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Abstract

Copulas describe the dependence structure between random variables. The accurate

estimation of copulas is vital to modeling flexible multivariate distributions and to de-

scribing dependencies between variables when working with non-Gaussian data. This

thesis implements and evaluates a non-parametric copula estimation technique based

on Normalizing Flows, a family of generative models that have recently shown suc-

cess in efficient and exact density estimation [1]. Wiese et al. [2] propose Copula and

Marginal Generative Flows (CM Flows), a bivariate copula estimation model that uti-

lizes Normalizing Flows to estimate copulas given joint distribution samples. I imple-

ment CM Flows using deep dense sigmoid flows (DDSFs) and real-valued non-volume

preserving (RealNVP) transformations. Additionally, I extend CM Flows to estimate

multivariate copulas using regular vine trees (R-Vines). All models are then evaluated

in a simulation study using the Archimedean copulas Clayton, Frank and Gumbel. The

results show that bivariate CM Flows perform well on the Clayton and Frank copula,

achieving a Jensen-Shannon (JS) divergence of under 0.1 for both copulas and outper-

forming a parametric model under false copula family assumptions. On the Gumbel

copula, the estimated copula shows a larger JS divergence of 0.22. For multivariate

copulas, the CM Flows only achieve a JS divergence between 0.31 and 0.66 depending

on the dataset. Bivariate CM Flows are thus not always a suitable copula estimation

technique when the underlying distribution is unknown, as it performs poorly on the

Gumbel copula, but can outperform the parametric model on the Clayton and Frank

copula datasets. Overall, CM Flows are shown to be a promising technique that can

extend the success of Normalizing Flows to the field of copula estimation.
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Chapter 1

Introduction

This thesis implements and explores non-parametric copula estimation using Normal-

izing Flows. To motivate the topic, I first describe the need for copulas in statisti-

cal modeling and explain why non-parametric copula estimation is advantageous over

parametric copula estimation in empirical settings. I then motivate the use of Normal-

izing Flows for copula estimation and finally explain the research questions and outline

of the project.

1.1 Copulas in statistical modeling

A copula is a mathematical tool that describes the dependency structure between two

or more random variables. Any joint distribution can be separated into its marginals

and its copula, and the copula can in turn be used to combine the marginal distributions

into a joint distribution [3].

The use of copulas can benefit statistical modeling in two ways: dependency mod-

eling and multivariate joint distribution modeling [4]. For dependency modeling, copu-

las offer the benefit of capturing the full dependency structure between variables, rather

than just modeling linear dependencies, such as the commonly used correlation coeffi-

cient [5]. For multivariate modeling, they offer an increased flexibility in two aspects:

first, they can be used to separate the modeling of the marginal distributions from the

modeling of the dependency structure. When using a known multivariate distribution

for modeling, both dependency structure and marginal distributions are determined

by the choice of multivariate distribution. Second, the independent modeling of each

marginal allows the use of univariate distributions, which offer a greater variety than

multivariate distributions [6].

1



Chapter 1. Introduction 2

Examples of copulas being used for both purposes are numerous: to study of de-

pendence of two time series of financial data [7], to model the dependence between

input factors of feasibility studies for development plans [8], to predict asset prices [9]

or to predict wind and solar power generation given weather predictions [10].

1.2 Copula estimation

To be able to use a copula for dependency modeling or joint distribution modeling,

it has to first be estimated. Unlike the marginal and joint distributions, which are

directly observable, the copula is the hidden dependency structure between marginal

distributions [11]. A simple way to estimate a copula is to choose a specific copula

family and then fit the parameters to the given dependency structure [12]. However,

when working in empirical settings, the copula family is usually unknown and can only

be assumed.

One example of this occurred in what led up to the financial crisis of 2008: a copula

function approach by Li [13] had become the canonical tool for modeling the time until

default of financial products, such as asset swap spreads and bond prices. Given only

measurements of the marginal distributions of the product components derived from

market information, the tool modeled a joint distribution, allowing complex risks to

be modeled from attainable data. However, the formula makes the critical assumption

that the dependence structure follows a Gaussian copula [13]. Gaussian copulas have

a low dependence in the tails, meaning that they predict a low interaction between

the variables for unlikely events [14]. This introduced a false sense of security when

joining financial products, since the accumulated risk was underestimated, and has

been partially blamed for the financial crisis [15].

