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Abstract

In an effort to establish verified foundations for relativistic physics, this MSc project

furthers [34, 35] the development of Minkowski spacetime from a system of axioms

devised by Schutz [42]. This enterprise occurs in the interactive theorem prover Is-

abelle/HOL, which facilitates trusted certification of proofs, and provides automated

tools for assistance. We begin by reviewing the mechanisation of axioms and defini-

tions of Palmer and Fleuriot [35], and our completion of their mechanised axiom sys-

tem. We then present newly mechanised proofs for several theorems found in Schutz’

monograph [42] concerning temporal order. We highlight differences between the

prose of the original, and our more verbose – but precise – mechanisation. Several

auxiliary results not present in Schutz [42] are presented throughout, with comments

on why they are necessary or desirable.
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Chapter 1

Introduction

The special theory of relativity (SR) [8] is a canonical part of modern physics. The

theory as taught at universities today is founded in the formulation first established by

Minkowski in 1908 [29], merging space and time into a four-dimensional spacetime.

This way of thinking was received with considerable mistrust by many of Minkowski’s

contemporaries [9]: it shifts the focus from the material world (particles, collisions,

forces) to imply that the geometric structure of the universe influences the physics

within it. Minkowski spacetime becomes the central feature of SR. It is Einstein’s

eventual acceptance of the spacetime formalism that enables the development of gen-

eral relativity (GR) [10].

The key to understanding SR, of interest both paedagogically and philosophically,

is thus to reduce Minkowski spacetime to its essentials, and glean intuition from these

building blocks, and their use. This is the aim of three decades of work by John Schutz

[40, 41] (and many others [30, 12]), culminating in a categorical system of fifteen in-

dependent axioms [42]. Schutz constructs the geometry of spacetime and relativistic

kinematics over the course of seven chapters, then demonstrates how his system is

isomorphic to the standard model on R4 used by physicists, and finally proves inde-

pendence of his system.

Our central aim is to provide a machine-checked formalisation of Schutz’ sys-

tem of axioms [42, chap. 2], as well as the theory of temporal order on paths [42,

chap. 3]. This formalisation occurs in the proof assistant Isabelle using higher-order

logic (HOL), and is a direct continuation of a prior MSc project [34, 35]. This includes

a formalisation of the primitives, axioms, definitions of derived objects, and proofs of

results. We have completed the mechanisation of the axioms. Analysing the notion

of chains in particular, we have obtained several results related to them that are not

1



Chapter 1. Introduction 2

present in Schutz. Compared to Schutz’ original text [42], we have discovered and

corrected several flaws in the original theorems 10 and 11 and their proofs.

Chapter 2 of the present document will outline briefly the status of formalisation

in physics, particularly SR. We give several examples of formal systems in geometry,

especially where these have been implemented in Isabelle. Isabelle/HOL itself is intro-

duced in slightly more depth in Section 2.3. We discuss our Isabelle formalisation of

the axioms of Schutz [42] in Chapter 3, examining the notions of chains, path depen-

dence, and bounds used in the axioms. The main derivations and results are presented

in Chapter 4. Some more speculative discussion precedes the conclusion in Chapter 5.



Chapter 2

Background

2.1 Formalisation in Physics and Special Relativity

Formal foundations are a newly re-emerging trend in modern physics. While philo-

sophical, mathematical, and empirical studies were inseparably entwined in antiquity,

formal mathematics and physical science drifted apart in the eighteenth and nineteenth

centuries [47].

The mathematical deduction employed for example in Ptolemy’s Harmonics is

taken to be almost divine. Thus he considers “arithmetic and geometry, as instru-

ments of indisputable authority” [4, pp.507]. In contrast, the main physical theories

of the twentieth century were developped as physics first, and retro-fitted with proper

mathematical foundations later. An example particularly relevant to our project is that

of SR, briefly outlined in Sec. 1. The comprehensive mathematical treatment given by

Minkowski [29] was at first dismissed as unnecessarily complicated [9]. Early work

on axiomatising SR (e.g. Robb [38]) went largely unnoticed by the physical research

community.

But the search for a formal foundation to modern physics gained support in the

second half of the twentieth century. Philosophical essays [47], the successes of the

new mathematical quantum and relativity theories [39, 5], and increasing interest by

the mathematical community, all contributed to works such as differential geometry

and GR, and the Wightman axioms in particle physics [46].

3
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2.2 Axiomatic Geometries

Geometry is arguably the oldest discipline to have seen successful axiomatisation in

the form of Euclid’s Elements [19]. Over two millenia later, Hilbert’s Grundlagen

der Geometrie[20] built on Euclid to propose a new, self-contained system of axioms

using modern logical concepts such as undefined notions (in contrast to Euclid’s prim-

itive definitions). Many alternative Euclidean systems have been postulated and ex-

amined. Schutz acknowledges clear parallels between several theorems this thesis is

concerned with, and theorems of Veblen [50], whose axioms for Euclidean geometry

replace Hilbert’s primitives to use only points and a single relation. Tarski’s system of

elementary Euclidean geometry [49] is influential too: points as well as two undefined

relations are his only primitive notions. His axioms can be formulated in primitive

notions only, using first-order logic (with identity and using an axiom schema). Schutz

[42] similarly strives for simplicity, though his continuity axiom is second-order, and

while a line-like primitive exists, only a single undefined relation is required.

Several axiom systems have been proposed for Minkowski spacetime. An early

approach is that of Robb [38], continued by Mundy [30, 31]. A first-order alternative

to Schutz is given by Goldblatt [12, 13], who relies on a relation of orthogonality in

addition to the betweenness Schutz employs. Systems formulated by Szekeres [48] and

Walker [51] influence Schutz’ work. A recent extension of Tarski’s Euclidean ideas to

Goldblatt’s approach to Minkowski spacetime is given by Cocco and Babic [6]. They

extend their first-order system with a second-order continuity axiom in order to show

the usual four-dimensional Minkowski spacetime is a model. A flexible first-order

system of axioms that goes some way towards GR is given by Andréka et al. [3, 2].

2.3 Isabelle/HOL

Computer-based theorem proving, verification, and exploration is the dominant area of

automated reasoning today. A breakthrough development for the field was Scott’s work

on LCF [43], a typed version of the λ-calculus, and the subsequent construction of an

interactive theorem prover of the same acronym by Gordon, Milner and Wadsworth

[14]. Isabelle is a generic proof assistant which continues the LCF-style of automated

reasoning [52, 37]. Its generic meta-logic (the type system responsible for validity

checking) supports multiple instances of object logic: we will be using higher order

logic (HOL), but instances for e.g. first-order logic (FOL) and ZFC set theory exist.



Chapter 2. Background 5

Several axiomatic approaches to geometry have been (at least partially) formalised

in Isabelle/HOL, including Hilbert’s Grundlagen by Meikle, Scott and Fleuriot [28,

45, 44] and Tarski’s geometry by Makarios [26]. Geometric formalisations also exist

in other proof assistants, such as Coq [32, 25] or Mizar [16].

The Archive of Formal Proofs1 (AFP) is an online repository for several hundred

Isabelle/HOL theories. The contents of the AFP can be downloaded and used, and it

provides a prime vector for dissemination of formal work done in Isabelle.

2.3.1 Automation and Readability

A proof is a repeatable experiment in persuasion. (Jim Horning)

Considering the above quote, the advantage of computer assistance in logical and

mathematical proof is clear. Using Isabelle (for example), we can write a proof of

any theorem, and provided our readers are convinced of the soundness 2 of Isabelle’s

logical kernel and reduction techniques, they can take the theorem as fact without

manually verifying the proof.3 A famous and well-popularised example is the Flyspeck

project [17], a twelve-year formalisation effort resulting in a formal proof of the Kepler

conjecture, accepted to a mathematical journal in 2017. Despite four years of work,

referees for the pre-Flyspeck proof submitted in 1998 had been unable to fully verify

the proof.

However, it is often instructive to read through proofs. One may identify methods

to be used in similar problems, or generalised to unrelated areas of inquiry; intuition is

built for the behaviour of the mathematical entities manipulated throughout the proof;

and ultimately, understanding of a subject is often linked to what one is capable of

doing with it, which must be learnt. Readability is therefore important, particularly for

proofs as verbose as those often found in mechanisations. Isabelle provides us with the

language Isar (Intelligible semi-automatic reasoning), which can be used for proofs

that are both human-readable and supported by automatic solvers. Isar proofs merge

the assumptions-forward style of reasoning common in mathematical texts and natural

for human readers to follow, and the result-backwards style often useful in exploring

possible avenues for a proof to be completed.

1website
2Consistency of automated provers is its own research field [23]
3Computer hardware and software programmers both remain fallible, as do the author and the reader

of theorem statements.

https://www.isa-afp.org/
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Several tools for proof discovery come with the Isabelle distribution. In particular,

the umbrella tool sledgehammer [36] automatically chooses a range of (several hun-

dred) facts to pass to different first-order solvers (both resolution and smt provers), and,

if successful, provides a reconstruction of the automatic proof using only needed re-

sults. In practice, automatic discovery is useful, but often struggles to justify steps that

seem obvious to the reader, or returns proofs relying on highly unexpected facts. This

may be due to the complexity of some of our definitions, or difficulty in reductions to

first-order logic.

2.3.2 Working in Isabelle: Proofs and Induction

Working in Isabelle/HOL (and Isar) is a mix of meta- and object-level reasoning.

This is best looked at through an example: we use one of our auxiliary lemmas,

finite_path_has_ends. We are only interested in the formalism and method for now,

refer to Sec. 4.1 for discussion.
lemma finite_path_has_ends:

assumes path_X: "X∈P" and min_n: "n≥0"
shows "∀Q⊆X. finite Q ∧ card Q = n+3
−→ (∃a∈Q. ∃b∈Q. a6=b ∧ (∀c∈Q. (a6=c ∧ b6=c) −→ [[a c b]]))"

Meta-logic in Isabelle can be part of the inner (e.g. [[...]] for assumptions and

=⇒ for meta-implication) or outer syntax (e.g. assumes, shows). We announce the

statement of a fact requiring proof with keywords such as theorem, lemma. This is

followed by a unique name, as well as the fact statement in inner syntax (P∈P =⇒

infinite P) or in the more legible Isar style as above. In this case, we still have a large

conclusion in object logic.

We start a proof with the keyword proof. We can supplement proof with an initial

method to use (e.g. a three-way case split rule disjE3 or the general method safe,

which splits and rewrites goals; or induct as below). A successful proof ends with

qed. Two other keywords can terminate a proof: sorry and oops. Both signify a

proof that is not complete, or cannot be done, but while oops means that Isabelle will

refuse to allow use of the unproven fact, sorry allows an unproven statement to be

used legitimate proofs of other propositions. Thus sorry can be quite dangerous (see

Sec. 2.3.3 for an alternative).

The example lemma above is proved by induction. Induction is a recurring scheme

in this project, and comes with particularities in Isabelle. The method induct takes
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an induction parameter4 and splits the proof into two goals. Isabelle provides short-

hand notation for the usual first lines of both split cases. The base case (case 0) sets

the induction variable to 0 throughout the conclusion for a goal. The induction case

(case (Suc n)) fixes n, assumes the lemma’s conclusion for n, and sets the goal to

the conclusion for n+ 1 (i.e. Suc n). This assumption for n is called the induction

hypothesis (IH).

The long conclusion is necessary for us to use the IH in the induction case. Had we

moved more of the conditions into the premises, the variables these conditions applied

to would be fixed, rather than quantified over, and the induction hypothesis unusable

for us. We begin proving the induction case by stripping off the universal quantifier,

and assuming all the conditions (Isabelle’s safe method saves some work here).
case (Suc n)

show "∀Q⊆X. finite Q ∧ card Q = Suc n + 3
−→ (∃a∈Q. ∃b∈Q. a 6= b ∧ (∀c∈Q. a 6= c ∧ b 6= c −→ [[a c b]]))"

proof (safe)
fix Q
assume events_Q: "Q⊆X"
assume fin_Q: "finite Q"
assume "card Q = Suc n+3"
hence card_Q: "card Q = Suc n+3" by simp
show "∃a∈Q. ∃b∈Q. a 6= b ∧ (∀c∈Q. a 6= c ∧ b 6= c −→ [[a c b]])"

In the second-last line, hence declares a fact, followed by name and fact statement,

and proved by an invocation of the method simp. The proof by simp could be (for harder

facts) replaced by calls to automatic theorem provers (ATPs) like metis or blast, or an

entire subproof proof ... qed.

Notice the IH is quantified over: it applies to arbitrary sets Q meeting certain con-

ditions. If we had, for example, induced directly on the cardinality of Q, the IH would

apply only to this (already named) set, provided it also satisfies the object-logic condi-

tions of the IH. Parts of the script below are omitted (<proof> and ...), see Sec. 4.
case (Suc n) ...

show "∃a∈Q. ∃b∈Q. a 6= b ∧ (∀c∈Q. a 6= c ∧ b 6= c −→ [[a c b]])"
proof -

obtain x where "x∈Q" <proof>
obtain P where def_P: "P=Q-{x}" by simp

The central part to any induction is to obtain an object (here: P) that the IH applies

to, and that is related to the one of interest (here: Q).
have ind: "card P = card Q - 1" <proof>
have "∃a∈P. ∃b∈P. a 6= b ∧ (∀c∈P. a 6= c ∧ b 6= c −→ [[a c b]])"

using card_P Suc ... by simp

4for us, it is always of type nat
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In this last step, it is Suc that contains the IH. Isabelle automatically names it when

we declare case (Suc n). The base case has similar unwrapping to the induction case

presented here. We leave the actual proof context for Sec. 4.1.

2.3.3 Working in Isabelle: Locales

One very useful feature, particularly for sizeable axiom systems such as ours, is Is-

abelle’s locale. One can think of a locale as a parameterised context: it names an

“arbitrary but fixed” parameter, and assumes some initial properties. In our case, these

are undefined notions and axioms. Since the formulation of axioms often changes as

proofs are attempted, and axioms found wanting (e.g. axiom I6, see Sec. 4.6), we try

to limit the amount of logic that is affected and possibly invalidated by such a change.

Containing small groups of axioms in their own separate locales makes explicit the

scope of their influence. A similar purpose is served by our locale MinkowskiDense,

which contains an assumption (in this case a proxy for an unproven result) that we do

not want to spill outside the locale, see Sec. 4.6. This is a safer alternative to sorry.

Locales have additional practical benefits: they are augmented by each theorem

proven inside them, they can extend other locales, and they can be interpreted. The

latter is like an explicit example to an abstract algebraic concept (e.g. SO(3), 3D-

rotations, form a concrete instance of a group).5 This means that if we want to find

a model of our system, we can do so in steps: showing some interpretation M satis-

fies our locale MinkowskiChain gives us immediate acces to that locale’s theorems (e.g.

collinearity2), and those of any locales it extends. These theorems may then be used

to prove M satisfies the additional requirements of a locale extending MinkowskiChain.

Since model proofs are out of scope for us, locales serve mostly an organisational

purpose. See Chap. 3.

5Or, for object-oriented programmers, like an instantiation of an abstract class.



Chapter 3

Schutz’ Axioms in Isabelle

Schutz proves several properties of his axiomatic system in his monograph [42]: con-

sistency (relative to the real numbers), categoricalness, and independence. He insists

upon independence: the search for it made him rework his earlier attempts, and he

considers the resulting system to be cleaner and more intuitive. Independence means

that no axiom can be derived from any combination of the other axioms.

