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Abstract

Single-cell RNA-sequencing (scRNA-seq) has made it possible to identify rare cell

subpopulations in tissues by revealing the heterogeneity in gene expression between

individual cells. In this dissertation, we analyse single-cell datasets from the develop-

ing mouse brain cortex for two continuous embryonic days, E13 and E14. Our aim is

to identify novel subpopulations of cells that change their identity and function after

a mutation of the Pax6 gene. We refer to these cells as ectopic and utilise machine

learning techniques to identify them. Firstly, we explore methods for clustering ec-

topic cells that result in better separation of cell types in E14 than that obtained by the

baseline single-cell analysis pipeline. We demonstrate that autoencoder neural network

models that simultaneously perform dimensionality reduction and clustering achieve

this goal. Secondly, we infer ectopic expression in E13 by utilising prior knowledge

from E14. We identify differentially expressed genes that highly correlate with known

ectopic genes and create a pipeline to automatically assign cells to specific cell types.

We show that a Random Forest classifier trained on E14 can predict ectopic cells on

E13, but the evaluation and interpretation of results is challenging. Finally, we discuss

limitations of the current approaches and propose promising future directions for more

accurate identification of ectopic cells.
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Chapter 1

Introduction

1.1 Single-cell RNA-sequencing analysis

Single-cell RNA-sequencing (scRNA-seq) is a recent sequencing technology used to

extract the expression values of each gene across a population that consists of thou-

sands or millions of cells. As opposed to bulk RNA-seq, which provides an average

expression profile of all cells in the population, single-cell RNA-seq examines and

captures the heterogeneity that is present in gene expression values within single cells,

even for cells of the same cell type [Abdelaal et al., 2019]. It has revolutionised the

understanding of the expression profiles of single cells at an exceptional resolution and

provides better insights for the function of a single cell [Eberwine et al., 2014].

Since scRNA-seq emerged, it has been used to address multiple biological ques-

tions and various applications have become possible. Examples include inferring the

developmental trajectory of cells [Saelens et al., 2019], studying intratumour hetero-

geneity in cancers [Lawson et al., 2018] and inference of gene regulatory networks

[Pratapa et al., 2020] among others. One of the most significant applications of scRNA-

seq is the identification of cell types that are present in complex tissues such as the brain

[Regev et al., 2017], resulting in detection of rare or novel subpopulations that would

otherwise remain obscure.

Given the vast increase in the size and availability of single-cell datasets, machine

learning techniques become vital for identifying patterns automatically and extracting

insights. Most single-cell datasets do not have any ground truth label annotations for

the cells, with the exception of a few well-known curated datasets that are used in the

literature. Depending on the presence or absence of cell type labels, machine learning

is used to identify cell types in an unsupervised or a supervised manner. In cases where

1



Chapter 1. Introduction 2

cell type labels are present, either from manual or automatic annotation, cell type labels

can be predicted with classifiers. In an unsupervised setting, cells can be clustered in

a low dimensional space and cell types can be identified based on high expression of

marker genes in each cluster, as in [Ntranos et al., 2016] and [Lin et al., 2017].

This dissertation primarily investigates an unsupervised approach for cell type

identification from scRNA-seq data, due to the absence of true cell type labels in the

given datasets. After creating a cell type annotation pipeline, a supervised approach is

also examined based on prior biological knowledge for the available cell types. The

single-cell datasets we are using were provided by the collaborating Center for Dis-

covery Brain Sciences (CDBS) at the University of Edinburgh. These cells originate

from the developing mouse brain cortex for two subsequent embryonic days (days 13

and 14, referred to as E13 and E14 respectively). The Pax6 gene, a major transcription

factor in the brain, regulates the expression of other genes during brain development

and determines the identity of cells in the developing cortex. Researchers at CDBS,

after inactivating the function of Pax6 which causes a mutation in the embryonic brain,

noticed the appearance of new cell subpopulations with abnormal gene expression in

E14, referred to as ectopic.

1.2 Hypothesis and objectives

This research builds upon the hypothesis that there is an ectopic subpopulation of cells

in E13, but its expression signal is not as strong as in E14. We investigate machine

learning techniques to use the prior knowledge obtained by CDBS about ectopic cells

in E14 in order to infer which cells are ectopic in E13. While there are multiple di-

rections to approach this problem, this dissertation focuses on answering the following

objectives:

1. Which genes are more likely to have ectopic expression? How can we best assign

cell types to cells of E14?

2. Following the standard clustering approach of single-cell RNA-seq analysis, can

we use deep neural network methods to obtain a better separation of cells in

E14?

3. What insights can we derive from E14 to help us predict ectopic cells in E13?

https://www.ed.ac.uk/discovery-brain-sciences
https://www.ed.ac.uk/discovery-brain-sciences
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1.3 Dissertation structure

The dissertation is structured in three main chapters. Chapter 2 gives an overview

of single-cell RNA-seq analysis, its challenges regarding cell type identification and

describes the methods that will be used throughout the dissertation. Chapter 3 provides

a description of the mouse brain datasets that were used and the single-cell RNA-seq

analysis pipeline in order to retain high quality cells and discard as much biological

and technical noise as possible. The preprocessed datasets are then used in Chapter

4, which covers the sequence of experiments performed with the goal of identifying

ectopic cell subpopulations.

Finally, Chapter 5 discusses the conclusions from the experiments and the results

obtained from Chapter 4, as well as limitations encountered and potential directions

for future work. Additional material can be found in the Appendix, including analy-

sis plots and tables containing all the genes related to each cell type found from the

experiments.



Chapter 2

Background

2.1 Single-cell RNA-sequencing analysis

scRNA-seq is a powerful technology that enables the measurement of the expression

values for each gene across a population of thousands or millions of cells. It produces

an estimate of abundance of mRNA molecules expressed in each cell and provides

information about the function of a cell, and subsequently cell types and cell states, at a

higher resolution. Given the highly heterogeneous nature of gene expression, scRNA-

seq makes it possible to identify rare subpopulations of cells, which would otherwise

remain unobserved [Buettner et al., 2015a].

The first mRNA sequencing at the single-cell level was introduced by Tang et al.

[2009], but it has recently received more attention due to a sudden increase in the

size and availability of single-cell datasets. This resulted in the development of better

pipelines for single-cell analysis and more advanced computational methods. Prior to

scRNA-seq, cell populations were sequenced in bulk, a process known as bulk RNA-

seq, which would only give an average estimate of the expression profiles of cells,

treating the cell population as homogeneous and subsequently masking the cellular

heterogeneity. On the other hand, scRNA-seq can reveal the heterogeneity of a sample

tissue by identifying distinct and rare subpopulations of cells, allowing to study gene

expression variability between these subpopulations.

Following is a brief description of the single-cell data generation process from

biological samples. Initially, the sample tissue from the organism of interest is di-

gested with the usage of specific enzymes (single-cell dissociation) and a single-cell

suspension is formed in order to capture individual cells. Single cells are then isolated

(single-cell isolation) and specific chemicals cut the cell membranes to capture the

4



Chapter 2. Background 5

mRNA in each cell, reverse-transcribe to cDNA and amplify it (library construction).

Usually, captured mRNA molecules are labeled with a Unique Molecular Identifier

(UMI) [Liu and Trapnell, 2016], which helps to reduce the bias effects from the PCR1

amplification process. This way, the mRNA molecules that have the same UMI are

supposed to be extracted from the same input molecule. A more detailed description

of the experimental design process can be found in Ziegenhain et al. [2017] and Mereu

et al. [2020].

scRNA-seq analysis has seen an exponential growth in the availability of tools dur-

ing the recent years. More and more computational methods and frameworks are con-

stantly being developed and added to current pipelines, allowing for tailored methods

for various single-cell datasets. Single-cell RNA-seq analysis is mainly supported by

packages in R and Python, the most popular ones being the following: Seurat [Stuart

et al., 2019], Monocle [Satija et al., 2015], Scater [McCarthy et al., 2017], Scran [Lun

et al., 2016] (in R) and Scanpy [Wolf et al., 2018], [Buettner et al., 2015b] (in Python).

These frameworks cover wide parts of the analysis pipeline, are well-documented and

provide detailed tutorials with well-annotated datasets.

2.1.1 Challenges in single-cell RNA-sequencing

Despite the rapid progress in the single-cell genomics field, there are still fundamental

biological and computational challenges that need to be addressed. Most of them result

from the high-dimensional and sparse nature of single-cell data, stored as gene expres-

sion matrices. Recently, the number of cells assayed by the sequencing technologies

has increased from thousands to millions, resulting in high-dimensional single-cell

datasets that require more computational power for processing and analysis, hence

more efficient computational methods are constantly in demand [Lähnemann et al.,

2020].

To describe one of the major challenges in single-cell analysis, the high degree

of sparsity in single-cell datasets, we briefly explain the morphology of single-cell

gene expression matrices. A gene expression matrix X contains G genes and N cells,

where each value Xi j indicates the expression value of a gene j in cell i. The expres-

sion matrix is also known as the count matrix, as each expression value represents

the count of captured, reverse-transcribed, amplified and sequenced mRNA molecule.

Count matrices suffer from a high number of dropouts, or high sparsity, where the read

1Polymerase chain reaction (PCR) is a method used to make millions or billions of copies from a
specific DNA sample so it can be studied in more detail.

https://satijalab.org/seurat/
http://cole-trapnell-lab.github.io/monocle-release/
https://rdrr.io/bioc/scater/
https://bioconductor.org/packages/release/bioc/html/scran.html
https://scanpy.readthedocs.io/en/stable/
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molecule counts are not captured and therefore many transcripts display zero counts in

every cell. Dropouts can happen due to a low sequencing depth (that is, the number of

unique transcripts detected in each cell), meaning the low-expressed transcripts might

not be recorded even if they are present.