To avoid making false assumptions on modeled distributions, non-parametric meth-

ods can be used. Placing no assumption on the family of the copula or the marginals,

they offer a greater generality of the found results. Popular non-parametric density esti-

mation methods include kernel-based methods [16, 17] and neural networks [1, 18, 19].

For copula estimation, kernel-based methods have been well explored [11, 20], while

literature on copula estimation using neural networks remains sparse. This thesis fo-

cuses on a type of neural network that has recently gained popularity for density esti-

mation [1]: Normalizing Flows.
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1.3 Normalizing Flows for density estimation

Normalizing Flows are bijective functions that explicitly model the input distribution,

allowing for efficient and exact sampling and density evaluation [1]. Being bijective,

their loss function is simply the negative log likelihood. They are more straightfor-

ward to train than other generative models such as Generative Adversarial Networks

and Variational auto-encoders, which experience phenomena such as mode collapse,

posterior collapse, vanishing gradients and training instability [1, 21, 22].

To utilize the success of Normalizing Flows in density estimation, Wiese et al.

[2] propose Copula and Marginal Generative Flows (CM Flows), a method to esti-

mate copula and marginal from a joint distribution using a combination of multiple

Normalizing Flows. Given bivariate joint distribution samples, their model uses one

flow to estimate each marginal and project the marginals onto a normal distribution.

Then, an additional flow is used to learn the distribution of a copula-like structure from

these normal distributions. After transformation, they can then generate samples from

the copula. This approach allows non-parametric copula estimation given only joint

samples, and utilizes the density estimation strength of Normalizing Flows. However,

Wiese et al. [2] did not provide a detailed explanation of how CM Flows could be con-

structed, and did not show a simulation study for copula estimation. In this thesis, I use

the concept of CM Flows and implement them, evaluating performance on synthetic

data.

1.4 Multivariate copulas

Wiese et al. [2] also only describe CM Flows for bivariate copula estimation, rather

than multivariate copula estimation. Multivariate copulas are needed when modeling

multivariate data. For bivariate copulas, a large variety of copula families exist, cover-

ing many types of dependency structures. For multivariate copulas, the defined copula

families are less flexible. To increase flexibility, bivariate copulas can be combined

into multivariate copulas using a graphical structure of nested trees called vine copulas

[23, 24]. Regular vines (R-Vines) are a subgroup of vine copulas that restrict the com-

plexity of the nested copulas [25]. To find a fitting R-Vine, sequential algorithms can

be employed, which estimate the R-Vine tree by tree. In this thesis, I use a sequential

R-Vine estimation algorithm by Dißmann et al. [25], employing bivariate CM Flows

for bivariate copula estimation within each tree.
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1.5 Research questions and project description

This thesis first investigates whether CM Flows are a suitable method for non-parametric

bivariate copula estimation. Since CM Flows are built upon the Normalizing Flows

deep dense sigmoid flows (DDSFs) and real-valued non-volume preserving (RealNVP)

transformations, I first test their ability to estimate diverse marginal distributions and

copula distributions. I then implement bivariate CM Flows in PyTorch [26] and eval-

uate them using a simulation study of the three Archimedean copulas Clayton, Frank

and Gumbel [3]. The main evaluation metrics are the Jensen-Shannon (JS) divergence

between the true and predicted copula and the uniformity of marginals. A parametric

copula estimator which uses a copula family assumption different from the true cop-

ula family functions as a baseline for the bivariate CM Flows. The results on DDSF

and RealNVP show that they are able to capture the given distributions well, show-

ing a low JS divergence to all datasets. The results show that CM Flows are only

partially suitable for non-parametric bivariate copula estimation: while delivering sat-

isfactory results on the Clayton and Frank copula, showing a JS divergence below 0.1

for both copula estimates and outperforming the baseline results, their performance on

the Gumbel shows a JS divergence of 0.2, which is larger than the baseline JS diver-

gence.