Consistency means that one cannot derive both a statement and its negation from

our axioms, 1 i.e. they are not just a convoluted way of assuming False. Categorical-

ness is a property that is in some way complementary to independence: it states that

essentially only one model exists (up to isomorphism). A model is defined as an al-

gebraic structure (a set, together with a collection of finitary operations and relations)

that satisfies the axioms in question. In our case, it provides concrete sets for events,

paths, and a concrete definition of the betweenness relation (see below). It might be

thought of as an instantiation of the abstract undefined objects and relation.

Some of the axioms as we encode them in Isabelle initially are subtly different

from Schutz’ statements. We give all of the original axioms and definitions in App. A

for easy reference. The consequences of our changes are discussed later.

3.1 Primitives and Simple Axioms

Schutz lays out his axioms in two main groups: order and incidence. The former relate

betweenness to events and paths, and establish a kind of plane geometry with axiom

O6. The axioms of incidence deal with the relationships between events and paths,

and also contain statements regarding unreachable subsets, which make a Euclidean/-

1 for a discussion and pointers regarding alternative notions of consistency, see this SEP article

9
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Galilean model impossible. In contrast to Schutz, we present axioms according to

their specificity to Minkowski spacetime. In particular, our main comparison is with

Hilbert’s Grundlagen der Geometrie [20], which introduced the separation of inci-

dence and order axioms.

Formalising any system of axioms in Isabelle often requires amendments. In our

case, these are due to Isabelle’s functions being total on types, not sets, as well as a

few design choices and/or simplifications that are handy in interactive proofs. Some of

these choices are explained here even though they were made in a prior project: a lot

of the formalisations in this section are due at least in part to Palmer [34].

Since several definitions of derived objects are required for stating some axioms,

we construct our system as a hierarchy of locales (Sec. 2.3.3), defining objects in the

locale they make most sense in, and often just before they are needed. The first ax-

ioms, introduced in the locale MinkowskiPrimitive together with the primitive notions

of events and paths (which use the keyword fixes), are similar to examples found in

many other geometric axiom systems, notably Hilbert [20]. Schutz numbers them I1,

I2, I3. As a comparison to our locale below, Schutz’ I3 reads “For any two distinct

events, there is at most one path which contains both of them” [42, p. 13]. Contrast

this with the many premises of eq_paths, and its avoidance of the negative existen-

tial statement in “there is at most one”. We require one axiom Schutz does not have:

in_path_event, which excludes the possibility of non-event objects of the appropriate

type being in a path (see below).
locale MinkowskiPrimitive =

fixes E :: "’a set"
and P :: "(’a set) set"

assumes in_path_event [simp]: " [[Q ∈ P; a ∈ Q ]] =⇒ a ∈ E"
(∗ I1 ∗ )
and nonempty_events [simp]: "E 6= {}"
(∗ I2 ∗ )
and events_paths:

" [[a ∈ E; b ∈ E; a 6= b ]]
=⇒ ∃R∈P. ∃S∈P. a ∈ R ∧ b ∈ S ∧ R ∩ S 6= {}"

(∗ I3 ∗ )
and eq_paths [intro]:

" [[P ∈ P; Q ∈ P; a ∈ P; b ∈ P; a ∈ Q; b ∈ Q; a6=b ]] =⇒ P = Q"

Nothing defines E apart from the type of its elements, yet we do not assume that

E is the universal set of type ’a. We hope this may lead to easier model instantia-

tions in the future: for example, it allows building a model from a subset of natural

numbers without defining an extra datatype. In Isabelle’s simple typesystem (which

has no subtypes), the alternative might be painful. The set of paths P is always en-
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visaged as a strict subset of the powerset of E – otherwise the unreachable axioms

introduced later (see Sec. 3.3) lose all relevance. The axiom in_path_event guarantees

P is in the powerset of E , not the universal set. Our final undefined notion, the ternary

relation of betweenness, is defined on events. It is introduced in the second locale-

layer, MinkowskiBetweenness, which also contains the first five axioms of order (O1 -

O5). We give three of them in Schutz’ words for later comment before presenting the

locale. Schutz denotes betweenness as [ ], but since that notation is used for lists in

Isabelle, we define it to be [[_ _ _]] below.

Axiom O3
For events a,b,c ∈ E ,

[a b c]−→ a,b,c are distinct.

Axiom O4
For distinct events a,b,c,d ∈ E ,

[a b c] and [b c d]−→ [a b d] .

Axiom O5
For any path Q ∈ P and any three distinct events a,b,c ∈ Q,

[a b c] or [b c a] or [c a b] or [c b a] or [a c b] or [b a c] .

(Schutz [42, p. 10])

locale MinkowskiBetweenness = MinkowskiPrimitive +
fixes betw :: "’a ⇒ ’a ⇒ ’a ⇒ bool" ("[[_ _ _]]")

(∗ O1 ∗ )
assumes abc_ex_path: "[[a b c]] =⇒ ∃Q∈P. a ∈ Q ∧ b ∈ Q ∧ c ∈ Q"

(∗ O2 ∗ )
and abc_sym: "[[a b c]] =⇒ [[c b a]]"
(∗ O3 ∗ )
and abc_ac_neq: "[[a b c]] =⇒ a 6= c"
(∗ O4 ∗ )
and abc_bcd_abd: " [[ [[a b c]]; [[b c d]] ]] =⇒ [[a b d]]"
(∗ O5 ∗ )
and some_betw:

" [[Q ∈ P; a ∈ Q; b ∈ Q; c ∈ Q; a 6= b; a 6= c; b 6= c ]]
=⇒ [[a b c]] ∨ [[b c a]] ∨ [[c a b]]"

Three of them have mild changes compared to Schutz: O3 and O5 are slightly weaker

(having weaker conclusions) as the original statements can be proven in the same locale

the axiom is assumed in. In O4 we drop the condition that a 6= d. This is so we can

have proofs by contradiction that involve obtaining a relation of the form [a b a]. These

axioms are left as in Palmer [34].

The final axiom of order is used primarily in proofs we inherited from Palmer [34].

We give it here for completeness . Schutz gives this axiom as an alternative of the

axiom of Pasch common in geometric systems.
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a

b

Q

c R

S

d

e

T

f

Figure 3.1: Intuitive visualisation of axiom O6. A path T that meets S external to the

triangle QRS (in d) and meets R internally (in e), must meet the third side of the triangle

internally (in f ).

locale MinkowskiChain = MinkowskiBetweenness +
assumes O6:

" [[Q ∈ P; R ∈ P; S ∈ P; T ∈ P; Q 6= R; Q 6= S; R 6= S;
a ∈ Q∩R ∧ b ∈ Q∩S ∧ c ∈ R∩S;
∃d∈S. [[b c d]] ∧ (∃e∈R. d ∈ T ∧ e ∈ T ∧ [[c e a]]) ]]

=⇒ ∃f∈T∩Q. ∃X. [[a..f..b]X]"

Although the statement is technical, the intention of O6 (or Pasch’s axiom) is sim-

ple. Using some intuition from Euclidean geometry, a rough translation is: if three

paths meet in a triangle, then a fourth path which intersects one side of the trian-

gle externally, and another internally, must meet the third side internally as well (see

Fig. 3.1). Such an intuitive understanding can be justified by noting that similar ax-

ioms occur e.g. in Hilbert’s Grundlagen [20]; it is not O6 that makes our system

non-Euclidean.

3.2 Chains of Events

Before giving the more interesting axioms of Schutz’ system, we define chains of

events. The formalisation of chains in Palmer [34] is different from Schutz in sev-

eral ways. While Palmer’s formal definition is (provably) equivalent to Schutz’ prose,

this leads to problems, for example in theorem 10 (Sec. 4.4). Instead of replacing

Palmer’s definition, we define two additional kinds of chains, and prove several results

on equivalence. All of our chains differ from Schutz in that they use sets instead of his

sequences (cf Sec. 4.3), and that while he assumes chains to lie on paths, we prove this

as a theorem (chain_on_path). All of them use the notion of a ternary ordering defined

through a total indexing function N→ E .
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The end goal is to have a set of different approaches to proofs involving chains,

and theorems to allow conversion between defferent kinds of chains. This would give

us flexibility in stating axioms and results, while giving assurance that we do not stray

from Schutz’ intention too far.

3.2.1 Prose to Isabelle

Schutz’ definition is slightly informal, and defining and working with chains in Is-

abelle/HOL was a major part of Palmer’s work [34] as well as the present project.

Quoting from the base text, chains are defined as follows.

A sequence of events Q0,Q1,Q2, . . . (of a path Q) is called a chain if:

(i) it has two distinct events, or

(ii) it has more than two distinct events and for all i≥ 2,
[Qi−2 Qi−1 Qi] .

(Schutz [42, p. 11])

This is hard to represent in Isabelle because of the notion of a sequence as an

indexed set. The informal naming convention of using a label Qi for an event encodes

two pieces of information: that the event lies on path Q, and that several betweenness

relations hold with other events indexed by adjacent natural numbers. Palmer [35] uses

this insight (after Scott [44, p. 110]) to explicitly give a function I→ Q (with I ⊆ N)

that is order-preserving, and use it to define chains.
definition ordering ::

"(nat ⇒ ’a) ⇒ (’a ⇒ ’a ⇒ ’a ⇒ bool) ⇒ ’a set ⇒ bool"
where "ordering f ord X
≡ (∀n. (finite X −→ n < card X) −→ f n ∈ X)

∧ (∀x∈X. (∃n. (finite X −→ n < card X) ∧ f n = x))
∧ (∀n n’ n’’. (finite X −→ n’’ < card X) ∧ n<n’ ∧ n’<n’’

−→ ord (f n) (f n’) (f n’’))"
definition chain_with ::

"’a ⇒ ’a ⇒ ’a ⇒ ’a set ⇒ bool" ("[[.. _ .. _ .. _ ..]_]")
where "chain_with x y z X
≡ [[x y z]] ∧ x ∈ X ∧ y ∈ X ∧ z ∈ X ∧ (∃f. ordering f betw X)"

Notice that Palmer’s chains are strictly stronger than Schutz’, in that they assume

preservation of a total order (using the condition n < n′ < n′′), while Schutz must

prove this holds (in theorem 2, cf. Sec. 4.3) given his definition using only a local

order (n−2,n−1,n). This is as in Scott’s treatment of ordered geometry [44, p. 110],

but causes problems for us later (Sec. 4.4). We call this kind of chain total, like its

ordering, as opposed to a local chain (as in Schutz). We will focus largely on finite

chains.
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definition finite_chain_with3 ::
"’a ⇒ ’a ⇒ ’a ⇒ ’a set ⇒ bool" ("[[_ .. _ .. _]_]")
where "finite_chain_with3 x y z X
≡ [[..x..y..z..]X] ∧ ¬(∃w∈X. [[w x y]] ∨ [[y z w]])"

Schutz’ definition of a finite chain only assumes finiteness of the sequence of events

in the chain, and does not involve any explicit betweenness condition (¬∃w∈X. [[w x y

]] ∨ [[y z w]]) as found in finite_chain_with3. To Schutz, the final line above would

therefore be a result to be proven.

3.2.2 Local and Index-Chains

As an alternative, closer to Schutz, we define total index-chains, which move the con-

dition of finiteness to the set of events, and keep track of the function ordering them.
definition short_ch :: "’a set ⇒ bool"

where "short_ch X ≡
∃x∈X. ∃y∈X. path_ex x y ∧ ¬(∃z∈X. z6=x ∧ z6=y)"
(∗ p a t h e x i m p l i e s x6=y ∗ )

definition long_ch_by_ord :: "(nat ⇒ ’a) ⇒ ’a set ⇒ bool"
where "long_ch_by_ord f X ≡
∃x∈X. ∃y∈X. ∃z∈X. x6=y ∧ y6=z ∧ x6=z ∧ ordering f betw X"

definition ch_by_ord :: "(nat ⇒ ’a) ⇒ ’a set ⇒ bool"
where "ch_by_ord f X ≡

short_ch X ∨ long_ch_by_ord f X"

definition ch :: "’a set ⇒ bool"
where "ch X ≡ ∃f. ch_by_ord f X"

Notice also that we split the definition here between chains of two events, and

chains with at least three events, as Schutz does. This is one way in which our new

definition is more precise and closer to Schutz’, and allows us to clarify several of his

prose statements (Sec. 4.4). Again, finite chains are the most important for our proofs.
definition fin_long_chain ::

"(nat⇒ ’a) ⇒ ’a⇒ ’a⇒ ’a ⇒ ’a set ⇒ bool" ("[_[_ .. _ .. _]_]")
where "fin_long_chain f x y z Q ≡

x6=y ∧ x6=z ∧ y6=z ∧ finite Q ∧ long_ch_by_ord f Q
∧ f 0 = x ∧ y∈Q ∧ f (card Q - 1) = z"

We point out the notation: a fin_long_chain is denoted [f[a..b..c]X] while the

finite_chain_with3 omits the explicit reference to the indexing function f. The final

chain we define involves a local ordering, but is otherwise similar to total index-chains.

Local index-chains are as close as we could get to Schutz’ definition in Isabelle/HOL.

We still use sets, not sequences; totality of the indexing function leads to technical

conditions in ordering, ordering2; and we do not assume chains lie on paths.
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definition ordering2 ::
"(nat ⇒ ’a) ⇒ (’a ⇒ ’a ⇒ ’a ⇒ bool) ⇒ ’a set ⇒ bool"
where "ordering2 f ord X
≡ ... (∀n n’ n’’.

(finite X−→n’’ < card X) ∧ Suc n = n’ ∧ Suc n’ = n’’
−→ ord (f n) (f n’) (f n’’))"

definition long_ch_by_ord2 ::
"(nat ⇒ ’a) ⇒ ’a set ⇒ bool"
where "long_ch_by_ord2 f X
≡ ∃x∈X. ∃y∈X. ∃z∈X. x6=y ∧ y6=z ∧ x6=z ∧ ordering2 f betw X"

For completeness, we state several results about various chains below. The proofs

are omitted. Together, these results allow for (restricted) changing between different

kinds of chains. Expanding these, particularly removing the finiteness requirement

from equiv_chain_3_fin, is a needed step towards using axioms with guaranteed inde-

pendence without rewriting (too many) existing proofs. This result also depends on

theorem 2 (Sec. 4.3). The first result below is part of Schutz’ definition of chains.
lemma chain_on_path:

assumes "ch_by_ord f X"
shows "∃P∈P. X⊆P"

lemma equiv_chain_1:
"(∃f. ch_by_ord f X ∧ a∈X∧b∈X∧c∈X ∧ a6=b∧a6=c∧b6=c ∧ [[a b c]])
←→ [[..a..b..c..]X]"

lemma (in MinkowskiSpacetime) equiv_chain_2:
"∃f. [f[a..b..c]X] ←→ [[a..b..c]X]"

lemma equiv_chain_3_fin:
assumes "finite X"
shows "long_ch_by_ord2 f X ←→ long_ch_by_ord f X"

3.3 Unreachability

While the axioms of Sec. 3.1 establish a geometry, nothing in them excludes a Eu-

clidean space with Galilean relativity [42, p. 12]. The next group of axioms (I5-I7)

specifies existence and basic properties of unreachable sets, a concept tightly linked to

the lightcones often used in relativistic physics. In fact, if we pre-empt significantly,

and hypothesise our undefined paths to relate to observer worldlines, one can glean

the notion of an ultimate speed limit hidden in the condition that certain regions of

spacetime should not be connected by paths. Ultimately, saying that nothing can move

faster than some speed c is merely the statement that certain histories or trajectories

through space and time should not occur.
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definition unreachable_subset ::
"’a set ⇒ ’a ⇒ ’a set" (" /0 _ _" [100, 100] 100)
where "unreachable_subset Q b
≡ {x∈Q. Q ∈ P ∧ b ∈ E ∧ b /∈ Q ∧ ¬(∃R∈P. b ∈ R ∧ x ∈ R)}"

definition unreachable_subset_via ::
"’a set ⇒ ’a ⇒ ’a set ⇒ ’a ⇒ ’a set"

(" /0 _ from _ via _ at _" [100, 100, 100, 100] 100)
where "unreachable_subset_via Q Qa R x
≡ {Qy. [[x Qy Qa]] ∧ (∃Rw∈R. Qa ∈ /0 Q Rw ∧ Qy ∈ /0 Q Rw)}"

We begin by defining different unreachable sets. The first is simple enough: it

collects all the events x of a path Q that cannot be connected (by a path) to another

event b /∈ Q. The second is more complex : if Q meets R at x, /0 Q from Qa via R at x

collects all events Qy ∈ Q that are on the side of the intersection x given by Qa, and

where some event on R be connected neither to Qa nor Qy.

