 4. Evaluation and Discussion 30

ity which starts to affect k-NN classifier when the size of feature representation grows,

since the performance of DNNs also decreases with the longer inputs.

Moreover, for each CAE family, the architectures which yield larger feature rep-

resentations (the ”first” ones) perform generally better than those which yield smaller

ones. This means that for successful k-NN classification it is more important to have

more informative representations than to reduce their dimensionality.

Figure 4.3 shows that the ”largest” CAE feature representations from all three CAE

families, computed over the first 24 frames of the segment barkgram, outperform both

baseline features (20 MFCCs and Ramires’ features with feature selection) on both

datasets. There is no significant difference between the performances of different CAE

families. We also see that an increasing number of neighbours k for k-NN generally

leads to a decrease in performance for every feature set.

Interestingly, there is no significant difference between the performance of MFCCs

and pre-selected Ramires’ features on AVP Personal dataset; and on the AVP Fixed

dataset, MFCCs features even outperform Ramires’ ones. This is surprising since 20

MFCCs are included in Ramires’ feature set, so the feature selection procedure is sup-

posed to select them if they are the best performing subset of features. However, this

is not necessarily true, since sequential forward selection is not an exhaustive feature

selection. The algorithm does not remove previously selected features, so the only

way 20 MFCCs can be selected is by being incrementally added as the features which

improve the validation score the most for each of the first 20 steps of the algorithm.

This can easily be not the case if other features perform better than individual MFCCs

during early steps of the algorithm, which evidently happens in case of AVP Fixed

dataset. As a result, the algorithm selects a suboptimal set of features.

Also, the classification accuracy on AVP Fixed is generally higher than the accu-

racy on AVP Personal for each feature set. This is expected since AVP Fixed set, which

consists of fixed onomatopoeic utterances for each drum class, is more homogeneous

than AVP Personal set, which consists of participants’ personal imitations of drum

sounds. Personal vocal imitations predictably differ more between people than fixed

ones.

Chapter 4. Evaluation and Discussion 31

4.3 Transcription of AVP dataset

4.3.1 Experiments

We analyze the performance of the whole system on the problem of transcription of

improvisation recordings from AVP Dataset using precision, recall and F1 metrics.

We compare three DNN classifiers (based on square-1, tall-1 and wide-1 CAEs, using

input length 24), 3-NN classifiers with three sets of CAE features which performed

the best during cross-validation (square-1, tall-1 and wide-1 using input length 24,

see Section 4.2.1), and two baselines — 3-NN with MFCC features and 3-NN using

Ramires’ features and SFS feature selection. Each classifier is evaluated with and

without the application of the language model.

DNN (square-1)
DNN (tall-1)

DNN (wide-1)
kNN (square-1)

kNN (tall-1)

kNN (wide-1)
MFCCs

Ramires+SFS

No
n-

pe
rs

on
al

ize
d

No LM LM

0.60 0.65 0.70
Precision

kNN (square-1)
kNN (tall-1)

kNN (wide-1)

MFCCs
Ramires+SFS

Pe
rs

on
al

ize
d

0.65 0.70 0.75
Recall

0.60 0.65 0.70
F1

Figure 4.4: Precision, recall and F1-score obtained on transcription of improvisations

from AVP Personal dataset. Top row: non-personalized training/evaluation, bottom

row: personalized training/evaluation. Model with the best F1-score is shown in bold.

We train and evaluate all k-NN based classifiers in two ways: non-personalized

and personalized. The former means that the classifiers are trained using the individual

utterances of all participants included in the dataset (3317 samples by 28 participants in

Chapter 4. Evaluation and Discussion 32

DNN (square-1)
DNN (tall-1)

DNN (wide-1)
kNN (square-1)

kNN (tall-1)
kNN (wide-1)

MFCCs
Ramires+SFS

No
n-

pe
rs

on
al

ize
d

No LM LM

0.7 0.8
Precision

kNN (square-1)
kNN (tall-1)

kNN (wide-1)
MFCCs

Ramires+SFS

Pe
rs

on
al

ize
d

0.7 0.8
Recall

0.7 0.8
F1

Figure 4.5: Precision, recall and F1-score obtained on transcription of improvisations

from AVP Fixed dataset. Top row: non-personalized training/evaluation, bottom row:

personalized training/evaluation. Model with the best F1-score is shown in bold.

AVP Fixed, 2875 samples by 25 participants in AVP Personal), and the improvisations

of all participants are transcribed using the same classifier. The latter means that we

train an individual classifier for each participant using only utterances produced by

them (∼ 90−150 samples per participant) and transcribe the improvisation recording

of that participant using this individual classifier. Results for AVP Personal dataset are

shown in Fig. 4.4, for AVP Fixed — on Fig. 4.5.

4.3.2 Discussion

First, we see that k-NNs with CAE-extracted features show the best performance on

both datasets, both for non-personalized and personalized setups. All three variants

of those outperform both of the baselines for each setup; they also clearly outperform

DNN classifiers on Personal dataset but are roughly on par with them on Fixed dataset.

This shows that DNN classifiers, trained on the joint dataset of vocal utterances from

AVP Fixed, AVP Personal and beatboxset1, did not generalize well enough: they are

Chapter 4. Evaluation and Discussion 33

able to classify relatively homogeneous onomatopoeic utterances from AVP Fixed as

well as k-NNs trained only on such utterances but failed to do so in case of more

heterogeneous personal imitations.

Second, we see that using personalized classifiers decreases performance on AVP

Fixed but significantly increases it on AVP Personal for all feature sets. Again, this

confirms the fact that it is much harder to generalize over personal vocal imitations of

different people than over the same phonemes uttered by different people: while in the

latter case, having different people’s utterances in the training set apparently helps to

avoid overfitting, in the former case it simply introduces too much noise to predictions.