The second research question is whether CM Flows can be combined with R-Vines

to provide multivariate copula estimation. To test this, I implement multivariate CM

Flows using the R-Vine selection algorithm published by Dißmann et al. [25], and

replacing the parametric copula estimation with bivariate CM Flows in each tree. As

part of the multivariate CM Flow, a conditional copula estimator is needed, which I

implement using the RealNVP. To evaluate the model, I first test the conditional copula

estimator using the Clayton, Frank and Gumbel copula and then test the multivariate

CM Flows using four dimensional datasets of different copula types. The evaluation

metric is again the JS divergence between the true and predicted copula. The results on

the conditional copula flow show that it is able to capture conditional copula densities

well. The results on multivariate CM Flows however indicate, that multivariate CM

Flows are currently not able to estimate multivariate copulas very accurately, showing

a large divergence between estimate and ground truth.

This thesis is structured as follows: chapter 2 provides the necessary background

on copulas and Normalizing Flows and introduces the relevant literature. Chapter 3

describes the methodology and evaluation techniques. Chapter 4 introduces the exper-
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iments used to answer the research questions. Chapter 5 shows the results. Chapter 6

discusses the results and chapter 7 concludes. In each of chapter 3, 4 and 5, the bivari-

ate CM Flow is treated first, including their components marginals flows and copula

flows, followed by the multivariate CM.



Chapter 2

Background

This chapter first provides definitions for the most important concepts used in copula

theory and gives an overview over copula estimation methods. Then, density esti-

mation using Normalizing Flows is explained, including an explanation of coupling

flows, such as RealNVP [27], and autoregressive flows, such as DDSF [28]. Finally,

the multivariate copula construction using bivariate copulas is demonstrated.

2.1 Copulas

Copulas describe the dependency structure between random variables. The copula

distribution is defined as the cumulative distribution function (CDF) C(u1, ...,ud) =

P(U1 ≤ u1, ...,Ud ≤ ud) of a random vector on the hypercube [0,1]d with uniform

marginals over [0,1], where Ui ∼ U[0,1], i = 1, ...,d and C(u1, ...,ud) : [0,1]d → [0,1],

d ∈ N. The copula probability density function (PDF), or copula density, follows as

c(u1, ...,ud) = ∂ dC(u1, ...,ud)/∂u1...∂ud .

Panel (c) of figure 2.1 illustrates the copula of a bivariate normal joint distribution.

It can be revealed using a probability integral transform: for any distribution X with

CDF FX , FX(X) is uniformly distributed [29]. This can be seen for the standard normal

distribution in panel (a) of figure 2.1. When transforming the marginals of the normal

joint distribution in panel (b), the copula remains, as seen in panel (c).

Sklar’s theorem [3] formalizes how copulas connect the marginal and joint distri-

butions: Let X = (X1, ...,Xd) be a d-dimensional random vector with CDF FX that has

the marginal CDFs F1, ...,Fd , denote fX the joint PDF and f1, ..., fd the marginal PDFs.

6
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(a) Probability Integral Trans-

form

(b) Joint Distribution (c) Copula

Figure 2.1: Panel (a) shows the probability integral transform of a standard normal

distribution: the normal distribution (top side) is transformed into a uniform distribution

(right side) using the standard normal CDF. Panel (b) shows a bivariate normal distribu-

tion which is transformed to a copula (panel (c)) using probability integral transform on

both marginals (top and right side).

Then, there exists a copula C such that

FX(x1, ...,xd) =C(F1(x1), ...,Fd(xd)),xi ∈ R (2.1)

and

fX(x1, ...,xd) = c(F1(x1), ...,Fd(xd))
d

∏
i=1

fi(xi) (2.2)

if the PDF fX exists. Thus, the joint PDF fX can be separated into the copula

density c and the product of marginal densities fi, i = 1, ...,d [3]. This allows for an

interpretation of the copula as the part of the joint density function that is independent

from the marginals and captures the dependencies between the variables [30]. When

the marginals are continuous, the copula is unique [3].

One important class of copulas are the Archimedean copulas, such as the Clayton,

Frank and Gumbel copula. They are easily constructed, and can display a large variety

of dependency structures. By construction, they are defined by just one parameter, θ

[3]. See table A.1 for definitions of the generating function for common Archimedean

copulas [3] and figure 5.2 (second row) for a illustration of the Clayton, Frank and

Gumbel copula.

