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Abstract

Deployed neural network models may encounter data from an unfamiliar distribution,

resulting in poor decisions. One strategy to handle this Out-of-Distribution (OOD) data

better is to simply detect it and defer to the user. In this thesis we focus on the OOD

detection problem for deep convolutional image classifiers. Specifically, we design a

benchmark for detecting OOD images and evaluate several methods. The benchmark

combines best practices from previous work, using two kinds of detection task, three

training datasets, diverse sources of OOD data, fair constraints on hyperparameter

tuning, and comprehensive metrics including runtime. We also explore a new method

based on an architecture called TwinNet. The TwinNet method aggregates predictions

of partly random neural networks, each trained in under 1/5th the time of a plain neural

network. While early experiments indicated some advantages to the TwinNet method,

overall it performed worse than the baseline neural network. We therefore do not

recommend this new method but believe that further investigation would be valuable.

The most effective method trained a classifier to predict image rotations as well as

classes. However, all methods degraded severely with the scale of training data. We

show that there is still much room for improvement on each of our OOD detection tasks.

Our benchmark is therefore suitable for future work that might close the gap.
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Chapter 1

Introduction

When a machine learning model is applied in a real-world setting, it may not be equipped

to handle all of the data it encounters. A model to recognise natural objects may see

an unknown class of object, or a drawing of a known class. In medical screening, a

diagnostic model may encounter a pathology that it was not trained to diagnose, or

in autonomous driving, a semantic segmentation model may encounter an unfamiliar

obstruction on the road.

Detecting these Out-of-Distribution (OOD) examples is important to make a model

trustworthy. This is especially so in safety-critical applications including medical

screening and autonomous driving. Through detection, a model can prevent poor

decisions by becoming more conservative or deferring to an overseer.

For probabilistic models we might use predictive confidence to detect OOD data.

However, predictive confidence is not reliable in regular deep neural networks, as

they tend to make overconfident predictions (Guo et al. 2017). Worse, overconfidence

persists on OOD data (Hein, Andriushchenko, and Bitterwolf 2019). The problem with

overconfidence is that errors may not be obvious. Poor uncertainty estimation can not

only lead to actual costly failure when failure is not anticipated, but prevent deployment

in the first place due to lack of trust. Either way, poor uncertainty estimates bear an

economic and social cost.

Recent work in out-of-distribution detection (Hendrycks and Gimpel 2016) is

motivated by the inappropriate response of deep neural networks to OOD examples.

However, there are several limitations to evaluation. Limitations include evaluating

only one training dataset, lack of diversity in OOD datasets, using the same OOD

distribution in hyperparameter tuning and testing, and neglecting efficiency as a measure

of performance.

1



Chapter 1. Introduction 2

This thesis addresses problems in existing evaluations with a new OOD detection

benchmark. We design a meaningful set of evaluation tasks, enforce fair standards for

hyperparameter tuning, evaluate multiple training datasets, use diverse OOD datasets,

and produce a more comprehensive range of metrics than previous work. In addition, we

investigate a novel OOD detection method. The new method aggregates the predictions

of partially randomised neural networks that can be trained in under 1/5th the time of a

plain neural network. The key contributions of the thesis are:

1. A benchmark to evaluate deep neural network methods for OOD detection, which

includes a novel task design,

2. A larger-scale evaluation of the Random Prior (RP) (Ciosek et al. 2019) and

RotNet (Hendrycks, Mazeika, and Dietterich 2019) methods, and

3. A novel OOD detection method.

Chapter 2 places OOD detection in the context of anomaly detection, uncertainty

and robustness, defines reference measures for OOD detection, and reviews previous

methods and evaluations. In Chapter 3, we explain the benchmark design. Chapter

4 investigates a neural network architecture called TwinNet and its use in the novel

method. Benchmark results are in Chapter 5, and Chapter 6 concludes.



Chapter 2

Background and related work

2.1 OOD detection in context

Out-of-Distribution (OOD) detection has several closely related problems. In this

section, we situate OOD detection in the context of these problems using qualitative

distinctions. For a precise definition of OOD from a design perspective, refer to

Definition 1, and for the OOD detection task, refer to Section 3.1.

2.1.1 Anomaly detection

In a technical sense, OOD detection problems are anomaly detection problems. An

anomaly detector is given a set of data points and assigns an anomaly score to each, with

higher score indicating stronger belief that the point is anomalous (Emmott et al. 2016).

Anomaly detection is often synonomous with outlier detection, where anomalies are

assumed to be statistical outliers (Emmott et al. 2016). However, OOD detection is more

specific: it assumes that in addition to the data, we have a pretrained predictive model.

In the scope of our benchmark, this model classifies images. While the model does not

add useful information for the task1, it provides potentially useful representations of the

data distribution. These representations may improve the efficiency of detection over

unsupervised alternatives, though we believe this is an open question.

We are more interested in how the predictive model handles anomalies than the na-

ture of the anomalies. Many other works seem to have a similar motivation (Hendrycks

and Gimpel 2016; Liang, Li, and Srikant 2018; Lee et al. 2018a; Shafaei 2019; Meinke

1Information may be added in the form of inductive bias, but in principle the inductive bias could be
incorporated into the anomaly detector.

3



Chapter 2. Background and related work 4

and Hein 2020), with notable exceptions (Ahmed and Courville 2019). Novelty de-

tection also tends have a different motivation, such as exploration in Reinforcement

Learning (Burda et al. 2018).

2.1.2 Uncertainty and robustness in deep learning

To our knowledge, almost all work that is explicitly about OOD detection deals with

Deep Neural Networks (DNNs) as the supervised models and, often, as part of the OOD

detector. It is well known that performance of baseline DNNs is easily compromised

by data shift (Rabanser, Günnemann, and Lipton 2019). In addition, uncertainty

estimates and likelihoods of baseline DNNs are inaccurate on OOD data (Guo et al.

2017; Nalisnick et al. 2019). When DNNs “don’t know what they don’t know” they

can fail silently, posing safety and security risks in real-world applications. Uncertainty

estimation and confidence calibration are thus strongly related to OOD detection. In

fact, uncertainty estimates often double as OOD detection scores and vice versa (Lee

et al. 2018a; Hendrycks, Mazeika, and Dietterich 2019; Meinke and Hein 2020).

2.2 Defining out-of-distribution

A benchmark designer defines OOD in practice by specifying datasets. We assume that

the benchmark designer has training data generated from an in-distribution pi—where

“training data” includes the test set used for evaluation—and OOD data generated from

an out-distribution pw. Definition 12 then defines a reference score and category for

OOD.

Definition 1. Out-of-distribution reference score, and reference categorisation.

Suppose we are given a distribution pi(x) that generates the training data, a distri-

bution pw(x) that generates data from a wide space of possible datasets (including the

training data), and a threshold γ ∈ R.

Then given a query point x′, we define an out-of-distribution reference score as

s = log
pw(x′)
pi(x′)

= log pw(x′)− log pi(x′) (2.1)

Likewise we can apply a reference category: x is out-of-distribution if s > γ.

2The definition was provided by the supervisor.
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Note how the definition does not exclude the training data from pw. This is deliberate,

as it allows the evaluation of different datasets against the same broader “world model”,

and enables consistency. It is straightfoward to compute a recalibrated score against

pw not including pi. It is also important to realise that the distributions pi and pw are

generally unknown in practice, and benchmark users must estimate them from data

(implicitly or explicitly). In turn, the reference score s may not be tractable to compute,

hence the need for proxy scores (see Section 2.3.2). Furthermore, the precise nature

of OOD depends on the value of γ. In practice the detection threshold should be set

according to the data and risk involved in the application domain. The metrics of our

benchmark (Section 3.5) are agnostic to threshold.

2.3 Approaches to OOD detection

2.3.1 Task and sources of data

We have identified two main types of OOD detection task in the literature: dataset-based

and class-based. As a concrete example throughout this section, we consider training a

Deep Neural Network (DNN) classifier on CIFAR-10.

A dataset-based task treats some distinct, irrelevant dataset as OOD. For ex-

ample, LSUN (Netzer et al. 2011) consists of images of scenes, such as classrooms

and bridges, which do not relate to any CIFAR-10 class. At minimum, such OOD

data must have the same input format as the in-distribution, e.g. a 3-channel image.

Beyond that, choices of OOD dataset vary in similarity to the in-distribution, both in

low- and high-level information. The dataset may have no overlapping classes and

come from quite a different input distribution, such as LSUN (Liang, Li, and Srikant

2018; Hendrycks, Mazeika, and Dietterich 2019). Alternatively, no classes overlap

but the input distribution is quite similar, such as CIFAR-100 (Hendrycks, Mazeika,

and Dietterich 2019). Another choice of OOD data comes from a distinct dataset

where some or all classes are similar, e.g. Tiny ImageNet (Liang, Li, and Srikant 2018;

Shafaei 2019). We prioritise the unknown-class case because it is not directly solved by

increased robustness, and therefore seems to be more neglected.

In dataset-based tasks one is free to select datasets for certain characteristics, such

as how similar they appear to the training data. Based on the OOD reference score

(Equation 2.1) we would expect less similar data to be easier to detect. However, neural

networks can be biased in a way that makes them particularly vulnerable far away from
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the training data (Hein, Andriushchenko, and Bitterwolf 2019). A prime example of a

very dissimilar dataset is random noise. Several distributions have been used to generate

noise OOD data, including uniform, Gaussian, and Bernoulli (Liang, Li, and Srikant

2018; Hendrycks, Mazeika, and Dietterich 2019). Other kinds of far away data include

blobs and textures (Hendrycks, Mazeika, and Dietterich 2019). Though unrealistic,

these datasets provide useful diagnostics for research. For example, a large difference

in ability to detect Gaussian versus Bernoulli noise indicates a systematic bias that may

warrant further investigation.

The second type of OOD detection task is class-based. A class-based task par-
titions the classes of some dataset in two, and treats one partition as OOD. For

example, training on data with the labels {dog, horse, ship, automobile} and evaluating

detection of {cat, deer, airplane, truck} examples in the test set. There are two important

comparisons to make with dataset-based tasks. First, the covariate distributions are

much more similar than is typical for dataset-based tasks, because they come from

the same original dataset. Second, there is a stronger conceptual argument that the

excluded classes have no valid label; they are semantic anomalies (Ahmed and Courville

2019). This is because all classes were clearly defined and mutually exclusive in the

original dataset. The use of class-based tasks varies in how many classes are excluded,

ranging from one class (Ahmed and Courville 2019), to several (Ciosek et al. 2019), to

all-but-one (Schölkopf et al. 2000; Hendrycks, Mazeika, Kadavath, et al. 2019).

Note that class-based tasks are not completely distinct from dataset-based tasks.

For example, CIFAR-10 and CIFAR-100 are separate datasets, but the images of both

come from the 80 Million Tiny Images dataset (Torralba, Fergus, and Freeman 2008).

However, since the datasets were curated and labelled separately (Krizhevsky 2009),

we consider detecting CIFAR-100 with a CIFAR-10 model to be a dataset-based task.

A prime example of the class-based task is Ahmed and Courville 2019, because they

argue extensively for it as an alternative to typical dataset-based tasks. Their benchmark

excludes each individual class of a dataset in turn, taking the average as the overall

metric. We believe this is a more informative and well-motivated benchmark than

most previous work. However, it has at least two limitations. First, excluding each

class individually requires training a number of models in proportion to the number of

classes in the dataset. This is somewhat tractable for 6-12 classes, as in Ahmed and

Courville 2019, but it does not scale well to 100s or 1000s of classes, e.g. CIFAR-100 or

ImageNet respectively. So while the datasets used by Ahmed and Courville 2019 serve

well for standard benchmarking, there is still reason to benchmark using e.g. ImageNet
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if it is more applicable.

The second limitation of the benchmark in Ahmed and Courville 2019 is that

excluded class anomalies are not the only practically important kind, and in general,

anomalies do not belong to one semantic category. Aggregating over the classes

indicates how well a detection method generalises, but does not substitute for detecting

multiple classes at once. As we show in Section 3.2.1, the argument that previous

dataset-based benchmarks are trivial is not well-supported. However, the responsibility

for this lies with Liang, Li, and Srikant 2018 and the way they pre-processed OOD data,

not with Ahmed and Courville 2019.