Besides the challenges that emerge from the biological nature of single-cell datasets,

technical issues might also obscure gene expression patterns that we are interested in

identifying. Different lab experiments and conditions in which single-cell datasets are

created or different sequencing machines can have a significant impact on the repro-

ducibility of the results. These differences, also known as batch effects, need to be

resolved in order to gain confidence in the resulting statistical conclusions [Kiselev

et al., 2019].

The aforementioned challenges can exacerbate the biological interpretation of the

results, which is a difficult task on its own even without the presence of these is-

sues. High unwanted cell-to-cell variability driven by biological and technical factors

might limit the interpretability of generated clusters of cells and can hinder important

gene expression signals that would otherwise reveal rare subpopulations of cells [Hicks

et al., 2018, Vallejos et al., 2017].

One of the biggest challenges in scRNA-seq is the inability of interpreting results

and defining whether a model performs well. The lack of ground truth labels regarding

cell identities in scRNA-seq data makes it hard to determine whether computational

methods perform well on a specific dataset.

Finally, even though some methods from bulk RNA-seq can successfully be applied

to scRNA-seq, most of them have to be adapted to the specific properties of single-cell

data. Considering that scRNA-seq is an emerging field, most computational methods

were established after 2014 and many more are constantly under development, putting

a burden in the effort of standardisation and usability of the methods [Luecken and

Theis, 2019].

2.2 Differential Expression Analysis

Differential expression (DE) analysis is a series of statistical tests performed between

two different cell populations. DE aims to find a subset of genes that are highly

expressed between groups of interest, signifying whether the difference in gene ex-

pression profiles between the populations is statistically significant. Differentially ex-

pressed genes found by the analysis that are specific in each cluster are referred to
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as marker genes, allowing us to characterise a cluster with a cell type identity and

determine the factors of heterogeneity between clusters.

DE analysis algorithms identify differences in expression profiles between clusters

and create a ranked list of the top n highly expressed genes for each cluster. Different

methods can be used for ranking, such as pairwise t-test, Wilcoxon rank-sum test and

logistic regression. For our analysis in Sections 4.1.2 and 4.3.2 we use the Wilcoxon

rank-sum test [Hollander et al., 2013], which tests whether two samples come from the

same distribution.

2.3 Dimensionality reduction

Single-cell RNA-seq datasets provide information about the expression profile of sin-

gle cells across multiple genes. Each gene represents a dimension of the data, however

not all genes based on their expression profiles are important for further analyses, due

to sensitivity of the clustering algorithms on high dimensional data. Moreover, high

dimensionality sets boundaries to many other statistical analyses due to computational

limitations of the mathematical operations on large gene expression matrices.

Dimensionality reduction is a common technique employed in single-cell analysis,

aiming to reduce the numbers of dimensions in the data while retaining the underlying

biological structure of the data as much as possible. Inherently, the expression profiles

of single cells are low-dimensional, since there are many correlations between genes,

so they can be described by fewer dimensions. Another objective for reducing the high

dimensionality of single-cell datasets is for visualisation purposes. By reducing the

dimensions to only two or three, we can obtain a visual representation of the cellular

space and its underlying topology.

Dimensions of single-cell datasets can be reduced by either linear or non-linear

projections of gene expression vectors. Depending on the approach, we can obtain a

different representation of the reduced dimensionality of the data. Non-linear meth-

ods are more flexible at capturing the structure of the data in a smaller number of

dimensions compared to linear methods. However, the latter are more widely used in

scRNA-seq analysis, occasionally as a preceding step prior to non-linear methods.

In the following subsections we describe three dimensionality reduction techniques

based on different transformations: i) PCA, one of the most prevalent linear dimen-

sionality reduction methods, ii) UMAP [McInnes et al., 2018], a non-linear method

that has recently gained popularity in single-cell analysis, and iii) autoencoders, arti-
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ficial neural networks which can be linear or non-linear depending on the activation

function.

2.3.1 PCA

Principal Component Analysis (PCA) [Hotelling, 1933] is a linear dimensionality re-

duction technique that projects the points of a high dimensional space into a lower

dimensional space, by finding directions in the data space that maximise the variance

of each dimension, while retaining as much information as possible. The data is trans-

formed into a new coordinate system, where the first coordinate (first principal compo-

nent) retains the greatest variance of the data, the second coordinate retains the second

greatest variance and so on. The principal components are ranked by variance and the

top k are selected as a lower-dimensionality projection of the initial dimensions.

2.3.2 UMAP

UMAP (Uniform Manifold Approximation and Projection) is a non-linear, nearest

neighbour based graph method for dimensionality reduction that was recently pub-

lished by McInnes et al. [2018].

Given the original input data X = {x1,x2, . . . ,xn}, UMAP constructs a k-nearest-

neighbours graph with weighted edges. For each datapoint xi, its k nearest neighbours

are calculated using a dissimilarity metric d resulting in a set of points {xi1, ...,xik}.
Then for each vertex, after the graph is constructed, weights are added to each edge:

w(X)
i

(
xi,x j

)
= exp

(
−

max(0,d(xi,x j))−ρi

σi

)
, (2.1)

where ρ is the distance to the nearest neighbour and σ is the diameter of the neigh-

bourhood. Similarly, the graph and weights matrix for a lower dimensional repre-

sentation Y is also constructed and the distance between the two weight matrices is

computed using cross-entropy. Finally, the lower dimensional representation of the

data X is given by minimising this distance using gradient descent.

UMAP and t-SNE (t-distributed Stochastic Neighbor Embedding), also a non-

linear manifold-learning method published by Maaten and Hinton [2008], have been

used extensively for dimensionality reduction and visualisation of scRNA-seq data.

While t-SNE focuses more on the local structure of the data, resulting in being over-

confident about cell similarities and differences between cell populations, UMAP pre-
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serves a more global structure and can efficiently be computed on large datasets [Becht

et al., 2018].

2.3.3 Autoencoder

An autoencoder is a neural network that learns a lower-dimensional representation

(embedding) of an input vector x in an unsupervised manner, usually for dimension-

ality reduction purposes [Goodfellow et al., 2016]. It is defined mathematically as a

non-linear mapping h of the original input x to a lower-dimensional feature represen-

tation, such that h = f (x).
Autoencoders consist of two main parts: an encoder, that compresses the original

input to a latent space of lower dimensions, and a decoder that reconstructs x from

the lower-dimensional embedding, so that the reconstructed output x̂ is as similar as

possible to x. The network is trained to minimise the reconstruction error L(x, x̂), in

most cases being the squared loss, in order to reconstruct the original input and at the

same time to avoid replicating it.

2.4 Unsupervised representation learning

Unsupervised representation learning refers to learning low-dimensional feature rep-

resentations from unlabelled high-dimensional data. Here we refer to models that per-

form unsupervised representation learning and clustering on the reduced latent space

at the same time.

DEC Xie et al. [2016] developed Deep Embedded Clustering (DEC) to learn a lower-

dimensional representation of the initial features with deep learning and at the same

time to perform clustering on the lower-dimensional embedding. Let X be the ini-

tial high-dimensional space and Z the lower-dimensional latent feature space resulting

from X through a non-linear mapping fθ : X → Z, parametrizing the learnable param-

eters θ with deep neural networks. DEC initialises the parameters θ and the k initial

cluster centroids
{

µ j
}k

j=1 with a deep autoencoder and iteratively clusters the data

points of the latent feature space Z.

Tian et al. [2019] extended DEC to specifically model single-cell RNA-seq data by

utilising the Zero Inflated Negative Binomial (ZINB) distribution, in a model referred

to as scDeepCluster, which we experiment with in Section 4.2.
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scDeepCluster scDeepCluster simultaneously projects the high-dimensional fea-

ture (gene) space into a lower dimensional latent space while optimising clustering.

It leverages the count nature of the gene expression matrix with a negative binomial

distribution, which is widely used for single-cell data since it models discrete overdis-

persed data (mRNA molecule counts). Therefore, it models directly the count data

through a zero-inflated negative binomial (ZINB) loss function, which replaces the

typical mean square error (MSE) in autoencoders.

Figure 2.1: The architecture of scDeepCluster [Tian et al., 2019], which comprises of the

encoder and decoder neural networks. # genes is the initial dimensionality of the single-cell

datasets and the number on top of each layer indicates the number of units in each layer. The

bottleneck size is 32.

Let X be the initial gene expression matrix of raw counts. A denoising technique

is introduced to slightly corrupt the input with random Gaussian noise ε, such that

Xcorrupt = X + ε , in order to prevent the autoencoder from memorising X and also to

enable generalisability. The autoencoder has integrated noise in every layer, as can be

seen from Figure 2.1, and is trained to minimise the loss function L(X ,gW ′( fW (Xcorrupt ))),

where fW (Xcorrupt ) is the encoder function and gW ′( fW (Xcorrupt )) the decoder function

with learned weights W and W ′ respectively.

The lower-dimensional representation of the genes is learned with a ZINB model-

based autoencoder, its loss being the ZINB distribution likelihood, which is defined

as:
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ZINB(X | π,µ,θ) = πδ0 (X)+(1−π)NB(X | µ,θ) ,where

NB(X | µ,θ) = Γ(X+θ)
X!Γ(θ)

(
θ

θ+µ

)θ( µ
θ+µ

)X
(2.2)

and µ, θ and π are the parameters of the ZINB model-based autoencoder represent-

ing the mean and dispersion of NB distribution and the probability of dropouts. The

fully connected layers Mean, Dispersion and Dropout are appended to the last layer

of the decoder, which represent estimations of the parameters µ, θ and π. Therefore,

the loss function of the autoencoder is the negative log likelihood of the ZINB model:

LZINB =− log(ZINB(X | π,µ,θ))
After learning a lower-dimensional representation of the genes with the ZINB

model, cells are clustered in this latent space using the Kullback-Leibler (KL) diver-

gence clustering loss as in DEC, which measures how two distributions P and Q differ.