Axiom I5 says that if there is a point b not on a path Q, then there are two unreach-

able events on Q. Together with I1 this implies that no path is empty (App. B.2).
locale MinkowskiUnreachable = MinkowskiChain +

(∗ I5 ∗ )
assumes two_in_unreach:

" [[Q ∈ P; b ∈ E; b /∈ Q ]] =⇒ ∃x∈ /0 Q b. ∃y∈ /0 Q b. x 6= y"

Schutz calls axiom I6 “Connectedness of the Unreachable Set”. Indeed, given two un-

reachable (from b) events Qx,Qz on a path Q, it essentially states that any two points

between Qx,Qz must be unreachable too. This is phrased in terms of a finite chain with

endpoints Qx,Qz: any event of the chain is unreachable (second line of the conclusion),

and any event between consecutive chain events is unreachable (third line of the con-

clusion). Notice the extra clause for short chains: if we have only two events, ternary

ordering is meaningless, thus so is f . We use it in Sec. 4.6.
and I6:

" [[Q ∈ P; b /∈ Q; b ∈ E; Qx ∈ ( /0 Q b); Qz ∈ ( /0 Q b) ]]
=⇒ ∃X. ∃f. ch_by_ord f X ∧ f 0 = Qx ∧ f (card X - 1) = Qz
∧ (∀i∈{1 .. card X - 1}. (f i) ∈ /0 Q b
∧ (∀Qy∈E. [[(f(i-1)) Qy (f i)]] −→ Qy ∈ /0 Q b))

∧ (short_ch X −→ Qx∈X ∧ Qz∈X
∧ (∀Qy∈E. [[Qx Qy Qz]] −→ Qy ∈ /0 Q b))"

Axiom I7, “Boundedness of the Unreachable Set”, provides a property reminiscent of

the Archimedean property. Given two events Q0,Qy of an unreachable set, it states that

one can find a finite chain [Q0 . . . Qn] 3 Qy where Qn is not unreachable; i.e. one can

“leave” the unreachable set in finitely many “steps”.
and I7:

" [[Q ∈ P; b /∈ Q; b ∈ E; Qx ∈ Q - /0 Q b; Qy ∈ /0 Q b ]]
=⇒ ∃g X Qn. [g[Qx..Qy..Qn]X] ∧ Qn ∈ Q - /0 Q b"
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3.4 Symmetry and Continuity

The final two axioms, symmetry and continuity, both receive their own locale. Neither

of them has been used in proofs to date, but formalising them was part of the scope

of this project. The axiom of symmetry is a hefty statement that, according to Schutz

[42] serves as a replacement of an entire axiom group in geometries such as Hilbert’s

Grundlagen [20]. Continuity is simple to state, but relies on mechanised definitions

of bounds and closest bounds, which we formalise as well. We begin by stating the

axiom of symmetry, explaining as we go along.
locale MinkowskiSymmetry = MinkowskiUnreachable +

assumes Symmetry:
" [[Q ∈ P; R ∈ P; S ∈ P; Q 6= R; Q 6= S; R 6= S;
x ∈ Q∩R∩S; Q a ∈ Q; Q a 6= x;
/0 Q from Q a via R at x = /0 Q from Q a via S at x ]]

The first two lines essentially say that Q,R,S are distinct paths in SPRAY x (see Sec. 3.5),

and obtain an event Qa 6= x on Q. The third states that the unreachable sets of Q from

the source x via R and S are the same.

Thinking about paths as proto-observers, and unreachable sets as projections that

define the relation between observers (much like complements of lightcones), we can

try to reverse engineer a physical relativistic spacetime. We can see the symmetry

between this special set of events dependent on R,S should, provided R,S are somehow

thought of as inertial, “straight lines”, identify the entire paths as far as Q is concerned.

We split up the conclusion of the axiom, reproducing Schutz’ prose [42, p. 16] for

each of the parts (i)-(iv); notice the first line below quantifies the entire conclusion.

(i) there is a mapping θ : E −→ E
=⇒ ∃θ::’a⇒ ’a.

(ii) which induces a bijection Θ : P −→ P
Schutz doesn’t give an explicit form for Θ. Since the set of paths is contained in the

powerset of events, taking the direct image under θ to be the induced bijection seems

the only choice.
bij_betw (λP. {z. y∈P ∧ (z = θ y)}) P P

(iii) the events of Q are invariant, and
∧ (y∈Q −→ θ y = y)

(iv) Θ : R−→ S

∧ (λP. {z. y∈P ∧ (z = θ y)}) R = S
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Schutz’ statement is not completely clear on whether he means Q to be invariant

under θ or Θ. We settled on the stronger version, involving θ-invariance: it is stronger

than the alternative only by also preserving the ordering of the events on Q. Since this

ordering affects unreachable sets, not preserving it seemed to go against the premise

of the axiom. See App. B.1 for a discussion of totality in this context.

The axiom of continuity is easily stated, but relies on the additional notion of

bounds of chains. It compares to the property of least upper bounds on the real num-

bers, and indeed, theorem 14 (entitled “Continuity”; unproven due to time constraints),

the first to use this axiom, deals with sets that look similar to Dedekind cuts [7]. Bounds

are defined by Schutz only for infinite chains.

Since we did not use bounds or continuity in our proofs, but completing the mech-

anisation of the axioms was part of the project, we give only an outline. The listing

below defines what it means to say that Qb is a bound for the infinite chain Q indexed

by f : namely all chain elements are ordered as if Qb has the largest index.
definition is_bound_f :: "’a ⇒ ’a set ⇒ (nat⇒ ’a) ⇒ bool" where

"is_bound_f Q b Q f ≡
∀i j ::nat. [f[(f 0)..]Q] ∧ (i<j −→ [[(f i) (f j) Q b]])"

A closest bound is one which is between all other bounds and any chain event. The

axiom of continuity is now so simple that the Isabelle locale below is easily readable.
definition closest_bound :: "’a ⇒ ’a set ⇒ bool" where

"closest_bound Q b Q ≡ ∃f. is_bound_f Q b Q f ∧
(∀ Q b’. (is_bound Q b’ Q ∧ Q b’ 6= Q b) −→ [[(f 0) Q b Q b’]])"

locale MinkowskiContinuity = MinkowskiSymmetry +
assumes Continuity: "bounded Q −→ (∃Q b. closest_bound Q b Q)"

3.5 Path Dependence and Dimension

The final axiom we introduce is that of dimension. It comes last in our hierarchy of

locales because spacetimes in different numbers of dimensions could be constructed.

Thus we found it sensible to have an easily replaceable top layer that specifies only the

axiom least critical to the general Minkowski spacetime structure, in case one wants

to explore other dimensions. However, this axiom has a hidden purpose much more

fundamental than we first realised: it is the only axiom that excludes a singleton set

of events with an empty set of paths from being a model. In this way, the axiom of

dimension turns out to be crucial to several fairly basic proofs involving geometric

construction of several paths (that without it could not be guaranteed to exist), and we
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ended up working inside the full MinkowskiSpacetime locale for many more proofs than

originally expected (notably, any proofs requiring the overlapping ordering lemmas

presented in Sec. 4.2).

Defining dimensionality in linear algebra requires the idea of linear dependence

and independence. We need a more primitive notion, namely an idea of paths de-

pending on other paths. This relation is defined only for a set of paths that all cross

in one point: to simplify this discussion, Schutz defines the SPRAY at x ∈ E to be

SPRAY[x] := {R : R 3 x,R ∈ P} . Path dependence in a SPRAY is defined first for a

set of three paths (we replace Schutz’ notation SPR with our SPRAY in quotes below):

A subset of three paths of a SPRAY is dependent if there is a path which
does not belong to the SPRAY and which contains one event from each of
the three paths: we also say any one of the three paths is dependent on the
other two. Otherwise the subset is independent. (Schutz [42, p. 13])

definition SPRAY :: "’a ⇒ (’a set) set"
where "SPRAY x ≡ {R∈P. x ∈ R}"

definition dep3_event :: "’a set ⇒ ’a set ⇒ ’a set ⇒ ’a ⇒ bool"
where "dep3_event Q R S x
≡ Q 6= R ∧ Q 6= S ∧ R 6= S
∧ Q ∈ SPRAY x ∧ R ∈ SPRAY x ∧ S ∈ SPRAY x
∧ (∃T∈P. T /∈ SPRAY x
∧ (∃y∈Q. y ∈ T) ∧ (∃y∈R. y ∈ T) ∧ (∃y∈S. y ∈ T))"

To obtain path dependence for an arbitrary number of paths, we extend the base

case above by induction, following Schutz:

We next give recursive definitions of dependence and independence which
will be used to characterize the concept of dimension. A path T is depen-
dent on the set of n paths (where n≥ 3)

S =
{

Q(i) : i = 1,2, . . . ,n; Q(i) ∈ SPRAY[x]
}

if it is dependent on two paths S(1) and S(2), where each of these two paths
is dependent on some subset of n− 1 paths from the set S. We also say
that the set of n+1 paths S∪{T} is a dependent set. If a set of paths has
no dependent subset, we say that the set of paths is an independent set.

(Schutz [42, p. 14])

inductive dep_path :: "’a set ⇒ (’a set) set ⇒ ’a ⇒ bool"
where

dep_two: "dep3_event T A B x =⇒ dep_path T {A, B} x"
| dep_n: " [[S ⊆ SPRAY x; card S ≥ 3; dep_path T {S1, S2} x;

S’ ⊆ S; S’’ ⊆ S; card S’ = card S - 1; card S’’ = card S - 1;
dep_path S1 S’ x; dep_path S2 S’’ x ]]

=⇒ dep_path T S x"
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This definition uses the keyword inductive, which allows us to give a non-recursive

base case and induction rules, to create the minimal set of triplets T,S,x such that

dep_path T S x. Notice that we keep track of the (source of the) SPRAY that the paths

exist in explicitly, while Schutz keeps this implicit, referring to it as and when needed.

This leaves us with only the job of transforming this constructive definition into an

analytical one, such that a set of paths can be examined and found dependent or not,

rather than being able only to construct such sets to measure.
definition dep_set :: "(’a set) set ⇒ bool"

where "dep_set S ≡ ∃x. ∃S’⊆S. ∃P∈(S-S’). dep_path P S’ x"
definition indep_set :: "(’a set) set ⇒ bool"

where "indep_set S ≡ ¬(∃T ⊆ S. dep_set T)"

Now the axiom of dimension is given as follows, with a final definition:

A SPRAY is a 3-SPRAY if:

(i) it contains four independent paths, and

(ii) all paths of the SPRAY are dependent on these four paths.

Axiom I4 (Dimension)
If E is non-empty, then there is at least one 3-SPRAY.

(Schutz [42, p. 14])

Formalising the 3-SPRAY in Isabelle/HOL is long because we need to introduce

the four distinct paths, all of them in a SPRAY. The final two lines of the definition are

the interesting ones.
definition three_SPRAY :: "’a ⇒ bool" where

"three_SPRAY x ≡ ∃S1∈P. ∃S2∈P. ∃S3∈P. ∃S4∈P.
S1 6= S2 ∧ S1 6= S3 ∧ S1 6= S4 ∧ S2 6= S3 ∧ S2 6= S4 ∧ S3 6= S4
∧ S1 ∈ SPRAY x ∧ S2 ∈ SPRAY x ∧ S3 ∈ SPRAY x ∧ S4 ∈ SPRAY x
∧ (indep_set {S1, S2, S3, S4})
∧ (∀S∈SPRAY x. dep_path S {S1,S2,S3,S4} x)"

locale MinkowskiSpacetime = MinkowskiContinuity +
(∗ I4 ∗ )
assumes ex_3SPRAY: "E 6= {} =⇒ ∃x∈E. three_SPRAY x"



Chapter 4

Formal Proofs in Isabelle

The following chapter presents several of Schutz’ theorems, fully mechanised and ver-

ified in Isabelle/HOL. A large part of the proofs are much longer than in the original

text, and/or rely on results not mentioned by Schutz [42]. While we make no claim to

have found particularly short proofs, and in many instances believe shorter mechanisa-

tions or alternative definitions are possible, we believe this is due in part to the tempta-

tion of the working mathematician to presume more of the geometric intuition they are

trying to construct than is justified. For example, several theorems of Schutz’ had to

be restated in more detail to include short chains, a case often disregarded completely.

Similarly, our definition of chains (Sec. 3.2)is far more formal, less geometrical, and

often requires additional steps when deployed for deduction.

We try to present proof procedures at a comfortable ratio of detail to length. Fairly

often, extra steps required in Isabelle are obvious to the inspecting reader; often their

omission goes unnoticed. We therefore employ snipping rather freely. We denote by

<proof> a proof that was cut, but exists in the associated proof script. The notation ...

is used for cutting away multiple, not necessarily related lines, or even just a part of a

line. This relaxation is possible because we trust the Isabelle verification of our proof:

if one wanted to verify all the statements in this thesis, one could simply make sure

they exist in the file, identify the introduced axioms, and let Isabelle check the entire

file. No sorry or oops keywords are cut. All cut parts pass, make the surrounding

script pass, and rely on no sorry statements.

The first two results presented are not full theorems: one is only the second state-

ment of theorem 6 (Sec. 4.1), the next is a lemma given to prove theorem 9 (and en-

abling many other proofs, Sec. 4.2). Both of these were left out in Palmer’s treatment,

with the lemma left assumed to prove theorem 9. The next two results (Secs. 4.3 and

21
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4.4) combine to give a proof of theorem 10. We then discuss proofs of theorems 11

and 13, with additional results.

4.1 Infinity of Paths: Theorem 6(ii)

We complete Palmer’s proof of theorem 6, proving part (ii) by induction as suggested

by Schutz. The main difficulty lies in formalising Schutz’ list of results to use to a level

understood by Isabelle. This involves thinking about how to translate from induction

on a natural number to infinity, what exactly the induction variable should be, and

dealing with the rigidity in applying induction hypotheses in Isabelle (see Sec. 2.3).