2.3.2 Score

The detection scores used by practical methods are effectively proxy measures for the

reference score in Equation 2.1. One approach to scoring uses likelihood: strictly, the

negative log likelihood of the query data point x′ under a generative model. There

are many approaches to learning the generative model from the training data, ranging

from classic methods common in the anomaly detection literature, such as k nearest-

neighbours (Shafaei 2019), to deep generative models such as PixelCNN (Hendrycks,

Mazeika, and Dietterich 2019).

Another type of detection score is uncertainty. While likelihood is associated with

inputs, uncertainty is associated with predictions. We further distinguish first-order

and second-order uncertainty: first-order uncertainty relates to predictive confidence,

e.g. the output probability of a classifier, while second-order uncertainty measures the

uncertainty in the confidence itself. The first use of classifier probability in an OOD

detection score is Hendrycks and Gimpel 2016, with the negative Maximum Softmax

Probability (MSP). Later first-order methods still use MSP, but add various techniques

during training to improve score quality. Deep Ensemble (DE) (Lakshminarayanan,

Pritzel, and Blundell 2017) employs adversarial training of multiple independent copies

of the model, then uses the average over their predictive probabilities. Meanwhile, ODIN

(Liang, Li, and Srikant 2018) uses temperature tuning and adversarial perturbations

at inference to achieve similar benefits. “GAN” (Lee et al. 2018b) augments the

loss function to enforce low confidence on synthetic OOD examples generated by a

Generative Adversarial Networks (GAN) model. Outlier Exposure (OE) (Hendrycks,

Mazeika, and Dietterich 2019) similarly augments the loss function, but uses a large

set of natural OOD examples. Certified Certain Uncertainty (CCU) (Meinke and
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Hein 2020) extends this by estimating the density of inputs under the in- and out-

distribution separately. This affords provable guarantees on the confidence of the

classifier, while maintaining competitive detection quality. Finally RotNet (Hendrycks,

Mazeika, Kadavath, et al. 2019; Ahmed and Courville 2019) uses auxilliary tasks such

as rotation prediction during training. This improves detection of OOD data supposedly

by producing better feature representations.

An advantage of second-order uncertainty is the decoupling of prediction uncertainty

from model uncertainty (Leibig et al. 2017). The second-order methods we are aware

of use a variance estimate. Monte Carlo Dropout (MCD) (Gal and Ghahramani 2016)

leaves dropout turned on during inference to make predictions stochastic. For a given

input, uncertainty is then estimated by the standard deviation of a sample of predictions.

However, the mean prediction of MCD has also been used as a baseline score method in

Ciosek et al. (2019). The Random Prior (RP) method proposed by Ciosek et al. (2019)

is very different to MCD, as it distils a random network into a trained one and uses the

Mean Squared Error (MSE) between them as the uncertainty.

2.3.3 Evaluation

Benchmarks are the measure and driver of progress in empirical machine learning. The

quality of a benchmark is therefore crucial. Unfortunately there is so far no consensus

on evaluating OOD detection. However, there are multiple benchmarks aiming for

wider adoption (Shafaei 2019; Ahmed and Courville 2019; Hendrycks, Zhao, et al.

2020). One objective of this thesis is to learn from and critique past benchmarks, in

order to develop an even better one. In what follows, we outline the key issues with

evaluation and how to address them.

One key issue with evaluation is the tuning procedure. Many OOD detection

methods require tuning the hyperparameters of the detector on some validation dataset

in order to perform well on OOD test samples. There are several strategies for this,

some of which we find problematic. For instance, ODIN (Liang, Li, and Srikant 2018)

requires tuning temperature and adversarial perturbation parameters. For the validation

dataset, both Liang, Li, and Srikant 2018 and Lee et al. 2018b opt for a disjoint subset of

the same dataset used for testing. This is problematic because the evaluation then fails to

indicate how the model generalises to unseen OOD distributions. This ability is crucial,

because by the nature of OOD, we generally cannot anticipate all sources of OOD data.

With that said, less biased evaluations of ODIN have since been performed (Shafaei
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2019; Ahmed and Courville 2019) which confirm its strong performance compared to

the MSP baseline.

An alternative to using the same distribution for validation is to use a representative

but different OOD distribution. Meinke and Hein 2020 opt for a large set of natural

images that is disjoint from the test datasets. However, this still assumes some prior

knowledge of the out-distribution, and access to such a large separate dataset. Prior

knowledge may not be problematic, and should be exploited in real-world applications.

However, we argue that it should be minimised in a benchmark for basic research,

to make it generic and widely applicable. Meanwhile, Shafaei 2019 employ a cross-

validation style of benchmark, where each dataset in a collection is successively held

out for validation, the remaining datasets are used for testing, and the results are

averaged. This has the advantage of being agnostic, in aggregate, about which dataset

is used for validation. However, the individual evaluation runs still rely on a specific

validation set, with ideosyncrasies that do not necessarily cancel out in aggregate. The

chosen collection of datasets therefore might still be biased. Indeed, when running this

benchmark using real medical datasets rather than standard natural image datasets, Cao

et al. 2020 find the rank order of methods is roughly the reverse of that in Shafaei 2019.

In fairness, the same issue could manifest in other benchmarks, but this is the only case

we are aware of.

A third approach to validation, which we adopt for this thesis, is to perform various

drastic transformations of the training data to render it OOD. This is used by Hendrycks,

Mazeika, and Dietterich 2019, where the transformations include severe pixellation,

jigsaw-like permutations of image patches, and colour inversion. This approach is

flexible yet does not require assumptions about what kind of OOD data will be seen.

Another issue with previous evaluations is a lack of diversity in datasets. Diversity

is important because the out-distribution is so broad, and performance can be very

sensitive to the dataset. For example, Ciosek et al. (2019) and Hendrycks, Mazeika,

Kadavath, et al. (2019) only use CIFAR-10 as an in-distribution for dataset-based tasks.

Ciosek et al. (2019) is also short on OOD datasets, only using a subset of CIFAR-10 and

SVHN. Good examples of diversity in datasets are Hendrycks, Mazeika, and Dietterich

(2019) and Meinke and Hein (2020), which evaluate five training datasets with at least

five OOD datasets for each.

Many evaluations of OOD detection also lack baselines. For early methods such as

Hendrycks and Gimpel (2016) and Liang, Li, and Srikant (2018) this is more acceptable,

although they could still have used unsupervised baselines from the anomaly detection
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domain. Even if the objective is specifically to make neural networks good at OOD

detection, comparing to other types of method indicates marginal costs. For example,

if more computation is required during inference to calibrate a network, a separate

fixed model might be faster. Some more recent works still lack baselines—for example,

Hendrycks, Mazeika, Kadavath, et al. (2019) only compares to MSP for the dataset-

based task, when methods such as ODIN, GAN, and Outlier Exposure were available.

Finally, we believe that most previous work considers too narrow a set of evaluation

metrics. To evaluate detection, Shafaei (2019) only consider accuracy at one detection

threshold per method and dataset, while Ahmed and Courville (2019) only consider

Average Precision (AP). Hendrycks, Mazeika, and Dietterich (2019) use a broader set,

reporting Area Under the Receiver Operating Characteristic (AUROC), AP and False

Positive Rate at true positive rate 95% (FPR95). Different detection metrics will vary in

importance for different users, so reporting multiple metrics will satisfy more users and

indicate trade-offs. However, we believe that a complete evaluation of OOD detection

also includes metrics that are not directly related to detection. If the method modifies

the baseline classifier in some way, then it is important to check the effect on test error

and calibration. Furthermore, efficiency is a potentially critical yet neglected aspect

of evaluation. If a method is too inefficient then it may be unsuitable, no matter if

OOD detection is perfect. It is therefore important to report the inference time, ideally

separating OOD score time from the classifier prediction time to indicate the marginal

cost of detection. Besides the qualitative assessment in Shafaei (2019), we are not aware

of work that reports efficiency metrics for OOD detection.



Chapter 3

Benchmark design

3.1 Task definition

Benchmark users are given a collection of training datasets Dtr. Each dataset consists of

pairs of inputs x∈X and their labels y∈Y . Benchmark users are also given a pretrained,

supervised model M : X → Y for each training dataset. Based on the training data

and pretrained models, users must build an Out-of-Distribution (OOD) detector. In

evaluation, the detector observes query points x′ one at a time. The query points are

drawn at random between an in-distribution test set Dtest
i and an OOD test set D test

o , with

their union forming D test. The OOD detection task is defined as T : D test→{−1,1},
that is, predict whether x′ ∈D test

o . We adopt the convention of D test
o being the positive

class (1) and D test
i being the negative class (-1). However, the task for the user’s

detector is to output a score s ∈ R rather than the class. Note that the score is more

general and includes the binary class values.

3.2 Preliminary experiments that informed the design

3.2.1 Performance can be very sensitive to preprocessing

Simple baselines are a low-cost way to evaluate a benchmark. In particular, if a

simple method performs very well, it suggests that the benchmark is too easy. A good

benchmark should be difficult even for state-of-the-art methods. This is evidence that

the benchmark meets its purpose as a genuine research challenge and a longstanding,

meaningful measure of progress.

To help evaluate the quality of dataset-based benchmarks, we followed Ahmed and

11
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Courville 2019 by examining the performance of a Gaussian mixture model (GMM).

The GMM we used was especially simple, following the description in Appendix D of

Ahmed and Courville 2019. It fits one multivariate Gaussian distribution to each image

channel independently. The mean and covariance parameters were computed directly

as the maximum likelihood estimates, with full covariance, namely

mc =
1
N

N

∑
i=1

xc,i , Sc =
1
N

N

∑
i=1

(xc,i−mc)(xc,i−mc)
T (3.1)

where c is the image channel index, xc,i is the flattened vector form of channel array c,

and i indicates the index in a dataset of N samples.

We fixed the mixture weights of the channel-wise components to be equal, with no

optimisation. It is unclear whether Ahmed and Courville 2019 optimised the weights.

However, preliminary experiments with CIFAR-10 as the in-distribution and Tiny

ImageNet as the out-distribution showed that weight optimisation had a negligible effect

on OOD detection performance.

We initially replicated the results in Appendix D of Ahmed and Courville 2019,

training on CIFAR-10 and testing on Tiny ImageNet as OOD. This required transform-

ing Tiny ImageNet samples from size 64x64 to 32x32, both via cropping and resizing.

We noticed that the results for resizing only replicated under nearest-neighbour resam-

pling, and varied greatly under different resampling. This led to the results in Table 3.1.

It lists average precision scores for OOD detection using the GMM. These scores are

in turn an average over the following OOD datasets (excluding whichever is used for

training): SVHN, CIFAR-10, CIFAR-100, STL-10, LSUN, Tiny ImageNet, Gaussian

noise, Rademacher noise, and the describable textures dataset (Cimpoi et al. 2014).

We see that the performance of the GMM can be very sensitive to different image

resampling methods. This is true for the CIFAR datasets in particular: the average

precision ranges from roughly 40% under bilinear interpolation to 77% under nearest-

neighbour interpolation. Note that CIFAR images were most likely downscaled via

bicubic interpolation originally (we infer this from information in Torralba, Fergus, and

Freeman 2008, but it is not certain). Meanwhile, Tiny ImageNet was downscaled using

bilinear interpolation1 . We suspect that bilinear interpolation is even more difficult

than bicubic for the CIFAR datasets because of the phenomenon described in Nalisnick

et al. 2019, where the out-distribution lies “inside” the in-distribution, but we did not

investigate further.

1See https://github.com/jcjohnson/tiny-imagenet/

https://github.com/jcjohnson/tiny-imagenet/
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Table 3.1: Average precision of OOD detection for a channel-wise Gaussian mixture

model. The columns denote the method of image interpolation, where applicable.

In-distribution BICUBIC BILINEAR BOX NEAREST

SVHN 98.5 97.8 98.9 99.3

CIFAR10 53.2 40.1 63.8 76.6

CIFAR100 52.5 40.2 63.3 76.7

TinyImageNet 23.5 23.2 23.6 27.6

The results in Table 3.1 had two implications for our benchmark design. The first is

how the benchmark handles different image sizes between the in- and out-distribution.