The overfitting is the most apparent in case of Ramires’ features with feature selection,

which displays the most significant drop in performance when trained in a personalized

setup on AVP Fixed.

Finally, we see that the application of the language model generally leads to slightly

better precision but overall worse F1 score, i.e. it causes slightly less false positives

but significantly more false negatives. In the section that follows, we investigate why

this happens in more detail.

4.4 Influence of the language model

4.4.1 Experiments

In an attempt to understand why the application of the language model degrades the

transcription quality, we check three hypotheses. The first one is that imprecise onset

timing and tempo in the amateur vocal performances lead to irregular quantization and

beat alignment, which leads to rhythmically improbable event observation probabilities

for the language model (see Section 3.3.1). The second one is that low number (k = 3)

of considered nearest neighbours for k-NN classification causes very small or zero

observation probabilities for event classes other than the most probable one, which

leaves little freedom for the language model to fix classification errors. The third one

is that the language model designed to represent polyphonic drum tracks is simply not

a good model for amateur vocal percussion tracks.

We check these hypotheses as follows. First, we analyze confusion matrices pro-

duced by the classifier which perform the best on AVP Fixed dataset in non-personalized

setup (k-NN with wide-1) and the baseline k-NN with MFCC features (Fig. 4.6). We

do that in order to see patterns of classification errors which speak for or against the

Chapter 4. Evaluation and Discussion 34

hh
c

hh
o kd sd sil

Predicted label

hhc

hho

kd

sd

sil

Tr
ue

 la
be

l

198 54 6 26 25

64 297 0 2 3

4 1 478 14 49

5 2 3 343 12

13 43 35 17 0

No LM

hh
c

hh
o kd sd sil

Predicted label

hhc

hho

kd

sd

sil

188 51 4 26 39

67 281 0 1 17

4 1 468 14 59

6 1 6 323 29

15 32 29 20 0

LM

0

100

200

300

400

(a) k-NN (wide-1)

hh
c

hh
o kd sd sil

Predicted label

hhc

hho

kd

sd

sil

Tr
ue

 la
be

l

221 33 4 25 25

88 273 0 2 3

6 3 456 32 49

34 6 10 303 12

11 35 47 16 0

No LM

hh
c

hh
o kd sd sil

Predicted label

hhc

hho

kd

sd

sil

218 25 1 25 39

97 252 0 0 17

5 2 448 32 59

31 5 10 290 29

14 28 33 21 0

LM

0

100

200

300

400

(b) MFCCs

Figure 4.6: Confusion matrices produced by (a) 3-NN with wide-1 CAE features and (b)

3-NN with MFCC features with and without the application of language model on AVP

Fixed improvisations (non-personalized setup). sil denotes the silence event (i.e. the

absence of the onset at a given time ±50ms tolerance window)

first hypothesis.

Second, we evaluate k-NN classifier with MFCC features using different values

for the number of nearest neighbours k ∈ (3,5,7,10,15) on both AVP Fixed and AVP

Personal in non-personalized setup. We measure resulting precision, recall and F1

measures for each of the drum classes (kd, sd, hhc, hho) separately and also in total

(using total numbers of true positives, false positives and false negatives). Additionally,

we perform the same evaluation but skipping the onset detection phase altogether and

providing the ground truth onsets instead (Fig 4.7). This allows us to gain evidence for

or against the first and second hypotheses.

Third, we evaluate our system on the data synthesized from MIDI generated via

the same language model as described in 3.3.2 (AVP-gen Fixed and AVP-gen Personal

Chapter 4. Evaluation and Discussion 35

Dataset
Detected onsets Ground-truth onsets

No LM LM No LM LM

AVP Fixed 89 144 0 41

AVP Personal 31 106 0 53

Table 4.2: Total number of undetected true onsets observed during transcription of real

vocal percussion improvisations. The onset detection method used is the same in all

cases; the increase in undetected onsets observed when applying a language model is

due to onsets discarded during quantization.

sets, each containing 50 recordings). With the synthesized data, we know the exact

tempo which was used to generate the track, and we pass it as a known parameter to

the beat alignment routine. We exclude the participants whose utterances were used for

data generation from the training set for k-NN. We also perform the same evaluation

using ground truth onsets (Fig. 4.8). Since the synthesized tracks are generated using

the same language model, this gives us evidence for or against all three hypotheses.

4.4.2 Discussion

The first important observation is that the numbers of the false positive predictions of

silence — i.e. undetected true onsets — stay the same when the classifier changes,

but grows significantly for each drum class when the language model is applied (Fig

4.6). The independence of those numbers from the classification method is expected,

since undetected onsets never get classified — those numbers only depend on the onset

detection method. But the application of the language model itself also cannot directly

influence the number of undetected onsets. However, before LM is applied, onsets

are quantized, and those onsets which get quantized to an already occupied 16-th note

get discarded. Apparently, a significant number of such discarded onsets are actually

correctly detected onsets, which can happen if onsets are not positioned correctly along

the 16-th note grid inferred via tempo estimation. This is a strong evidence in favor of

the first hypothesis.

Figure 4.7 suggests that the low number of nearest neighbors k is not a significant

factor, since the quality of transcription with a language model does not really grow

with increasing k for both Fixed and Personal datasets. It also shows that providing

ground-truth onsets to the pipeline still does not result in any performance gains for

Chapter 4. Evaluation and Discussion 36

the setup with a language model in comparison to a setup without one. We have also

determined that when language model is applied using ground truth onsets, quantiza-

tion still causes a significant number of those onsets being discarded (Table 4.2). This,

again, strongly suggests that tempo irregularities in the recordings and imprecision of

tempo estimation inevitably lead to bad event quantization, which causes transcription

errors even before the improperly quantized events are passed to a language model.