We begin by stating Schutz’ theorem and proof, and our formalisation.

Theorem 6 (Prolongation)

(i) If a,b are distinct events of a path Q, then there is an event c ∈ Q
such that [a b c].

(ii) Each path contains an infinite set of distinct events.

Proof [. . . ]

(ii) By the preceding theorem any path Q has at least two distinct events.
Now by part (i), Theorem 1, and induction, the path Q contains an
infinite set of distinct events. q.e.d.

(Schutz [42, p. 21])

theorem (∗ 6 i i ∗ ) infinite_paths:
assumes "P∈P"
shows "infinite P"

This corresponds to Schutz’ statement almost exactly, with the difference that we

make use of paths being sets of events (there is no need to talk about an infinite subset)

to simplify the conclusion. The proof proceeds by assuming finite P to show False.

The main work is abstracted into the helper lemma path_card_nil, which states that the

cardinality of the path is no larger than nil. Together with ¬(P={}), the only way for a

finite set to have cardinality nil, this gives False.

For the inductive method, we note only that it is used indirectly to prove this re-

sult. We prove by induction that it is possible to choose two elements a,b of a set of

events on a path, such that all other elements of that set are between a and b. Their

prolongation from part (i) of Th. 6 then gives a contradiction. A detailed account of

the mechanised proof is appended (App. B.4); see also Sec. 2.3.2, where this lemma’s

proof by induction is used as an example.
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4.2 Overlapping orderings

Schutz introduces several lemmas that extend betweenness relations between overlap-

ping sets of events [42, pp. 23–25], of which we give the first below.
lemma abc_abd_bcdbdc:

assumes abc: "[[a b c]]"
and abd: "[[a b d]]"
and c_neq_d: "c 6= d"

shows "[[b c d]] ∨ [[b d c]]"

This particular result is proved using a lengthy geometric construction, and a cru-

cial invocation of Theorem 8. However, together with the axioms of order, the lemma

abc_abd_bcdbdc makes it easy to derive all the other lemmas about overlapping order-

ings we will need, so it truly is a fundamental result. It is needed for the proof of

Theorem 9, which Palmer [34] formalised, but had to assume abc_abd_bcdbdc for. It

also comes into many other proofs, such as Theorem 10 (Sec. 4.4) and equivalence

proofs for different chains (Sec. 3.2).

We define a kinematic triangle 4 a b c as a set of three distinct events {a,b,c}
such that each pair of events belongs to one of three distinct paths (i.e. the set of

vertices of a triangle of paths). Theorem 8 then states that no path can cross all three

sides of a kinematic triangle internally. Of course, this description relies on geometric

imagination, which is replaced in Isabelle by betweenness and paths alone. Palmer

[35] provides a mechanised proof of the Th. 8 stated as follows:
theorem (∗ 8 ∗ ) (in MinkowskiChain) tri_betw_no_path:

assumes tri_abc: "4 a b c"
and ab’c: "[[a b’ c]]"
and bc’a: "[[b c’ a]]"
and ca’b: "[[c a’ b]]"

shows "¬(∃Q∈P. a’∈Q ∧ b’∈Q ∧ c’∈Q)"

To prove abc_abd_bcdbdc, we follow Schutz fairly closely, with the top layer being

a proof by contradiction together with ¬[dbc]→ [bcd]∨ [bdc], which is obtained by

noting that path uniqueness (axiom I3) and abc_ex_path (axiom O1) imply that b,c,d

all lie on the same path, and thus must be in some betweenness relationship (axiom

O5). We here omit this high-level structure, and give only a proof of ¬[dbc].

We assume [dbc] and derive a contradiction. Schutz (and we) does this by con-

structing several kinematic triangles, whose interaction with each other leads to a con-

tradiction with theorem 8 (tri_betw_no_path).
assume dbc: "[[d b c]]"
obtain ab where path_ab: "path ab a b"

using abc_abc_neq abc_ex_path_unique abc by blast
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obtain S where path_S: "S ∈ P"
and S_neq_ab: "S 6= ab"
and a_inS: "a ∈ S"

using ex_crossing_at path_ab
by auto

We follow Schutz in obtaining the basic geometric ingredients: first a path containing a

and b. Given a path ab and an event a on it, Th. 5 (ex_crossing_at, App. B.3) provides

a different path S. Schutz’ next step is slightly nontrivial to Isabelle, and requires a

sub-proof for existence before we can obtain, citing Schutz, “e ∈ S \ {a} and a path

be”1. Apart from axiom I5 (two_in_unreach) and theorem 4 (unreachable_set_bounded),

which Schutz gives as justification for this step, our mechanisation relies on finding an

explicit path connecting two elements reachable from each other (reachable_path).
have "∃e∈S. e 6= a ∧ (∃be∈P. path be b e)" <proof>
then obtain e be where e_inS: "e ∈ S"

and e_neq_a: "e 6= a"
and path_be: "path be b e"

by blast

The difficulty of translating Schutz’ approach to Isabelle is in his conditional as-

signment of events to the variables he calls c∗,d∗, f∗; they become c’, d’, f’ in our

proof script since the ∗-affix is reserved in Isabelle. We abstract this difficulty into

lemmas called exist_c’d’ and exist_f’. Several case splits need to be considered, but

have no further importance outside of these lemmas: thus we separate them from the

main proof. Notice that exist_c’d’ and exist_f’ are trivial in a highly non-obvious

fashion: since they are to be used inside a proof by contradiction, their assumptions

already imply False, which implies anything. This implication, however, is complex

enough not to be detected by Isabelle’s automatic tools, nor by us upon inspection. The

assumptions on both lemmas are equivalent to the obtained facts in the main proof at

the point of their use; we omit them here for brevity.
lemma exist_c ’d’:

assumes ...
shows "∃c’ d’. ∃d’e c’e. c’∈ab ∧ d’∈ab

∧ [[a b d’]] ∧ [[c’ b a]] ∧ [[c’ b d’]]
∧ path d’e d’ e ∧ path c’e c’ e"

Schutz’ proof (text in App. A.5) considers nested case splits “in parallel”, jumping

between cases for each statement in the flow of the main proof. We, instead, just ab-

stract proofs of existential propositions with all the properties we need into the lemmas

exist_c’d’ and exist_f’, and require no case splits in the main proof. A structural out-

1At this stage, we already know that a path is uniquely determined by two points, so a path containing
b and e can safely be called be.
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line is provided for the proof body of exist_c’d’, but most of the individual steps are

omitted. Notice the use of the helper-lemma unreachable_bounded_path, which replaces

Schutz’ more vague statement of “the Boundedness of the Unreachable Set (Th.4) im-

plies”. While it relies on Theorem 4 and the assumptions of exist_c’d’ only (excluding

definitions), several steps are needed in Isabelle to derive this result (App. B.5). The

lemma exist_f’, following Schutz in the same way, is omitted from the main text, but

can be found in App. B.5.
proof (cases)

assume "∃de. path de d e"
then obtain de where "path de d e" by blast
hence "[[a b d]] ∧ d∈ab"

using abd betw_c_in_path path_ab by blast
thus ?thesis
proof (cases)

assume "∃ce. path ce c e"
thus ?thesis ...

next
assume "¬(∃ce. path ce c e)"
obtain c’ c’e where "c’∈ab ∧ path c’e c’ e ∧ [[b c c’]]"

using unreachable_bounded_path
...

qed
next

assume "¬ (∃de. path de d e)"
thus ?thesis
proof (cases)

assume "∃ce. path ce c e" ...
next

assume "¬(∃ce. path ce c e)" ...
qed

qed

From here on, the proof follows Schutz, who in turn follows Veblen [50, p.357].

The idea is to find three events on the path f’b, obtained from exist_f’, that lie on

different sides of the triangle \<trianlge> e a d’. This gives a contradiction to Th.8:

no path can cross all three sides of a kinematic triangle. A more detailed account is in

App. B.5.

4.3 Local Chains: Theorem 2 Revisited

Schutz proves theorem 2 to strengthen his definition of chains. It allows him to define

chains by imposing betweenness relations on any chain events with adjacent indices,

but obtain betweenness relations between chain events with any index.
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Theorem 2 (Order on a finite chain)
On any finite chain Q0 . . . Qn, there is a betweenness relation for each
ordered truple; that is

0≤ i < j < l ≤ n =⇒ [Qi Q j Ql .]

Furthermore all events of a chain are distinct. (Schutz [42, p. 18])

Let us note that since we use sets of events as our basis for defining chains, not

sequences, distinctness of the events is a given. This theorem justifies our set-based

approach. Palmer’s original definition of ordering is strictly stronger than Schutz’

definition of chains (see Sec. 3.2). This leads to a proof of theorem 2 that is essentially

just an unfolding of the definition.

Given this theorem (for Schutz’ local chains), and restricting our attention to finite

chains, we can justify the stronger definition: locally ordered chains can be made total

using the axioms. A stronger definition may, however, cause problems later on: e.g.

Schutz’ system may have models ours does not. Refer to Sec. 4.4 for the example that

motivated us to re-prove this theorem for the more Schutz-like local index-chains.
theorem order_finite_chain2:

assumes chX: "long_ch_by_ord2 f X"
and finiteX: "finite X"
and ordered_nats: "0 ≤ (i::nat) ∧ i < j ∧ j < l ∧ l < card X"

shows "[[(f i) (f j) (f l)]]"

The proof of this theorem is omitted, but the interested reader is referred to App. B.6.

The mechanisation follows Schutz’ prose, up to a few clarifications of case splits and

inductions; the overall structure is the same (original text in App. A.6).

4.4 Theorem 10 (Subpaths are Chains)

context MinkowskiSpacetime begin

Mechanising Theorem 10 was a major undertaking, and hit more obstacles than

any other of our (proven) results. One problem was due to the definition of ordering

we have been using since Palmer’s work [34]: it is stronger than Schutz’. As shown in

Sec. 4.3, this leads to a free proof of Th. 2. But such things always come with a price:

Schutz’ proof of Th. 10 only aims at a local chain. If we want to be consistent with our

other mechanisations (which use total chains), we need this to become a total chain,

which essentially means going through all the steps of Schutz’ proof for Th. 2. This is
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why we defined a new local ordering2, and proved order_finite_chain2 in Sec. 4.3.

Theorem 10 (based on Veblen (1904), Theorem 10)
Any finite set of distinct events of a path forms a chain. That is, any set of
n distinct events can be represented by the notation a1,a2, . . . ,an such that

[a1 a2 . . .an] .

(Schutz [42, p. 24])

Our statement differs from Schutz in another way (besides the different kinds of

chain used): he forgets the condition that any chain needs to have at least two elements

(by definition): thus it isn’t every finite set of events that qualifies.
theorem (∗ 10 ∗ ) path_finsubset_chain:

assumes finite_X: "finite X"
and path_Q: "Q ∈ P"
and events_X: "X ⊆ Q"
and at_least_two: "card X ≥ 2"

shows "ch X"

The proof is by induction, as in Schutz [42]. To encapsulate this induction, we use

the lemma path_finsubset_chain_induction, and as before (Sec. 2.3.2) we reformulate

the conclusion into the required object-level induction hypothesis.
lemma (∗ f o r 10 ∗ ) path_finsubset_chain_induction:

assumes path_Q: "Q ∈ P" and nat_N: "n≥0"
shows "∀X⊆Q. finite X ∧ card X = n+2 −→ ch X"

Notice Schutz uses a four-element chain as the base case (original text in App. A.7),

so our explicit proof has to provide two (simple) extra cases: two- and three-element

sets. A two-element chain is just a set of two points on a path, thus a two-event set X

satisfies the definition of chains immediately. A set X with three events a,b,c, all of

them on a path, must be a chain because a,b,c are in some betweenness relation by

axiom O5. Both of these are omitted from the listing, and we move on to the induction.

The base case of |X | = 4 follows directly from Th. 9: it states that a set of four

events on a path forms a chain. Schutz’ induction proceeds by assuming a chain of n

events, and adds an extra event. This is not possible for us: we have already fixed the

number of elements of the set we require to be a chain to the successor of the induction

variable n+4 (where we have introduced the shift of 4 because Isabelle induction starts

at n = 0, see Sec. 2.3.2). Thus we obtain a new set by removing an element, and argue

this new set must be a chain by the induction hypothesis IH. We remove some overall

indentation for legibility.
fix n::nat
assume IH: "∀X⊆Q. finite X ∧ card X = n+4 −→ ch X"
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show "∀X⊆Q. finite X ∧ card X = Suc n+4 −→ ch X"
proof (safe)

...
hence "card X ≥ 5" by (simp add: fin_X)
then obtain b Y where Y_def: "X = Y ∪ {b} ∧ b/∈Y" <proof>
hence "ch Y"

using IH events_X fin_X Un_infinite card_X
by auto

...
have "card Y ≥ 4" <proof>
then obtain f where f_def: "long_ch_by_ord f Y" <proof>

This places us in the setting of Schutz’ proof: we have a chain Y , indexed by f , of

at least four events, and a set containing one extra event in addition to this chain. We

now itroduce variable names that agree with those of Schutz. In terms of our indexing

function, the subscripts of those variables are shifted, but it allows us to reproduce his

prose more exactly. This difference is due to Schutz now using base-1 indexing, not

base-0 as in his definition of chains.
obtain a 1 a a n where long_ch_Y: "[f[a 1..a..a n]Y]"

using get_fin_long_ch_bounds Y_def f_def fin_X
by fastforce

hence bound_indices: "f 0 = a 1 ∧ f (card Y - 1) = a n"
by (simp add: fin_long_chain_def)

The remaining proof is structured into the same three cases Schutz considers. We

obtain the three possible betweenness relations the three events above can be in, and

consider each in turn.
have betw_cases: "[[b a 1 a n]] ∨ [[a 1 b a n]] ∨ [[a 1 a n b]]"

using some_betw path_Q by (meson abc_sym)
show "ch X" using betw_cases
proof (rule disjE3)

(∗ case ( i ) ∗ )
assume "[[b a 1 a n]]"
obtain g where "g=(λj::nat. if j≥1 then f (j-1) else b)"

by simp
hence "[g[b..a 1..a n]X]"

using chain_append_at_left_edge ... by blast
thus "ch X"

unfolding ch_def ch_by_ord_def using fin_long_chain_def by auto

The main proof steps needed for this case are inside chain_append_at_left_edge.

Schutz’ prose for this case is given below.