One common method to generate samples (u,v) from a copula distribution C is

the conditional distribution method. It relies on first sampling u from a uniform

distribution, and then sampling v from the conditional distribution of the copula given
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u, Cu. It can be shown that Cu is just the partial derivative of the copula density with

respect to u, Cu =
∂C(u,v)

∂u , and that the inverse, c−1
u exists. (u,v) can then be sampled

by first sampling two independent standard uniform random variables u and t, and then

finding v by v = c−1
u (t). (u,v) is then a sample from the copula distribution C [31].

To find the copula of a joint distribution, the copula density can be estimated given

samples from the distribution. Copula estimation methods can be divided into para-

metric methods, which place assumptions on both the marginal and copula distribu-

tional families, semi-parametric methods, which place assumptions only on the distri-

bution of the copula, and non-parametric methods, which do not place assumptions on

either. Examples for parametric copula estimation include maximum-likelihood esti-

mation by Oakes [12], and the computationally more efficient inference function for

margins [32]. Semi-parametric estimation techniques are proposed by Genest et al.

[33], Chen and Fan [34] and Rémillard [35].

A common method for non-parametric copula estimation is kernel-based density

estimation. Prominent examples include the local linear kernel estimator by Chen and

Fan [34], the mirror-reflection kernel estimator by Gijbels and Mielniczuk [36] and the

transformation estimator by Fermanian et al. [37]. However, these estimators are not

always suitable for copula estimation since they show boundary bias and are incon-

sistent under unbounded densities [37, 38]. Fermanian et al. [37] propose improved

versions of the three kernel density estimators, which are less biased in the tails. Gee-

nens [39] propose a kernel-type copula density estimator, which transforms the copula

density into normal distributions and combine the kernel density estimation with local

likelihood density estimation methods. Their performance depends, however, on the

correct selection of a smoothing parameter [39].

2.2 Normalizing Flows

Normalizing Flows are a family of generative models that allow for both sampling and

efficient and exact density evaluation [1]. They are based on the idea that a representa-

tion of the target distribution should be easy to model. A normalizing flow transforms

a simple probability distribution into a more complex distribution by a sequence of

invertible and differentiable functions [1]. Figure 2.2 illustrates the inference and sam-

pling process for Normalizing Flows: the flow f : Z → X is trained by applying the

inverse of the flow, f−1(x) : X → Z to the data X and evaluating the negative log-

likelihood of the fit on a simple prior Z. The density of the sample x ∈ X can be
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evaluated using the change of variable theorem, where it becomes the product of the

density f−1(x) in the prior distribution and the change in volume introduced by the

inverse flow transformation:

pX(x) =
∣∣∣∣det(

∂ f−1(x)
∂x

)

∣∣∣∣ pZ( f−1(x)) (2.3)

This formula is only tractable for bijections which are easily invertible and where the

calculation of the determinant of the Jacobian is feasible. Bijections that confirm with

these two attributes are called Normalizing Flows. To find these kinds of bijections,

it is important to note that the composition of invertible functions is itself invertible

and that the Jacobian of the composition is just the product of the Jacobians of the

invertible functions. Thus, arbitrarily complex bijective functions can be created by

stacking bijective functions with a tractable Jacobian determinant [1].

Through this approach, new families of distributions can be fitted by choosing a

prior density and a number of invertible and differentiable transformations. Samples

from this new density can then be created by sampling from the prior distribution and

transforming the samples using f : Z → X . The density of the new samples can be

directly computed via equation 2.3 [1]. Normalizing Flows were first used for density

estimation by Rippel and Adams [40] and Laurence et al. [41] and popularized by Dinh

et al. [27], who introduced non-linear independent component estimation (NICE).

XZ

inference

sampling

XZ

Figure 2.2: Inference and sampling in Normalizing Flows. For inference, the data X is

projected onto a normal distribution, Z. For sampling, samples from a normal distribu-

tion are transformed into samples from the data distribution.