The clustering loss is then defined as:

Lc = KL(P‖Q) = ∑
i

∑
j

pi j log
pi j

qi j
(2.3)

where qi defines the similarity between the embedded point and the cluster center

and pi is the target distribution. Finally, the loss function of the ZINB model-based au-

toencoder comprises of the ZINB loss and the clustering loss with a positive coefficient

γ accounting for the relative weights of both losses:

L = LZINB + γLc (2.4)

2.5 Clustering

Clustering is an unsupervised machine learning technique that is extensively used in

single-cell analysis after preprocessing the datasets, in order to group cells based on

the similarity of their gene expression profiles which can be computed with distance

metrics, including Euclidean, Hamming or Mahalanobis distance, cosine similarity or

correlation metrics.

Clustering is utilised to extract biological insights about the cell types that represent

each group of cells, hence inferring the identity of each single cell. However, due

to the high dimensionality of the data, that is, the large number of genes in a gene

expression matrix, distance metrics between cells do not perform well since cells have
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shorter distances between them, resulting in a poor identification of distinct clusters.

For this reason, clustering is usually performed on a reduced set of features (genes)

using feature selection and dimensionality reduction techniques to help towards noise

reduction.

Kiselev et al. [2019] provide an extensive overview of the most prominent clus-

tering methods for single-cell RNA-seq analysis, along with the challenges and lim-

itations involved that make the biological characterisation of the identified clusters

a difficult problem. Here we describe the two main clustering algorithms, K-Means

[Lloyd, 1982] and Leiden [Traag et al., 2019].

K-Means K-Means is initialised by manually selecting k centroids for k clusters,

where each cell is assigned to its nearest centroid. Then new centroids are assigned

by calculating the mean of all cells that were assigned to previous centroids. K-Means

computes the difference of the old and new centroids until it becomes too small.

Leiden Leiden is a community detection algorithm that has been proposed for

single-cell clustering by Levine et al. [2015]. It initially starts from a partition of single

cell communities and then moves the cell nodes from one community to the other by

refining the partitions. A network is then created from the refined partition and the

non-refined partition is used as an initial partition for the network. Leiden moves the

nodes in the network and stops when there are no improvements in the clusters.

2.6 Evaluation metrics

This section describes the evaluation metrics used to assess the obtained clusters of

the bottleneck layer of the autoencoder in Section 4.2: Purity, Normalized Mutual

Information (NMI) [Strehl and Ghosh, 2002] and Adjusted Rand Index (ARI) [Hubert

and Arabie, 1985]. These metrics are calculated between the true labels (cell type

annotations from Section 4.1.3) and the obtained clusters. Moreover, the evaluation of

the classifiers’ performance in Section 4.3.1 is performed by calculating the Accuracy

and Macro F1-Score on the entire single-cell dataset using 3-fold cross-validation.

Purity Purity assigns the most frequent class to each cluster and evaluates the as-

signment by counting the points that are assigned correctly. Let A = {a1, ...ak} the

set containing the clusters and B = b1, ...bi the set of different classes. Purity is then

defined as:
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Purity(A,B) =
1
N ∑

k
max

j

∣∣ak∩b j
∣∣ (2.5)

It takes values between 0 and 1, with 1 representing perfect clustering and values

close to 0 poor clustering purity.

Normalized Mutual Information (NMI) Given the obtained clustering labels and

the true labels, as mentioned above, the Mutual Information (MI) score measures the

degree of similarity between two labels. NMI is a normalised measure of MI that scales

the values between 0 and 1, where 0 represents no similarity and 1 represents perfect

similarity.

Adjusted Rand Index (ARI) Let A be the set of true class labels and B the set of

the cluster labels. The Random Index (RI) metric sums the number of pairs of points

that are in the same set in A and B and in different sets in A and B, divided by the

number of all pairs. However, RI does not always have a value close to zero for any

assignments that are made randomly. ARI corrects for this by the following formula:

ARI =
RI−E[RI]

max(RI)−E[RI]
, (2.6)

where E[RI] is the expected value of RI.

ARI is an adjusted measure of RI, which calculates the pairs of points between two

clusters A and B that belong to the same set in A and in the same set in B, and it can

take negative values.

Macro F1-Score Given a binary classification with two classes Positive and Nega-

tive, we define:

TP (True Positives): # of Positive examples correctly classified as Positive

FP (False Positives): # of Negative examples incorrectly classified as Positive

TN (True Negatives): # of Negative examples correctly classified as Negative

FN (False Negatives): # of Positive examples incorrectly classified as Negative

Then Precision = T P
T P+FP , Recall = T P

T P+FN and F1 = 2 Precision×Recall
Precision+Recall . The F1-

scores are computed for each class and averaged with the arithmetic mean.

Accuracy Accuracy computes the fraction of the predicted labels that are correct

and is defined as:

Accuracy =
TP+TN

TP+TN+FP+FN
(2.7)



Chapter 3

Datasets and Data Preprocessing

This chapter describes the single-cell datasets from the developing mouse brain cortex

originated from lab experiments at CBDS, and analyses the pipeline developed for

preprocessing of the data. The pipeline consists of the following steps: quality control,

normalisation, feature selection, dimensionality reduction and removal of unwanted

biological variation, such as the cell cycle phase.

3.1 Single-cell datasets from the mouse brain cortex

As mentioned in Section 1.1, Pax6 plays a crucial role in the development of tissues

in the early development of the brain and acts as a transcription factor by controlling

the expression of other genes. In order to study the regulation and function of Pax6 in

the development of the brain cortex, researchers used Pax6loxP [Simpson et al., 2009]

to conditionally inactivate Pax6 from the cerebral cortex of a group of mouse embryos

on embryonic day 9 (E9). On embryonic days 13 (E13) and 14 (E14), the effects of

Pax6 inactivation start to become apparent. The Pax6 genotype of such embryos is

homozygous mutant, since both alleles of Pax6 are absent and the function of the gene

is inactive, and mouse embryos with heterozygous Pax6 deletion are used as a control

group.

The single-cell libraries were constructed using the 10X Genomics™ Chromium

Controller. The expression values of each gene in a cell (raw counts of RNA molecules)

were stored in csv files, resulting in the following 4 datasets: E13 mutant, E13 control,

E14 mutant, E14 control. The dimensions of these datasets can be seen in Table 3.1.

14

https://www.10xgenomics.com/instruments/chromium-controller
https://www.10xgenomics.com/instruments/chromium-controller
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Dataset - Mouse Model Name Cells (Samples) Genes (Features)

E13 Homozygous Mutant E13 mutant 6,333 30,213

E14 Homozygous Mutant E14 mutant 4,446 30,213

E13 Heterozygous Control E13 control 3,797 30,213

E14 Heterozygous Control E14 control 4,380 30,213

Table 3.1: The four datasets of control and mutant mouse models from two different

embryonic days (E13 and E14) with their corresponding gene expression matrix sizes.

3.2 Single-cell RNA-sequencing analysis pipeline

Analysis of single-cell RNA-seq datasets can be performed with any of the packages

that were mentioned in Section 2.1, although a careful selection should be made de-

pending on the datasets and the problem being tackled. In this project, we use Python’s

Scanpy framework to build a pipeline for analysis and preprocessing of the datasets and

follow the best practices techniques from [Luecken and Theis, 2019] and [Amezquita

et al., 2019]. It should be noted that we initially performed the scRNA-seq analysis

in Seurat, a framework written in R, and there were not any major differences in the

functionality or runtime of the methods compared to Scanpy. However, in contrast to

R-based frameworks, Scanpy’s implementation in Python enables an easier integration

with Machine Learning methods and frameworks, such as Tensorflow [Abadi et al.,

2016].

Single-cell RNA-seq datasets are matrices of cells and genes that contain the ex-

pression value of each gene in each cell. We refer to these datasets as count matrices

because the values represent the counts of mRNA molecules captured for each gene.

In the R-based pipelines, the dimension of the dataset is defined by (number of genes

× number of cells), however we will follow the notation (number of cells × number

of genes), which is used in Python and generally in Machine Learning.

In the subsections below, we outline the preprocessing steps that were followed

in order to reduce any noise resulting from unwanted biological or technical factors,

namely quality control, normalisation, feature selection and elimination of unwanted

variation.
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3.2.1 Quality Control

The assignment of UMIs to the mRNA molecules helps the detection of contaminated

cells as well as the elimination of the PCR amplification bias, as described in section

2.1, however noise is still present in the datasets. Quality control is used to remove

cells of low quality, which might have either been damaged during the experimental

design process or have failed to be completely captured by the sequencing workflow.

More specifically, there are three main aspects that quality control is focusing on in

single-cell datasets: the total number of genes that are expressed, the total counts per

cell and the proportion of mitochondrial gene expression [Griffiths et al., 2018].

Cells are considered to have low quality if the library size1 is small, or else if the

total count of molecules across all features for a cell is small, as well as if they contain

only a few expressed genes. A possible explanation for this is that during library

preparation the RNA that is expressed might have been lost, therefore it is not present

in the final counts matrix. Similarly, a high percentage of mitochondrial genes in a

cell is an indication of a low-quality, damaged cell, where mitochondrial mRNA might

have leaked out into the cytoplasm through the mitochondrial membrane.

Usually, low quality cells should be removed from the dataset at the beginning of

the preprocessing pipeline so that the downstream analysis is not affected by them.

However, the three quality control aspects that were mentioned above should be con-

sidered simultaneously before considering a threshold to remove these cells. Initially,

we filter out cells for which there are less than 200 expressed genes and we filter out

genes that are detected in less than 3 cells. Knowing that count matrices suffer from

high sparsity, namely that many genes are not expressed at all in any cells, we expect

that the latter step will reduce a high percentage of the initial number of genes present

in the data. Indeed, the dimensionality of the datasets was reduced approximately 50%,

meaning that about 13,000 genes in each dataset were filtered out during this step.