Case (i): By the inductive hypothesis and Theorem 2 we have [a1 a2 an],
so the previous theorem (Th.9) implies that [b a1 a2 an] which implies that
[b a1 a2]. Thus b is an element of a chain [a∗1 a∗2 . . . a∗n+1] where a∗1 = b
and (for j ∈ {2, . . . ,n+1}) a∗j := a∗j−1. (Schutz [42, p. 25])
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Since we cannot informally extend our notation for ordering to arbitrary numbers

of elements, we skip the step involving [b a1 a2 an], employing instead an alternative

ordering relation abd_bcd_abc: "[[[[a b d]]; [[b c d]]]]=⇒[[a b c]]" that is not given

in Schutz, but which follows readily from the ones provided. We could have formulated

a four-element chain with an explicit indexing function to effectively yield Schutz’

result, but since even that is somewhat removed from the prose, and requires multiple

extra entities to be defined, we decided this way was better. We give a heavily cut

listing of the proof below.
lemma (∗ f o r 10 ∗ ) chain_append_at_left_edge:

assumes long_ch_Y: "[f[a 1..a..a n]Y]"
and Y_def: "X = Y ∪ {b}" "b/∈Y"
and fin_X: "finite X"
and bY: "[[b a 1 a n]]"
and g_def: "g = (λj::nat. if j≥1 then f (j-1) else b)"

shows "[g[b .. a 1 .. a n]X]"
proof -

...
hence "[[a 1 (f 1) a n]]"

using order_finite_chain fin_long_chain_def long_ch_Y
by auto

hence "[[b a 1 (f 1)]]"
using bY abd_bcd_abc by blast

Schutz’ final sentence implies an indexing function that is equal to our pre-obtained

g, and his statement requires manual proofs of multiple chain properties regarding

indexing and betweenness in Isabelle. Notice that this is where Th. 2 comes in for us:

Schutz only shows that a single betweenness relation holds between b and adjacent

elements. It is Th. 2 (Sec. 4.3) that allows us to extend this to betweenness relations

involving any events on the (finite) chain, and obtain a total chain. For details on

different orderings and chains, see 3.2.
have "ordering2 g betw X" <proof>
hence "long_ch_by_ord2 g X"

using points_in_chain ... by blast
hence "long_ch_by_ord g X"

using equiv_chain_3a_fin fin_X by blast

We now go back to Theorem 10’s induction. Two cases remain: b being the middle

element (ii), and b being on the right (iii). Case (iii) is symmetric with case (i), and

Schutz doesn’t give a written-out proof for it. Instead of copy-pasting the entire proof

for chain_append_at_left_edge, we therefore choose to use a different result, chain_sym,

to give a more interesting, shorter proof using symmetry.
lemma chain_sym:

assumes "[f[a..b..c]X]"
obtains g where "[g[c..b..a]X]" and "g=(λn. f (card X - 1 - n))"
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lemma (∗ f o r 10 ∗ ) chain_append_at_right_edge:
assumes long_ch_Y: "[f[a 1..a..a n]Y]"

and Y_def: "X = Y ∪ {b}" "b/∈Y"
and fin_X: "finite X"
and Yb: "[[a 1 a n b]]"
and g_def: "g= (λj::nat. if j ≤ (card X - 2) then f j else b)"

shows "[g[a 1 .. a n .. b]X]"
proof -

...
obtain f2 where f2_def: "[f2[a n..a..a 1]Y]" "f2=(λn. f (card Y -
1 - n))"
using chain_sym long_ch_Y by blast

obtain g2 where g2_def:
"g2 = (λj::nat. if j≥1 then f2 (j-1) else b)"
by simp

have "[[b a n a 1]]"
using abc_sym Yb by blast

The functions f2 and g2 can be thought of as reversed versions of f and g: if f indexes

a chain “left-to-right”, f2 counts “right-to-left”. We can show g2 orders X into a chain

using chain_append_at_left_edge, and then reverse it again using chain_sym to get g1,

which thus orders X. Finally, we show g1=g, here in mathematical notation:

g1(n) = g2(|X |−1−n) =

 f2(|X |−2−n) if |X |−1−n≥ 1

b otherwise

=

 f (|Y |+1−|X |+n) if |X |−2≥ n

b otherwise

= g(n)

Case (ii) of this proof can be found in detail in App. B.7. Here we just comment

on our difficulty following Schutz’ prose exactly. His easy statement “Let k be the

smallest integer such that [a1 b ak]” requires a nontrivial existence proof. Neither did

we manage to split the remainder of case (ii) according to the same conditions seen in

Schutz’ proof. We argue this is because he restricts his attention to a handful of events

only, trusting his reader’s intuition to convince them that everything else “stays the

same”. We, on the other hand, need to show explicitly that the new way of indexing

given by g satisfies the definition of a chain everywhere on X , i.e.:
have "∀n n’ n’’.

(finite X −→ n’’ < card X) ∧ Suc n = n’ ∧ Suc n’ = n’’
−→ [[(g n) (g (Suc n)) (g (Suc (Suc n)))]]"

This means splitting according to the value of n and its two successors, in order to

fix the (conditional) form of g. We do mirror his case splits in the following results,

which are all used in different cases according to (the successors of) n.
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have b_middle: "[[(f (k-1)) b (f k)]]" <proof>
have b_right: "[[(f (k-2)) (f (k-1)) b]]" if "k ≥ 2" <proof>
have b_left: "[[b (f k) (f (k+1))]]" if "k+1 ≤ card Y - 1" <proof>

It may be argued that one could force Schutz’ case split, but since our definition

of ordering2 explicitly requires universal quantification over indices, and g is defined

piecewise, the case split we employ would still have to be made.

4.5 Theorem 11 (Segmentation)

context MinkowskiSpacetime begin

The final result of Schutz’ section 3.6 (Order on a path), this theorem allows us to

use any finite subset of a path in order to split it into disjoint regions. Schutz provides

a three-line argument by analogy with the proof of Theorem 10, arguing this result is a

direct consequence of Theorems 10 and 1, with a transparent case split. We found that

Schutz’ statement is unprovable at the point of his stating it.

Schutz defines the segment between distinct events a,b of a path ab as the set

(ab) = {x : [a x b], x ∈ ab}. Similarly, define the interval |ab| as (ab)∪{a,b}, and the

prolongation of (ab) beyond b as {x : [a b x], x ∈ ab}.

Theorem 11 (after Veblen (1904), Theorem 11)
Any finite set of N distinct events of a path separates it into N−1 segments
and two prolongations of segments.

Proof As in the proof of the previous theorem (Th. 10), any event
distinct from the ai (i = 1, . . . ,N) belongs to a segment (Case (ii)) or a pro-
longation (Cases (i) and (iii)). Theorem 1 implies that the N−1 segments
and two prolongations are disjoint. q.e.d. (Schutz [42, p. 27])

While this sounds natural enough to the geometric intuition, taking a path to be

somehow line-like, the part of the statement regarding the number of segments is im-

possible to prove at this point. Given two events a and b on a path P, Theorem 6

(on prolongation, Sec. 4.1) guarantees the existence of c ∈ P such that [abc] (or, by

symmetry, such that [cab]), but we can guarantee the existence of an element c such

that [acb] only after Th. 17, which states exactly that. The problem is that formally,

Th. 17 relies on Th. 13, which in turn requires Th. 11, so we cannot just postpone this

result. Since no such element can be guaranteed to exist, segments can be empty. Then

since they are defined as sets, all empty segments are equal (to the empty set), and this

degeneracy can reduce the number of segments that exist in the segmentation.
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One could fix this problem by taking intervals instead of segments. By definition,

no interval is empty, fixing their number as Schutz suggests – but the intervals would

overlap at their endpoints, losing disjointness. Alternatively, a segment could be de-

fined as a set plus two endpoints, which would also dispose of the degeneracy. We

surmise that one could also prove that there are at most N− 1 segments. We simply

choose to omit the number-of-segments part of the theorem: so far we do not need it.

Ultimately, the problem is not fatal: our statement of Theorem 11 is slightly weaker,

but suffices for a proof of Theorem 13. Isabelle also requires us to change Schutz’

statement further, taking as input his set of events, and returning it as a chain. His

numbering the events in his proof may indicate that was what he had in mind all along.

In a similar fashion, we explicitly obtain the set of segments and the two prolongations

Schutz leaves unspecified, but their form is not surprising, and these objects can be

obtained by Isabelle without manual existence proofs. The disjointness of the segmen-

tation is also added as a conclusion, while Schutz only mentions it in his proof.

4.5.1 Without additional assumptions

In the end, our statement looks quite different from the original, but we believe it

captures Schutz’ intention while being both more useful and fully verified.
theorem (∗ 11 ∗ ) segmentation:

assumes path_P: "P∈P"
and Q_def: "finite (Q::’a set)" "card Q = N" "Q⊆P" "N≥2"

obtains S P1 P2 f a b where
"(∀x∈S. is_seg x)" "P = ((

⋃
S) ∪ P1 ∪ P2 ∪ Q)"

(∗ The un ion o f segments , p r o l o n g a t i o n s & s e p a r a t o r s i s t h e pa th . ∗ )
"P1∩P2={} ∧ (∀x∈S.(x∩P1={} ∧ x∩P2={} ∧ (∀y∈S. x6=y −→ x∩y={})))"

(∗ The p r o l o n g a t i o n s and a l l t h e s e g m e n t s are d i s j o i n t . ∗ )
"S = (if N>2 then {s. ∃i<(N-1). s = segment (f i) (f (i+1))}

else {segment a b})"
(∗ t h e s e g m e n t s are c o n s e c u t i v e and a d j a c e n t ∗ )

"[f[a..b]Q]" "P1 = prolongation b a" "P2 = prolongation a b"
(∗ two p r o l o n g a t i o n s go ou twards from t h e s e t o f e v e n t s ∗ )

Notice that the definition of S follows our division between short and long chains,

and so must the proof. Our first step is to obtain the quantities P1, P2, S, which is

possible thanks to Theorem 10; this gives us the indexing function f for the segment

definitions and the two edge elements a,b for the prolongations. For N≥3 we prove they

satisfy the conditions laid out above one by one in helper lemmas. The case of N=2 is

simple: all individual required results are deriveable by Isabelle’s sledgehammer with

the exception of P =
⋃
{s} ∪ P1 ∪ P2 ∪ Q, which we prove by translating x ∈ P (with

Q={a,b}) into [[a x b]] ∨ [[b a x]] ∨ [[a b x]] ∨ x=a ∨ x=b.
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lemma int_split_to_segs:
assumes Q_def: "finite (Q::’a set)" "card Q = N" "N≥3"

and f_def: "[f[a..b..c]Q]"
and S_def: "S={s. ∃i<(N-1). s = segment (f i) (f (i+1))}"

shows "interval a c = (
⋃

S) ∪ Q"

The proof is lengthy, but the mechanisation details are largely uninspiring, so we

refer the interested reader to App. B.8.

Similar lemmas exist for the remaining conclusions of Theorem 11, but we omit

their proofs here. The main result is the segmentation of the interval: the prolongations

just act as a two-sided catch-all for any other element. Furthermore, disjointness of

the segments, defined as segment (f i) (f(i+1)), follows from the ordering of finite

chains, and obtaining a chain from a finite subset of a path is easy using Theorem 10.

4.5.2 Assuming path density

Since Schutz omitted so many of the conclusions of our own segmentation from his

Theorem 11, but did insist on the number of segments, we created an additional locale,

called MinkowskiDense, to contain an assumed version of Schutz’ Th. 17. This is safer

than a sorried theorem (see Sec. 2.3) – the assumption path_dense will never be used

accidentally, as long as we never work in the locale MinkowskiDense, and never build a

locale on top of it. We prove that the cardinality of the set S of segments in the theorem

segmentation is indeed N−1 if path density is assumed.
locale MinkowskiDense = MinkowskiSpacetime +

assumes path_dense: "path ab a b =⇒ ∃x. [[a x b]]"
begin

lemma segment_nonempty:
assumes "path ab a b"
obtains x where "x ∈ segment a b"
using path_dense by (metis abc_abc_neq seg_betw assms)

The number-of-segments statement is obviously only interesting if N ≥ 3, which

simplifies the definition of S. The remaining conditions are those of the helper lemmas

for Theorem 11. Schutz’ “N−1 segments” turns into a proposition on the cardinality

of the set of segments S.
lemma (∗ f o r 11 ∗ ) number_of_segments:

assumes path_P: "P∈P"
and Q_def: "finite (Q::’a set)" "card Q = N" "Q⊆P" "N≥3"
and f_def: "a∈Q ∧ b∈Q ∧ c∈Q" "[f[a..b..c]Q]"
and S_def: "S = {s. ∃i<(N-1). s = segment (f i) (f (i+1))}"
and P1_def: "P1 = prolongation b a"
and P2_def: "P2 = prolongation b c"

shows "card S = (N-1)"
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f (i) f (i+1)

j = i+1
[ f (i) f ( j) f (i+1)] [ f (i+1) f ( j) f ( j+1)]

[ f ( j) f (i) f (i+1)]

Figure 4.1: Four case splits in the proof of number_of_segments for MinkowskiDense’s

theorem 11, according to the index j, respectively the event f ( j).

We can show two sets have equal cardinality if a bijection exists between them.2

To this end we define a function i→ (QiQi+1), denoted ?f, and prove it is a bijec-

tion between the sets {0..N - 2} and S. With Isabelle’s functions being total on data

types, this statement is not equivalent to bij ?f, and the proof cannot proceed via the

injectivity-surjectivity schema expected from mathematics. Rather, it utilises the result

inj_on_imp_bij_betw, found in the Isabelle/HOL theory of functions (Fun.thy). This ef-

fectively obtains a restriction of ?f, so restricted injectivity and a statement about the

image of ?f on {0..N-2} are sufficient.
proof -

let ?f = "λ i. segment (f i) (f (i+1))"
have "?f ‘ {0..N-2} = S" <proof>
moreover have "inj_on ?f {0..N-2}" <proof>
ultimately have "bij_betw ?f {0..N-2} S"

using inj_on_imp_bij_betw by auto
thus ?thesis

using assms(5) bij_betw_same_card numeral_2_eq_2 numeral_3_eq_3
by (metis (no_types , lifting) ...)

qed

Diving briefly into the collapsed proof of injectivity, we show where path density

comes into play. Injectivity is proven as usual, that for i, j ∈ {0 .. N−2}, we have

f (i) = f ( j) =⇒ i = j. This is shown by contradiction (assume "i 6=j"), then split into

the cases seen in Fig. 4.1. Notice this is almost the case split of Theorem 10. Picking

[ f (i+1) f (i) f ( j)] as an example, we use segment_nonempty, which is just a segment-

themed wrapper for path_dense, to obtain an element e that satisfies the contradictory

orderings [e f ( j) f ( j+1)] and [ f ( j) e f ( j+1)].
assume "[[(f(i+1)) (f i) (f j)]]"
then obtain e where "e∈?f i" using segment_nonempty

by (metis ...)
hence "[[e (f j) (f(j+1))]]"

using 〈 [[(f(i+1)) (f i) (f j)]] 〉 <proof>
moreover have "e∈?f j"

using 〈e ∈ ?f i 〉 asm(3) by blast

2This is generally taken as a definition in Mathematics (e.g. Liebeck [24, p. 185]. Isabelle’s defini-
tion is more technical, but the proof strategy still applies.
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ultimately show False
by (simp add: abc_only_cba1 seg_betw)

The other cases run similarly. The case of [ f (i) f ( j) f (i+1)] proceeds in one step,

since the assumption f (i) = f ( j) then gives

f ( j) ∈ segment( f (i), f (i+1))−→ f ( j) ∈ segment( f ( j), f ( j+1))

−→ [ f ( j) f ( j) f ( j+1)]

−→ f ( j) 6= f ( j) .

4.6 Theorem 13 (Connectedness of the Unreachable Set)

context MinkowskiSpacetime begin

To try and validate the development of Schutz’ theory after a weakened Theorem 11

(cf Sec. 4.5.1), we prove his Theorem 13, which relies on segmentation. We give his

statement below, using his notation Q(b, /0) for the unreachable set, but replacing his

non-strict ordering with the more explicit [Qi−1 Qy Qi] or Qy = Qi.