There are many types of Normalizing Flows, such as element-wise flows, linear

flows and planar and radial flows. However, the most common type, and the type used

in CM Flows, are coupling flows, such as the RealNVP used in the copula flow, and

autoregressive flows, such as the DDSF used in marginal flows [1].
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2.2.1 Coupling flows

Coupling flows contain coupling layers, which are one approach of keeping a tractable

Jacobian, while allowing the use of a deep neural network for estimation. Coupling

layers are a building block of the flow that causes the Jacobian to be triangular, making

the determinant easily computable. In a coupling layer, the data x is split into two

partitions, xA,xB, where d-dimensional xA is unchanged, and xB is transformed by an

invertible function g : Rd → Rd [1]:

yA =xA

yB =g(xA;m(xB))) (2.4)

The function m(xB) can be any function, including a deep neural network [1]. The

Jacobian then takes the form [1]:

∂y
∂x

=

[
Id 0

yB/xA yB/xB

]
(2.5)

There are different kinds of coupling layers, such as

additive: g(xA,m(xB)) = xA +m(xB) (2.6)

multiplicative: g(xA,m(xB)) = xA×m(xB) (2.7)

affine: g(xA,m1(xB),m2(xB)) = x1×m1(xB)+m2(xB) (2.8)

NICE uses affine coupling layers, with m(xB) being a rectified linear unit multilayer

perceptron [27]. Real-valued Non-Volume Preserving (RealNVP) transformations [42]

are an extension of NICE, which uses affine coupling layers, a scaling function as

m1(xB) and a shifting function as m2(xB). Both of these are rectified convolutional

networks [42]. In RealNVP, the split of x is performed using a binary mask, which is

determined by either a checkerboard pattern or channel-wise masking [42].

2.2.2 Autoregressive flows

In autoregressive flows, such as the deep dense sigmoid flows (DDSFs) [28], each entry

of the output y = g(x) depends on the previous entries of the input:

yt = g(xt |mt(x1:t−1)). (2.9)

By design, the Jacobian of this transformation is triangular, so the determinant is the

product of the entries on the diagonal of the Jacobian. Masked autoregressive flows



Chapter 2. Background 11

(MAFs) [43] are autoregressive flows that compute equation 2.9 in one forward pass,

using appropriate masks. The computation of the inverse is more challenging, and is

performed sequentially [1]. An alternative approach is the inverse autoregressive flow

(IAF) [44] in which each entry of y is conditional of the previous entries in y. For the

IAF, the forward computation is computationally expensive, while the computation of

the inverse is computationally cheap. Thus, IAFs are more efficient if fast sampling is

needed, and MAFs are more efficient for fast density estimation [43]. Several autore-

gressive flows have been proven to be able to learn any density to any precision given

enough data and capacity, the so-called universal property [28, 1, 45].

In neural autoregressive flows (NAFs), introduced by Huang et al. [28], the cou-

pling function g : Rd → Rd is a deep neural network. Huang et al. [28] showed that a

neural network with only non-negative weights and strictly monotone activation func-

tions is bijective, making it suitable as a coupling function. They proposed deep sig-

moid flows (DSFs) and deep dense sigmoid flows (DDSFs), which are both neural

networks with sigmoid layers and logit units, and non-negative weights. While deep

sigmoid flows (DSFs) have a single hidden linear layer with sigmoid units, DDSFs can

have more. To qualify the non-negativity restriction on the neural network weight, We-

henkel and Louppe [46] propose unconstrained monotonic neural networks (UMNN).

In UMNNs, a strictly positive (or negative) function is modeled with a neural network

and then integrated numerically. UMNN require fewer parameters than NAFs for a

similar performance, making them more suitable for high-dimensional data [1].

2.3 Regular Vine Copulas

As seen in section 2.1, copulas are defined over two as well as more dimensions.

However, while there is a large variety of parametric two dimensional copulas that

are flexible enough to capture a large variety of copula densities, the choice of mul-

tivariate parametric copulas for modeling higher dimensional dependencies remains

relatively limited [47]. Instead of using one multivariate parametric copula, bivariate

copulas can be combined in so-called pair-copula constructions [24]. Given a vector

X = (X1, ...,Xn) with joint distribution f (x1, ...,xn), the joint distribution can be factor-

ized uniquely up to variable order:

f (x1, ...,xn) = fn(xn) · f (xn−1|xn) · ... · f (x1|x2, ...,xn) (2.10)
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From Sklar’s theorem (equation 2.1) for densities in the bivariate case follows:

f (x1|x2) = c1,2(F1(x1),F(x2)) · f1(x1) (2.11)

and, adding a conditional x3:

⇒ f (x1|x2,x3) =c1,2|3(F1(x1|x3),F(x2|x3)) · f1(x1|x3) (2.12)

⇒ f (x1|x2,x3) =c1,2|3(F1(x1|x3),F(x2|x3))

· c1,2(F1(x1),F(x2)) · f1(x1) (2.13)

for conditional densities [24].