Using synthesized data with known tempo allows us to rule out those factors during

analysis. Figure 4.8 shows that applying a language model to a transcription of such

data when using ground truth onsets results in higher or equivalent total F1-score on

both Fixed and Personal sets. Moreover, on the Personal set, it also results in a better

or equivalent score when using detected onsets. However, this improvement is small.

Lack of improvement when using detected onsets can still be explained by errors in

onset detection. Given how sharply the quality of transcription of kick drum events

(kd) increases on both datasets when the ground truth onsets are provided, we can

conclude that kick onsets are not reliably detected on synthesized data. Since kick

drum events are usually the backbone of the rhytmic structure, lack of those events

observed may disrupt the predictions of the language model.

The lack of significant and consistent improvement when using a language model

with ground truth onsets, however, requires further explanation. We can see a consis-

tent improvement in total F1-score for AVP-gen Personal dataset, but it is quite small.

However, the overall performance on the AVP-gen Personal is quite poor, which is

explained by the fact that no personal utterances of participants selected as sample

sources for track synthesis are present in the training set. If the language model is

permissive enough, significant improvements over the initially noisy classifier predic-

tions are unlikely. The lack of improvement on AVP-gen Fixed dataset, where overall

performance is way better, is more puzzling, but can also be explained by excessive

permissiveness of a language model. We also tested the language model with non-

uniform marginal class probabilities (results not included due to the page limit) using

class counts from beatboxset1 and Groove MIDI Dataset [31], but this made overall

performance even worse.

Overall, we see that our approach for language model integration turns out to be

impractical due to high sensitivity to errors produced by onset detection and naive

quantization based on a global tempo. Ruling out those errors using synthesized data

also leaves us with inconclusive results; further research is needed to determine better

ways of language model application to vocal percussion transcription task.

Chapter 4. Evaluation and Discussion 37

0.900
0.925
0.950
0.975

kd

Precision

0.84
0.87
0.90
0.93

Recall

0.875
0.900
0.925
0.950

F1

0.80
0.84
0.88
0.92

sd
0.80
0.84
0.88
0.92

0.81
0.84
0.87
0.90

0.60
0.64
0.68
0.72

hh
c

0.72
0.76
0.80
0.84

0.64
0.68
0.72
0.76
0.80

No LM (true onsets)
LM (true onsets)
No LM
LM

0.78
0.81
0.84
0.87
0.90

hh
o

0.64
0.68
0.72
0.76
0.80

0.72
0.75
0.78
0.81
0.84

3 5 7 10 15
k

0.800
0.825
0.850
0.875

to
ta

l

3 5 7 10 15
k

0.78
0.81
0.84
0.87

3 5 7 10 15
k

0.78
0.81
0.84
0.87

(a) AVP Fixed

0.72
0.76
0.80
0.84

kd

Precision

0.84
0.86
0.88
0.90
0.92

Recall

0.78
0.81
0.84
0.87
0.90 F1

0.69
0.72
0.75
0.78

sd

0.425
0.450
0.475
0.500
0.525

0.525
0.550
0.575
0.600

0.50
0.52
0.54
0.56

hh
c

0.475
0.500
0.525
0.550
0.575

0.50
0.52
0.54
0.56

No LM (true onsets)
LM (true onsets)
No LM
LM

0.30
0.32
0.34
0.36

hh
o

0.45
0.50
0.55
0.60

0.350
0.375
0.400
0.425

3 5 7 10 15
k

0.600
0.625
0.650
0.675

to
ta

l

3 5 7 10 15
k

0.62
0.64
0.66
0.68

3 5 7 10 15
k

0.60
0.62
0.64
0.66
0.68

(b) AVP Personal

Figure 4.7: Comparison of system performance with and without language model on

transcription of real data (improvisations from AVP Fixed and AVP Personal). Solid

lines represent scores obtained when including onset detection step, dashed lines rep-

resent scores obtained when using ground truth onset times instead. k is the number

of neighbors used in k-NN. Using a language model (LM) generally leads to a drop of

transcription accuracy for all drum classes.

Chapter 4. Evaluation and Discussion 38

0.84
0.87
0.90
0.93
0.96

kd

Precision

0.6
0.7
0.8
0.9
1.0

Recall

0.72
0.80
0.88
0.96

F1

0.64
0.68
0.72
0.76

sd

0.76
0.80
0.84
0.88
0.92

0.72
0.76
0.80
0.84

0.72
0.76
0.80
0.84
0.88

hh
c

0.64
0.72
0.80
0.88

0.70
0.75
0.80
0.85 No LM (true onsets)

LM (true onsets)
No LM
LM

0.45
0.60
0.75
0.90

hh
o

0.57
0.60
0.63
0.66
0.69

0.54
0.60
0.66
0.72

3 5 7 10 15
k

0.70
0.75
0.80
0.85

to
ta

l

3 5 7 10 15
k

0.66
0.72
0.78
0.84

3 5 7 10 15
k

0.70
0.75
0.80
0.85

(a) AVP-gen Fixed

0.40
0.48
0.56
0.64

kd

Precision

0.2
0.3
0.4
0.5

Recall

0.32
0.40
0.48
0.56
0.64

F1

0.14
0.16
0.18
0.20

sd

0.33
0.36
0.39
0.42
0.45

0.20
0.22
0.24
0.26

0.70
0.75
0.80
0.85
0.90

hh
c

0.15
0.18
0.21
0.24
0.27

0.28
0.32
0.36
0.40 No LM (true onsets)

LM (true onsets)
No LM
LM

0.075
0.100
0.125
0.150
0.175

hh
o

0.32
0.40
0.48
0.56

0.12
0.16
0.20
0.24
0.28

3 5 7 10 15
k

0.30
0.33
0.36
0.39
0.42

to
ta

l

3 5 7 10 15
k

0.25
0.30
0.35
0.40

3 5 7 10 15
k

0.24
0.28
0.32
0.36
0.40

(b) AVP-gen Personal

Figure 4.8: Comparison of system performance with and without language model

on transcription of synthesized data (AVP-gen Fixed and AVP-gen Personal sets).