Theorem 13 (Connectedness of the Unreachable Set)
Given any path Q, any event b /∈ Q, and distinct events Qx,Qz ∈ Q(b, /0),
then

[Qx Qy Qz] =⇒ Qy ∈ Q(b, /0) .

Proof By axiom I6 there is a finite chain [Q0 Q1 . . . Qn−1 Qn] (where
Q0 = Qx and Qn = Qz) so Theorem 11 implies that for some i∈ {1, . . . ,n},
[Qi−1 Qy Qi] or Qy =Qi whence axiom I6 implies that Qy ∈Q(b, /0). q.e.d.

(Schutz [42, p. 11])

We represent this as [Qx Qy Qz] =⇒ Qy ∈ Q(b, /0). Schutz’ notation hides the as-

sumption that Qi ∈ Q for all i, as stated in his exposé of the axioms [42, p. 9]; we do

not need this assumption and therefore do not state it.
theorem (∗ 13 ∗ ) unreach_connected:

assumes path_Q: "Q∈P"
and event_b: "b/∈Q" "b∈E"
and unreach: "Q x ∈ /0 Q b" "Q z ∈ /0 Q b" "Q x 6= Q z"
and xyz: "[[Q x Q y Q z]]"

shows "Q y ∈ /0 Q b"

We follow Schutz’ proof at the start, obtaining the chain from Axiom I6. This

requires some bookkeeping: we deduce his notational convention Qi ∈ Q from the

betweenness relation, as well as assuring Qy is an event using our additional axiom

in_path_event.
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have in_Q: "Q x∈Q ∧ Q y∈Q ∧ Q z∈Q"
using betw_b_in_path path_Q unreach(1,2,3) unreach_on_path xyz
by blast

hence event_y: "Q y∈E"
using in_path_event path_Q by blast

obtain X f where X_def: "ch_by_ord f X"
"f 0 = Q x" "f (card X - 1) = Q z"
"(∀i∈{1 .. card X - 1}. (f i) ∈ /0 Q b
∧ (∀Qy∈E. [[(f (i - 1)) Qy (f i)]] −→ Qy ∈ /0 Q b))"

"short_ch X −→ Q x ∈ X ∧ Q z ∈ X
∧ (∀Q y∈E. [[Q x Q y Q z]] −→ Q y ∈ /0 Q b)"

using I6 assms unfolding fin_chain_def by blast

The next step is to make certain Qx,Qz are indeed the bounding events of the chain.

It is only at this stage that we realised I6 had to be modified to account for the case of

short chains, in which e.g. f 0 = Q x does not imply Q x ∈ X.
obtain N where "N=card X" "N≥2"

using X_def(2,3) unreach(3) by fastforce
have in_X: "Q x∈X ∧ Q z∈X"
proof (cases)

assume "N=2"
show "Q x ∈ X ∧ Q z ∈ X"

using X_def(1) X_def(5) 〈N = 2 〉 〈N = card X 〉 short_ch_card_2
by auto

next
assume "N6=2" hence "N≥3" using 〈2 ≤ N 〉 by auto
show "Q x ∈ X ∧ Q z ∈ X" <proof>

qed

At this point, we split the proof into two layers of cases. The first is according to

the cardinality of the chain (i.e. short chains and otherwise), to determine whether the

index function f has meaning and must be used.
show ?thesis
proof (cases)

assume "N=2"
thus ?thesis

using X_def(1,5) xyz 〈N = card X 〉 event_y short_ch_card_2
by auto

next
assume "N6=2"
have "N≥3" using 〈N6=2 〉 〈2 ≤ N 〉 by auto

The second layer of case splitting occurs only in the case of N≥3, and is given in

the fact y_cases on the first line below. Schutz absorbs this split into defining a new

notation for non-strict ordering [42, p. 27], i.e. [Qi−1 Qy Qi] or Qy = Qi. He then relies

on his reader to consider both cases and to dispense with the (often degenerate) Q y∈X

case. Isabelle would not accept such an implicit approach, so this non-strict notation

is not formalised yet; this would be more useful when one attempts a proof of Th. 12,

where it condenses large intermediate propositions.
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Now that we have dealt with short chains, it is also time to do as Schutz suggests,

and use our segmentation theorem. It is here that the major flaw in his proof becomes

obvious. Theorem 10 is stated with a set of events in the premise. Thus the chain that

results is generic over this set. Similarly, Th. 11 on segmentation is stated in terms of a

set of events, but again, the return format is a chain over these events. Schutz implicitly

identifies the two, which is not a priori legitimate: In fact, we showed very early on

during this project that any chain gives rise to a reversed alternative (chain_sym). The

two chains may in fact be different orderings, and thus not equal as chains.
have y_cases: "Q y∈X ∨ Q y/∈X" by blast
obtain S P1 P2 g a d where all_defs:

"Q =
⋃

S ∪ P1 ∪ P2 ∪ X" "Ball S is_seg"
"P1 ∩ P2 = {} ∧ (∀x∈S. x ∩ P1 = {} ∧ x ∩ P2 = {}
∧ (∀y∈S. x 6= y −→ x ∩ y = {}))"

"S=(if 2 < N then {s. ∃i<N - 1. s = segment (g i) (g (i + 1))}
else {segment a d})"

"[g[a .. d]X]" "P1 = prolongation d a" "P2 = prolongation a d"
using path_Q fin_X 〈N = card X 〉 X_in_Q 〈2 ≤ N 〉
using segmentation [where P=Q and Q=X and N=N]
by blast

show ?thesis using y_cases
proof (rule disjE)

assume "Q y∈X" ...

We omit the proof for Q y∈X above: if Qy is an event of the chain, I6 immediately

implies Q y ∈ /0 Q b (this is fact X_def(4)). To continue the proof, we need a way to

identify the chains f and g. This led to our proof of a result that is rather interesting by

itself. We give two statements below: a first one that is easy to read and think about,

and a second one that is more precise and useful, but verbose.
lemma (in MinkowskiSpacetime) chain_unique_upto_rev:

assumes "[f[a..c]X]" "[g[x..z]X]" "card X ≥ 3"
shows "i < card X −→ (f i = g i ∨ f i = g (card X - i - 1))"

lemma (in MinkowskiSpacetime) chain_unique_upto_rev_cases:
assumes ch_f: "[f[a..c]X]" and ch_g: "[g[x..z]X]"

and card_X: "card X ≥ 3" and valid_index: "i < card X"
shows "((a=x ∨ c=z) −→ (f i = g i))

∧((a=z ∨ c=x) −→ (f i = g (card X - i - 1)))"

Notice this lemma has to exclude two-element chains again, because no order exists

within them. Alternatively, the result for short chains is trivial: any function that as-

signs one element to index 0 and the other to 1 can be replaced with the (unique) other

assignment, without destroying any (trivial, since ternary) “ordering” of the chain.

It is now clear we need yet another case split: the one for equality f=g (implied by

Schutz’ proof) and one for f and g being reversed. We give the cases in the final fact

below.
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assume "Q y/∈X"
have "card X ≥ 3" using 〈3≤N 〉 〈N = card X 〉 by blast
have "[f[Q x..Q z]X]" <proof>
have "a=Q x ∧ d=Q z ∨ a=Q z ∧ d=Q x"

using 〈 card X ≥ 3 〉 all_defs(6) 〈[f[Q x..Q z]X] 〉
using chain_bounds_unique2
by simp

We can obtain the index i that determines the element of the segmentation contain-

ing Qy, and prove our goal in each of the cases given above. What follows is just a

listing of the most salient statements of the remaining proof.
show ?thesis
proof -

have "a = Q x ∧ d = Q z =⇒ Q y ∈ /0 Q b"
proof -

assume "a = Q x ∧ d = Q z" ...
hence "[[(f(i-1)) Q y (f i)]]"

using chain_unique_upto_rev_cases <proof>
thus "Q y ∈ /0 Q b"

using X_def(4) 〈i∈{1..(card X)-1} 〉 〈Q y∈E〉 by blast
qed

moreover have "a = Q z ∧ d = Q x =⇒ Q y ∈ /0 Q b"
proof -

assume "a = Q z ∧ d = Q x" ...
hence "[[(f(card X - i - 1)) Q y (f (card X - i))]]"

using chain_unique_upto_rev_cases abc_sym <proof>
show "Q y ∈ /0 Q b" <proof>

qed

ultimately show ?thesis
using 〈a = Q x ∧ d = Q z ∨ a = Q z ∧ d = Q x 〉 ...
by auto

qed

The completion of this proof demonstrates several benefits of mechanisation of

formal mathematics. First, we have found a significant level of depth that was utterly

missed by the original three-line proof in prose. Second, resolving this problem led to

a proof of a result not found in the original text, namely chain_unique_upto_rev, which

nonetheless is of similar form and necessity as many fundamental uniqueness theorems

throughout mathematics. Thirdly, we were able to reconcile a follow-on result with a

necessarily weaker version of a required theorem (segmentation), regaining faith in the

soundness and scope of Schutz’ undertaking.



Chapter 5

Concluding Remarks

We have obtained and clarified a formalisation in Isabelle/HOL of the axioms of Schutz

[42] for Minkowski spacetime. Most of the axioms have been verified by using them

in mechanised proofs, barring symmetry (which appears only later in Schutz’ mono-

graph) and continuity (which would come into the very next theorem to be mecha-

nised). We believed it more useful to verify that a necessary weakening of Theorem 11

would not impact the further progression of Schutz’ results. Overall, the only the-

orem where the prose proof could not be properly followed was Theorem 10. For

the other proof mechanisations, it was often necessary to obtain additional lemmas or

steps, but the broad structure is very similar. Case splits in Theorem 2 and the lemma

abc_abd_bcdbdc had to be clarified, and the sequence of statements changed, but without

altering the logical outline.

We plan on continuing work on formalising Schutz’ third chapter, filling in the

remaining Theorems 12 and 14. This would lend credence to our mechanisation of

the axiom of continuity, used in proving Theorem 12. Several useful results about

path dependence have been stated but left unproven, as this definition was not useful

in proofs to date. Similarly, comparing with the discussion of Sec. 3.5, some further

experiments with axioms and locales are in order. In particular, we would look for a

way of asserting the existence of a number of paths without relying on the full axiom

of dimension. Then results over a wide range of Schutz’ monograph [42] could be

proven in a weaker locale than MinkowskiSpacetime. This would almost certainly have

implications for independence again. Also, we believe an equivalence proof for infinite

total and local chains is possible. This has not been needed, because we have barely

encountered infinite chains, but will be important in the same way equiv_chain_3_fin

was (Sec. 4.4).

39
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One very interesting property of this axiom system has not been explored at length.

In Palmer’s attempted proof of Theorem 6(ii), which introduces a binary order defined

on the basis of betweenness, one needs to fix a basis of two elements. One would

not be sufficient to fix a direction, yet the comparison to < or > on natural numbers

requires one direction to be singled out. It is well-known that any poset gives rise to

the dual poset , and we argue this duality is absorbed into the ternarity of betweenness.

This symmetry (axiom O2) between two valid orders on the natural numbers, which

we use to order our chains, may have practical consequences.

While we have obtained results such as chain_sym and chain_unique_upto_rev, and

used them to enable or simplify proofs (Secs. 4.4 and 4.6), no study of their use has

been undertaken. It may be possible to identify in general terms the properties of a

predicate function P that are necessary for the proposition P( f ) to imply P(g), where

f is the indexing function to a chain X , and g its reverse. This would give a powerful

meta-theorem, allowing us to avoid proof splits such as in Theorem 13 (Sec. 4.6).

This work could be prepared by a similar theorem for betweenness using Axiom O2

(abc_sym), which is probably easier. This work would go in the direction of WLOG1-

implementations [44, p.218], [18].

Apart from results of Schutz, we have proved in Isabelle multiple properties of

different kinds of chains. This new focus on chains, and the interaction between local

and total order on chains, adds a flavour to Schutz’ theory that is closer to lattice-

and order-theoretical approaches to foundational physics. While such ideas have long

existed (e.g. Feynman’s checkerboard [11]), one modern take is given by Knuth et al.

[22]. Here one starts with just events (no paths) and a binary partial order, but adds the

assumption that certain totally ordered subsets exist (which take the place of paths as

inertial observers). Interestingly, this approach seems to include some quantum effects

[21, 15]. Unreachable sets are equally comparable between these approaches. It is

interesting that all of these theories single out inertial observers. A comparison with

GR, perhaps using work on first-order axiom systems [1], appears fruitful.

1Without loss of generality: often cited in mathematical proof when invoking an obvious symmetry
to generalise a proof of a single case to a class of cases (e.g. fixing an orientation, choosing a coordinate
origin, . . . )
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[27] Jiri Matousek and Bernd Gärtner. Understanding and Using Linear Program-

ming. Springer Science & Business Media, July 2007.

[28] Laura I. Meikle and Jacques D. Fleuriot. Formalizing Hilbert’s Grundlagen in

Isabelle/Isar. In David Basin and Burkhart Wolff, editors, Theorem Proving

in Higher Order Logics, Lecture Notes in Computer Science, pages 319–334,

Berlin, Heidelberg, 2003. Springer.

[29] Herrman Minkowski. Die Grundgleichungen für die elektromagnetischen

Vorgänge in bewegten Körpern. Nachrichten von der Gesellschaft der Wis-

senschaften zu Göttingen, Mathematisch-Physikalische Klasse, pages 53–111,

1908.



Bibliography 44

[30] Brent Mundy. Optical Axiomatization of Minkowski Space-Time Geometry. Phi-

losophy of Science, 53(1):1–30, 1986.

[31] Brent Mundy. The Physical Content of Minkowski Geometry. The British Jour-

nal for the Philosophy of Science, 37(1):25–54, March 1986.

[32] Julien Narboux. Mechanical Theorem Proving in Tarski’s Geometry. In Francisco

Botana and Tomas Recio, editors, Automated Deduction in Geometry, Lecture

Notes in Computer Science, pages 139–156, Berlin, Heidelberg, 2007. Springer.

[33] Tobias Nipkow. Linear Quantifier Elimination. Journal of Automated Reasoning,

45(2):189–212, August 2010.

[34] Jake Palmer. Formal Axiomatisation of Minkowski Spacetime. Master’s thesis,

School of Informatics, The University of Edinburgh, 2017.

[35] Jake Palmer and Jacques D Fleuriot. Mechanising an Independent Axiom System

for Minkowski Space-time. In Proceedings of the 12th International Conference

on Automated Deduction in Geometry, pages 64–79, 2018.

[36] Lawrence Paulson and Jasmin Blanchette. Three Years of Experience with

Sledgehammer, a Practical Link between Automatic and Interactive Theorem

Provers. In International Workshop on the Implementation of Logics (IWIL-

2010), 2010.

[37] Lawrence C. Paulson, Tobias Nipkow, and Makarius Wenzel. From LCF to Is-

abelle/HOL. arXiv:1907.02836 [cs], July 2019.

[38] Alfred A. Robb. Geometry of Time and Space. Cambridge University Press,

1936.

[39] E. Schrödinger. An Undulatory Theory of the Mechanics of Atoms and

Molecules. Physical Review, 28(6):1049–1070, December 1926.

[40] John W. Schutz. Foundations of Special Relativity: Kinematic Axioms for

Minkowski Space-Time, volume 361 of Lecture Notes in Mathematics. Springer

Berlin Heidelberg, Berlin, Heidelberg, 1973.

[41] John W. Schutz. An axiomatic system for Minkowski space–time. Journal of

Mathematical Physics, 22(2):293–302, February 1981.