If the in-distribution images are resampled from some original source, then the out-

distribution images are resampled in the same way. Otherwise, if the in-distribution data

was not resampled in the first place, or there is no evidence of how it was resampled, the

default was bilinear interpolation2. In general, the policy for preprocessing images was

to be consistent between in- and out-distribution. This is realistic, because preprocessing

must occur before OOD detection, so it cannot discriminate between the distributions.

Using the same preprocessing also tends to make the distributions more similar than

otherwise, making detection more challenging.

The second implication of the results in Table 3.1 is that detecting OOD datasets

relative to SVHN is almost solved. In the worst case of bilinear interpolation, the simple

GMM baseline achieves 97.8% average precision. As such, we do not use SVHN as an

in-distribution in subsequent experiments.

Finally, we want to emphasise how this result weakens the evidence for the claim

in Ahmed and Courville 2019 that dataset-based benchmarks used in earlier work

are trivial. By using consistent and appropriate resampling, we show that this GMM

baseline is far from solving the task in the case of the CIFAR and ImageNet datasets.

There is a clear need for alternative methods to close the gap. We therefore use this

dataset-based task as part of our benchmark.

2Bilinear interpolation is also the default for torchvision.transforms.Resize in the PyTorch
library.
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Figure 3.1: The probability distribution of a CIFAR-10 classifier over an averaged pair of images

often involves overconfidence in seemingly arbitrary classes (left). In aggregate the model is

more uncertain about mixtures, but with high variance (right).

3.2.2 Response to corrupted training data

Towards designing the validation task, Figure 3.1 shows one example and an aggregation

of a model’s response to averaged pairs of images. While the model is appropriately

uncertain in broad aggregate, it is highly variable and often overconfident. This indicates

that averaged images, though contrived, are relevant to the problem we are aiming to

solve, providing a useful indication of performance for validating methods. We use

averaged image pairs and other operations for the validation set in this thesis; see

Section 3.3.2.

3.3 Data sources and preprocessing

Datasets are a crucial component of benchmark design. While we have already es-

tablished the task of OOD detection in abstract, the datasets are what characterise

the task in practice. In the following sections we explain the content, selection and

organisation of datasets for our benchmark. Section 3.3.1 covers the in-distribution,

Section 3.3.2 covers OOD for validation, and Section 3.3.3 covers OOD for evaluation.

Some statistics for the off-the-shelf datasets that we used, or their derivatives, are listed

in Table 3.2.

3.3.1 In-distribution

For in-distribution datasets, we chose CIFAR-10, CIFAR-100, and Tiny ImageNet. All

of these datasets consist of natural colour images of common objects—the class names

are listed in Appendix D.1. The datasets are common in the computer vision and OOD

detection literature already (Hendrycks, Mazeika, and Dietterich 2019; Shafaei 2019;
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Name Train size Test size Dimensions Classes

SVHN 73,257 26,032 3072 10

CIFAR-10 50,000 10,000 3072 10

CIFAR-100 50,000 10,000 3072 100

Tiny ImageNet 100,000 10,000 12,288 200

ImageNet-x - 40,000 12,288 800

ImageNet-O - 2000 547,698 200

LSUN - 10,000 94,396* 10

Textures - 5640 689,850* 47

Table 3.2: Statistics of off-the-shelf datasets (or their derivatives) used to evaluate OOD

detection. *Dimensions vary so we list the mean.

Meinke and Hein 2020), which affords greater accessibility and closer comparison to

previous work. The small dimension of these datasets slightly limits applicability, since

many images of real-world relevance are much larger (e.g. those found in ImageNet-O,

see Table 3.2). However, the large difference in dimension between CIFAR datasets

and Tiny ImageNet provides evidence of how methods scale. Furthermore, smaller

dimension demands less computational resources and in turn makes the benchmark

more accessible.

Another reason we chose these datasets is for the variety in number of classes: 10,

100 and 200 respectively. This allows us to evaluate how methods scale with output

dimension as well as input dimension. Note that we do not use MNIST or its derivatives

e.g. FashionMNIST (Xiao, Rasul, and Vollgraf 2017). While these are commonly

used, the input data is grayscale and very sparse compared to the chosen datasets. It

is well recognised in the machine learning field that MNIST datasets are relatively

uninformative, because they are too easy and the results often do not generalise well to

other domains. We expected CIFAR-10 to be more informative as a dataset with low

input and output dimension.

3.3.2 OOD validation

We use a validation dataset to measure the performance of OOD detection methods

before the final evaluation. This is useful for tuning hyperparameters and guiding the

development of new methods, without compromising the fairness of evaluation. For

the supervised model M , it is acceptable to draw the validation dataset from the same
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Figure 3.2: Examples of each type of validation data

distribution as the evaluation dataset, as long as the particular datasets are disjoint.

However, the out-distribution is made up of many natural “kinds”, e.g. Gaussian noise,

or images of an unknown animal. Generalisation to unseen kinds is central to the

task, because OOD examples are unexpected and unfamiliar by nature. The validation

dataset should therefore be sampled from a different distribution to evaluation, ideally a

disjoint one. However, this constraint makes it more difficult to get information about

performance that correlates with the final evaluation.

Our validation dataset was constructed by applying various tranformation and mix-

ture operations on the training dataset. These operations were sourced from Hendrycks,

Mazeika, and Dietterich 2019, namely: arithmetic and geometric means of randomised

pairs of images, a fixed permutation of rectangular regions (“jigsaw”), severe pixellation,

colour offset, inversion, severe speckle noise, and uniform noise (the only one which

does not use the training dataset). Each operation is illustrated for one example image

in Fig. 3.2. The dataset was not intended to be realistic, but merely representative of

OOD.

We emphasise that the validation dataset described here was chosen merely for this

thesis, and is not part of the benchmark design. The benchmark user is free to use any

validation dataset of their choice under one important condition: it must be derived

either from generic operations on the training data, or from generic noise distributions

that are not used in evaluation, such as uniform noise. The term “generic” is meant

to avoid perverse operations, such as adding pixel values to transform training data

into known OOD data. We set this condition for two reasons. Firstly, it results in

minimal assumptions about the OOD data observed in deployment, ensuring that new

examples are unfamiliar. In practical applications, there probably will be useful prior

knowledge about the kinds of OOD data that will be encountered. However, for a

generic benchmark such as ours, it is best to be agnostic. Secondly, the condition makes

validation data more resource-efficient, in the sense that it does not use an extra OOD
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dataset, and that unlimited amounts of OOD data can be constructed by corrupting the

training data or generating noise.

3.3.3 OOD evaluation

The results of the GMM experiment in Section 3.2.1 indicated that dataset-based

benchmarks are far from trivial, contrary to Ahmed and Courville (2019). However,

class-based benchmarks are still appealing in that the difference between in- and out-

distribution tends to be more semantic and clearly defined, and the task tends to be

more challenging (to see this, compare average precision between tasks in Hendrycks,

Mazeika, and Dietterich (2019) and Ahmed and Courville (2019)). Given the merits of

both, our benchmark includes a dataset-based and class-based task.

For the dataset-based task, we aimed for a relatively large and diverse collection

of OOD datasets to make results more generalisable. The collection is similar to

Hendrycks, Mazeika, and Dietterich 2019. SVHN (Netzer et al. 2011) consists of

close-up images of house numbers. LSUN (Yu et al. 2016) consists of scenes such as

classroom and bridge. Textures (Cimpoi et al. 2014) consists of both real and synthetic

images that are naturally described by one texture, e.g. bubbly and wrinkled. We

include Textures because convolutional networks tend to rely on textures as cues, and

Hendrycks, Mazeika, and Dietterich (2019) found it was relatively difficult to detect

using the Maximum Softmax Probability (MSP) score. Finally, “Gaussian” is Gaussian

noise and “Rademacher” is Rademacher noise (i.e. each dimension is selected uniformly

at random from {−1,1}). We chose these noise datasets for variety and because in some

cases even the very effective Outlier Exposure method is poor (see Hendrycks, Mazeika,

and Dietterich (2019) Table 7). The noise datasets are independently generated for each

evaluation run in the same size as the in-distribution data.

For all three in-distribution datasets, the out-distribution datasets include Gaussian,

Rademacher, Textures, SVHN, and LSUN. Then, for CIFAR-10 and CIFAR-100, we

include CIFAR-100 and CIFAR-10 respectively, expecting this to be particularly difficult

due to similarity. Note that CIFAR-10 and CIFAR-100 classes are disjunct. For the

same reason, we use ImageNet-x for Tiny ImageNet. ImageNet-x is the ILSVRC 2012

validation set (Russakovsky et al. 2015) minus the subset used for Tiny ImageNet,

and downscaled in the same manner as Tiny ImageNet. We also include ImageNet-O

(Hendrycks, Zhao, et al. 2020), a set of difficult OOD examples for ImageNet classifiers.

ImageNet-O samples are sourced from the 22,000-class version of ImageNet and are
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disjoint from the 1000-class version. All together, each in-distribution has 6 or 7 dataset-

based subtasks, with two based on noise, one on textures, two with perceptably different

semantics and low-level features, and at least one with very similar low-level features

but different semantics.

For the class-based task, we construct a fold (i.e. subset of classes) by pseudo-

randomly choosing half of the total classes. We use 10 of these folds for each in-

distribution dataset. Random selection reduces bias, and partitioning in half allows

more possible combinations of classes while reducing the number of folds necessary.

The latter is a limitation of one-class (Schölkopf et al. 2000; Hendrycks, Mazeika,

Kadavath, et al. 2019) and all-but-one class (Ahmed and Courville 2019) tasks, which

require a number of folds equal to the number of classes. A downside of our approach

is that the random subsets lack a natural interpretation. Training 10 models per training

dataset is also burdensome for the user, but worthwhile to give reliable results.

3.3.4 Preprocessing

Since OOD detection is unsupervised, our benchmark assumes that data preprocessing

is consistent between in- and out-distributions. The preliminary GMM experiment

(Section 3.2.1) also indicated that using consistent preprocessing between the in- and

out-distribution makes detection more difficult. To reiterate, greater difficulty is good at

the margin because it makes the benchmark a longer-lasting research target. Given the

evidence that performance is highly sensitive to the method of resampling, we resample

OOD data consistently using bicubic interpolation for CIFAR-10 and CIFAR-100, and

bilinear interpolation for Tiny ImageNet.

3.4 Baselines

A baseline method provides a point of comparison for a new method. Having at least

one baseline is essential, but using multiple baselines affords a nuanced perspective on

the strengths and limitations of any new method. For example, one baseline excels in

accuracy, another in efficiency, and a new method is intermediate on both metrics—the

best of these three will depend on the application domain. We now briefly explain

and justify the baseline methods chosen for evaluation. We prioritise methods that

are recent, controversial (past evaluations conflict), or neglected (lacking large-scale

evaluation). Besides the methods listed below, there is the GMM which was explained
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in Section 3.2.1, and our proposed TwinNet ensemble method which is explained in

Chapter 4. Comparing to the GMM indicates the marginal value of using Deep Neural

Networks (DNNs), including but not limited to the supervised model, M .

For all instances of M we use a 40-2 Wide ResNet (Zagoruyko and Komodakis

2017). ResNet architectures are popular for computer vision, and this one provides

a good trade-off between efficiency and accuracy. The same arcthiecture is used

in previous benchmarks OOD detection (Hendrycks, Mazeika, and Dietterich 2019;

Ahmed and Courville 2019). Further details on the model are in Appendix B.1.

3.4.1 Plain network (MSP)

We expect a well-calibrated probabilistic classifier to have lower confidence on less

familiar inputs. The plain MSP baseline works under this assumption, using the confi-

dence of M to detect OOD examples. It was first used by Hendrycks and Gimpel 2016.

At its final layer, M outputs a vector of logits l, of length K. These are then passed

through a softmax operation to produce a categorical probability distribution over the

class k ∈ {0 . . .K− 1}: p̂(y = k) = exp(lk)/∑
K−1
j=0 exp(l j). The prediction ŷ is then

given by argmaxk p̂(y = k), with an associated confidence of p(y = ŷ) = maxk p̂(y = k).

The MSP detection score is then −p(y = ŷ), with the negation making higher scores

correspond to greater belief in OOD.