In Figures 3.1 and 3.2 we use violin plots to depict the distribution of the quality

control measures for each mutant dataset. We remove cells that we believe are out-

liers, such as those that have more than 10 mitochondrial counts in E14 mutant. The

distribution of the cells in mutants is similar for the control datasets as well.
1Library size refers to the total sum of count molecules for each cell across all genes.
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Figure 3.1: Quality control measures for E13 mutant
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Figure 3.2: Quality control measures for E14 mutant

3.2.2 Normalisation

After removing low-quality cells, we normalise the counts per cell to enable the com-

parison of counts between cells. After normalisation, we log transform the data matrix

X , such that X = log(X +1). This is a particularly important step since it reduces the

mean–variance relationship in single-cell data [Brennecke et al., 2013] and allows to

direct compare cells.

3.2.3 Feature Selection

The single-cell datasets initially contained expression values for 30,213 genes, as re-

ported in Table 3.1. However, a vast majority of these genes contain either very low

amount of mRNA molecules or no counts at all, thus providing no further informa-

tion about the expression profile of the cells. During the Quality Control process,

almost half of these genes (~16,000) were removed as a result of being expressed
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in less than 3 cells. Despite the lower dimensional representation of the initial gene

expression matrix that results from elimination of sparse genes, the datasets are still

high-dimensional.

Therefore, to further reduce the dimensionality of the data, we need to select a sub-

set of genes containing useful biological information without retaining random tech-

nical noise which can suppress any heterogeneity signals. Brennecke et al. [2013]

state that further analysis performed only on this subset of genes, strongly highlights

biological signals in scRNA-seq datasets.

The feature selection process identifies genes that display high cell-to-cell variation

due to biological differences. This process assumes that large differences in the expres-

sion of genes across single cells can be attributed to important biological differences

between cells, rather than technical noise. The subset of highly variables genes is com-

puted as following: the mean and a dispersion measure (variance divided by the mean)

is calculated for each gene in each cell, using the default cutoff values. The genes are

then divided into 20 bins and the normalised dispersion of all genes in each bin is com-

pared to the average expression values. Approximately 2,000 genes were identified as

highly variable for each single-cell dataset. Figure 3.3a shows the mean and dispersion

of each gene in the E14 mutant dataset, where we observe that approximately 2,500

genes out of almost 16,000 genes are identified as highly variable.

Finally, we apply scaling, a linear transformation technique that transforms the data

to have zero mean and unit variance. More specifically, the expression of each gene is

shifted and scaled, so that the mean expression across cells becomes 0 and the variance

across cells becomes 1. This step is important for further statistical analysis since it

gives equal weights to all genes, thus prevents highly expressed genes from affecting

the distribution.

3.2.4 Dimensionality Reduction

Next, we reduce the dimensionality of the datasets by applying PCA on the scaled

data, retaining only the highly variable genes. Considering that different genes in the

dataset are correlated given a specific biological process, we can project the genes

into fewer uncorrelated dimensions. A heuristic way to investigate how much each

principal component (PC) contributes to the total variance of the data and subsequently

in order to consider the number of PCs to be selected for clustering, we plot the log

estimate of the variance that is explained by the PCs and identify the point where the
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variance is not that significant, as can be seen from the elbow plots of E14 mutant in

Figure 3.3b. The point where the curve flattens is around 30 PCs, but we select 40

for further analysis to ensure that lower biological variation information that might be

important for identification of rare cell types is not excluded.
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Figure 3.3: (a) Plot of dispersion versus mean for all genes in E14 mutant. The highly variable

genes are highlighted in blue and are used in further analyses. (b) Log variance ratio across the

first 50 principal components for E14 mutant.

3.2.5 Elimination of unwanted biological variation

In addition to technical variation that is present in the data because of high dimen-

sionality, batch effects and high rate of dropouts, biological variation can also obscure

the underlying biological processes of interest. Examples of such biological variation

include the percentage of mitochondrial counts and the cell cycle phase, which can

conceal the identity of cell populations if cells are clustered by this kind of variation.

We briefly describe what a cell cycle phase is. A eukaryotic cell undergoes through

a series of events that causes its reproduction and division into daughter cells. These

events are called cell cycle phases and can be defined as [Morgan, 2007]: i) G1
(Growth): the cell increases in size and its components are duplicated, ii) S (DNA

Synthesis): each chromosome is replicated iii) G2 (Growth and preparation for mi-

tosis: the cell develops further and prepares for mitosis iv) M (Mitosis): the cell is

divided into two daughter cells.

To determine whether the effect of cell cycle phase is strong enough to separate the

cells according to this source of variation, it is useful to cluster the cells and explore

whether they are separated by the different cell cycle phases. To do so, we first obtain a

list of known marker genes from the literature for phases S and G2M and use a scoring
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algorithm that assigns a score for each phase at every cell by calculating the difference

between the mean expression of the given list and the marker genes. The cell is then

assigned to the phase with the highest score. After the assignment, we cluster the cells

and annotate by the cell cycle phases.

Figures 3.4a and 3.5a show the cell cycle annotations on E13 mutant and E14 mutant.

We observe that the cell cycle variation is strongly present in the dataset, as cells are

finely clustered by their phase annotations. It is clear that they follow a developmen-

tal trajectory, as inspected from the circular flow of the cells. The effect of cell cycle

heterogeneity is reduced with a linear regression model and the corrected data projec-

tion of E13 mutant and E14 mutant is illustrated in Figures 3.4b and 3.5b, where we

observe that cell cycle effect has been reduced significantly but not entirely. We argue

that even though the presence of cell cycle variation might cluster cells based on cell

cycle instead of cell types, controlling for cell cycle might have major drawbacks if

cell types are strongly related to the cell cycle phase. Therefore, we must be cautious

when completely regressing out the cell cycle phase, as we might unintentionally re-

move biological signal that contributes to better clustering of cell types. This is further

discussed in Section 5.2 after reviewing the classification results.

Finally, after completion of the necessary preprocessing steps, Table 3.2 reports the

final dimensions of all 4 datasets that we use in further analyses, along with the initial

sizes to enable for comparison between dimensions.

UMAP on 40 PCs

G1
G2M
S

(a) E13 mutant before cell cycle phase regression

UMAP on 40 PCs

G1
G2M
S

(b) E13 mutant after cell cycle phase regression

Figure 3.4: Cells in E13 mutant dataset plotted by the cell cycle phase assignments.
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Figure 3.5: Cells in E14 mutant dataset plotted by the cell cycle phase assignments.

Dataset Cells Genes Cells (preproc.) Genes (preproc.)

E13 mutant 6,333 30,213 6,285 1,722

E14 mutant 4,446 30,213 4,296 2,410

E13 control 3,797 30,213 3,749 2,057

E14 control 4,380 30,213 4,175 2,135

Table 3.2: Control and mutant datasets from embryonic days E13 and E14 with their

corresponding gene expression matrix sizes before and after preprocessing.
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Experiments and Results

The previous chapter outlined the preprocessing steps that were applied to the single-

cell datasets in order to eliminate technical and biological variation. In this chapter, we

employ an experimental analysis aiming to identify and characterise ectopic cells that

appear in the mutant datasets for days E13 and E14 after inactivation of Pax6.

In Section 4.1 we start by demonstrating the hypothesis of the collaborating re-

searchers at CDBS that ectopic cell populations are more distinctly visible at the

E14 mutant dataset than the E13 mutant and we investigate the expression of more

ectopic genes in E14 mutant to help us assign cell types to our data. Section 4.2

analyses a more robust clustering of cells in E14 mutant by using a deep denoising

autoencoder, which simultaneously performs dimensionality reduction and clustering

at the bottleneck layer. Finally, in Section 4.3, we follow a supervised approach to

predict ectopic cells in E13 mutant given the prior knowledge we have about ectopic

cells and cell type assignments from E14 mutant.

4.1 Identification of cell types

The identification of cell types from single-cell gene expression matrices is a particu-

larly challenging problem, given that there are no ground truth labels available in the

datasets, apart from the count of mRNA molecules from genes expressed in every cell.

Unsupervised clustering is therefore widely applied in scRNA-seq data analysis in or-

der to discover patterns with a biological meaning and possible groupings of cells in

specific clusters that share similar expression profiles.

We initially explore our mutant datasets by applying the Leiden clustering algo-

rithm, introduced in Section 2.3.2, to compute a neighbourhood graph of the cells and

22
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subsequently embed it with UMAP to project the points on a two-dimensional plane

for visualisation. For both datasets E13 mutant and E14 mutant, the features used

for clustering are the highly variable genes projected on the first 40 principal compo-

nents as identified from the preliminary steps in Sections 3.2.3 and 3.2.4. We use the

default parameters for the size of the local neighbourhood (neighbouring cell points)

calculated for manifold approximation, by using the euclidean distance to measure the

distance between the points. The total number of clusters in the data can not be deter-

mined by the user and it changes for different values of the local neighbourhood size,

resulting in preserving either a local or a more global view of the manifold. Figure

4.1 illustrates the clusters obtained from Leiden for the mutant and control datasets for

both embryonic days E13 and E14.
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Figure 4.1: Clusters identified by the Leiden algorithm on the first 40 PCs. Each cluster is

represented with a distinct number and colour.1

4.1.1 Known marker genes

In Section 2.2 we highlighted the importance of utilising prior biological knowledge

for the expression profiles of known cell types, based on the genes that are highly active

1Clusters of a specific number and/or colour in E13 mutant do not correspond to the same cluster or
cells in E14 mutant and vice versa.
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in each type. Cells in this dataset belong to one of the three major cell types:

• Neural Progenitors: cells that divide a limited number of times to produce

daughters that can differentiate into specialized cell types.

• Intermediate Progenitors: cells produced by Neural Progenitors that are in a

higher state of differentiation and will divide once more to produce neurons.

• Post-mitotic neurons: cells that have fully differentiated and do not divide any-

more.

These cell types were identified based on prior biological knowledge of the brain

cortex cell identities, previous lab experiments and from the bulk RNA-seq analysis

performed before scRNA-seq. Moreover, a curated list of marker genes was identified

for each cell type, where genes exhibit higher expression in a specific cell type com-

pared to the rest. All three cell types are expected to be present both in the control

groups (represent normal conditions) and the mutant groups (after Pax6 inactivation).