Ground-truth tempo is provided to the system for each experiment. Solid lines rep-

resent scores obtained when including onset detection step, dashed lines represent

scores obtained when using ground truth onset times instead. k is the number of neigh-

bors used in k-NN.

Chapter 5

Conclusion

5.1 Summary

This work proposes a novel method for vocal percussion transcription (VPT) which

is based on a combination of traditional signal processing methods and deep learning

techniques. Like most existing methods for VPT, our one is based on a ”segment-

and-classify” approach: using onset detection to determine the positions of percussive

events and classifying corresponding individual segments. Our contribution to the ex-

isting work in the field is twofold. First, unlike our predecessors, we use audio feature

representations extracted by deep convolutional autoencoders instead of classic audio

feature descriptors, such as MFCCs. Second, we propose a way to adapt a deep gener-

ative model for drum tracks as a language model for vocal percussion transcription.

We evaluated several variations of the proposed method using several types of

deep feature extractors and two types of classifiers (k-NN and DNN) on the largest

openly available annotated dataset of vocal percussion, Amateur Vocal Percussion

(AVP) dataset. We have shown that using a k-NN classifier with CAE-extracted fea-

tures results in better transcription quality when compared to using MFCCs and an

approach proposed in LVT system [58], which is one of the latest VPT systems de-

scribed in the literature. We have also shown that DNN classifiers based on the same

CAE architectures we used for feature extraction cannot generalize well over a diverse

set of amateur vocal imitations of percussive sounds and that they perform worse than

k-NN classifiers trained on a smaller but more specific dataset. Moreover, we demon-

strated that using a small dataset of a single person’s imitations for classifier training

is significantly better than using a joint dataset of imitations produced by several peo-

ple when transcribing recordings by this particular person. This shows that a practical

39

Chapter 5. Conclusion 40

VPT method should necessarily be adaptable for a particular individual user.

However, we also found out that our approach to language model integration is

detrimental to transcription accuracy. We present evidence that rhythmic irregularities

in amateur vocal percussion are the major contributing factor to this because due to

them our straightforward approach to beat alignment based on global tempo estimation

produces semantically incorrect alignments. We find that errors in onset detection are

also likely to sabotage the performance of the language model, and therefore conclude

that our proposed approach of language model integration is too sensitive to errors

produced by other parts of the analysis pipeline to be practical.

To the best of our knowledge, this is the first study on vocal percussion transcription

which features deep learning techniques and is also the first study on the application of

language modelling to VPT. It is also the first study on VPT which utilizes AVP dataset

for training and evaluation. Moreover, since, to the best of our knowledge, all the ex-

isting systems for VPT have been implemented as standalone applications or plugins

for digital audio workstations (such as Ableton Live), this project is possibly the first

project on vocal percussion transcription which is implemented entirely in Python us-

ing popular open-source libraries. We make our code open source1 for reproducibility

and to help future research in the field to be built upon our efforts.

5.2 Future work

The primary direction of future work is fixing the method of language model adaptation

so that it actually improves the transcription quality. Most importantly, naive rhythm

quantization method based only on a global tempo estimate should be replaced with

a more robust approach, which accounts for tempo variations and onset timing errors,

such as metric HMM [48, 47]. Furthermore, to mitigate the negative impact of errors

in onset detection, a probabilistic approach to onset detection can be considered (such

as [6], so that onset detection, quantization and classification steps can be combined in

a joint probabilistic model. And, certainly, different types of language models trained

on different MIDI datasets should be compared.

Besides, further modifications to the architecture and training process of CAEs

might be considered to improve the feature extraction quality further. Variational au-

toencoders, especially with non-Gaussian priors [50, 75], might be a promising re-

search direction.

1https://github.com/flyingleafe/vxs-vpt

https://github.com/flyingleafe/vxs-vpt

Bibliography

[1] 200 drum machines. http://www.hexawe.net/mess/200.Drum.Machines/.

Accessed: 2020-01-06.

[2] beatboxset1. https://archive.org/details/beatboxset1. Accessed:

2020-01-06.

[3] Polyphone soundfont editor. https://www.polyphone-soundfonts.com/.

Accessed: August of 2020.

[4] Vocal grammatics. http://www.vocalgrammatics.fr/. Accessed: 2020-08-

20.

[5] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: A system for large-scale machine learning. In 12th {USENIX} sym-

posium on operating systems design and implementation ({OSDI} 16), pages

265–283, 2016.

[6] Samer A Abdallah and Mark D Plumbley. Probability as metadata: event detec-

tion in music using ica as a conditional density model. In Proc. 4th Int. Symp.

Independent Component Analysis and Signal Separation (ICA2003), pages 233–

238. Citeseer, 2003.

[7] E Aylon and N Wack. Beat detection using plp. Music Inf. Retrieval Evaluation

eXchange (MIREX), 2010.

[8] Douglas Bates, Deepayan Sarkar, Maintainer Douglas Bates, and L Matrix. The

lme4 package. R package version, 2(1):74, 2007.

[9] Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris Duxbury, Mike Davies,

and Mark B Sandler. A tutorial on onset detection in music signals. IEEE Trans-

actions on speech and audio processing, 13(5):1035–1047, 2005.