3.4.2 Random Prior (RP)

Random Prior (RP) employs a pair of neural networks, which may be repeated in an

ensemble Ciosek et al. 2019. The prior network is randomly initialised with fixed

parameters. A scalar hyperparameter c controls the scale of the prior parameters.

Meanwhile, the learner has a similar initialisation and architecture to the prior, but

with some extra layers appended in order to make it more expressive than the prior.

Note that both of these networks are distinct from M , though they conventionally have

similar architecture. The prior and learner both output an arbitrary vector of the same

length. The task of the learner is to predict the output of the prior, training on the

same dataset as M . After training, the Mean Squared Error (MSE) between the learner

and prior on new inputs is used as an uncertainty estimate, which also serves as an

OOD detection score (Ciosek et al. 2019). An intuition for why RP works is that by

fitting a random prior, which is barely informative of the task, the learner becomes

exceedingly overfitted to the training data. Any OOD data it encounters should then
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give an exceedingly different output to the prior, making the MSE effective as an OOD

score. A simple example of the phenomenon is illustrated in Fig. A.2

3.4.3 Monte Carlo Dropout (MCD)

Dropout Srivastava et al. 2014 is a module for neural networks that randomly sets input

activations to 0 with probability p. Conventionally, this module is only applied during

training to reduce co-adaptation of network units and in turn reduce overfitting. For in-

ference, conventional dropout simply multiplies the activations by p to approximate the

effect of averaging predictions from different dropout settings. In contrast, Monte Carlo

Dropout (MCD) (Gal and Ghahramani 2016) keeps dropout active for inference and

explicitly samples the network multiples times. Using the mean predictive probability

from these samples has been shown to improve test error in numerous domains (Gal and

Ghahramani 2016). Meanwhile, the standard deviation of the predictive probability can

provide useful uncertainty estimates (Leibig et al. 2017). However, based on previous

work it is unclear how useful MCD is for OOD detection. On one hand, Meinke and

Hein (2020) find that MCD performs much worse than a plain neural network. On

the other hand, Shafaei (2019) find it is slightly better. Given the inconsistent results,

we include MCD to provide more evidence. It is also a natural baseline for the novel

TwinNet method, because both methods aggregate over randomised subnetworks (see

Chapter 4). We use the MSP score of the mean predictive probability rather than the

standard deviation as it performed better on the validation set.

3.4.4 RotNet

Our RotNet baseline followed the method of Hendrycks, Mazeika, Kadavath, et al.

(2019), which in turn is based on Komodakis (2018). For RotNet one trains an ad-

ditional linear classifier (“head”) on top of the penultimate feature layer of M . The

task of the additional classifier is to predict rotations of the input image, outputting

prot head(r |Rr(x)) where Rr is a rotation transformation by angle r. In turn, RotNet must

be fed different rotations Rr(x) as input. We used the standard r ∈ {0◦,90◦,180◦,270◦}
for each sample in each batch. The training loss was the same as in Hendrycks, Mazeika,

Kadavath, et al. (2019) with λ = 0.5, along with the detection score

s =−KL [U || p(y|x)]+ 1
4 ∑

r∈{0◦,90◦,180◦,270◦}
LCE [one hot(r), prot head(r |Rr(x))] (3.2)
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where U denotes a uniform distribution over y. The KL divergence is used in the

first term to be more compatible with the second term, as in this case the cross-entropy

is equal to KL divergence. Note that by construction, we have labels for the rotation

task even during inference, whereas the original classifier relies on confidence alone.

3.5 Metrics

We aimed for a comprehensive set of metrics to give a full profile of each method. First,

there are metrics related to the base task. The most important of these is the classification

error on Dte,IID, being the fraction of samples that were incorrectly classified. The

benchmark also assesses calibration using the Root Mean Square (RMS) calibration

error. Finally, the benchmark includes metrics for error detection, the task of classifying

whether M predicted incorrectly, based on the MSP score. The detection metrics were

the same as for OOD detection, explained next.

To evaluate OOD detection, the benchmark uses three evaluation metrics. The

first two, Area Under the Receiver Operating Characteristic (AUROC) and Average

Precision (AP), aggregate detection performance over all possible thresholds on the set

of scores. Higher values of AUROC and AP indicate better overall detection. AUROC

tends to be more optimistic when positives are rare (Davis and Goadrich 2006), with a

random-chance level of 50%, while the AP random-chance level is the relative frequency

of the positive class. This is also known as skew, which we fixed at 16.67% for all

dataset-based experiments and 50% for all class-based experiments. The third metric is

the false positive rate when the true positive rate is fixed at 95% (FPR95). This indicates

the cost of false alarms when almost all positives are recalled, meaining that lower

FPR95 is better.

Finally, our benchmark evaluates the efficiency of methods by time metrics. For

training, it measures the time to iterate the training set and test set at each epoch.

Note that these times include operations that are not specific to the method, such as

computing accuracy, but this was kept consistent for all experiments. For inference time

we measure the average time to execute the supervised model (if used) or on one batch,

while score time is the time to compute the OOD detection score on an entire dataset.

We average these over the in- and out-distribution datasets for the dataset-based task.
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3.6 Reproducibility and statistical significance

For reproducibility, each training and evaluation run was completely deterministic for

a given random seed. This allowed methods that built upon a pretrained model from

some previous experiment (e.g. TwinNet) to automatically use the same class subsets.

Furthermore, each experiment run had a date-time stamp as an interpretable ID, and

experimental settings were saved to disk. We also partitioned the evaluation pipeline

into raw outputs, detection scores and metrics, to make the benchmark fault-tolerant.

Considering statistical significance, we deemed the cost of multiple training runs

too prohibitive. As an alternative we evaluate each method for 10 trials. Each trial uses

a randomised, fixed-size subset of scores on each OOD dataset. Furthermore, though

we did not repeat any one training setting, we did repeat the class-based task for 10

independent runs. This produced 10 models per in-distribution dataset, each trained on

a different subset of classes. We averaged over these class subsets to summarise the

performance of each method.

3.7 Benchmark design specification

Our benchmark works as follows. Users are given the training datasets (see Section

3.3.1) and the pretrained classifier M for each. The OOD validation dataset used in

this thesis is also provided, but users are free to design their own subject to constraints

(see Section 3.3.2). In turn, the user provides a detector model for each training dataset.

Given an image, the detector must output a single real-valued score which is proportional

to the belief that the image is OOD. The evaluation program runs the detector model on

the held-out test dataset of the in-distribution, along with the associated OOD datasets

(see Section 3.3.3). Finally, the evaluation program produces metrics for detection,

classification (if applicable), and time efficiency—see Section 3.5. Finally, the metrics

are aggregated over trials and datasets before being presented to the user.

The novel features of the benchmark include (1) randomly selected class sets for

class-based tasks, (2) integrated dataset-based and class-based tasks (i.e. one user model

is evaluated on both tasks), and (3) metrics for runtime, to measure efficiency. Although

other components have been used before, our benchmark is also novel as a combination

of: dataset-based and class-based tasks together, multiple training datasets, numerous

OOD datasets, and three categories of metric.
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Investigation of TwinNet

In this chapter we present an investigation of a novel neural network architecture called

TwinNet1. Specifically, we analyse the performance of TwinNet from the perspective of

Out-of-Distribution (OOD) detection, and the potential advantage of ensembling this

network compared to a regular network.

4.1 TwinNet architecture

Modern neural networks tend to encode a lot of redundancy. This is evident from

the resilience of performance to dropout (Srivastava et al. 2014), and heavy “pruning”

(Frankle and Carbin 2019). A natural question to ask in light of this is: what are the

most important parts of a trained neural network? These parts could be parameters or

functions. One way to approach this question is to take a well-performing, trained neural

network A and a second, randomly initialised network B with identical architecture.

We can then perform a sensitivity analysis by setting individual parts of the random

network to the corresponding parts in the trained network.

A key part of deep neural networks is clearly nonlinear activation functions such

as ReLU, because these enable universal approximation (Sonoda and Murata 2017).

However, activation functions themselves are a fixed part of the architecture, so do not

differentiate A and B. The activations out of a ReLU function do differentiate A and

B, but copying those would make it nearly trivial for B to mimic A, provided the final

activation layer is followed by a linear layer that can be trained. A middle ground can

be found by decomposing the ReLU layer function from max(0,h) to h.H(h), where

1Credit for the TwinNet architecture goes to Amos Storkey, with initial experiments done by Joseph
Mellor. However, we are the first to ensemble TwinNet predictions and use it for OOD detection.

23
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H is the Heaviside step function. The H(h) can be seen as a mask that multiplies the

h. We can then take the h from one network, the H(h) from the other network, and

multiply them together. This is the key idea of TwinNet: it changes the ReLU layers

of B from max(0,hB) to hB.H(hA). Note that the hidden activations hA and hB must be

derived from the same input x, so it is most efficient to execute A and B in tandem.

Now assume that A and B are image classifiers with ReLU activations and a linear

output layer. The hybrid operation hB.H(hA) would clearly deviate from the original

functionality of A, given that B is otherwise random. It is therefore sensible to at least

train the final linear layer of B. Unsurprisingly this is not sufficient for B to perform

well. For example, using a ResNet-110 pretrained on CIFAR-10 for A and training the

final layer of B for 10 epochs resulted in only 17.17% accuracy in one experiment. One

simple adjustment is enough to completely change the performance: copying the batch

normalisation parameters of A. Doing so brought the accuracy up to 95.07%.

4.2 The potential of TwinNet for robustness

The nearly as-good performance of B is remarkable, and demonstrates the importance

of the learned mask H(h). The fact that this encodes a great deal of useful information

is perhaps not surprising. However, we find it surprising that using H(hA) (with batch

normalisation) is sufficient for good performance, despite being modulated by the

random parameters of B.

Of course, this result may not be practically useful. B seems unnecessary if we

already have A, which as far as we know is more accurate. TwinNet is also not

competitive on forward pass time, as it requires running both A and B. The grouping

of their convolution and batch normalisation channels into shared layers, along with

their identical shared parts, gives a modest speed-up compared to two copies of A, but

this is still far from the speed of A alone. One potential advantage, however, is that the

training time required for B can be less than 1/5th of A—in our experiments, 100 versus

10 epochs, with the 10 epochs taking almost double time.

Given the good performance and short training time of B, we wondered how much

TwinNet benefits from ensembling, not just for accuracy but for robustness On one hand,

B inherits a great deal of bias from A; on the other hand, most of the parameters of B

are randomly initialised and A can be seen as a special instance in the space of possible

B networks. It is therefore unclear how much variance is present between instances

of B. Given the definite gain of training efficiency, and potential new insights, we felt
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this was important to investigate. In the following sections we present an exploratory

analysis of TwinNet’s robustness.

4.3 Confidence and OOD detection

In a preliminary experiment on TwinNet, we used a pretrained 40-2 Wide ResNet from

our Maximum Softmax Probability (MSP) baseline as network A (or “plain”). This

network was trained for 100 epochs on five CIFAR-10 classes (indices 8, 2, 5, 6, 3),

achieving a test error of 2.48%. We then constructed a TwinNet from A, training the

final linear layer of B for 10 epochs; the settings were otherwise the same as A. Further

details of the TwinNet implementation are given in Appendix B. Network B (or “twin”)

achieved a test error of 3.08%, corroborating the original ResNet-110 result. We then

looked at the distribution of confidence on the CIFAR-10 test set for A and B on their

respective correct and incorrect predictions, as shown in Fig. 4.1. As a control, we also

reinitialised the final linear layer of A and retrained it for 10 epochs (“linear”), which

achieved 2.56% test error.

Network A had a mean confidence of 99.4% on correct samples and 85.2% on

incorrect samples, detecting the latter well with 94.9% AUROC. The control had a very

similar distribution, though achieved slightly better error detection at 95.8% AUROC.

Meanwhile, B differed drastically. In particular, its confidence was much lower on

average: 95.4% for correct and only 66.5% for incorrect. Note that the difference in

confidence was disproportionate to the difference in test error: we found that when

A surpassed the test error of B in its original training run, its mean confidence was

already over 99%. Curiously, the difference had little effect on error detection, with an

AUROC of 94.8%. The confidence of B was also much more spread out, with double

the standard deviation: 9.8% vs. 4.9%.