However, after inactivation of Pax6, some cells do not behave as expected, hence

their identity is unknown and expression is abnormal, or else ectopic. Ectopic cells

appear only in the mutant datasets, where the function of Pax6 has been diminished.

Moreover, we identify some genes in E13 mutant and E14 mutant that serve as ectopic

markers as they are highly expressed in some cells in the mutant datasets but not ex-

pressed in the control datasets. The identified marker genes for each cell type are listed

in Table 4.1.

Cell Type Marker Genes

Neural Progenitors Pax6, Vim, Sox2

Intermediate Progenitors Eomes, Btg2

Post-mitotic Neurons Tbr1, Sox5

Ectopic Gsx2, Prdm13, Dlx1, Dlx2, Dlx5, Gad1, Gad2,

Ptf1a, Msx3, Helt, Olig3

Table 4.1: Marker genes identified for the 3 main cell types and for ectopic cells that are

present in the developing brain cortex.

In order to examine the ectopic expression in the mutant datasets, we plot the nor-

malised expression of each gene in Figure 4.2. We observe that in E14 mutant (Figure

4.2a), most ectopic marker genes such as Dlx1, Dlx2, Dlx5 and Gad1, have a very
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high expression value in clusters located at the lower part of the two-dimensional plot.

A similar pattern has also been observed for the expression of marker genes for the

3 main cell types for both datasets. However, the expression of the ectopic marker

genes has a weaker signal in E13 mutant, as can be seen in Figure 4.2b and we can not

specify a distinct cluster of cells expressing these genes, but rather the cells are low in

number and are sparsely spread out through the dataset.

Furthermore, the heatmaps in Figure 4.3 enable a better comparison of the nor-

malised marker gene expressions between the two datasets. Each row represents a cell

grouped by the Leiden clusters and each column is a marker gene grouped by the cell

type where it is highly expressed. In E14 mutant (Figure 4.3b), we observe that the

ectopic genes Dlx1, Dlx2, Dlx5 are highly expressed in clusters 3, 5, 6 and 8 when at

the same time Eomes and Tbr1 have almost no expression in the same clusters. Also

marker genes Gad1 and Gad2 follow the same pattern but indicate a lower expression

signal. Based on this visualisation, we confirm the biological evidence of the CBDS

researchers, supporting that Pax6 inactivation causes some progenitor cells to develop

into a new cell type instead of following their normal developmental trajectory.

More interestingly, the expression pattern of ectopic marker genes in E13 mutant

(Figure 4.3a) is not similar to E14 mutant, even though the development of the cells

is one day apart, from day E13 to day E14. We would expect that ectopic genes Dlx1,

Dlx2 and Dlx5 would be highly expressed in cells belonging to clusters 0, 1, 2, 5,

where Eomes and Tbr1 are turned off, but their expression is nearly zero, except for

a few cells. Msx3 however, shows higher expression in nearly all clusters, thus is not

that informative to help us characterise ectopic cells.

4.1.2 Differential Expression Analysis

Differential Expression Analysis, introduced in Section 2.2, is a useful process that

enables the identification of marker genes that are upregulated in each cluster compared

to the remaining clusters. By having a larger subset of genes highly expressed in each

cluster, we are able to acquire higher confidence for the cell type identity of each

cluster, without relying exclusively on the previously defined marker genes based on

prior knowledge (listed in Table 4.1).

We apply differential expression analysis on E14 mutant, since the expression sig-

nal of ectopic marker genes is stronger and the grouping of ectopic cells is more con-

sistent. To rank the genes in each cluster depicted in Figure 4.1b, we use the Wilcoxon
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Figure 4.2: Marker genes found to have ectopic expression.

rank-sum method, described in Section 2.2, and we report the top 10 genes for each

cluster2 in Table 4.2.

An interesting observation from the heatmap in Figure 4.4a is the co-expression of

2The top 100 differentially expressed genes for each cluster can be found in the Appendix.
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Figure 4.3: Heatmap of the expression value of the marker genes for the 3 main brain cell

types and the ectopic for each cell in a cluster. Rows are cells grouped by the clusters shown in

Figure 4.1 and columns are the known marker genes, grouped by the cell type they are mostly

upregulated in.

marker genes in clusters, which can also be verified by the dendrogram at the top. We

recognise the known ectopic marker genes Dlx1, Dlx2, Dlx5, Gad1, Gad2 and we can

see from the plot that they are upregulated mostly in clusters 3, 6 and 5, indicating that

these clusters have high ectopic expression.

Following this observation, we can now investigate other markers that are highly

expressed in these clusters, which we have no prior information about. Examples

of potential ectopic marker genes can be identified by calculating the correlation be-

tween the known marker genes and the top ranked marker genes we obtained from DE

analysis. For this we used Pearson correlation, which calculates the linear correlation

between two variables and takes values between -1 and 1, with -1 representing nega-

tive correlation, 0 no correlation and 1 positive correlation. A subset of genes with a

positive correlation of greater than 0.5 is illustrated in Figure 4.4b. The genes in x-axis

are the known ectopic marker genes and in y-axis the differentially expressed marker

genes that were found to be mostly correlated with the ectopic ones. We notice that

genes Arx, Nrxn3, Pfn2, Sp8 and Sp9 have a high positive correlation (values closer to

1) with the known ectopic genes Dlx1, Dlx2, Dl5, Gad1 Gad2, which we provide to
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Rank 0 1 2 3 4 5 6 7 8 9 10 11

#1 Sema6d Mapt Cntn2 Nrxn3 Fabp7 Sp9 Dlx2 Mfap4 Ube2c Hist1h2ae Lima1 Creb5

#2 Rnd2 Grin2b Ttc28 Dlx6os1 Dbi Nrxn3 Dlx1 Igsf8 Cenpe Hist1h1b Efhd2 Plpp3

#3 Nrp1 Thra Fam49a Gm13889 Ptn Dlx5 Ccnd2 Cdkn1c Hmmr Hist1h2ap Ckb Zfp36l1

#4 Itm2b Ina Neurod2 Sp9 Ddah1 Dlx6os1 Sp9 Sstr2 Cenpf Pclaf Mcm2 Qk

#5 Plcb1 Ly6h Clmp Gad2 Ttyh1 Arx Arx Plcb1 Cenpa Rrm2 Gadd45g Ptn

#6 Igfbpl1 Cnih2 Neurod6 Slain1 Zfp36l1 Pclaf Cdca7 Shf Ccnb1 Slbp Btg2 Sox9

#7 Sstr2 Islr2 Gpm6a Dlx5 Mt1 Dlx1 Dlx6os1 Fam110a Tpx2 Dek Hes6 Gas1

#8 Cttnbp2 Tubb2a Zbtb18 Etv1 Vim Pfn2 Mcm2 Nhlh1 Cks2 Dut Ung Fabp7

#9 Sorbs2 Mef2c Znrf2 Sp8 Phgdh Rrm2 Mcm6 Neurog2 Cdc20 Insm1 Zeb1 Dbi

#10 Rbfox3 Lrfn5 Dpy19l1 Gad1 Mfge8 Top2a Dlx5 Igfbpl1 Sgol2a Atad2 Chd7 Nes

Table 4.2: Top 10 differentially expressed genes for each cluster {0-11} in E14 mutant.

Known marker genes (see Table 4.1) are highlighted in bold.

the collaborating researchers at CBDS for further experimentation in the lab in order

to check for ectopic expression.

Lima1Efhd2CkbMcm2Gadd45gFabp7DbiPtnDdah1Ttyh1Creb5Plpp3Zfp36l1QkPtnMaptGrin2bThraInaLy6hCntn2Ttc28Fam49aNeurod2ClmpHist1h2aeHist1h1bHist1h2apPclafRrm2Sema6dRnd2Nrp1Itm2bPlcb1Mfap4Igsf8Cdkn1cSstr2Plcb1Nrxn3Dlx6os1Gm13889Sp9Gad2Dlx2Dlx1Ccnd2Sp9ArxSp9Nrxn3Dlx5Dlx6os1ArxUbe2cCenpeHmmrCenpfCenpa
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Figure 4.4: (a) Heatmap of the expression of the top 5 differentially expressed genes for each

cluster in E14 mutant. The numbers on x-axis represent clusters and the genes on the y-axis

are the top 5 marker genes identified in each cluster. (b) Normalised correlation values of the

differentially expressed genes with the known ectopic marker genes. The x-axis denotes the

known ectopic marker genes and the y-axis the differentially expressed genes in the ectopic

cluster.

4.1.3 Cell type annotation

Most scRNA-seq analyses depend on experts’ knowledge to manually assign the cells

to a list of expected cell types, based on biological assumptions which are almost

always dataset-specific. The cell type annotation process can be tedious and inefficient,
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resulting in big variations between annotations which prevent the reproducibility of

the results across different datasets and research labs. This issue is exacerbated as the

dimensionality of single-cell datasets increases exponentially, thus requiring more time

and human resources to complete the annotation of a single dataset [Abdelaal et al.,

2019].

Here we implement an automatic pipeline to assign cells into cell types by com-

bining two sets of information: the known marker genes and the top 100 differentially

expressed marker genes. For each cluster, we calculate the overlap counts of the known

marker genes with the top differentially expressed genes resulted from the analysis in

Section 4.1.2 and assign the cell type that maximises this overlap. Based on this pro-

cess, we annotate the single cells in E14 mutant following the assumption that if a

known ectopic marker gene is identified in the top 100 differentially expressed genes

in a cluster, especially high in ranking, then we are more confident that this cluster

expresses ectopic genes.

Mathematically, we define the overlap score with the following Equation 4.1:

overlap(G,R) =
N(G∩R)

N(G)
(4.1)

where G is the set of known marker genes, R is the set of the 100 ranked differ-

entially expressed genes and N is the cardinality operator of a set, which works as a

normalisation factor to account for the difference in the number of known marker genes

identified for each cell type. For example, the total marker genes for Ectopic cells are

11, while for Neural or Intermediate Progenitors the number is 2 and 3 respectively

(Table 4.1).