In this manner, each density distribution on the RHS of equation 2.10 can be de-

composed into its copula-marginal pair, using:

f (x|v) = cx,v j|v− j(F(x|v− j,F(v j|v− j) · f (x|v− j) (2.14)

with v being a d-dimensional vector, where v j is one component of v, and v− j is v

excluding v j [24]. Note that this decomposition is not unique, which will become

relevant in the selection of the R-Vine.

To find the conditional CDFs in equation 2.13, the copula distribution can be used

[48]:

F(x|v) =
∂Cx,v j|v− j(F(x|v j),F(v j|v− j))

∂F(v j|v− j)
(2.15)

Vine trees are a method to keep track of the dependencies between different copulas

and inputs. Introduced by Bedford and Cooke [23] they are a graphical model that

uses a nested set of trees which are defined by the distributions on their nodes and the

copulas on their edges. The first tree’s edges are the nodes of the second tree, and

the second tree’s edges are the nodes of the third tree, and so on. Regular vine trees

are a subset of vine trees were two edges in tree j are only joined to an edge tree

j+ 1 if these edges share a common node in tree j. Formally, they are a set of trees

v = (T1, ...,Td−1) where:

1. Each tree Tj = (N j,E j) is connected, N j being the nodes and E j the edges.

2. T1 is a tree with node set N1 = 1, ...,d and edge set E1.

3. For j ≥ 2, Tj is a tree with node set N j = E j−1 and edge set E j.
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4. For j = 2, ...,d−1 and a,b ∈ E j with a = (a1,a2) and b = (b1,b2) it must hold

that there is one common node betewen the edges: #(a∩b) = 1 (proximity con-

dition) [25].

The R-Vine tree structure becomes an R-Vine copula by defining the relationship

between the trees using copulas: for every edge, the copula between the nodes is de-

fined, and the nodes of the next tree are generated using the conditional copula as in

equation 2.15 [49, 50]. R-Vine copulas specifically have the advantage that the copula

needed for the nodes in tree j+1 is already present in tree j and thus does not need to

be recomputed [51].

Searching for the optimal R-Vine is difficult, as there exist n!
2 · 2

(n−2
2 ) possible R-

vines for an n dimensional multivariate copula [52]. Thus, sequential algorithms have

been developed to estimate the R-Vine tree by tree. Since the first trees are estimated

with the highest precision, Dißmann et al. [25] estimate the R-vine from the first to

the last tree, maximizing the dependence that is represented in the copulas within each

tree. They maximize the dependence by finding the maximum spanning tree using

Kendall’s τ of each node-pair as a dependency measure [25]. For each tree, the choice

of copula families and parameter estimation occurs simultaneously before moving on

to the next tree [25]. [25]’s algorithm is the most common in practical applications

[51]. [53] estimates R-Vines from the last tree to the first, minimizing dependence

within the tree. A comparison by Czado et al. [54] found neither of the approaches to

be favorable for all tested datasets. Bayesian approaches have also been developed for

R-Vine selection [55], but are out of the scope of this thesis.



Chapter 3

Methodology

This section introduces the model and evaluation measures for both the bivariate CM

Flow and the multivariate CM Flow.

3.1 Bivariate CM Flows

3.1.1 Model

Normalizing Flows generally model the distribution of the input dataset. Thus, when

training a normalizing flow directly on a joint distribution, it would reproduce this

joint distribution. For CM Flows, we are interested in modeling the copula of the input

joint distribution, which requires a unique architecture of combined flows, namely two

marginal flows and a copula flow.

The marginal flows are deep dense sigmoidal flows (DDSFs) [28], m(i)
θi

: R→
R, i = 1,2 with a normally distributed prior. The outputs of each marginal flow are

concatenated to form the bivariate marginal flow mθ : R2→ R2:

mθ (x1,x2) =
[
m(1)

θ1
(x1),m

(2)
θ2
(x2)

]T
(3.1)

with θ = (θ1,θ2) signifying the parameters of the marginal flows.

The copula flow uses a RealNVP [27] hη : R2 → R2 for density estimation and

a transformation function Φ to project the prediction onto the unit square, with η

signifying the parameters of the model. Plausible candidates for this function are the

sigmoid function, as in Wiese et al. [2], and the Gaussian CDF.