Next, we compared the OOD detection performance of A and B, using our OOD

validation set. Fig. 4.1 illustrates the distribution of MSP scores for each dataset. We see

the same general pattern of lower and more spread-out confidence for B. However, OOD

detection turned out worse for B, achieving an AP of 56.1% compared to 59.0% for A.

Examining the AP for each dataset, we see that the difference is nuanced: for example,

A is much better at detecting uniform noise (64.8% vs. 35.5%), but worse at detecting

averaged pairs of images (46.5% vs. 50.4%). We cannot draw strong conclusions here

given this is only a single instance of the networks. The results are consistent with B

being slightly worse than A on average, like for test error. However, the fact that a B
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Figure 4.1: Distribution of confidence (maximum softmax probability) over the CIFAR-10

test set, split by correct and incorrect samples. AUROC is reported for detecting the

incorrect samples.
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Figure 4.2: Distribution of negative maximum softmax probability over the CIFAR-10

test set and OOD validation set. The confidence of TwinNet A (left) is higher and more

concentrated than TwinNet B (right), and does slightly better at OOD detection.

network can achieve similar OOD detection performance and has different comparative

advantage to A supports the idea that B networks benefit significantly from ensembling.

4.4 Ensembling TwinNet

We considered two approaches to ensembling TwinNet. The first extended the idea of

combining two networks in one module to N networks, with one A and multiple B. This

meant that each B was trained on the same sequence of training data simultaneously, so

we called this method “sim”. The second approach trained multiple single-B TwinNets

separately, with independently shuffled training batches, so we called this method “sep”.

Since “sep” requires a copy of A for each B, it takes more time than “sim” to train in

series but less in parallel (unless “sim” is further parallelised at a sub-network level).

For both approaches, the detection score was the MSP of the mean softmax over the B
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Method AUROC ↑ AP ↑ FPR95 ↓

plain 85.8 (0.1) 55.1 (0.1) 45.5 (0.2)

twin sim 2 84.8 (0.0) 54.1 (0.1) 45.2 (0.2)

twin sep 2 84.7 (0.1) 54.0 (0.1) 45.4 (0.2)

twin sim 4 85.5 (0.0) 54.9 (0.1) 43.7 (0.1)

twin sep 4 85.8 (0.0) 55.1 (0.1) 43.0 (0.2)

twin sim 8 85.5 (0.1) 55.8 (0.1) 43.5 (0.3)

twin sep 8 86.4 (0.0) 56.3 (0.1) 41.2 (0.2)

Table 4.1: Comparison of TwinNet B ensembles trained on the same sequence of training

data (“sim”) and independently shuffled sequences (“sep”) for aggregated OOD detection

on the validation set. The number appended to a method indicates the ensemble size.

The reported values are the mean and standard deviation over 10 trials.

networks.

Table 4.1 compares the OOD detection of the A networks (“plain”) to the “sim” and

“sep” ensembles of B, with a varied ensemble size. We see that for up to 4 networks, B

ensembles are unable to surpass A on Area Under the Receiver Operating Characteristic

(AUROC) and Average Precision (AP). However, ensembling immediately surpasses A

on False Positive Rate at true positive rate 95% (FPR95) and reaches up to 4.3% lower.

For the largest size of 8, “sim” marginally surpasses A overall (e.g. +0.7% AP), while

“sep” makes a bigger improvement on all metrics (e.g. +1.2% on AP). Generally, “sep”

is better at detection than “sim” for a given ensemble size. This is unsurprising, as

independent sequences of training data introduce more variance between each network’s

prediction. At inference time, we intended for “sep” networks to be combined in the

same way as “sim” to achieve the same efficiency, but this is left for future work. For

now, note that in principle the speed of “sim” and the performance of “sep” could be

achieved simultaneously.

Having established that ensembling TwinNet can improve OOD detection from the

baseline, albeit above a certain ensemble size, we proceeded to examine the trade-off

between test error and OOD detection for the “sep” version. Figure 4.3 illustrates

this trade-off. We see that, even for an ensemble of 10, B is unable to improve upon

the test error of A. However, B does consistently reduce its test error with ensemble

size. The same is almost true of the detection metrics—curiously the ensemble of

10 is comparable or slightly worse than 8. An ensemble size of 8 is therefore the
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Figure 4.3: Trade-off between test error and OOD detection (on the validation set) for

TwinNet B ensembles. Numbers in the legend indicated ensemble size. Error bars

indicate standard deviation over 10 trials.

pareto-optimum for test error and OOD detection, out of the sizes tested here. We use

this ensemble size in our final benchmark evaluation. We emphasise that once the cost

of training the TwinNet model is sunk, there is practically no trade-off. Running B

requires running A, so it is trivial to simultaneously use the more accurate predictions

of A for classification, and the more robust predictions of the B ensemble for OOD

detection.

In summary, we have seem that a single TwinNet can surpass a plain network at

OOD detection on some datasets, but is significantly worse overall. By ensembling

enough TwinNet models (8 in our experiment), we can surpass a plain network and

achieve a pareto-optimum between test error and OOD detection. This was a preliminary

investigation that both validated the potential benefit of TwinNet for robustness, and

informed design decisions for our final evaluation. Our aim was to tune the design for

OOD detection performance. We did not actively select for other important metrics,

namely runtime and calibration. Those metrics measure side-effects of design decisions,

and are covered in Chapter 5.



Chapter 5

Benchmark experiments

In this chapter we present and discuss the results of running our benchmark, following

the procedure from Section 3.7. We evaluated the channel-wise Gaussian mixture

model (GMM) (Section 3.2.1), the baselines explained in Section 3.4 (Maximum

Softmax Probability (MSP), Monte Carlo Dropout (MCD), Random Prior (RP), RotNet)

and the ensemble of 8 independently trained TwinNet models (Section 4). We only

evaluated RP on CIFAR-10 for reasons explained near the end of Section 5.1, and we

did not evaluate RotNet on TinyImageNet.

5.1 OOD detection

We first examine performance on the dataset-based Out-of-Distribution (OOD) detec-

tion tasks. Table 5.1 lists the detection metrics averaged first over the 10 random class

subsets and then over the 10 trials for each subset. At this point it is worth reminding

that the random-chance level is 50% for Area Under the Receiver Operating Charac-

teristic (AUROC) and 95% for False Positive Rate at true positive rate 95% (FPR95).

Meanwhile, the random-chance level for Average Precision (AP) is the relative fre-

quency of positives or skew: ≈ 16.67% for the dataset-based tasks and 50% for the

class-based tasks. AP is therefore not directly comparable between the two tasks.

From Table 5.1 we see that the MSP baseline performs moderately well, in the sense

that it greatly exceeds random-chance level in all cases. Its AUROC is also far better

than GMM on CIFAR-10 and CIFAR-100. However, there is clearly much room for

improvement upon MSP. The AP metrics highlight the inadequacy of MSP: accounting

for skew makes it clear that MSP is imprecise, achieving only 58.1% for CIFAR-10.

We find that MCD is slightly worse than MSP across all metrics for dataset-based

29
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tasks. This suggests that MCD is not particularly useful for detecting data from unfa-

miliar sources. Meanwhile, the TwinNet ensemble is also worse than both MSP and

MCD overall. This is surprising, at least for CIFAR-10, because validation results

suggested the TwinNet method would perform better (see Section 4.4). This disparity

between validation and evaluation results highlights the challenge of designing an infor-

mative validation set. In general, benchmark users should be aware that fine-grained

comparison of OOD detection performance may not generalise.

On the other hand, we find RotNet to be very effective at detection. For example,

RotNet improves the MSP baseline from 58.1% AP to 91.2% AP on CIFAR-10. The

reduction in FPR95 from 32.6% to 11.8% is also remarkable. These results lend further

support to the conclusions of Hendrycks, Mazeika, Kadavath, et al. (2019) and Ahmed

and Courville (2019). Namely, the representations learned via auxilliary tasks, such as

predicting image rotation, can not only accelerate learning of the main classification

task but also improve robustness. This makes auxilliary tasks very appealing all-round.

Almost all of the Deep Neural Network (DNN)-based detectors perform far above

random-chance level, and RotNet is by far the best detector. However, comparing the

results across datasets highlights a serious limitation: robustness to scale. For example,

MSP goes from 58.1% AP on CIFAR-10, to 41.6% on CIFAR-100, to 28.6% AP on

Tiny ImageNet. RotNet is no more robust to scale, suffering an enormous drop of

31.6% AP from CIFAR-10 to CIFAR-100. MCD and TwinNet suffer similar drops in

performance, with TwinNet almost at random-chance level on Tiny ImageNet.

Meanwhile, though it performs worse overall, the GMM is more robust going from

CIFAR-10 to CIFAR-100, most likely because the input dimension is the same and the

GMM does not use class information. Note however that the training of this particular

GMM model, with its full maximum-likelihood covariance estimation, scales poorly

with dimension as d2. This makes it infeasible going much beyond the dimensions of

TinyImageNet. Indeed, the GMM drops drastically in performance along with the DNN

methods when input dimension increases.

Results for the class-based tasks are listed in Table 5.2. Broadly the results tell a

similar story, with notable differences. Comparing AUROC between Table 5.1 and

5.2 shows that the GMM performs much worse, around random-chance level. For

CIFAR-10 and CIFAR-100, the DNN-based methods also perform significantly worse.

This suggests that the class-based task is generally more difficult than the dataset-

based task. Notably, performance does not degrade as much on Tiny ImageNet as for

the dataset-based task. We attribute this partly to the challenging OOD datasets of
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Table 5.1: Aggregate OOD detection metrics for the dataset-based tasks. For AUROC

and AP, all values have standard deviation 0.1 or less, unless otherwise indicated in

brackets. Arrows indicate the direction of improvement for the metric.

GMM MSP RP MCD RotNet TwinNet

AUROC ↑

CIFAR10 64.6 88.4 50.3 86.8 97.5 86.8

CIFAR100 66.3 79.5 - 77.3 87.9 78.7

TinyImageNet 33.2 67.4 - 65.0 - 53.8

AP ↑

CIFAR10 52.5 58.1 27.8 53.5 91.2 55.7 (0.2)

CIFAR100 52.5 41.6 - 38.5 59.6 37.9

TinyImageNet 25.5 28.6 - 27.0 - 19.0

FPR95 ↓

CIFAR10 61.1 32.6 (0.2) 76.5 33.1 (0.4) 11.8 (0.2) 35.4 (0.3)

CIFAR100 58.9 47.7 (0.2) - 50.6 (0.2) 35.9 (0.3) 50.2 (0.2)

TinyImageNet 74.0 64.5 (0.2) - 67.0 - 76.8

ImageNet-x and ImageNet-O in the latter task, with ImageNet-O curated especially to

fool DNN classifiers (Hendrycks, Zhao, et al. 2020). MSP achieves only 75.2% and

68.5% AUROC on these datasets, respectively—see Table C.7. What is more surprising

is that Tiny ImageNet classifiers are worse than random chance at detecting noise, at

45.0% AUROC for Gaussian and 42.9% AUROC for Rademacher. This indicates a

major challenge for DNN models on large-scale datasets.

Another notable departure of class-based task results is that the TwinNet ensemble

performs slightly better than MSP on CIFAR-10, rather than slightly worse. However,

it still scales poorly with data dimensions, becoming much worse again on Tiny Ima-

geNet. Meanwhile, MCD is slightly better than MSP across the datasets and metrics.

Ultimately, RotNet maintains a strong lead on class-based tasks, but like all the other

methods, it suffers from a poor false-positive rate.

The one method we have overlooked so far is RP. As Table 5.1 and 5.2 show, RP

performed very poorly on CIFAR-10, either not far above or worse than random chance

levels. Due to this very poor performance, we did not proceed to evaluate RP on CIFAR-
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Table 5.2: Aggregate OOD detection metrics for the class-based tasks.

GMM MSP RP MCD RotNet TwinNet

AUROC ↑

CIFAR10 49.1 82.9 45.2 83.4 88.4 83.5

CIFAR100 51.0 76.3 - 76.4 78.6 74.7

TinyImageNet 49.4 72.6 - 73.1 - 64.5

AP ↑

CIFAR10 50.0 80.7 46.9 81.0 88.8 81.5

CIFAR100 51.2 72.2 - 72.4 75.5 70.6

TinyImageNet 49.5 67.5 - 68.0 - 60.1

FPR95 ↓

CIFAR10 94.3 62.8 95.7 57.4 51.8 60.1

CIFAR100 95.0 66.0 - 65.6 65.4 70.7

TinyImageNet 95.0 66.6 - 66.3 - 79.0

100 or Tiny ImageNet. To understand the poor performance, we refer to Figure 5.1.