41

http://www.hexawe.net/mess/200.Drum.Machines/
https://archive.org/details/beatboxset1
https://www.polyphone-soundfonts.com/
http://www.vocalgrammatics.fr/

Bibliography 42

[10] Juan Pablo Bello, Chris Duxbury, Mike Davies, and Mark Sandler. On the use

of phase and energy for musical onset detection in the complex domain. IEEE

Signal Processing Letters, 11(6):553–556, 2004.

[11] Emmanouil Benetos, Simon Dixon, Zhiyao Duan, and Sebastian Ewert. Au-

tomatic music transcription: An overview. IEEE Signal Processing Magazine,

36(1):20–30, 2018.

[12] Sebastian Böck, Andreas Arzt, Florian Krebs, and Markus Schedl. Online real-

time onset detection with recurrent neural networks. In Proceedings of the 15th

International Conference on Digital Audio Effects (DAFx-12), York, UK, 2012.

[13] Sebastian Böck, Florian Krebs, and Gerhard Widmer. Accurate tempo estimation

based on recurrent neural networks and resonating comb filters. In ISMIR, pages

625–631, 2015.

[14] Sebastian Böck and Gerhard Widmer. Maximum filter vibrato suppression for

onset detection. In Proc. of the 16th Int. Conf. on Digital Audio Effects (DAFx).

Maynooth, Ireland (Sept 2013), volume 7, 2013.

[15] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Model-

ing temporal dependencies in high-dimensional sequences: Application to poly-

phonic music generation and transcription. arXiv preprint arXiv:1206.6392,

2012.

[16] Paul Brossier. Aubio, a library for audio labelling. https://aubio.org/. Ac-

cessed: April of 2020.

[17] Mark Cartwright and Bryan Pardo. Vocalsketch: Vocally imitating audio con-

cepts. In Proceedings of the 33rd Annual ACM Conference on Human Factors in

Computing Systems, pages 43–46, 2015.

[18] Matthew EP Davies, Paul M Brossier, and Mark D Plumbley. Beat tracking

towards automatic musical accompaniment. In Audio Engineering Society Con-

vention 118. Audio Engineering Society, 2005.

[19] Alejandro Delgado, SKoT McDonald, Ning Xu, and Mark Sandler. A new dataset

for amateur vocal percussion analysis. In Proceedings of the 14th International

Audio Mostly Conference: A Journey in Sound on ZZZ, pages 17–23, 2019.

https://aubio.org/

Bibliography 43

[20] Christian Dittmar and Daniel Gärtner. Real-time transcription and separation of

drum recordings based on nmf decomposition. In DAFx, pages 187–194, 2014.

[21] Christian Dittmar and Christian Uhle. Further steps towards drum transcription

of polyphonic music. In Audio Engineering Society Convention 116. Audio En-

gineering Society, 2004.

[22] Simon Dixon. Automatic extraction of tempo and beat from expressive perfor-

mances. Journal of New Music Research, 30(1):39–58, 2001.

[23] Simon Dixon. Evaluation of the audio beat tracking system beatroot. Journal of

New Music Research, 36(1):39–50, 2007.

[24] Stephen Downie and Yun Hao. Mirex 2018 evaluation results, 2018.

[25] Chris Duxbury, Mark Sandler, and Mike Davies. A hybrid approach to musical

note onset detection. In Proc. Digital Audio Effects Conf.(DAFX,’02), pages 33–

38, 2002.

[26] Georgi Dzhambazov. Towards a drum transcription system aware of bar posi-

tion. In Audio Engineering Society Conference: 53rd International Conference:

Semantic Audio. Audio Engineering Society, 2014.

[27] Daniel PW Ellis. Beat tracking by dynamic programming. Journal of New Music

Research, 36(1):51–60, 2007.

[28] Solène Evain, Benjamin Lecouteux, Didier Schwab, Adrien Contesse, Antoine

Pinchaud, and Nathalie Bernardoni. Human beatbox sound recognition using an

automatic speech recognition toolkit. 2020.

[29] Olivier Gillet and Gaël Richard. Enst-drums: an extensive audio-visual database

for drum signals processing. In ISMIR, pages 156–159, 2006.

[30] Olivier Gillet and Gaël Richard. Transcription and separation of drum signals

from polyphonic music. IEEE Transactions on Audio, Speech, and Language

Processing, 16(3):529–540, 2008.

[31] Jon Gillick, Adam Roberts, Jesse Engel, Douglas Eck, and David Bamman.

Learning to groove with inverse sequence transformations. In International Con-

ference on Machine Learning (ICML), 2019.

Bibliography 44

[32] Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian Simon, Colin

Raffel, Jesse Engel, Sageev Oore, and Douglas Eck. Onsets and frames: Dual-

objective piano transcription. arXiv preprint arXiv:1710.11153, 2017.

[33] Amaury Hazan. Towards automatic transcription of expressive oral percussive

performances. In Proceedings of the 10th international conference on Intelligent

user interfaces, pages 296–298. ACM, 2005.

[34] Kyle Hipke, Michael Toomim, Rebecca Fiebrink, and James Fogarty. Beatbox:

end-user interactive definition and training of recognizers for percussive vocaliza-

tions. In Proceedings of the 2014 International Working Conference on Advanced

Visual Interfaces, pages 121–124, 2014.

[35] Ajay Kapur, Manj Benning, and George Tzanetakis. Query-by-beat-boxing: Mu-

sic retrieval for the dj. In Proceedings of the International Conference on Music

Information Retrieval, pages 170–177, 2004.

[36] Jong Wook Kim and Juan Pablo Bello. Adversarial learning for improved onsets

and frames music transcription. arXiv preprint arXiv:1906.08512, 2019.