The CM Flow is defined as the concatenation of the bivariate marginal flow and

the copula flow: gθ ,η(u) = mθ ◦hη(x) for x ∈ R2, g : R2 h̃−→ R2 m−→ R2 [2]. The copula

14
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is extracted using

h : R2→ [0,1]2

x 7→Φ◦ h̃η(x)
(3.2)

with x∼N(0,1). Figure 3.1 shows an overview of the construction of CM Flows: N

is normally distributed two-dimensional random noise, C is the copula, CN is a copula-

like structure with normal marginals, M1 and M2 are the marginals. As mentioned in

section 2, Normalizing Flows are trained by feeding the data into the inverse function

and maximizing the log likelihood of the outputs on a prior distribution. Here, both

DDSF and RealNVP are trained on a standard normal prior. Thus, m−1
1 and m−1

2 project

M1 and M2 onto a standard normal distribution, respectively (upper diagram). h̃ takes

this two-dimensional distribution as input and projects it onto a two-dimensional nor-

mal distribution. To generate copula samples (lower diagram), h(x) =Φ(h̃(x)) projects

the random noise x onto the copula space [0,1]2.

CNZ

M1

M2inference

sampling

CZ

Figure 3.1: CM Flows Construction. For inference, the marginals M1 and M2 are pro-

jected onto normal distributions using the marginals flows, resulting in CN . The copula

flow then projects CN onto a bivariate normal distribution Z. For sampling, the bivariate

normal distribution Z is projected onto CN and transformed using Φ.

My PyTorch [26] implementation of marginal flows is based on the NAF Github

repository by Chin-Wei Huang1, the implementation of copula flows is based on the

PyTorch-flows Github repository by Ilya Kostrikov 2. Bivariate CM Flows are also im-

plemented in PyTorch, incorporating marginal flows and copula flows into one model.

Regarding the training architecture of the CM Flows, three main possibilities emerge:

1NAF Github repository, https://github.com/CW-Huang/NAF, accessed 16. Aug. 2020
2PyTorch-flows Github repository, https://github.com/ikostrikov/PyTorch-flows, accessed

16. Aug. 2020

https://github.com/CW-Huang/NAF
https://github.com/CW-Huang/NAF
https://github.com/ikostrikov/PyTorch-flows
https://github.com/CW-Huang/NAF
https://github.com/ikostrikov/PyTorch-flows
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• 1-step model: the two marginal flows and the copula flows are trained using

a single forward pass, where the concatenated output of the marginal flows is

the input to the copula flow. The backward step for the loss of each marginal

flow is performed independently, retaining the gradients. The loss for the copula

flow is then computed using the retained gradient of the marginal flows. One

optimizer step is performed for the whole CM Flow. The best epoch is chosen

by the lowest sum of losses on the validation set.

• 2-step model: the marginal flows are trained independently first, finding the

best parameters by choosing the lowest validation set loss. Then, the joint dataset

is transformed using the trained marginal flows. The copula flow is then trained

on the transformed dataset.

• Pre-trained 1-step model: The marginals flows and copula are first trained

independently using the 1-step model. Then, the found weights are used to ini-

tialize the 1-step model.

Which of these architectures is most effective will be explored in sections 5.1.3 and

6.2.

3.1.2 Evaluation

While the CM flows are trained only on samples from the joint distribution, I eval-

uate them using known copula densities. The copula flow’s objective is to minimize

the difference between the true copula (C1,C2) and the estimated copula (C̃1,C̃2)) =

(hη ,1(U),hη ,2(U)) and to achieve a uniform distribution in the marginals of the cop-

ula, U ∼ U([0,1]2). The similarity between the predicted and true copula is evaluated

using a Monte Carlo approximation of the Jensen-Shannon (JS) divergence:

DJS(p||q) =1
2

DKL(p|| p+q
2

)+
1
2

DKL(q||
p+q

2
)

=
1
2

[∫
p(x) log

2p(x)
p(x)+q(x)

+
∫

q(x) log
2q(x)

p(x)+q(x)

]
=

1
2

[
Ep(x)[log

2p(x)
p(x)+q(x)

]+Eq(x)[log
2q(x)

p(x)+q(x)
]
]

≈1
2

[ 1
N

N

∑
i=1

log
2p(xi)

p(xi)+q(xi)
+

1
M

M

∑
j=1

log
2q(y j)

p(y j)+q(y j)

]
,xi ∼ p(x),y j ∼ p(y)

(3.3)
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with p being the predicted copula distribution, and q the true copula distribution.