This compares the distribution of RP uncertainty estimates for the datasets evaluated

in Ciosek et al. (2019). We see that all of the uncertainties for non-training datasets,

including the in-distribution test set, are distributed far away from the uncertainties on

the training dataset. Furthermore, the uncertainties for the in-distribution test set are in a

very similar range to the OOD datasets. This shows that RP is very effective at detecting

data outside of the training set, but ineffective at distinguishing new in-distribution test

points from OOD test points. In practice, we assume that an OOD detector observes

test inputs sequentially, and must distinguish in-distribution test inputs from OOD

test inputs one-at-a-time. We therefore find that RP is not useful for practical OOD

detection. Essentially, the problem is that RP is too conservative. However, this does

not necessarily detract from RP as a novelty detection or uncertainty estimation method

in certain domains.
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Figure 5.1: Distribution of uncertainties for RP (left) versus Deep Ensemble with Ad-

versarial Training (right), using an ensemble size of 5. Replicated from Ciosek et al.

(2019).

5.2 Classification, error detection and calibration

We now look at metrics related to predictive quality of classifiers. Note that only MSP,

MCD, RotNet and TwinNet have their own classifier. Note also that, while the TwinNet

results here are for the B ensemble, predictive performance was consistently worse than

the A network and in practice A should be used for classification instead. Finally, note

that MCD did not require additional training and only modified predictions at inference

time.

Table 5.3 lists the test error for each predictive model on each in-distribution test

set, averaged over the 10 class subsets for each in-distribution. We find that MCD is

comparable or slightly better than MSP at classification. Meanwhile, RotNet is far

better on CIFAR-10 and CIFAR-100, demonstrating an additional advantage to rotation

prediction in our training setting. Meanwhile, the TwinNet ensemble is slightly worse

on CIFAR-10, and like OOD detection, it degrades severely for CIFAR-100 and Tiny

ImageNet.

Table 5.4 shows the AUROC scores measuring a classifier’s ability to detect its own

errors using the (averaged) MSP score. Again, MCD is slightly better than MSP in

this regard. It is interesting that RotNet is instead worse than MSP and even TwinNet

here, despite being much better at classification. This may be explained by a correlation

between the number of incorrect samples and the difficulty of detecting those samples.
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Table 5.3: Test error (%)

MSP MCD RotNet TwinNet

CIFAR10 3.80 3.81 2.95 3.95

CIFAR100 18.58 18.47 17.91 20.69

TinyImageNet 31.83 31.40 - 45.94

Table 5.4: Error detection AUROC (%)

MSP MCD RotNet TwinNet

CIFAR10 93.8 94.3 90.0 93.2

CIFAR100 88.8 89.0 83.2 86.3

TinyImageNet 86.5 86.6 - 79.5

Finally, Table 5.5 presents the average Root Mean Square (RMS) calibration error

of our classifiers. MSP proves to be moderately well-calibrated, but there is still much

room for improvement, especially for the larger-scale datasets. Meanwhile, MCD

greatly reduces calibration error, and RotNet is similar overall to MSP. TwinNet proves

to be second-best on CIFAR-10 here, but once again scales very poorly. Overall, the

results here show that RotNet is the most effective at classification, but MCD is not far

behind and is more effective than RotNet as an in-distribution uncertainty estimate.

5.3 Time

Finally, to assess the relative efficiency of methods we examine inference and scoring

time. Inference times are listed in the top section of Table 5.6. Comparing MCD, RotNet

and TwinNet to the MSP baseline, we find that RotNet bears a much lower inference

Table 5.5: RMS Calibration Error (%)

MSP MCD RotNet TwinNet

CIFAR10 5.3 3.1 4.6 4.0

CIFAR100 13.2 4.9 13.3 29.8

TinyImageNet 14.7 5.7 - 31.2
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Table 5.6: Inference time in milliseconds per batch of 100 images and OOD score time

in milliseconds per dataset, averaged over all datasets. Where a method does not have

a predictive model directly associated, we report the MSP inference time.

GMM MSP RP MCD RotNet TwinNet

Inference

CIFAR10 10.7 10.7 10.7 872.7 22.3 543.9

CIFAR100 10.9 10.9 - 875.7 21.9 543.4

TinyImageNet 10.6 10.6 - 3279.9 - 2054.6

Score

CIFAR10 1630 0.1 1240 0.2 11.1 0.2

CIFAR100 1700 0.1 - 0.3 12.3 0.3

TinyImageNet 4450 0.1 - 0.6 - 0.4

cost, though it is still about double the time due to being run on four orientations per

input. We expect that most applications could tolerate this additional cost given the large

gains in performance noted in the previous sections. Meanwhile, MCD and TwinNet

are much more costly, at an order of magnitude above MSP.

The high cost of MSP and TwinNet comes with important caveats. Firstly, we

selected the number of samples for MCD partly so that it took a comparable time to

TwinNet. We did so because MCD is the most natural baseline for TwinNet of the

methods we considered, so we avoided giving TwinNet an unfair advantage by having

more time. The second caveat is that the TwinNet ensemble was implemented as 8

separate modules, when it could have been more efficiently implemented as a single

module with group convolutions. The samples of MCD and TwinNet could also have

been parallelised, reducing the execution time by a factor of up to 20 and 8, respectively.

We expect that these efficiency gains would bring MCD and TwinNet into the same

order of magnitude as MSP and RotNet, but still significantly worse.

As for scoring efficiency, the bottom section of Table 5.6 also shows large variance

between methods. The fastest is again MSP, closely followed by MCD and TwinNet on

the order of 0.1 milliseconds. Unlike inference, the RotNet score takes much longer

to compute, but still does not seem to be a limiting factor. However, the GMM and

RP both bear significantly greater cost to score, due to using separate models from the

classifier.
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Conclusions

This thesis was motivated by the failure of Deep Neural Network (DNN) classifiers

to handle Out-of-Distribution (OOD) inputs. The failure is particularly problematic

for safety-critical applications such as medical imaging and autonomous driving. To

improve the trustworthiness of DNN classifiers, we focused on OOD detection: using a

scoring model to detect when the input to a classifier is OOD, so that this input can be

handled safely and reliably.

Despite a considerable body of work on OOD detection for DNNs in the litera-

ture, we identified several limitations to evaluation. These include evaluating only one

training dataset, lack of diversity in OOD datasets, using the same OOD distribution

in hyperparameter tuning and testing, and neglecting efficiency as a measure of per-

formance. We proposed a new benchmark that addresses many of the limitations. The

the benchmark includes a novel task design, using randomly selected class sets and

integrating dataset-based and class-based tasks. It is also more well-rounded than most

other benchmarks, using multiple training datasets, numerous OOD datasets, and three

categories of metric. Besides designing the benchmark, we investigated the potential

merit of ensembling an architecture called TwinNet, as a new OOD detection method,

before evaluating this and other baselines on our benchmark. The evaluation makes

a larger-scale assessment of the Random Prior (RP) (Ciosek et al. 2019) and RotNet

(Hendrycks, Mazeika, and Dietterich 2019) methods compared to previous work.

The results of the benchmark showed that both dataset-based and class-based OOD

detection tasks are difficult relative to the standard we expect for trustworthy machine

learning, with much room for improvement. Furthermore, a simple Gaussian mixture

model (GMM) baseline was inadequate at these tasks and inefficient at inference time,

providing some evidence that DNN classifiers are marginally useful over purely unsuper-
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vised or density-estimation methods. However, a major issue with DNN classifier-based

methods is their robustness to scale, as detection performance degraded significantly

with larger input and output dimensions for all of those methods.

We also observed some trade-offs between OOD detection tasks: for example,

Monte Carlo Dropout (MCD) was slightly worse than Maximum Softmax Probability

(MSP) at dataset-based tasks but slightly better at class-based tasks. It was also much

better than any classifier method for uncertainty estimation on the in-distribution.

Meanwhile, the TwinNet ensemble was generally disappointing, usually being worse

than the MSP baseline and degrading the most with input and output dimensions.

Overall, adding rotation prediction as an auxilliary task (RotNet) was by far the best

at OOD detection, best on classification error, and competitive on calibration and

efficiency metrics.

The benchmark results suggest several directions for future work. Firstly, although

TwinNet was generally disappointing, we believe our investigation in Chapter 4 still

shows some potential for combining competitive classification performance with very

efficient training. We are excited to see further investigation to understand how it

might be used better. Secondly, given the excellent performance of RotNet, other

auxilliary tasks could be explored further. For example, we could test whether the

benefit of optimised views for contrastive learning (Tian et al. 2020) transfers to OOD

detection. We could also combine RotNet with Outlier Exposure (Hendrycks, Mazeika,

and Dietterich 2019). Indeed, MCD, RotNet and TwinNet could all be combined in

different ways, as their scoring models can complement each other.

In terms of benchmark design, while we focused on generic datasets for object

recognition, it would be valuable to focus on specific application domains to understand

how benchmarks need to be adapted, and whether the relative performance of the

methods generalises. It would also be useful to compare more efficient and competitive

unsupervised baselines. Finally, given that performance on the validation set did not

always transfer well to evaluation, it is important to investigate the design of fair yet

informative validation data.
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Supplementary figures
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Figure A.1: Distribution of negative maximum softmax probability over the CIFAR-10 test

set and OOD validation set for the plain network, and the same network with the final

linear layer reinitialised and trained for 10 epochs. The distributions and performance

are very similar, unlike Fig. 4.1.
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Figure A.2: 2D regression example of the RP method. The supervised model M ,

a multilayer perceptron with ReLU activations, is trained to predict a sine function.

Meanwhile, a learner is trained to mimic a random prior on the same data. The Mean

Squared Error (MSE) between the learner and prior (shaded) provides an apparently

reasonable estimate of variance.



Appendix B

Implementation detail

B.1 Supervised model

For all experiments, the supervised model was a 40-2 Wide Residual Network (Zagoruyko

and Komodakis 2017). We trained this using cross-entropy loss for 100 epochs with

batch size 128 on a single Tesla K40c GPU. The optimizer was stochastic gradient

descent with initial learning rate 0.1, L2 weight regularisation of 0.0005, Nesterov

momentum 0.9, and a cosine annealing learning rate schedule ending at 10−5. We

applied data augmentations of random crop and random horizontal flip on all samples.

All of these settings were based on previous work, particularly Hendrycks, Mazeika,

and Dietterich (2019), and not optimized ourselves. All computation related to models

was implemented using the PyTorch library.

B.2 Random Prior

We set the prior scale to 1.0 based on validation results, selected from (0.1, 1.0, 2.0,

5.0).

B.3 Monte Carlo Dropout

Based on validation results we found the MSP score better than standard deviation on

the mean prediction of Monte Carlo Dropout.
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B.4 RotNet

We set λ to 0.5 based on Hendrycks, Mazeika, Kadavath, et al. (2019), without any

tuning.

B.5 TwinNet

When implementing TwinNet, one must consider how B depends on hidden activations

of A. This limits the ability to run A and B as separate modules in parallel—at best,

some sophisticated message passing is required. We implemented TwinNet as a single

network that combines A and B. In this module, the convolution and batch normalisation

layers of A and B were grouped along the channel dimension. Then, the ReLU layers

were modified as described in the main matter, to implement hB.H(hA) for B. The final

channels before the output layer were then partitioned by the number of classes and fed

into separate linear layers.