[37] Nikolaos Kouiroukidis and Georgios Evangelidis. The effects of dimensionality

curse in high dimensional knn search. In 2011 15th Panhellenic Conference on

Informatics, pages 41–45. IEEE, 2011.

[38] Ke Li, Hainan Xu, Yiming Wang, Daniel Povey, and Sanjeev Khudanpur. Recur-

rent neural network language model adaptation for conversational speech recog-

nition. In Interspeech, pages 3373–3377, 2018.

[39] Robert C Maher and James W Beauchamp. Fundamental frequency estimation

of musical signals using a two-way mismatch procedure. The Journal of the

Acoustical Society of America, 95(4):2254–2263, 1994.

[40] Paul Masri. Computer modelling of sound for transformation and synthesis of

musical signals. PhD thesis, University of Bristol, 1996.

[41] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric

Battenberg, and Oriol Nieto. librosa: Audio and music signal analysis in python.

In Proceedings of the 14th python in science conference, volume 8, pages 18–25,

2015.

Bibliography 45

[42] Cory McKay, Rebecca Fiebrink, Daniel McEnnis, Beinan Li, and Ichiro Fuji-

naga. Ace: A framework for optimizing music classification. In ISMIR, pages

42–49, 2005.

[43] Adib Mehrabi, Keunwoo Choi, Simon Dixon, and Mark Sandler. Similarity

measures for vocal-based drum sample retrieval using deep convolutional auto-

encoders. In 2018 IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), pages 356–360. IEEE, 2018.

[44] Adib Mehrabi, Simon Dixon, and Mark B Sandler. Vocal imitation of synthe-

sised sounds varying in pitch, loudness and spectral centroid. The Journal of the

Acoustical Society of America, 141(2):783–796, 2017.

[45] Bertrand David Miguel Alonso and Gaël Richard. Tempo and beat estimation

of musical signals. In Proceedings of the International Conference on Music

Information Retrieval (ISMIR), Barcelona, Spain, 2004.

[46] Marius Miron, Matthew EP Davies, and Fabien Gouyon. An open-source drum

transcription system for pure data and max msp. In 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 221–225. IEEE,

2013.

[47] Eita Nakamura, Emmanouil Benetos, Kazuyoshi Yoshii, and Simon Dixon. To-

wards complete polyphonic music transcription: Integrating multi-pitch detection

and rhythm quantization. In 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 101–105. IEEE, 2018.

[48] Eita Nakamura, Kazuyoshi Yoshii, and Shigeki Sagayama. Rhythm transcrip-

tion of polyphonic piano music based on merged-output hmm for multiple

voices. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

25(4):794–806, 2017.

[49] Tomoyasu Nakano, Masataka Goto, Jun Ogata, and Yuzuru Hiraga. Voice drum-

mer: A music notation interface of drum sounds using voice percussion input. In

Proceedings of the 18th Annual ACM Symposium on User Interface Software and

Technology (UIST2005), pages 49–50, 2005.

[50] Eric Nalisnick, Lars Hertel, and Padhraic Smyth. Approximate inference for

deep latent gaussian mixtures. In NIPS Workshop on Bayesian Deep Learning,

volume 2, 2016.

Bibliography 46

[51] Jan Newmarch. Fluidsynth. In Linux Sound Programming, pages 351–353.

Springer, 2017.

[52] Jouni Paulus. Signal processing methods for drum transcription and music struc-

ture analysis. 2010.

[53] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the

Journal of machine Learning research, 12:2825–2830, 2011.

[54] Benjamin Picart, Sandrine Brognaux, and Stéphane Dupont. Analysis and auto-

matic recognition of human beatbox sounds: A comparative study. In 2015 IEEE

international conference on acoustics, speech and signal processing (ICASSP),

pages 4255–4259. IEEE, 2015.

[55] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,

Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,

et al. The kaldi speech recognition toolkit. In IEEE 2011 workshop on automatic

speech recognition and understanding, number CONF. IEEE Signal Processing

Society, 2011.

[56] Colin Raffel. Learning-based methods for comparing sequences, with applica-

tions to audio-to-midi alignment and matching. PhD thesis, Columbia University,

2016.

[57] Colin Raffel, Brian McFee, Eric J Humphrey, Justin Salamon, Oriol Nieto,

Dawen Liang, Daniel PW Ellis, and C Colin Raffel. mir eval: A transparent

implementation of common mir metrics. In In Proceedings of the 15th Inter-

national Society for Music Information Retrieval Conference, ISMIR. Citeseer,

2014.

[58] António Filipe Santana Ramires. Automatic transcription of vocalized percus-

sion. 2017.

[59] Sebastian Raschka. Mlxtend: providing machine learning and data science utili-

ties and extensions to python’s scientific computing stack. Journal of open source

software, 3(24):638, 2018.

Bibliography 47

[60] Dave Rossum and E Joint. The soundfont R© 2.0 file format. Joint E-Mu/Creative

Tech Center white paper, 1995.

[61] Vegard Sandvold, Fabien Gouyon, and Perfecto Herrera. Percussion classifi-

cation in polyphonic audio recordings using localized sound models. In Proc.

International Conference on Music Information Retrieval, pages 537–540. Cite-

seer, 2004.

[62] W Andrew Schloss. On the automatic transcription of percussive music–from

acoustic signal to high-level analysis. 1986.

[63] Jan Schlüter and Sebastian Böck. Improved musical onset detection with con-

volutional neural networks. In 2014 ieee international conference on acoustics,

speech and signal processing (icassp), pages 6979–6983. IEEE, 2014.

[64] Hendrik Schreiber and Meinard Müller. A single-step approach to musical tempo

estimation using a convolutional neural network. In Ismir, pages 98–105, 2018.