Bibliography 45

[42] John W. Schutz. Independent Axioms for Minkowski Space-Time. CRC Press,

October 1997.

[43] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theo-

retical Computer Science, 121(1):411–440, December 1993.

[44] Phil Scott. Ordered Geometry in Hilbert’s Grundlagen Der Geometrie. PhD

thesis, The University of Edinburgh, June 2015.

[45] Phil Scott and Jacques Fleuriot. An Investigation of Hilbert’s Implicit Reason-

ing through Proof Discovery in Idle-Time. In Pascal Schreck, Julien Narboux,

and Jürgen Richter-Gebert, editors, Automated Deduction in Geometry, Lecture

Notes in Computer Science, pages 182–200, Berlin, Heidelberg, 2011. Springer.

[46] Raymond F. Streater and Arthur S. Wightman. PCT, Spin and Statistics, and All

That. Corr. 3rd Print. of the 1978 Ed. Princeton University Press, Princeton, NJ,

corr. 3rd print. of the 1978 ed. edition, 2000.

[47] Patrick Suppes. The Desirability of Formalization in Science. The Journal of

Philosophy, 65(20):651–664, 1968.

[48] G. Szekeres. Kinematic geometry; an axiomatic system for Minkowski space-

time: M. L. Urquhart in Memoriam. Journal of the Australian Mathematical

Society, 8(2):134–160, May 1968.

[49] Alfred Tarski. What is Elementary Geometry? In Leon Henkin, Patrick Suppes,

and Alfred Tarski, editors, Studies in Logic and the Foundations of Mathematics,

volume 27 of The Axiomatic Method, pages 16–29. Elsevier, January 1959.

[50] Oswald Veblen. A system of axioms for geometry. Transactions of the American

mathematical society, 5(3):343–384, 1904.

[51] A. G. Walker. Axioms for Cosmology. In Leon Henkin, Patrick Suppes, and

Alfred Tarski, editors, Studies in Logic and the Foundations of Mathematics, vol-

ume 27 of The Axiomatic Method, pages 308–321. Elsevier, January 1959.

[52] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle Frame-

work. In Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar, editors, Theo-

rem Proving in Higher Order Logics, Lecture Notes in Computer Science, pages

33–38, Berlin, Heidelberg, 2008. Springer.



Appendix A

Original Text (Schutz, 1997)

All content in this appended chapter is taken from Schutz [42] for convenient reference.

A.1 Axioms of Order, Chains
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A.2 Axioms of Incidence, Path Dependence, SPRAYs,

Unreachable Sets
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A.3 Axiom of Symmetry, Unreachable Set via a Path
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A.4 Axiom of Continuity, Bounds

A.5 Overlapping Ordering Lemma
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A.6 Theorem 2 (Proof only)
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A.7 Theorem 10 (Proof only)



Appendix B

Additional Proofs and Listings

B.1 Symmetry Axiom: Bijectivity and Totality of Func-

tions

We first proposed a version with a different statement for bijectivity of Θ:
bij (λP. {z. y∈P ∧ (z = θ y)})
∧ (T∈P −→ (λP. {z. y∈P ∧ (z = θ y)}) T ∈P)"

The current version fixes the image of Θ explicitly to all of the set of paths P , rather

than possibly only a subset, which we want. On the other hand, the version just above

requires Θ to be a bijection everywhere, not just on P – a strong but unnecessary prop-

erty. This example makes clear a danger in the (typed) λ calculus: Schutz’ functions

are defined on the set of events (θ), and that of paths (θ). Our functions are defined

on the set of all the things that have the same type as events (θ), and the set of all sets

of those things (θ). The former may pose minor problems depending on what model

one works in, but it is easy to think up models where no problem arises (e.g. R4).

Notice categoricalness relieves this problem once all axioms are considered together:

no model other than R4 exists.

Even if we consider only R4, defining Θ is more of a challenge: any Θ we define

must be defined for sets of events that we have no real interest in. One way to do that

would be to define the desired Θ on P , and set it to be the identity everywhere else, to

avoid interaction between P and 2E \P .

56
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B.2 Paths are non-empty

A proof listing for no_empty_paths, which relies on I1 and I5 to show that no path can

be the empty set.
lemma no_empty_paths [simp]:

assumes "Q∈P"
shows "Q6={}"

proof -
obtain a where "a∈E" using nonempty_events by blast
have "a∈Q ∨ a/∈Q" by auto
thus ?thesis
proof

assume "a∈Q"
thus ?thesis by blast

next
assume "a/∈Q"
then obtain b where "b∈ /0 Q a"

using two_in_unreach 〈a ∈ E〉 assms
by blast

thus ?thesis
using unreachable_subset_def by auto

qed
qed

B.3 Theorem 5

Schutz states Th. 5 as follows:

Theorem 5 (First Existence Theorem)
Given a path Q and an event a ∈ Q, there is

(i) an event b ∈ Q with b distinct from a, and

(ii) an event c /∈ Q and a path ac (distinct from Q).

(Schutz 1997 [42, p. 20])

Palmer’s mechanisation splits this theorem into two parts, one of which is given two

alternative forms; ex_crossing_at is the one used in the main text.
theorem (∗ 5 i ∗ ) ge2_events:

assumes path_Q: "Q ∈ P"
and a_inQ: "a ∈ Q"

shows "∃b∈Q. b 6= a"

theorem (∗ 5 i i ∗ ) ex_crossing_at:
assumes path_Q: "Q ∈ P"

and a_inQ: "a ∈ Q"
shows "∃ac∈P. ac 6= Q ∧ (∃c. c /∈ Q ∧ a ∈ ac ∧ c ∈ ac)"
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lemma (∗ 5 i i a l t ∗ ) ex_crossing_at_alt:
assumes path_Q: "Q ∈ P"

and a_inQ: "a ∈ Q"
shows "∃ac. ∃c. path ac a c ∧ ac 6= Q ∧ c /∈ Q"

B.4 Theorem 6ii: Details

We proceed with the proof of path_card_nil. As Schutz states, the case card P = 1 is

excluded by theorem 5, which is proven by Palmer. By Theorem 6(i), two-element

paths are impossible.
lemma path_card_nil:

assumes path_Q: "Q∈P"
shows "∀n::nat. n≥1 −→ card Q 6= n"

proof
fix n::nat
show "n≥1 −→ card Q 6= n"
proof

assume "n≥1"
have "n=1 ∨ n=2 ∨ n≥3"

using 〈1 ≤ n 〉 by linarith
thus "card Q 6= n" <proof>
proof (rule disjE3)

assume "n=1" ...
next

assume "n=2" ...

The third case, n≥3, is the crux of the matter, and where induction is needed. Schutz

seems to envisage it as an informal constructive proof, i.e. two-element paths must

have three elements, three-element paths must have four elements, etc.Isabelle’s in-

duction requires a more analytical approach, to apply to any cardinality. What we

need is a way to always pick two elements of a finite event-set on a path so that all

other events of the set are between our picks. Then their prolongation via theorem 6(i)

must be outside the set, which gives us our contradiction. This way of picking we call

obtain_fin_path_ends, and it is the proof of this that requires induction.
next

assume "n≥3"
show "card Q 6= n"
proof

assume asm: "card Q = n"
...
then obtain a b where "a∈Q" and "b∈Q" and "a6=b"

and acb: "∀c∈Q. (c6=a ∧ c6=b) −→ [[a c b]]"
using obtain_fin_path_ends card_Q fin_Q path_Q
by metis

then obtain x where "[[a b x]]" and "x∈Q"
using prolong_betw2 path_Q by blast
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thus False
by (metis acb abc_abc_neq abc_only_cba)

qed
qed

The result obtain_fin_path_ends is a convenient wrapper for the corresponding ex-

istential statement finite_path_has_ends. We will only briefly outline the proof, see

Sec.2.3 for a discussion of induction and a demonstration of the proof schema.
lemma finite_path_has_ends:

assumes path_X: "X∈P" and min_n: "n≥0"
shows "∀Q⊆X. finite Q ∧ card Q = n+3
−→ (∃a∈Q. ∃b∈Q. a6=b ∧ (∀c∈Q. (a6=c ∧ b6=c) −→ [[a c b]]))"

proof (induct n)

The base case is trivial: the cardinality of Q is known to be 3, so we name all

elements. They are on a path, so must be in some ordering relation by axiom O5,

some_betw, and in each case we can identify the two events that have the third between

them as a witness pair for the existential proposition.

The induction step’s logic is developed again in Sec. 2.3. Once a single element x

is removed from Q, the IH applies to Q\ x, so two ’edge’ events a,b can be found for

it. Now split according to the three possible orderings of a,b,x as in the base case. In

either case, the ’edge’ events of the chosen betw proposition qualify as a witness pair.

B.5 Details for abc abd bcdbdc

We begin here by listing unreachable_bounded_path.
lemma unreachable_bounded_path_only:

assumes d’_def: "d’/∈ /0 ab e" "d’∈ab" "d’6=e"
and e_event: "e ∈ E"
and path_ab: "ab ∈ P"
and e_notin_S: "e /∈ ab"

shows "∃d’e. path d’e d’ e"
proof (rule ccontr)

assume "¬(∃d’e. path d’e d’ e)"
hence "¬(∃R∈P. d’∈R ∧ e∈R ∧ d’6=e)"

by blast
hence "¬(∃R∈P. e∈R ∧ d’∈R)"

using d’_def(3) by blast
moreover have "ab∈P ∧ e∈E ∧ e/∈ab"

by (simp add: e_event e_notin_S path_ab)
ultimately have "d’∈ /0 ab e"

unfolding unreachable_subset_def using d’_def(2)
by blast

thus False
using d’_def(1) by auto

qed
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(∗ i n Schu t z ’ p r o o f o f 3 . 6 − Lemma 1 , t h e d ’ we o b t a i n i s d∗ ∗ )
lemma unreachable_bounded_path:

assumes S_neq_ab: "S 6= ab"
and a_inS: "a ∈ S"
and e_inS: "e ∈ S"
and e_neq_a: "e 6= a"
and path_S: "S ∈ P"
and path_ab: "path ab a b"
and path_be: "path be b e"
and no_de: "¬(∃de. path de d e)"
and abd:"[[a b d]]"

obtains d’ d’e where "d’∈ab ∧ path d’e d’ e ∧ [[b d d’]]"
proof -

have e_event: "e∈E"
using e_inS path_S by auto

have "e/∈ab"
using S_neq_ab a_inS e_inS e_neq_a eq_paths path_S path_ab by
auto

have "ab∈P ∧ e/∈ab"
using S_neq_ab a_inS e_inS e_neq_a eq_paths path_S path_ab
by auto

have "b ∈ ab - /0 ab e"
using cross_in_reachable path_ab path_be
by blast

have "d ∈ /0 ab e"
using no_de abd path_ab e_event 〈e/∈ab 〉

betw_c_in_path unreachable_bounded_path_only
by blast

have "∃d’ d’e. d’∈ab ∧ path d’e d’ e ∧ [[b d d’]]"
proof -

obtain d’ where "[[b d d’]]" "d’∈ab" "d’/∈ /0 ab e" "b6=d’" "e6=d’"
using unreachable_set_bounded 〈b ∈ ab - /0 ab e 〉 〈d ∈ /0 ab e 〉

e_event 〈e/∈ab 〉 path_ab
by (metis DiffE)

then obtain d’e where "path d’e d’ e"
using unreachable_bounded_path_only e_event 〈e/∈ab 〉 path_ab
by blast

thus ?thesis
using 〈 [[b d d’]] 〉 〈d’ ∈ ab 〉
by blast

qed
thus ?thesis

using that by blast
qed

The next full listing is of exist_f’, which is similar to the exist_c’d’ outlined in

the main text.
lemma exist_f ’:

assumes path_ab: "path ab a b"
and path_S: "S ∈ P"
and a_inS: "a ∈ S"
and e_inS: "e ∈ S"
and e_neq_a: "e 6= a"
and f_def: "[[e c’ f]]" "f∈c’e"
and S_neq_ab: "S 6= ab"
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and c’d’_def: "c’∈ab ∧ d’∈ab
∧ [[a b d’]] ∧ [[c’ b a]] ∧ [[c’ b d’]]
∧ path d’e d’ e ∧ path c’e c’ e"

shows "∃f’. ∃f’b. [[e c’ f’]] ∧ path f’b f’ b"
proof (cases)

assume "∃bf. path bf b f"
thus ?thesis

using 〈 [[e c’ f]] 〉 by blast
next

assume "¬(∃bf. path bf b f)"
hence "f ∈ /0 c’e b"

by (metis S_neq_ab 〈f ∈ c’e 〉 a_inS abc_abc_neq betw_events c’d’
_def e_inS e_neq_a eq_paths

path_S path_ab unreachable_bounded_path_only)
moreover have "c’ ∈ c’e - /0 c’e b"

using c’d’_def cross_in_reachable path_ab by blast
moreover have "b∈E ∧ b/∈c’e"

using 〈f ∈ /0 c’e b 〉 betw_events c’d’_def same_empty_unreach by
auto

ultimately obtain f’ where f’_def: "[[c’ f f’]]" "f’∈c’e" "f’/∈ /0 c
’e b" "c’6=f’" "b6=f’"
using unreachable_set_bounded c’d’_def
by (metis DiffE)

hence "[[e c’ f’]]"
using 〈 [[e c’ f]] 〉 by blast

moreover obtain f’b where "path f’b f’ b"
using 〈b ∈ E ∧ b /∈ c’e 〉 c’d’_def f’_def(2,3)
unreachable_bounded_path_only
by blast

ultimately show ?thesis by blast
qed

Now we continue the proof of the main text. Using the lemmas exist_c’d’ and

exist_f’, we obtain c’, d’, f’ (and f, more easily). The only major extra result re-

quired is theorem 7, the second collinearity theorem, which was mechanised by Palmer

[34]:
theorem (∗ 7 ∗ ) (in MinkowskiChain) collinearity2:

assumes tri_abc: "4 a b c"
and bcd: "[[b c d]]" and cea: "[[c e a]]"
and path_de: "path de d e"

shows "∃f∈de. [[a f b]] ∧ [[d e f]]"

From here on, the proof follows Schutz, who in turn follows Veblen [50, p.357].