Appendix C

Additional benchmark results

Table C.1: Dataset-based CIFAR-10 AUROC

GMM MCD MSP Rotation RP TwinNet

SVHN 1.4 89.9 91.6 99.2 25.7 89.7

CIFAR100 47.5 86.4 86.1 93.3 51.0 86.7

LSUN 79.9 89.7 90.2 95.1 58.0 91.5

GaussianNoise 100.0 84.2 89.1 99.4 25.5 80.2

RademacherNoise 100.0 83.6 84.9 99.5 98.6 85.2

Textures 58.6 87.0 88.5 98.5 42.9 87.5

mean 64.6 86.8 88.4 97.5 50.3 86.8
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Table C.2: Dataset-based CIFAR-10 AP

GMM MCD MSP Rotation RP TwinNet

SVHN 8.9 56.4 62.4 96.5 11.0 59.0

CIFAR100 17.1 53.8 54.1 79.9 20.1 56.2

LSUN 46.8 60.0 61.4 84.0 19.3 65.1

GaussianNoise 100.0 45.9 54.9 95.8 11.7 43.7

RademacherNoise 100.0 51.6 56.8 96.4 84.8 52.8

Textures 42.5 53.5 59.2 94.7 20.2 57.2

mean 52.5 53.5 58.1 91.2 27.8 55.7

Table C.3: Dataset-based CIFAR-10 FPR95

GMM MCD MSP Rotation RP TwinNet

SVHN 100.0 28.3 26.2 3.9 97.9 33.3

CIFAR100 97.5 47.9 53.3 33.6 95.4 50.8

LSUN 69.8 32.6 33.0 23.3 86.2 28.5

GaussianNoise 0.0 23.3 18.0 1.7 80.1 30.7

RademacherNoise 0.0 24.4 22.2 1.5 1.7 23.5

Textures 99.6 42.1 43.1 7.0 97.7 45.6

mean 61.1 33.1 32.6 11.8 76.5 35.4

Table C.4: Dataset-based CIFAR-100 AUROC

GMM MCD MSP Rotation RP TwinNet

SVHN 2.1 82.4 84.7 95.6 - 80.9

CIFAR10 53.9 78.7 77.6 76.7 - 77.9

LSUN 81.9 76.7 76.9 77.9 - 74.8

GaussianNoise 100.0 73.8 78.4 93.7 - 79.8

RademacherNoise 100.0 73.5 77.8 93.6 - 81.0

Textures 59.7 78.7 81.5 90.1 - 77.8

mean 66.3 77.3 79.5 87.9 - 78.7
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Table C.5: Dataset-based CIFAR-100 AP

GMM MCD MSP Rotation RP TwinNet

SVHN 8.9 44.5 48.2 80.9 - 38.6

CIFAR10 17.8 38.7 37.0 37.1 - 37.1

LSUN 46.7 35.4 36.0 38.6 - 32.3

GaussianNoise 100.0 30.3 34.7 67.2 - 36.2

RademacherNoise 100.0 42.4 48.6 66.4 - 47.4

Textures 41.5 40.0 45.1 67.2 - 36.0

mean 52.5 38.5 41.6 59.6 - 37.9

Table C.6: Dataset-based CIFAR-100 FPR95

GMM MCD MSP Rotation RP TwinNet

SVHN 100.0 47.1 41.0 16.7 - 50.9

CIFAR10 91.2 60.7 63.3 70.4 - 63.9

LSUN 63.0 61.7 63.9 66.3 - 65.2

GaussianNoise 0.0 37.9 32.4 12.6 - 31.4

RademacherNoise 0.0 37.7 32.5 12.0 - 28.3

Textures 98.9 58.3 53.2 37.6 - 61.3

mean 58.9 50.6 47.7 35.9 - 50.2

Table C.7: Dataset-based TinyImageNet AUROC

GMM MCD MSP RotNet RP TwinNet

SVHN 0.1 79.3 81.8 - - 68.6

LSUN 11.5 76.2 75.6 - - 68.2

ImageNet 11.9 75.2 74.6 - - 66.3

ImageNetO 12.3 68.5 69.5 - - 59.0

GaussianNoise 80.9 45.0 50.7 - - 30.6

RademacherNoise 100.0 42.9 49.4 - - 28.1

Textures 15.5 67.7 70.1 - - 55.6

mean 33.2 65.0 67.4 - - 53.8
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Table C.8: Dataset-based TinyImageNet AP

GMM MCD MSP RotNet RP TwinNet

SVHN 8.8 40.3 45.1 - - 23.4

LSUN 9.5 33.5 33.0 - - 25.5

ImageNet 9.4 32.7 32.2 - - 24.2

ImageNetO 9.4 25.9 27.0 - - 19.3

GaussianNoise 31.4 14.9 16.4 - - 12.0

RademacherNoise 99.9 15.0 17.2 - - 11.5

Textures 9.7 26.3 29.2 - - 17.5

mean 25.5 27.0 28.6 - - 19.0

Table C.9: Dataset-based TinyImageNet FPR95

GMM MCD MSP RotNet RP TwinNet

SVHN 100.0 53.6 49.6 - - 60.2

LSUN 98.4 60.4 61.0 - - 71.8

ImageNet 99.3 62.6 63.2 - - 75.3

ImageNetO 99.7 75.2 73.4 - - 84.4

GaussianNoise 20.5 70.5 65.8 - - 80.1

RademacherNoise 0.0 69.8 64.3 - - 80.7

Textures 99.9 76.7 74.0 - - 84.9

mean 74.0 67.0 64.5 - - 76.8
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Table C.10: Class-based CIFAR-10 AUROC

GMM MCD MSP RotNet RP TwinNet

0 42.5 86.4 85.9 93.5 40.4 85.1

1 44.9 81.0 80.5 88.8 35.8 79.2

2 38.6 83.4 82.0 92.0 46.6 83.4

3 54.7 83.4 82.3 84.6 43.0 81.3

4 44.5 88.8 87.5 96.7 51.4 90.0

5 60.4 83.0 81.8 85.9 47.1 82.7

6 45.2 86.1 86.3 86.7 45.2 86.8

7 45.0 85.8 85.4 89.6 35.9 84.8

8 47.6 83.1 82.7 75.7 47.0 84.9

9 67.3 73.4 74.2 90.6 59.7 76.8

mean 49.1 83.4 82.9 88.4 45.2 83.5

Table C.11: Class-based CIFAR-10 AP

GMM MCD MSP RotNet RP TwinNet

0 45.1 85.0 84.6 94.2 43.4 84.5

1 47.4 77.3 77.3 89.0 41.0 76.9

2 42.1 81.5 80.5 92.2 48.0 82.4

3 53.8 80.7 79.8 85.0 44.9 78.9

4 45.3 87.2 86.3 96.6 51.8 88.1

5 59.2 80.9 80.2 86.9 48.5 80.6

6 47.5 82.7 83.3 86.8 47.1 84.7

7 45.3 82.9 82.9 89.8 40.5 82.7

8 48.1 80.2 80.1 75.6 48.0 81.7

9 66.0 71.6 72.3 91.7 55.7 74.3

mean 50.0 81.0 80.7 88.8 46.9 81.5
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Table C.12: Class-based CIFAR-10 FPR95

GMM MCD MSP RotNet RP TwinNet

0 96.3 52.4 58.8 36.8 96.5 66.3

1 97.1 59.6 65.8 48.1 98.0 71.4

2 98.1 66.2 75.4 38.2 95.1 67.3

3 92.4 55.8 60.2 68.4 95.5 64.7

4 96.1 48.7 57.4 14.7 95.1 41.5

5 89.0 63.4 69.7 70.9 96.8 61.6

6 96.6 39.9 44.8 58.5 96.0 47.8

7 94.7 50.9 55.2 48.9 97.1 56.4

8 96.0 57.6 61.6 78.9 96.1 50.8

9 86.5 80.0 79.2 54.9 90.3 72.8

mean 94.3 57.4 62.8 51.8 95.7 60.1

Table C.13: Class-based CIFAR-100 AUROC

GMM MCD MSP RotNet RP TwinNet

0 54.6 76.9 76.5 74.9 - 74.4

1 53.3 75.1 74.6 78.2 - 74.0

2 50.1 75.5 75.1 82.0 - 75.4

3 47.3 77.4 77.9 77.1 - 74.9

4 51.1 77.3 77.0 74.9 - 75.2

5 54.3 75.6 75.3 79.1 - 74.3

6 48.6 79.5 79.4 78.8 - 78.2

7 47.0 72.6 73.6 80.7 - 69.8

8 48.9 76.3 76.3 80.5 - 75.1

9 54.6 77.6 77.2 79.1 - 76.1

mean 51.0 76.4 76.3 78.6 - 74.7



Appendix C. Additional benchmark results 52

Table C.14: Class-based CIFAR-100 AP

GMM MCD MSP RotNet RP TwinNet

0 53.5 72.7 72.4 71.2 - 70.0

1 52.7 71.3 70.7 75.4 - 69.2

2 51.5 72.1 71.4 79.2 - 72.0

3 48.3 73.9 74.2 74.1 - 71.2

4 52.4 73.9 73.1 72.5 - 71.5

5 52.6 71.2 71.1 76.3 - 69.8

6 50.2 75.8 75.7 75.6 - 74.0

7 48.2 68.2 69.4 76.9 - 66.3

8 49.6 71.6 71.4 77.2 - 70.4

9 53.4 73.4 72.8 76.3 - 71.8

mean 51.2 72.4 72.2 75.5 - 70.6

Table C.15: Class-based CIFAR-100 FPR95

GMM MCD MSP RotNet RP TwinNet

0 91.3 65.7 66.8 72.5 - 72.3

1 93.2 68.0 70.3 66.8 - 70.2

2 97.2 67.8 68.2 56.4 - 69.8

3 96.8 64.4 61.9 68.4 - 72.6

4 96.0 67.6 67.0 72.5 - 71.8

5 91.5 70.0 70.1 66.1 - 71.1

6 97.6 57.4 57.9 67.4 - 63.3

7 96.5 72.5 71.1 58.0 - 80.6

8 97.0 62.5 63.3 59.5 - 67.9

9 93.1 60.1 63.0 66.6 - 67.7

mean 95.0 65.6 66.0 65.4 - 70.7
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Table C.16: Class-based Tiny ImageNet AUROC

GMM MCD MSP RotNet RP TwinNet

0 50.7 72.6 72.0 - - 69.0

1 50.9 73.0 72.6 - - 63.8

2 49.1 73.6 73.1 - - 66.0

3 47.6 72.0 71.7 - - 64.2

4 48.8 74.5 74.2 - - 62.7

5 49.7 72.0 71.6 - - 63.2

6 50.8 73.7 73.2 - - 61.6

7 51.2 71.9 71.4 - - 64.6

8 47.7 73.3 72.8 - - 64.5

9 48.0 73.7 73.0 - - 65.1

mean 49.4 73.1 72.6 - - 64.5

Table C.17: Class-based Tiny ImageNet AP

GMM MCD MSP RotNet RP TwinNet

0 50.2 67.3 66.5 - - 63.8

1 51.1 67.5 67.1 - - 59.7

2 48.2 68.8 68.6 - - 61.2

3 48.6 66.4 66.2 - - 59.9

4 49.1 69.0 68.7 - - 58.6

5 50.0 67.1 66.8 - - 58.7

6 50.2 69.3 68.7 - - 58.2

7 51.5 66.7 66.2 - - 60.4

8 48.3 68.5 67.9 - - 60.1

9 48.2 69.1 68.5 - - 60.5

mean 49.5 68.0 67.5 - - 60.1
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Table C.18: Class-based Tiny ImageNet FPR95

GMM MCD MSP RotNet RP TwinNet

0 94.7 66.8 67.2 - - 72.0

1 94.5 67.0 66.4 - - 80.9

2 95.2 64.7 66.1 - - 77.7

3 95.6 66.7 67.7 - - 80.2

4 96.0 63.4 63.2 - - 82.6

5 95.5 68.5 68.1 - - 79.3

6 94.0 67.1 66.4 - - 82.6

7 94.7 67.6 68.2 - - 79.1

8 95.9 66.3 67.2 - - 78.6

9 94.4 65.2 65.4 - - 77.3

mean 95.0 66.3 66.6 - - 79.0

Table C.19: Error prediction AP (%)

MSP MCD RotNet TwinNet

CIFAR10 39.1 39.4 26.9 38.5

CIFAR100 61.4 61.6 51.4 60.1

TinyImageNet 71.8 72.2 - 73.7

Table C.20: Error prediction FPR95 (%)

MSP MCD RotNet TwinNet

CIFAR10 25.0 21.8 50.2 26.9

CIFAR100 38.1 37.7 57.9 47.7

TinyImageNet 44.7 44.0 - 61.1

Table C.21: MAD Calibration Error (%)

MSP MCD RotNet TwinNet

CIFAR10 2.3 1.4 1.9 2.5

CIFAR100 9.3 3.5 9.1 27.4

TinyImageNet 12.0 4.3 - 28.9
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Table C.22: Soft F1 Score (%)

MSP MCD RotNet TwinNet

CIFAR10 22.7 32.6 21.5 25.8

CIFAR100 38.7 49.2 38.7 44.8

TinyImageNet 50.0 56.7 - 65.0
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Datasets

D.1 Class subsets

The following lists the class indices (from 0) for each randomised class subset in our

benchmark. Each subset contains half of the total classes in the training dataset.