The annotation process is illustrated in Figure 4.5. From the overlap gene matrix

on the left, we assign each cell of E14 mutant into one of the 5 following cell types:

Neural Progenitors, Intermediate Progenitors, Post-mitotic Neurons, Ectopic and Un-

known3. After the annotation process is complete, we proceed with finding the top

marker genes for each cell type. The heatmap at the bottom left corner of 4.5 shows

that the expression of marker genes is high for each cell type and very low for all other

cell types, indicating that the identified genes can be considered as markers for a spe-

cific cell type with high confidence. The cell type annotations on the two-dimensional

UMAP plot of E14 mutant can be seen more distinctly in Figure 4.6.

3A cluster is annotated as Unknown if no known marker genes were found in the top 100 ranked list.
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Cell type 

Annotation

Differential Expression Analysis on 

the cell type clusters

1 

2 

New differentially expressed marker genes for each cell type

Heatmap of genes 

in each cell type

3 

Normalised overlap of known marker genes with differentially 
expressed marker genes

Figure 4.5: Cell type annotation process based on the argmax of the overlap counts of the

known marrker genes with the top k differentially expressed genes.

Manual annotations

Ectopic
Intermediate Progenitors
Neural Progenitors
Post-mitotic Neurons
Unknown

Figure 4.6: Cell type annotations on the E14 mutant dataset, visualised on a two-dimensional

UMAP plot.

4.2 Unsupervised feature representation for clustering

The initial scRNA-seq analysis conducted in Chapter 3 and Section 4.1 follows best

practices suggested by Seurat and Scanpy for scRNA-seq preprocessing and analy-

sis. This analysis, including normalisation, log-transformation, linear dimensionality

reduction with PCA followed by graph-based clustering and projection in two dimen-

sional plots with UMAP, might not be optimal for cases where we want to detect novel

cell populations, such as the ectopic ones, in an unsupervised manner.

Deep learning approaches that employ non-linear dimensionality reduction and

subsequent clustering of cells, potentially have greater power in performing cell type
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identification and do not assume strict linear relationships present in the data. In this

section, we experiment with scDeepCluster [Tian et al., 2019], a recent denoising au-

toencoder model specifically tailored for scRNA-seq data, described in detail in sub-

section 2.4. We explain the experiments using the bottleneck layer of the autoencoder

model and interpret the results.

4.2.1 Bottleneck layer

We are mostly interested in the latent feature space representation of scDeepCluster,

also known as the bottleneck layer of the autoencoder which has the lowest dimension-

ality of all layers.

The encoder and decoder each consist of two hidden fully connected layers. The

number of units in the first layer of the encoder is 256 with a following layer of 64

units, and the decoder has the same layers in reverse order. The size of the bottleneck

layer is 32 and the numbers of the clusters in K-Means is set to 10. Initially, we replace

the existing preprocessing pipeline of the model with the one analysed in Section 3.2,

to ensure reproducibility between the different single-cell datasets and to be able to

compare the autoencoder with the dimensionality reduction and clustering approach

that was performed in Section 4.1 on the same dataset. Then, we change the number of

expected clusters from 10 to 5, as we expect to see 5 different cell types in E14 mutant,

based on the annotations in 4.1.3. However, we acknowledge that we cannot know

the true number of clusters so we have to rely on assumptions based on the expected

number of cell types for the specific dataset.

As with Section 4.1.1, the aim of this section is to use the E14 mutant dataset

that has a stronger ectopic signal in order to extract information about the cell types,

but using a more robust dimensionality reduction and clustering method. We initially

experimented with a different size for the bottleneck in the range (2, 4, 8, 16, 32),

in order to test which dimensionality provides the best clustering for E14 mutant. We

use the evaluation metrics Purity, Normalized Mutual Information (NMI) and Adjusted

Rand Index (ARI), defined in Section 2.6, to compare the purity of the clusters on

the bottleneck to our custom cell type annotations from Section 4.1.3. The results

for the different bottleneck sizes can be seen in Table 4.3 and the clusters in each

bottleneck layer are depicted in Figure 4.7. We observe that all metrics are higher for

the bottleneck layer with dimensionality 16 (Purity = 0.6936, NMI = 0.7135, ARI =

0.6157), indicating that the generated clusters are more pure and have fewer mixed
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cell types in a single cluster. This can also be confirmed with a visually inspection

of the clusters for the varying bottleneck size. The ectopic cells, in which we are

mostly interested, can be found mainly in the one cluster with a few cells that are

of “Unknown” type. The cluster containing the Neural Progenitors and Post-mitotic

Neurons respectively seems to be very pure, apart from a couple of cells belonging to

Ectopic and Intermediate Progenitors. The remaining cluster contains a mixture of all

cell types and is not informative regarding cell types.

Bottleneck size Purity NMI ARI

32 0.6761 0.6714 0.5783

16 0.6936 0.7135 0.6157
8 0.6814 0.6419 0.5109

4 0.6676 0.5377 0.4142

2 0.6793 0.6192 0.5033

Table 4.3: Purity, Normalised Mutual Information (NMI) and Adjusted Rand Index (ARI)

metrics for different values of the bottleneck size.

The next experiment involves changing the number of layers and the bottleneck

size simultaneously in order to evaluate clustering on the bottleneck layer. First we

add an extra layer of size 128 between the layers of size 256 and 64, and we gradually

reduce the bottleneck size, by adding an extra layer of a smaller size until we reach a

bottleneck of size 2. Using the same evaluation metrics as before, we report the scores

obtained from each experiment and the layers with the corresponding sizes that were

used in each in Table 4.4. However, we observe that increasing the number of layers

and further decreasing the bottleneck size, especially at the lowest dimensionality pos-

sible, the autoencoder does not succeed in reconstructing the initial dataset and does

not result in meaningful clusters that optimally separate the cell types. Therefore, we

proceed with the latent feature representation with the highest score obtained from the

previous experiment, where there are two layers of size 256 and 64 respectively and a

bottleneck layer of size 16 (Table 4.3).

As a final step, we validate the clustering of cells in the bottleneck layer by plotting

the expression of the known ectopic marker genes to examine whether the expression

lies on the identified ectopic cluster on the lower dimensional space. Figure 4.8 con-

firms that the lower dimensional bottleneck layer of size 16 correctly preserves the

information about the ectopic cell type from the initial dataset. Especially the expres-
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Ectopic
Intermediate Progenitors
Neural Progenitors
Post-mitotic Neurons
Unknown

(a) Bottleneck size = 2

Ectopic
Intermediate Progenitors
Neural Progenitors
Post-mitotic Neurons
Unknown

(b) Bottleneck size = 4

Ectopic
Intermediate Progenitors
Neural Progenitors
Post-mitotic Neurons
Unknown

(c) Bottleneck size = 8

Ectopic
Intermediate Progenitors
Neural Progenitors
Post-mitotic Neurons
Unknown

(d) Bottleneck size = 16

Ectopic
Intermediate Progenitors
Neural Progenitors
Post-mitotic Neurons
Unknown

(e) Bottleneck size = 32

Figure 4.7: Clusters created for different values of the bottleneck layer of the scDeepCluster

autoencoder model

Encoder layer sizes Num. layers Purity NMI ARI

(# genes, 256, 128, 64, 32) 4 0.6889 0.5761 0.4787

(# genes, 256, 128, 64, 32, 16) 5 0.6746 0.6648 0.6648
(# genes, 256, 128, 64, 32, 16 8) 6 0.4642 0.4944 0.3281

(# genes, 256, 128, 64, 32, 16 8, 2) 7 0.5217 0.3538 0.3015

Table 4.4: Purity, Normalised Mutual Information (NMI) and Adjusted Rand Index (ARI)

metrics for a different number of layers and a varying bottleneck size, which is reduced

in each experiment.

sion of ectopic marker genes Dlx1, Dlx2, Dlx5 and Gad1, Gad2 is high in the ectopic

cluster on the right hand side of the plot and absent from the clusters on the left, which

have been assigned as the Post-mitotic Neurons in Figure 4.7.
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Figure 4.8: Expression of each gene in the predefined ectopic marker genes list at the bottleneck

layer of size 16. The ectopic marker genes are mostly expressed in the ectopic cluster of Figure

4.7d.

4.3 Supervised cell type prediction

While in the previous two sections we examined the identification of cell types with a

linear dimensionality reduction approach and a deep learning approach on the E14 mutant,

in this section we investigate cell type identification in E13 mutant, where the signal

of ectopic cells is very low and their characterisation can not be easily accomplished.

We follow a supervised approach, where we use E14 mutant to train and validate clas-

sifiers and E13 mutant as the final test set.

4.3.1 Model Selection

Following the above rationale, we select four classifiers: Support Vector Machines

(SVM) [Cortes and Vapnik, 1995], Random Forest [Breiman, 2001], Decision Tree

[Breiman et al., 1984] and Logistic Regression to perform multiclass classification us-

ing the following cell types as class labels: i) Neural Progenitors, ii) Intermediate

Progenitors, iii) Post-mitotic Neurons, iv) Ectopic and v) Unknown. Using the annota-

tions on E14 mutant (visible in the UMAP plot in Figure 4.6), we perform grid search

on the hyperparameters of each method using 3-fold cross-validation on the dataset.

This way we avoid overfitting on E14 mutant, aiming for a model that generalises well

on other datasets of the same cell types, such as E13 mutant.
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Classifier Val. Accuracy (%) Val. Macro F1-score (%)

SVM 88.99 ± 1.01 82.60 ± 2.18

Random Forest 93.15 ± 0.51 91.08 ± 0.28
Decision Tree 89.21 ± 0.21 86.44 ± 1.28

Logistic Regression 91.06 ± 0.18 88.28 ± 0.71

Table 4.5: Accuracy and macro F1-score using 3-fold cross-validation on the

E14 mutant dataset.