[65] Changhao Shan, Chao Weng, Guangsen Wang, Dan Su, Min Luo, Dong Yu, and

Lei Xie. Component fusion: Learning replaceable language model component for

end-to-end speech recognition system. In ICASSP 2019-2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5361–

5635. IEEE, 2019.

[66] Siddharth Sigtia, Emmanouil Benetos, Srikanth Cherla, Tillman Weyde,

A Garcez, and Simon Dixon. Rnn-based music language models for improving

automatic music transcription. 2014.

[67] Siddharth Sigtia, Emmanouil Benetos, and Simon Dixon. An end-to-end neural

network for polyphonic piano music transcription. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 24(5):927–939, 2016.

[68] Umut Şimşekli, Antti Jylhä, Cumhur Erkut, and A Taylan Cemgil. Real-time

recognition of percussive sounds by a model-based method. EURASIP Journal

on Advances in Signal Processing, 2011:1–14, 2011.

[69] Elliot Sinyor, Cory Mckay Rebecca, Daniel Mcennis, and Ichiro Fujinaga. Beat-

box classification using ace. In Proceedings of the International Conference on

Music Information Retrieval. Citeseer, 2005.

Bibliography 48

[70] Dan Stowell and Mark D Plumbley. Delayed decision-making in real-time beat-

box percussion classification. Journal of New Music Research, 39(3):203–213,

2010.

[71] Google Brain Team. Magenta. https://github.com/magenta/magenta. Ac-

cessed: November of 2018.

[72] Google Brain Team. Magenta drumsrnn. https://github.com/tensorflow/

magenta/tree/master/magenta/models/drums_rnn. Accessed: November

of 2018.

[73] Ernst Terhardt. Calculating virtual pitch. Hearing research, 1(2):155–182, 1979.

[74] Shubham Toshniwal, Anjuli Kannan, Chung-Cheng Chiu, Yonghui Wu, Tara N

Sainath, and Karen Livescu. A comparison of techniques for language model in-

tegration in encoder-decoder speech recognition. In 2018 IEEE spoken language

technology workshop (SLT), pages 369–375. IEEE, 2018.

[75] Dustin Tran, Rajesh Ranganath, and David M Blei. The variational gaussian

process. arXiv preprint arXiv:1511.06499, 2015.

[76] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo

Larochelle. Neural autoregressive distribution estimation. The Journal of Ma-

chine Learning Research, 17(1):7184–7220, 2016.

[77] Richard Vogl, Matthias Dorfer, Gerhard Widmer, and Peter Knees. Drum tran-

scription via joint beat and drum modeling using convolutional recurrent neural

networks. In ISMIR, pages 150–157, 2017.

[78] Richard Vogl, Gerhard Widmer, and Peter Knees. Towards multi-instrument

drum transcription. arXiv preprint arXiv:1806.06676, 2018.

[79] Qi Wang, Ruohua Zhou, and Yonghong Yan. Polyphonic piano transcription with

a note-based music language model. Applied Sciences, 8(3):470, 2018.

[80] Chih-Wei Wu, Christian Dittmar, Carl Southall, Richard Vogl, Gerhard Widmer,

Jason Hockman, Meinard Müller, and Alexander Lerch. A review of automatic

drum transcription. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 26(9):1457–1483, 2018.

https://github.com/magenta/magenta
https://github.com/tensorflow/magenta/tree/master/magenta/models/drums_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/drums_rnn

Bibliography 49

[81] Adrien Ycart, Andrew McLeod, Emmanouil Benetos, Kazuyoshi Yoshii, et al.

Blending acoustic and language model predictions for automatic music transcrip-

tion. 2019.

[82] Kazuyoshi Yoshii, Masataka Goto, and Hiroshi G Okuno. Drum sound recog-

nition for polyphonic audio signals by adaptation and matching of spectrogram

templates with harmonic structure suppression. IEEE Transactions on Audio,

Speech, and Language Processing, 15(1):333–345, 2006.

[83] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Kershaw, Xun-

ying Liu, Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, et al. The htk

book. Cambridge university engineering department, 3(175):12, 2002.

[84] Aymeric Zils, François Pachet, Olivier Delerue, and Fabien Gouyon. Automatic

extraction of drum tracks from polyphonic music signals. In Second International

Conference on Web Delivering of Music, 2002. WEDELMUSIC 2002. Proceed-

ings., pages 179–183. IEEE, 2002.

Appendix A

Replication of Mehrabi’s results

In order to make sure that no significant mistakes were done during the reimplemen-

tation of CAEs proposed by Mehrabi et al., we partially replicate the experiments de-

scribed in their paper. Those experiments aimed to analyze how good the distances

between feature representations of real drum sounds and their imitations predict sim-

ilarity ratings between pairs of sounds collected from human listeners. We use the

same drum sounds, vocal imitations and rating scores as in the original paper, since

the authors made their dataset public. The dataset contains 30 real drum sounds of six

classes (kicks, snares, toms, hats and cymbals) and vocal imitations of those sounds

produced by 14 different imitators (420 imitations in total).

The similarity ratings between imitations and real sounds were collected from 63

listeners using the following procedure. Each listener was presented with 30 test pages,

each page containing a reference vocal imitation and six within-class real drum sounds,

one of which is the imitated sound. The listeners then assigned ratings from 0 to 100

to each of the six real sounds based on their perceived similarity to the reference vocal

imitation. Among 30 test pages, 28 were unique and 2 were random duplicates. The

duplicate pages were used in order to filter out unreliable listeners. The listener was

considered reliable if for at least one pair of duplicate pages their responses shown

large positive Spearman rank correlation (ρ ≥ 0.5). We performed this procedure for

filtering out unreliable listeners and determined that 51 out of 63 listeners were reliable,

same as reported by Mehrabi et al. However, we notice that we obtained a different

number of non-duplicate ratings from those listeners than was reported in the original

paper: 9087 vs expected 9126.