D.1.1 CIFAR-10

[8, 2, 5, 6, 3]

[7, 8, 2, 6, 4]

[5, 8, 7, 0, 4]

[3, 5, 6, 1, 4]

[3, 9, 0, 5, 4]

[2, 6, 1, 3, 7]

[6, 2, 0, 7, 8]

[7, 2, 5, 3, 4]

[7, 9, 0, 4, 2]

[1, 7, 9, 6, 8]

D.1.2 CIFAR-100

[19, 14, 43, 37, 66, 3, 79, 41, 38, 68, 2, 1, 60, 53, 95, 74, 92, 26, 59, 46, 90, 70, 50, 44,

76, 55, 21, 61, 6, 63, 42, 34, 84, 52, 35, 39, 45, 4, 5, 48, 32, 20, 83, 58, 47, 80, 17, 67,

81, 7]

[46, 49, 22, 58, 41, 98, 62, 29, 30, 51, 89, 78, 83, 79, 16, 38, 54, 6, 39, 93, 21, 36,

20, 61, 60, 96, 2, 11, 28, 9, 68, 52, 66, 97, 42, 69, 18, 85, 26, 99, 19, 65, 86, 47, 84, 77,

56
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72, 8, 3, 59]

[17, 41, 92, 14, 68, 31, 89, 15, 21, 60, 12, 8, 39, 9, 7, 70, 58, 24, 86, 16, 83, 55, 26,

54, 19, 57, 46, 23, 36, 91, 81, 65, 84, 90, 88, 29, 38, 77, 40, 78, 20, 10, 28, 96, 95, 71,

73, 72, 42, 79]

[37, 62, 83, 14, 43, 9, 44, 31, 69, 57, 33, 87, 12, 91, 41, 23, 76, 29, 50, 68, 3, 4, 90,

72, 20, 59, 93, 96, 89, 47, 39, 27, 42, 13, 8, 88, 17, 84, 35, 95, 81, 0, 67, 55, 30, 36, 71,

61, 64, 10]

[24, 39, 35, 44, 55, 70, 82, 40, 91, 65, 2, 90, 18, 73, 97, 69, 52, 8, 29, 6, 34, 64, 38,

20, 50, 99, 7, 74, 54, 42, 23, 79, 58, 53, 47, 98, 33, 51, 36, 60, 62, 92, 16, 89, 48, 72, 49,

95, 14, 46]

[84, 36, 57, 51, 46, 78, 93, 14, 11, 59, 61, 38, 21, 90, 8, 25, 63, 9, 94, 97, 99, 3, 20,

55, 6, 81, 96, 30, 13, 16, 70, 69, 18, 58, 43, 87, 89, 64, 66, 33, 52, 48, 98, 92, 76, 79, 45,

67, 24, 54]

[7, 25, 71, 42, 47, 29, 63, 88, 50, 9, 48, 60, 26, 62, 98, 72, 91, 84, 33, 13, 96, 5, 90,

53, 67, 81, 39, 11, 10, 86, 45, 35, 38, 2, 94, 19, 36, 87, 27, 22, 51, 49, 23, 79, 55, 3, 73,

12, 75, 6]

[71, 28, 9, 4, 73, 34, 94, 92, 47, 37, 93, 76, 40, 70, 14, 16, 18, 80, 33, 78, 87, 60, 48,

82, 67, 81, 11, 25, 75, 53, 21, 95, 88, 66, 62, 35, 59, 29, 91, 36, 52, 55, 20, 12, 0, 58, 24,

69, 83, 46]

[53, 47, 43, 54, 33, 48, 0, 12, 44, 91, 2, 95, 76, 1, 74, 4, 87, 79, 6, 94, 23, 90, 97, 20,

40, 30, 81, 16, 52, 83, 45, 37, 80, 7, 82, 39, 98, 77, 78, 88, 57, 72, 27, 32, 71, 60, 38, 51,

26, 41]

[85, 72, 16, 18, 2, 38, 90, 30, 83, 61, 8, 44, 91, 13, 37, 46, 28, 58, 48, 76, 59, 14, 47,

81, 89, 70, 95, 33, 65, 6, 63, 62, 97, 43, 78, 1, 7, 24, 94, 64, 3, 21, 26, 42, 23, 87, 68, 99,

77, 41]

D.1.3 TinyImageNet

[59, 5, 20, 198, 52, 19, 162, 55, 69, 2, 98, 10, 75, 142, 124, 63, 109, 78, 111, 185, 154,

130, 61, 87, 102, 121, 136, 1, 47, 172, 159, 39, 76, 91, 35, 178, 127, 169, 46, 174, 190,

7, 26, 138, 58, 72, 103, 199, 56, 116, 24, 43, 101, 163, 21, 60, 175, 70, 90, 49, 119, 110,

95, 167, 193, 68, 165, 114, 67, 66, 120, 38, 196, 161, 99, 152, 83, 166, 117, 41, 80, 81,

32, 170, 48, 25, 53, 105, 17, 194, 51, 14, 82, 84, 184, 29, 3, 23, 147, 188]

[49, 191, 12, 172, 127, 40, 30, 170, 138, 57, 192, 72, 150, 146, 58, 26, 9, 115, 184,

198, 117, 36, 107, 113, 165, 161, 147, 65, 120, 21, 91, 188, 136, 71, 139, 2, 86, 116, 93,
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106, 47, 142, 149, 152, 182, 78, 55, 25, 168, 194, 6, 95, 101, 151, 190, 173, 31, 74, 176,

144, 97, 20, 169, 137, 181, 11, 48, 183, 3, 59, 5, 13, 68, 0, 153, 108, 27, 89, 179, 100,

63, 141, 98, 61, 77, 43, 166, 185, 8, 60, 134, 121, 94, 34, 199, 196, 32, 80, 177, 180]

[174, 33, 173, 186, 22, 53, 134, 56, 143, 94, 55, 73, 130, 41, 14, 63, 16, 60, 111, 0,

2, 46, 86, 88, 61, 162, 77, 126, 198, 3, 135, 29, 25, 26, 93, 36, 83, 151, 139, 120, 163,

137, 30, 103, 98, 11, 54, 97, 101, 52, 42, 154, 123, 194, 150, 192, 112, 156, 9, 87, 165,

148, 95, 188, 32, 15, 122, 184, 69, 128, 66, 127, 51, 158, 181, 113, 172, 164, 118, 102,

12, 179, 197, 49, 64, 10, 108, 168, 185, 5, 121, 115, 149, 58, 6, 104, 99, 171, 21, 35]

[154, 0, 174, 59, 112, 170, 73, 7, 29, 32, 90, 96, 54, 134, 56, 81, 72, 187, 51, 100,

79, 171, 113, 118, 47, 52, 180, 39, 135, 105, 124, 19, 71, 99, 153, 189, 9, 142, 155, 156,

45, 195, 178, 104, 190, 183, 82, 166, 20, 177, 83, 131, 61, 77, 181, 48, 102, 11, 53, 2,

42, 1, 60, 193, 87, 117, 157, 122, 167, 66, 163, 149, 26, 147, 78, 35, 126, 13, 63, 5, 75,

70, 136, 55, 50, 141, 94, 95, 103, 132, 67, 194, 182, 197, 49, 172, 76, 140, 34, 89]

[0, 146, 158, 176, 197, 82, 75, 85, 80, 157, 71, 95, 138, 109, 147, 192, 126, 16, 87,

103, 177, 127, 11, 113, 94, 140, 170, 13, 69, 105, 81, 130, 160, 54, 37, 132, 64, 151, 51,

153, 9, 19, 199, 152, 3, 93, 48, 92, 73, 97, 120, 156, 188, 28, 145, 191, 178, 148, 142,

195, 77, 122, 162, 38, 42, 128, 115, 198, 155, 193, 88, 53, 90, 112, 124, 116, 76, 175,

29, 84, 5, 139, 196, 79, 86, 34, 102, 101, 70, 114, 98, 55, 118, 136, 137, 161, 194, 190,

144, 23]

[23, 182, 172, 21, 63, 11, 61, 32, 164, 7, 95, 173, 132, 120, 98, 138, 31, 16, 181, 85,

185, 166, 101, 129, 113, 51, 167, 88, 108, 136, 29, 183, 152, 93, 189, 139, 179, 55, 1, 5,

77, 47, 94, 14, 41, 125, 12, 131, 135, 24, 8, 40, 184, 127, 45, 142, 33, 149, 15, 195, 62,

6, 199, 124, 145, 39, 42, 90, 17, 50, 34, 66, 190, 37, 38, 86, 64, 140, 19, 171, 170, 81,

143, 126, 159, 187, 103, 78, 122, 156, 92, 26, 72, 83, 194, 10, 46, 36, 191, 30]

[179, 155, 23, 159, 96, 198, 42, 110, 128, 97, 95, 106, 65, 33, 102, 89, 132, 79, 104,

70, 173, 129, 30, 7, 168, 124, 157, 165, 101, 78, 87, 141, 105, 10, 64, 13, 90, 15, 195,

94, 125, 68, 69, 108, 131, 111, 92, 144, 12, 93, 137, 51, 18, 100, 32, 19, 17, 172, 192,

191, 38, 44, 148, 185, 46, 145, 115, 37, 170, 178, 80, 184, 21, 8, 103, 118, 162, 84, 14,

163, 177, 31, 27, 54, 45, 77, 167, 67, 164, 171, 194, 116, 56, 55, 143, 188, 63, 152, 39,

28]

[134, 91, 81, 108, 170, 39, 151, 47, 44, 186, 40, 74, 6, 25, 33, 128, 12, 109, 49, 88,

71, 129, 48, 4, 0, 9, 193, 155, 17, 122, 24, 162, 18, 149, 58, 184, 55, 130, 167, 118, 30,

65, 90, 199, 115, 112, 63, 3, 121, 57, 161, 56, 147, 135, 45, 34, 123, 191, 143, 166, 150,

189, 41, 62, 60, 160, 61, 43, 103, 165, 94, 96, 95, 195, 31, 126, 37, 27, 2, 77, 141, 172,

179, 46, 16, 163, 54, 148, 142, 192, 110, 87, 50, 119, 127, 132, 97, 23, 76, 125]
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[40, 140, 33, 91, 13, 94, 148, 20, 196, 163, 31, 78, 16, 180, 37, 169, 72, 105, 152,

157, 117, 60, 62, 155, 190, 41, 59, 193, 132, 150, 1, 61, 34, 30, 26, 192, 8, 125, 64, 147,

154, 7, 83, 166, 58, 134, 14, 191, 2, 109, 142, 141, 129, 182, 183, 144, 120, 161, 96, 92,

143, 103, 36, 115, 27, 82, 75, 95, 23, 89, 135, 24, 0, 111, 199, 197, 18, 171, 189, 121,

68, 151, 56, 54, 173, 179, 43, 5, 149, 6, 80, 65, 51, 38, 79, 172, 42, 119, 127, 99]

[114, 189, 198, 151, 5, 69, 24, 15, 51, 112, 93, 155, 6, 175, 122, 47, 44, 64, 157,

149, 106, 10, 16, 126, 40, 11, 177, 23, 140, 60, 116, 18, 77, 73, 117, 31, 54, 100, 70,

130, 172, 163, 14, 58, 20, 90, 7, 145, 46, 89, 180, 110, 111, 188, 98, 161, 35, 3, 129, 94,

181, 144, 142, 53, 66, 108, 105, 2, 170, 196, 160, 22, 39, 164, 36, 118, 91, 42, 29, 82,

146, 96, 143, 182, 19, 165, 87, 167, 168, 179, 183, 34, 152, 158, 136, 8, 38, 28, 49, 26]
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