This part of the script closely follows the incomplete proof left to us by Palmer.
obtain ae where path_ae: "path ae a e"

using a_inS e_inS e_neq_a path_S by blast
have tri_aec: "4 a e c’" ...
then obtain h where h_in_f ’b: "h ∈ f’b"

and ahe: "[[a h e]]"
and f’bh: "[[f’ b h]]"

using collinearity2 [where a = a and b = e and c = c’
and d = f’ and e = b and de = f’b]
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using f’_def c’d’_def f’_def by blast
have tri_dec: "4 d’ e c’" ...
then obtain g where g_in_f ’b: "g ∈ f’b"

and d’ge: "[[d’ g e]]"
and f’bg: "[[f’ b g]]"

using collinearity2 [where a = d’ and b = e and c = c’
and d = f’ and e = b and de = f’b]

using f’_def c’d’_def by blast

After obtaining the events and paths proved to exist in exist_c’d’, exist_f’, we

follow Schutz through the construction of multiple kinematic triangles (tri_aec, tri_dec

, and 4 e a d’). We can now construct the two events we need for our contradiction

using Theorem 8, g and h. Their defining statements place them on different sides of

the triangle 4 e a d’, with b on the third side ([[a b d’]] in the conclusion of exist_c

’d’) and theorem 8 is our formal way of stating that this implies they cannot all be

aligned – contradicting the fact that they all lie on the path f’b (h_in_f’b, g_in_f’b and

b is in f’b by definition of the latter).
have "4 e a d’" ...
thus False

using tri_betw_no_path ...
by blast

B.6 Theorem 2 for Local Chains

Schutz begins by proving a lemma about overlapping orderings. It is essentially an

alternative to axiom O4, and we extract it into a lemma for future use. The proof

is simple and follows Schutz precisely, using axioms O2 (symmetry) and O4. It is

omitted from the main text for brevity and coherence.
lemma abc_bcd_acd:

assumes abc: "[[a b c]]"
and bcd: "[[b c d]]"

shows "[[a c d]]"
proof -

have cba: "[[c b a]]" using abc_sym abc by simp
have dcb: "[[d c b]]" using abc_sym bcd by simp
have "[[d c a]]" using abc_bcd_abd dcb cba by blast
thus ?thesis using abc_sym by simp

qed

Schutz’ prose for this proof is somewhat confusing (original text in App. A.6). He

identifies indices with their chain elements, while our chain indexing functions are

explicit, and have to be used explicitly. Furthermore, he indicates proofs by induction

and case splits spontaneously, without relying on any sort of organised schema, so

working out the formal setting is left to us.
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We absorb both of his subproofs by induction into helper lemmas thm2_ind1,

thm2_ind2b, which we shall discuss later. They provide proof that indices i, j, l satisfy-

ing the theorem assumptions, and 0 < k < l, obey the ordering relations [Qi Q j Q j+1]

and [Qk−1 Qk Ql].
theorem (∗ 2 ∗ ) order_finite_chain2:

assumes chX: "long_ch_by_ord2 f X"
and finiteX: "finite X"
and ordered_nats: "0 ≤ (i::nat) ∧ i < j ∧ j < l ∧ l < card X"

shows "[[(f i) (f j) (f l)]]"
proof - ...

have e2: "[[(f i) (f j) (f (j+1))]]"
using thm2_ind1 Suc_eq_plus1 chX finiteX ord1
by presburger

have e3: "∀k. 0<k ∧ k<l −→ [[(f (k-1)) (f k) (f l)]]"
using thm2_ind2b chX finiteX ordered_nats
by blast

The case split we mentioned is for the two possible situations of a non-strict order-

ing. We will come back to such a non-strict ordering split when we discuss theorem 13

(Sec. 4.6). Here, we just distinguish between j = l− 1, when the fact e2 applies, and

the strict version j < l−1, when both e2 and e3 are needed.
have "j<l-1 ∨ j=l-1"

using ordered_nats by linarith
thus ?thesis
proof

assume "j<l-1"
have "[[(f j) (f (j+1)) (f l)]]"

using e3 abc_abc_neq ordered_nats
using 〈j < l - 1 〉 less_diff_conv by auto

thus ?thesis
using e2 abc_bcd_abd
by blast

next
assume "j=l-1"
thus ?thesis using e2

using ordered_nats by auto
qed

qed

We examine only the lemma thm2_ind1 in any detail. Note the base case j = 0 is

trivial: there is no natural number i for which i < j = 0. We omit it below.
lemma thm2_ind1:

assumes chX: "long_ch_by_ord2 f X"
and finiteX: "finite X"

shows "∀j i. ((i::nat) < j ∧ j < card X - 1) −→ [[(f i) (f j) (
f (j + 1))]]"

proof
...

case (Suc j)
show ?case
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In the induction step, we employ the same split of a nonstrict ordering (i≤ j) into

equality (i = j) and strict ordering (i < j) that we saw in order_finite_chain2. We

only use the induction hypothesis Suc.hyps in the strict case. The case i = j is again

trivial: translating the Suc function to numerals, the goal is [ f (i) f (i+ 1) f (i+ 2)],

which holds by definition of local chains. The remaining case i < j is, at the top level,

reduced to (decidable) linear arithmetic. Instead of using general solvers such as blast

or metis, these statements are proven using the decision procedures presburger [33]

and linarith1.
proof (clarify)

assume asm: "i < Suc j" "Suc j < card X - 1"
have pj: "?P j (Suc j)" <proof>
have "i<j ∨ i=j" using asm(1) by linarith
thus "?P i (Suc j)"
proof

...
assume "i<j"
have "j < card X - 1"

using asm(2) by linarith
thus "?P i (Suc j)"

using Suc.hyps asm(1,2)
〈i<j 〉 chX finiteX Suc_eq_plus1 abc_bcd_acd pj

by presburger
qed

qed

The proof of thm2_ind2 works in the same way, except we induct on decreasing

indices. For Isabelle, that means reformulating in terms of an increasing (dummy)

induction variable m. The lemma thm2_ind2b wraps this result in the form given by

Schutz, using k = l−m, and removes the dummy variable.
lemma thm2_ind2:

assumes chX: "long_ch_by_ord2 f X"
and finiteX: "finite X"

shows "∀m l. (0<(l-m) ∧ (l-m) < l ∧ l < card X)
−→ [[(f ((l-m)-1)) (f (l-m)) (f l)]]"

B.7 Theorem 10: case (ii)

This appendix gives some detail on the proof of case (ii). Schutz begins by letting “k

be the smallest integer such that [a1 b ak]”. This harmless statement requires a lengthy

proof of existence in Isabelle.
lemma (∗ f o r 10 ∗ ) smallest_k_ex:

assumes long_ch_Y: "[f[a 1..a..a n]Y]"

1Internally, linarith relies on Fourier-Motzkin elimination [27, pp. 100-104].
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and Y_def: "b/∈Y"
and Yb: "[[a 1 b a n]]"

shows "∃k>0. [[a 1 b (f k)]] ∧ k < card Y ∧ ¬(∃k’<k. [[a 1 b (f
k’)]])"

The proof is not instructive in detail, so we merely note it proceeds by obtaining

the set of all indices of chain elements between a1 and b: {i::nat. [[a 1 (f i) b]] ∧

i < card Y}. We can the obtain its maximum m (provided the set is not empty) using

the Max operator, and show that k = m+1 satisfies the properties we are looking for.
(∗ case ( i i ) ∗ )
assume "[[a 1 b a n]]"
obtain k where k_def: "[[a 1 b (f k)]]" "k < card Y"

"¬(∃k’. (0::nat)<k’ ∧ k’<k ∧ [[a 1 b (f k’)]])"
using smallest_k_ex ...

obtain g where "g = (λj::nat. if (j≤k-1) then f j else (if (j=k)
then b else f (j-1)))"
by simp

hence "[g[a 1 .. b .. a n]X]"
using chain_append_inside k_def fin_X Y_def long_ch_Y 〈 [[a 1 b a
n]] 〉
by auto

thus "ch X"
using ch_by_ord_def ch_def fin_long_chain_def
by auto

Once we obtain this index k, Schutz’ prose for case (ii) remains somewhat confus-

ing, and we clarify his jumping between different cases by working backwards from

the conclusion. While in the edge cases (i) and (iii), we only needed to prove one

betweenness relation to obtain a (local) chain, we now need two or three: two if b is

close enough to either edge that one cannot find two events “on one side” of it (i.e. it

is adjacent to the event of case (i) or (iii)), and three otherwise. In either scenario, we

require a relation [ f (k−1) b f (k)].
lemma (∗ f o r 10 ∗ ) chain_append_inside:

assumes long_ch_Y: "[f[a 1..a..a n]Y]"
and Y_def: "X = Y ∪ {b}" "b/∈Y"
and fin_X: "finite X"
and Yb: "[[a 1 b a n]]"
and k_def: "[[a 1 b (f k)]]" "k < card Y"

"¬(∃k’. (0::nat)<k’ ∧ k’<k ∧ [[a 1 b (f k’)]])"
and g_def: "g = (λj::nat. if (j≤k-1) then f j else (if (j=k)

then b else f (j-1)))"
shows "[g[a 1 .. b .. a n]X]"

proof -
...
have b_middle: "[[(f (k-1)) b (f k)]]" <proof>
have b_right: "[[(f (k-2)) (f (k-1)) b]]" if "k ≥ 2"
proof -

have "[[(f (k-2)) (f (k-1)) (f k)]]" <proof>
thus "[[(f (k-2)) (f (k-1)) b]]"
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using 〈 [[(f (k - 1)) b (f k)]] 〉 abd_bcd_abc by blast
qed
have b_left: "[[b (f k) (f (k+1))]]" if "k+1 ≤ card Y -1"
proof -

have "[[(f (k-1)) (f k) (f (k+1))]]"
using 〈k 6= 0 〉 f_def fin_Y order_finite_chain that by auto

thus "[[b (f k) (f (k+1))]]"
using 〈 [[(f (k - 1)) b (f k)]] 〉 abc_acd_bcd by blast

qed

The conditional facts above mirror Schutz’ thinking. However, we did not manage

to split the remainder of the proof according to the same conditions. We argue this is

because Schutz restricts his attention to a handful of events only, trusting his reader’s

intuition to convince them that everything else “stays the same”. We, on the other

hand, need to show that the new way of indexing given by g satisfies the definition of

a chain everywhere on X , explicitly.
have "ordering2 g betw X"

proof -
have "∀n. (finite X −→ n < card X) −→ g n ∈ X"

<proof>
moreover have "∀x∈X. ∃n. (finite X −→ n < card X) ∧ g n = x"

<proof>
moreover have "∀n n’ n’’.

(finite X −→ n’’ < card X) ∧ Suc n = n’ ∧ Suc n’ = n’’
−→ [[(g n) (g (Suc n)) (g (Suc (Suc n)))]]"

proof (clarify)
fix n n’ n’’ assume a:"(finite X −→ (Suc (Suc n)) < card X)"
have cases_n: "n≤k-1 ∨ n≥k+1 ∨ n=k"

by linarith
have cases_sn: "Suc n≤k-1 ∨ Suc n=k" if "n≤k-1"

using 〈k 6= 0 〉 that by linarith
have cases_ssn: "Suc(Suc n)≤k-1 ∨ Suc(Suc n)=k"

if "n≤k-1" "Suc n≤k-1"
using that(2) by linarith

show "[[(g n) (g (Suc n)) (g (Suc (Suc n)))]]" using cases_n
proof (rule disjE3)

assume "n≤k-1" show ?thesis using cases_sn

The first two statements are technical conditions on our definition of ordering2, and

not present in the monograph [42]. The third statement is a more general version of

what Schutz’ text aims to prove: index orderings translating to event orderings. Instead

of splitting this subproof according to the position of k on the set X indexed by g, we

consider different positions of n relative to k, in order to unwrap the definition of g.

Interestingly, a single long smt call is able to solve the proof at this point, without

referencing b_left or b_right. This solver is not allowed in submissions to the AFP2,

2submission guidelines

https://www.isa-afp.org/submitting.html
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and since additionally it clearly diverges from the base text by not requiring results

Schutz mentions explicitly, we settle for two further layers of case splits.
proof (rule disjE)

assume "Suc n ≤ k - 1"
show ?thesis using cases_ssn
proof (rule disjE)

...
assume "Suc (Suc n) ≤ k - 1"
thus ?thesis <proof>

next
assume "Suc (Suc n) = k"
thus ?thesis

using b_right g_def by force
qed

The first case is straightforward, but requires a long list of referenced results: if all

three fixed values are in the given region relative to k, g reduces to f and the proof is

by definition of f. The second case places us in one of the cases considered by Schutz,

adjacent to k, and uses b_right.
next

assume "Suc n = k"
show ?thesis

using b_middle ... by auto
...
qed

next assume "n≥k+1" show ?thesis <proof>
next assume "n=k"

show ?thesis
using 〈k 6= 0 〉 〈n = k 〉 b_left g_def Y_def(1) a assms(3)

fin_Y
by auto

qed
qed
ultimately show "ordering2 g betw X"

unfolding ordering2_def
by blast

qed

We now encounter the second case that can make use of the results given by Schutz,

b_middle. Going one layer of case splits up again, we continue with the case of n ≥
k+1. This is similar to n+2≤ k−1 earlier, except now g i becomes f (i+1), which

leads to extra lines. Finally, the case n = k concludes the proof by using the remaining

result b_left. Conversion to a total chain using ordering works as before.

B.8 Theorem 11
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lemma int_split_to_segs:
assumes Q_def: "finite (Q::’a set)" "card Q = N" "N≥3"

and f_def: "[f[a..b..c]Q]"
and S_def: "S={s. ∃i<(N-1). s = segment (f i) (f (i+1))}"

shows "interval a c = (
⋃

S) ∪ Q"
proof ...

let "?i = ?u" = "interval a c = (
⋃

S) ∪ Q"
show "?i⊆?u"

The proof of int_split_to_segs splits naturally into two subset inclusion state-

ments, and we point out two key results needed. If we let p be the customary “arbitrary

but fixed” element of the set ?i - Q, we obtain [[a p c]]. At this point, we want to find

the segment ?s ∈ S that contains p to show that p ∈ ⋃
S. This is accomplished using

a result not present in Schutz, and very similar in style to the lemma smallest_k_ex

(Sec. 4.4)
lemma get_closest_chain_events:

assumes long_ch_Y: "[f[a 0..a..a n]Y]"
and x_def: "x/∈Y" "[[a 0 x a n]]"

obtains n b n c b c
where "b=f n b" "c=f n c" "[[b x c]]" "b∈Y" "c∈Y"

"n b = n c - 1" "n c<card Y" "n c>0"
"¬(∃k < card Y. [[(f k) x a n]] ∧ k>n b)"
"¬(∃k < n c. [[a 0 x (f k)]])"

We now easily show that the elements obtained from this lemma form a segment

in S and complete proof of the inclusion ?i⊆?u. The reverse statement ?u⊆?i follows

in a reasonably straightforward manner mathematically, but again the many different

objects involved force the mechanisation into several layers of unwrapping and case

splits. For p∈Q, the statement is reduced to noting that all elements of the chain Q are

between its edge elements a, c (formally, this fact is proved as ch_all_betw_f). For p∈⋃
S, we obtain an index y such that p ∈ segment (f y) (f (y+1)) and derive [[a p c]]:

next assume "p∈
⋃

S"
then obtain s where "p∈s" "s∈S" by blast
then obtain y where "s = segment (f y) (f (y+1))" "y<N-1"

using S_def by blast
...
have "y=0 ∨ y=N-2 ∨ ([[a (f y) c]] ∧ [[a (f (y+1)) c]])"

by linarith
hence "[[a p c]]"
proof (rule disjE3) ...

assume "[[a (f y) c]] ∧ [[a (f(y+1)) c]]"
thus "[[a p c]]" using abe_ade_bcd_ace ... by auto

qed

We omit the edge cases: if the index of y is known, the proof is an exercise in

identifying the elements associated with certain indices and using overlapping or-

derin lemmas (cf Sec. 4.2). The only interesting result used here is in the final step,
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abe_ade_bcd_ace. This is another ordering lemma readily derived from our existing ones

(again, Sec. 4.2), but not given by Schutz. It is somewhat special because it covers the

cases [abde] and [adbe] both, implicitly.
lemma abe_ade_bcd_ace:

assumes abe: "[[a b e]]" and ade: "[[a d e]]" and bcd: "[[b c d]]"
shows "[[a c e]]"
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