Table 4.5 shows that the Random Forest classifier has the highest accuracy and

macro F1-score on the 3 validation splits (Accuracy = 93.15 ± 1.01, Macro F1-score

= 91.08 ± 0.28), with a small difference from the Logistic Regression classifier. We

evaluate the Random Forest classifier on E13 mutant and we obtain predicted cell types

for each cell, which can be seen on the two-dimensional UMAP plot in Figure 4.9. We

emphasise that even though there are no true labels for E13 mutant, we expect the cells

of a specific cell type to have a small distance between them and a large distance with

cells of other cell types.

RandomForest predictions

Ectopic
Intermediate Progenitors
Neural Progenitors
Post-mitotic Neurons
Unknown

Figure 4.9: Projection of cells in E13 mutant, annotated with the predicted cell types by Ran-

dom Forest.

As can been seen in Figure 4.9, most cell points on the left have been predicted as

Neural Progenitors, cells in the middle as Intermediate Progenitors and the ones on

the right as Post-mitotic Neurons. The prediction of these 3 cell types aligns with the

expression of the known marker genes, which implies that the prediction of Random

Forest on E13 mutant correlates with the biological assumptions with regards to the
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Figure 4.10: Percentage of predicted cells for the 5 cell types.

cell types. Interestingly though, the barplot in Figure 4.10 shows that the number

of cells that the classifier predicted as ectopic is higher than expected, given that the

expression of ectopic marker genes in E13 mutant is very weak. However, the classifier

could not separate them well enough from the Unknown cells, which can be seen

mostly blended with Neural Progenitor and Ectopic cells.

4.3.2 Differential Expression Analysis on predictions

To identify the genes that Random Forest used to separate the cells into the 5 distinct

cell types, we perform Differential Expression Analysis on the predicted cells, aiming

to find a set of genes that are highly expressed in the Ectopic and possibly the Unknown

cell type compared to the rest. This will give us an indication of possible additional

marker genes for ectopic cells that were previously masked by the expression of more

active genes.

The top 20 ranked differentially expressed genes for each predicted cell type cate-

gory can be seen in Table 4.6. We notice that the differentially expressed genes found

for ectopic cells do not include any of the known ectopic marker genes and the only

known ones are Pax6 and Eomes, which are low in the rank. After showing the ob-

tained marker genes for Ectopic and Unknown to the CDBS researchers, the conclusion

is that many highly ranked genes are related to cancer and to cell cycle phase, particu-

larly phase S, indicating that cell cycle effect is still prevalent in the data even though

it was regressed out, as described in Section 3.2.5. These findings indicate that specific

phases of the cell cycle are possibly associated with ectopic cell types, confirming that
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early decisions about cell cycle heavily affect the results.

Rank Ectopic Interm. Prog. Neural Prog. Post-mitotic Neur. Unknown

0 Rrm2 Neurog2 Gas1 Rtn1 Top2a

1 Pclaf Hes6 Fabp7 Mllt11 Cdk1

2 Pcna Gadd45g Id4 Neurod6 Nusap1

3 Lig1 Btg2 Hes1 Neurod2 Spc25

4 Slbp Mfng Sfrp1 Tubb3 Ube2s

5 Mcm6 Sox4 Ptn Rit1.1 Cks2

6 Tyms Meg3 Ttyh1 Dcx Smc2

7 Rpa2 Rprm Dbi Elavl3 Ccnb1

8 Dut Btbd17 Zfp36l1 Rab3a Smc4

9 Nasp Chd7 Hmgn3 Rnd2 Birc5

10 Gmnn Cited2 Pantr1 Stmn3 Ccna2

11 Mcm5 Neurog1 Aldoc Tagln3 H2afv

12 Tipin Dll1 Psat1 Sox11 Cdca8

13 Tk1 Plk3 Sox9 Cd24a Cks1b

14 Dhfr Pak3 Sox2 Igfbpl1 Prc1

15 Fen1 Elavl4 Mif Cnr1 Cenpf

16 Clspn Eomes Mpped2 Vat1 Hmgn2

17 Hells Fam110a Phgdh Podxl2 Bub3

18 Chaf1b Rgs16 Pax6 Tbr1 Arl6ip1

19 Uhrf1 Igsf8 Ndrg2 Crmp1 Ube2c

Table 4.6: Top 10 differentially expressed genes for each predicted cell type in

E13 mutant. Known marker genes (see Table 4.1) are highlighted in bold.



Chapter 5

Conclusions

The main goal of this dissertation was to identify rare, ectopic subpopulations in single-

cell RNA-seq datasets from the developing mouse brain cortex. Building upon the

biological hypothesis of the collaborating researchers at CBDS, we have made consid-

erable progress towards the objectives outlined in Section 1.2:

1. In Section 4.1.2, we investigated the E14 dataset to identify a list of genes that

are highly correlated with the predefined ectopic marker genes. These genes

can be used by the collaborating researchers at CDBS for further investigation

of ectopic cells by performing lab experiments. Then we proceeded with a cell

type annotation process in E14, based on the assumptions we had for cell types

and what constitutes ectopic expression.

2. We demonstrated in Section 4.2.1 that the use of an autoencoder neural network

model, that simultaneously performs dimensionality reduction and clustering,

projects cells from E14 into a latent feature space where there is better separation

of cell clusters with regards to their cell types.

3. We investigated a supervised approach in Section 4.3, where we trained classi-

fiers on E14 and predicted cell types on E13 based on representations learned

from E14. We demonstrated that the Random Forest classifier can effectively

predict cell types in E14 (approximately 92% F1-score) and identifies a larger

number of ectopic cells in E13. However, the interpretation of the highly ex-

pressed genes in the predicted ectopic cells is complicated and is discussed in

the following section.

The contributions of this project consist of the outcomes of the experiments listed

above and the preprocessing pipeline of the single-cell RNA-seq datasets in Python, as

38
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previously it was only available in R. Preprocessing of single-cell datasets in particular

is a big part of the analysis and had to be evaluated multiple times before and during

the experiments.

Section 5.1 below discusses limitations we faced with regards to the single-cell

datasets, the machine learning methods and the results we obtained. Finally, Section

5.2 presents possible extensions and directions for future work.

5.1 Limitations

As Clevers et al. [2017] have pointed out, the concept of a cell type is not strictly

defined. The single-cell datasets we used do not contain any ground truth cell type

labels, thus it is difficult to define what each cluster represents biologically. Also, the

results can only be evaluated by visual inspection of the clusters and the expression of

each marker gene. This way of evaluation is not feasible for computational methods

and it is usually performed by biology experts, since prior biological knowledge is

required.

Following the same reasoning, the cell type annotation process performed on the

E14 mutant dataset, (described in Section 4.1.3), is based on assumptions which take

into account the presence of the three specific main cell types and the nature of ectopic

marker genes. This implies that any assumptions the classifier makes for E14 mutant

will be applied to E13 mutant, which might not be biologically correct. Moreover, the

fact that the assumptions are dataset-specific prevents the reusability of the methods

and the reproducibility of results in other datasets, although the preprocessing pipeline

should not differ a lot between datasets.

In addition, single-cell classification is challenging due to substantial differences

between the two datasets. A well-known variation of single-cell datasets is the batch

effect, described thoroughly in Section 2.1.1. Nevertheless, the specific datasets suffer

from another source of variation that occurs from the sequencing technologies. A dif-

ferent version of the 10X Genomics sequencing was used to sequence the mouse cells

for days E13 and E14, resulted in a difference of approximately 2,000 additional cells

in E13 mutant that in the other 3 datasets (E14 mutant, E13 control, E14 control).

This variation breaks the assumption of machine learning algorithms that the examples

in the training set (in this case E14 mutant) and test set (E13 mutant) follow the same

distribution.
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5.2 Future Work

Section 3.2.5 emphasised the importance of eliminating unwanted biological variation

from the specific single-cell datasets, such as the cell cycle phase, since it might mask

the heterogeneity of ectopic cells. However, the effect of cell cycle phase has been re-

moved with a linear regression model, thus assuming that the expression of the phases

of the cell are linear. One should treat the cell cycle phase as periodic and could exper-

iment with non-linear methods to remove its effect, such as the Cyclum autoencoder

method proposed by [Liang et al., 2020]. This step could also investigate if the genes

for the predicted ectopic cells in E13 (Table 4.6) are highly expressed due to the cell

cycle phase effect still present in the data or driven by another variation.

Following the experiment in Section 4.2, one possible extension is to take into

account the probabilistic nature of the count data and investigate the latent space of

variational autoencoders, such as scVI [Lopez et al., 2018] to also account for uncer-

tainty.

Finally, another approach to examine the identification of single-cells is to integrate

the two datasets E13 mutant and E14 mutant and eliminate technical variations such

as batch effects between the two samples. This way the two integrated datasets could

be compared against the control groups, which were not used in this project. An initial

integration experiment has been conducted and can be found in the Appendix, however

no results about ectopic cells are available. We conclude that the mutant and control

single-cell datasets are a great resource to further investigate ectopic gene expression.
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D. Lähnemann, J. Köster, E. Szczurek, D. J. McCarthy, S. C. Hicks, M. D. Robinson,

C. A. Vallejos, K. R. Campbell, N. Beerenwinkel, A. Mahfouz, et al. Eleven grand

challenges in single-cell data science. Genome biology, 21(1):1–35, 2020.

D. A. Lawson, K. Kessenbrock, R. T. Davis, N. Pervolarakis, and Z. Werb. Tumour

heterogeneity and metastasis at single-cell resolution. Nature cell biology, 20(12):

1349–1360, 2018.

J. H. Levine, E. F. Simonds, S. C. Bendall, K. L. Davis, D. A. El-ad, M. D. Tadmor,

O. Litvin, H. G. Fienberg, A. Jager, E. R. Zunder, et al. Data-driven phenotypic

dissection of aml reveals progenitor-like cells that correlate with prognosis. Cell,

162(1):184–197, 2015.