The deep feature representations obtained by 11 different types of CAEs as de-

scribed in Section 3.2.3.2 were then calculated for all sounds in the dataset. Addi-

50

Appendix A. Replication of Mehrabi’s results 51

tionally, we calculated one of the baseline feature representations used in the original

paper. It is obtained by calculating first 13 MFCCs (excluding MFCC 0) with first and

second derivatives for the whole sound using window size of 4096 and hop size of 512.

Mean and variance of those features are then calculated over the time axis, yielding 78

features in total. Moreover, in order to gain insight on how good our baseline feature

set of 20 MFCCs over the first 4096 samples of the sound is in terms of perceptional

similarity, we also calculated those.

Type Size
Original Replicated

AIC Acc. (%) AIC Acc. (%)

square-1 2048 1820 73.3 63 90.0

square-2 512 1925 66.7 14 90.0

square-3 128 1958 66.7 -32 90.0

tall-1 1024 1609 73.3 -110 90.0
tall-2 512 1647 70.0 -6 86.7

tall-3 256 2361 63.3 118 83.3

tall-4 128 2523 56.7 23 83.3

wide-1 1024 1921 66.7 -50 90.0
wide-2 512 1866 73.3 26 90.0

wide-3 256 1395 83.3 70 80.0

wide-4 128 1298 83.3 18 80.0

MFCC (orig.) 78 2703 53.3 1544 30.0

MFCC (short) 20 — — 1259 66.7

Table A.1: Comparison of original LMER fitting results to replicated ones. Lower AIC is

better, higher accuracy is better.

For each feature set, Euclidean distances between feature representation of real and

imitated sounds were then calculated for each real/imitated pair of within-class sounds,

yielding 2520 distances. Those distances were normalized to the interval (0,1) and

then used as features for fitting a linear mixed-effect regression (LMER) model for

predicting similarity ratings reported by listeners (which we also normalized to (0,1)).

The model is given by a formula:

yi jk = ν j +β1 jxi j + γk + εi jk, (A.1)

Appendix A. Replication of Mehrabi’s results 52

where yi jk is the similarity rating between imitation i and imitated sound j provided

by listener k, xi j is the distance between i and j, ν j and β1 j are fixed intercept and

slope parameters different for each imitated sound j and γk is a random intercept for

listener k. This model can be interpreted as 30 different linear regression models for

each sound which also share a random intercept shift which depends on a listener.

We fitted those models using lme4 R package [8]. The quality of fitted models was

evaluated using two metrics: Akaike’s information criterion (AIC) and the percentage

of the slopes β1 j which are reliably negative, i.e. indicate that the similarity rating is

decreasing with increasing distance. The latter was denoted as accuracy and computed

via obtaining Wald’s 95% confidence intervals on slopes and calculating the portion of

upper confidence bounds which is less than zero.

The results of the replication are summarized in Table A.1. We notice that AICs

obtained by us are significantly lower than the original ones in general. This might

be due to imprecise interpretation of LMER model structure by us, or due to different

rating scaling (Mehrabi et al never mentioned that they scaled the ratings to [0,1],

but we noticed that having ratings in range from 0 to 100 leads to AIC values larger

than 80000; however, scaling had no effect on the accuracy). In any case, however,

it shows that the direct one-to-one comparison between the original and replicated

results may be meaningless. However, we can still compare the results based on how

scores of individual features relate to each other. For example, we notice that the

discrepancy between performances of the baseline and CAE features is even stronger

in our results than in the original report: the accuracy we obtain with original MFCC-

based features is significantly lower than the original one, but the accuracies obtained

by CAE features are consistently higher than original. We also do not see the clear

pattern of performance increasing with the decreasing size of wide autoencoders: in our

case, in general, accuracy is decreasing with the decreasing of feature representation

size, and the behavior of AIC metric does not exhibit any clear pattern. This prevents

us from supporting the conclusion that for wide autoencoders the quality of extracted

feature representations grows with the decrease of their size.

We also notice that our simple baseline feature set of 20 MFCCs performs better

than the original MFCC-based baseline. Nevertheless, it still performs worse than any

CAE feature set in our experiments. Therefore, even though our results differ from

the original ones and do not support some of the original conclusions, the general (and

the most important) conclusion — namely, the superiority of CAE features to MFCC

features in terms of perceptual similarity preservation — definitely holds. Since this

Appendix A. Replication of Mehrabi’s results 53

conclusion is our primary motivation for using CAE features for vocal percussion tran-

scription, we can proceed with the application of those features to the actual transcrip-

tion task.

	Introduction
	Background and Related Work
	Music Information Retrieval
	Onset detection
	Tempo estimation

	Automatic Music Transcription
	MLMs for automatic music transcription
	Drum Transcription

	Vocal Percussion Transcription
	Classification-only
	Segment-and-classify
	Speech-recognition-like
	Conclusion

	Methodology and Implementation
	Proposed approach
	Research hypotheses
	System architecture

	Implementation
	Onset detection and segmentation
	Tempo estimation and beat alignment
	Feature extraction
	Segments classification
	Language model

	Data for system evaluation
	Amateur Vocal Percussion Dataset
	Synthesized data

	Training of deep models
	CAE feature extractors
	DNN classifiers

	Evaluation and Discussion
	Onset detection
	Model and feature selection for classification
	k-NN classification
	DNN classifiers validation
	Discussion

	Transcription of AVP dataset
	Experiments
	Discussion

	Influence of the language model
	Experiments
	Discussion

	Conclusion
	Summary
	Future work

	Bibliography
	Replication of Mehrabi's results