S. Liang, F. Wang, J. Han, and K. Chen. Latent periodic process inference from single-

cell rna-seq data. Nature communications, 11(1):1–8, 2020.

P. Lin, M. Troup, and J. W. Ho. Cidr: Ultrafast and accurate clustering through impu-

tation for single-cell rna-seq data. Genome biology, 18(1):59, 2017.

S. Liu and C. Trapnell. Single-cell transcriptome sequencing: recent advances and

remaining challenges. F1000Research, 5, 2016.

S. Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,

28(2):129–137, 1982.

R. Lopez, J. Regier, M. B. Cole, M. I. Jordan, and N. Yosef. Deep generative modeling

for single-cell transcriptomics. Nat. Methods, 15:1053–1058, Dec 2018. ISSN 1548-

7105. doi: 10.1038/s41592-018-0229-2.

M. D. Luecken and F. J. Theis. Current best practices in single-cell rna-seq analysis: a

tutorial. Molecular systems biology, 15(6):e8746, 2019.

A. T. Lun, D. J. McCarthy, and J. C. Marioni. A step-by-step workflow for low-level

analysis of single-cell rna-seq data with bioconductor. F1000Research, 5, 2016.

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine

learning research, 9(Nov):2579–2605, 2008.

D. J. McCarthy, K. R. Campbell, A. T. Lun, and Q. F. Wills. Scater: pre-processing,

quality control, normalization and visualization of single-cell rna-seq data in r.

Bioinformatics, 33(8):1179–1186, 2017.



Bibliography 44

L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approximation and

projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

E. Mereu, A. Lafzi, C. Moutinho, C. Ziegenhain, D. J. McCarthy, A. Álvarez-Varela,
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Appendix A

Additional plots

A.1 Additional plots of mutant datasets
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Figure A.1: Marker gene expression of the 3 main cell types for E14 mutant.
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Figure A.2: Marker gene expression of the 3 main cell types for E13 mutant.

A.2 Preprocessing of control datasets
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Figure A.3: Quality control measures for E13 control
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Figure A.4: Quality control measures for E14 control
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Figure A.5: Marker gene expression of the 3 main cell types for E13 control.
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Figure A.6: Marker gene expression of the 3 main cell types for E14 control.

A.3 Datasets Integration
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Integration of datasets
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Figure A.7: Integration of the E13 mutant and E14 mutant datasets.



Appendix B

Differentially Expressed Genes (DEGs)

B.1 100 top DE genes on predictions of E13 mutant

Ectopic Interm. Progen. Neural Progen. Post-mitotic N. Unknown

0 Rrm2 Neurog2 Gas1 Rtn1 Top2a

1 Pclaf Hes6 Fabp7 Mllt11 Cdk1

2 Pcna Gadd45g Id4 Neurod6 Nusap1

3 Lig1 Btg2 Hes1 Neurod2 Spc25

4 Slbp Mfng Sfrp1 Tubb3 Ube2s

5 Mcm6 Sox4 Ptn Rit1.1 Cks2

6 Tyms Meg3 Ttyh1 Dcx Smc2

7 Rpa2 Rprm Dbi Elavl3 Ccnb1

8 Dut Btbd17 Zfp36l1 Rab3a Smc4

9 Nasp Chd7 Hmgn3 Rnd2 Birc5

10 Gmnn Cited2 Pantr1 Stmn3 Ccna2

11 Mcm5 Neurog1 Aldoc Tagln3 H2afv

12 Tipin Dll1 Psat1 Sox11 Cdca8

13 Tk1 Plk3 Sox9 Cd24a Cks1b

14 Dhfr Pak3 Sox2 Igfbpl1 Prc1

15 Fen1 Elavl4 Mif Cnr1 Cenpf

16 Clspn Eomes Mpped2 Vat1 Hmgn2

17 Hells Fam110a Phgdh Podxl2 Bub3

18 Chaf1b Rgs16 Pax6 Tbr1 Arl6ip1

19 Uhrf1 Igsf8 Ndrg2 Crmp1 Ube2c

50
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20 Ung Miat Nes Rbfox2 Tuba1b

21 Prim1 Spsb4 Pea15a Dpysl3 Tpx2

22 Mcm2 Rcor2 Creb5 Nrep Cdca3

23 Tcf19 Dll3 Ddah1 Nfib Plk1

24 Dtl Trp53i11 Mt3 Hist3h2ba Aurka

25 Ccne1 Lzts1 Qk Pcp4 Cenpe

26 Mcm7 Prag1 Ccnd2 Ppp1r14a Pbk

27 Dek Igfbp2 Siva1 Cotl1 Tacc3

28 E2f1 Mtss1 Mt1 Cdk5r1 Aurkb

29 Rfc3 Dlk1 Plpp3 6330403K07Rik H2afx

30 Gins2 Mapkapk2 Anp32b Stmn2 Mis18bp1

31 Rad51 Rnf165 Ppp1r1a Cdkn1c Tubb4b

32 Ranbp1 Ppp1r14b Prdx6 Basp1 Kif22

33 Atad2 Ubxn2a Jun Sorbs2 Calm2

34 Mcm3 Atp6v0e Plagl1 Itm2b Racgap1

35 Rrm1 Gadd45a Nr2e1 Aplp1 H1f0

36 Dnajc9 Sstr2 Lfng Nsg1 Ubald2

37 Ccne2 Insm1 Hes5 Klf7 H1fx

38 Cdt1 Cald1 Serpinh1 Thra Incenp

39 Hat1 Lrp8 Rcn1 Dbn1 Cdc20

40 Mybl2 Prmt8 Acot1 Celf4 Mki67

41 Rpa1 F2r Nrarp Nsg2 Lockd

42 Cenph Traf4 Cyr61 Celf3 Cdca2

43 Hes6 Tubb3 Mt2 Chd3 Pttg1

44 Cenpk Srrm4 Ldha Gdi1 Dbf4

45 Cdc45 Mycl Pcgf5 Rundc3a Ckap2l

46 Mms22l Myo10 Fos Parp6 Hn1

47 Chaf1a Numbl Ccnd1 Bcl11a Hmmr

48 Meg3 Rhbdl3 Btg1 Map1b Pimreg

49 Rad54l Tmem2 Sparc Nnat Fbxo5

50 Siva1 Chn2 Dek Gap43 Cenpa

51 Rad51ap1 Cbfa2t2 Meis2 Islr2 Kif2c

52 Mcm4 Mfap4 Gsta4 Snrpn Kifc1

53 Fbxo5 Klhl7 Cdca7 Khdrbs2 Rrm2

54 Hist1h1b Eya2 Hmga2 Mfap4 Spc24
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55 Hist1h2ap Cbfa2t3 H2afv Map2 Rangap1

56 Anp32b Htr3a Cenpa Atat1 Kif23

57 Fxyd6 Dmrta2 Cdca3 Rufy3 Sapcd2

58 Cdc6 Ebf2 Mest Bhlhe22 Ccnb2

59 Smc2 Hes5 Tuba1b Olfm1 Kpna2

60 Cdca7 Tox3 Ranbp1 Gpm6a Sgo1

61 Mfng Rai14 Scrn1 Cacna2d1 Pclaf

62 Rnaseh2b Stat3 Lockd Nhlh1 Kif20a

63 Pdlim1 Fezf2 Emx2 Stx7 Psrc1

64 Wdr76 Dhrs4 Tagln2 Ttc28 Nde1

65 Shmt1 Chmp1b Mir670hg Uchl1 Cenpl

66 Mthfd2 Hpcal1 Erf Nrn1 Tuba1c

67 Hmgn5 Dll4 Ckb Kif21b Mad2l1

68 Gadd45g Ddit4 Rgma Myt1l Knstrn

69 Mdk Optc Rest Nxph4 Cdc25c

70 Csrp2 Kcnq1ot1 B3gat2 Epha5 Nasp

71 Syce2 D030055H07Rik Rgcc Ppp2r2b Ska1

72 Car14 Afap1 Gli3 Ttc9b Rrm1

73 Spc24 Tmem178 Sox21 Plcb1 Hmgn5

74 Esco2 Uncx Ccnb2 Id2 Ckap2

75 Neurog2 Fbrsl1 Fam181b Epha3 Nuf2

76 Tuba1b Elavl2 Hmgn2 Tmem176b Mxd3

77 Pbk Kdm5b Fgfbp3 Ctxn1 Fzr1

78 Insm1 Igfbpl1 Mycn Celf2 Knl1

79 Hist1h1e Rem2 Nde1 Srrm4 Kif20b

80 Btg2 E2f1 Cdca8 Sox4 Kif11

81 E2f7 St18 Cenpm Apc2 Melk

82 Donson Phldb2 Kbtbd11 Zbtb18 Ncapg

83 Carhsp1 Abcb9 Cks2 Nfia Ccnf

84 Ehbp1 Dpysl4 Cdk6 Nav1 Sgol2a

85 Fam111a Rhcg Dct Mien1 Dlgap5

86 Top2a Abracl H2afx Elavl4 Hjurp

87 Ccnd2 Ly6e Cks1b Zeb2 Cdc25b

88 Neurog1 Prox1 Mdk Dlgap4 Ndc80

89 Dlk1 Serping1 Ccna2 Scg3 Aspm
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90 Arx Myt1 Birc5 Wnt7b Bora

91 Cenpm Fgd4 Knstrn Kif5c Rnf26.1

92 Wfdc2 Map1a Cdc20 L1cam Dmrta2

93 Phgdh RF01962 Cenpf Lmo4 Kif15

94 Mad2l1 Nrp1 Dnajc9 Npdc1 Dnajc9

95 Hist1h2ae Ckb Smc4 Sox5 Cdca5

96 Zfp367 Cdc25b Tubb4b Rbfox3 Pak3

97 Jun Tecpr1 Shisa2 Ppp3ca Cenph

98 Rmi2 Fbxl20 Pou3f3 Neurod1 Hes6

99 Lpar1 Pgap1 Rnf26.1 Gng3 Troap
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