DKL(p|q) is the KL-divergence between p and q. Since the copula flow density only

captures a copula-like structure with normal marginals, the density is approximated

using gaussian kernels. The uniformity of the marginals of the copula is assessed with

two metrics:

T (i,n) =
1
n ∑

k=1,...,n

∣∣logP(C̃i ∈ Ak)+ logn
∣∣ (3.4)

and

M(i,n) = max
k=1,...,n

∣∣logP(C̃i ∈ Ak)+ logn
∣∣ (3.5)

with Ak = [(k− 1)/n,k/n],k = 1, ...,n, which are both approximated using Monte-

Carlo:

P(C̃i ∈ Ak)≈
1
m ∑

j=1,...,m
1

x j∈Ak ,x j ∼ C̃i (3.6)

Since DDSFs do not provide a sampling method, the marginal flows are evaluated

using the average point-wise JS divergence over a grid.

3.2 Multivariate CM Flows

3.2.1 Model

The estimation of R-Vines follows a similar principle as the estimation of CM Flows.

First, each marginal is transformed to a standard normal distribution using a marginal

flow. The estimation of the R-Vine with uniform marginals then follows [25]:

1. The input samples are transformed into a tree structure using a maximum span-

ning tree algorithm that maximizes the Kendall’s tau between each sample pair

using Prim’s algorithm [56].

2. For each edge of this tree, a conditional copula flow is estimated between the

samples on each node, using a copula flow each.

3. The conditional copula is then used to generate nodes of a new graph for each

edge of the current tree.

4. Steps 2 and 3 are repeated until the resulting graph has only one node.
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The conditional copula is estimated by a RealNVP [27] hη ,a : R→ R, with a ∈ R
serving as conditional input. It is the same model as the unconditional copula flow in

the bivariate CM Flow, where one marginal is given as conditional input while the other

marginal is the target data. This means that during sampling and density estimation,

the conditional input information is available. Dinh et al. [27] show that RealNVPs

work well when conditioned on classes, the performance of the conditional copula

flow with continuous conditional inputs will be explored in section 5.2.1. On an edge

e = (e1,e2), with nodes e1 and e2, the conditional node is chosen as the node that also

connects to one or more other edges. The other node is the unconditional node on

which the conditional copula flow is trained. The new node from this edge is then

transformed using the conditional flow hη ,a(b).

For copula sampling, samples from a d-dimensional standard normal distribution

are transformed step-by-step: beginning at the smallest tree, for each node, the corre-

sponding dimension of the standard normal distribution samples is transformed using

the inverse transformation of the respective conditional copula flow: hη ,ui(u j) = û j,

where u j is the transformed marginal and ui is the conditional marginal for the respec-

tive conditional copula.

The model is implemented using PyTorch [26] for the marginal flows and copula

flows and the Python library NetworkX [57].

3.2.2 Evaluation

The sampled copula is evaluated using the same procedure as for the bivariate flows:

by comparing the JS divergence between the target copula and the estimated copula

when training on joint samples. The JS divergence is approximated using Monte-Carlo

approximation, as in equation 3.3.



Chapter 4

Experiments

This section explains which experiments are performed in order to evaluate both bi-

variate and multivariate CM Flows, including a description of the generated datasets.

4.1 Bivariate CM Flows

The effectiveness of CM Flows depends on three major factors: the ability of the

marginal flow to model the marginal distributions, the ability of the copula flow to

model the copula distribution and the effective training of the CM Flow. Thus, I first

perform experiments on the copula flows and marginal flows individually, to assess

their suitability as parts of the CM Flow. Then, I investigate which CM Flow ar-

chitecture performs best by evaluating the marginal fit and the uniformity of copula

marginals. After choosing the 1-step architecture, I evaluate the JS divergence of the

estimated copula to the true copula distribution and compare the result to the JS diver-

gence achieved by a parametric model with false copula family assumptions.

For all experiments, the dataset consists of 10,000 observations, and is split into

training, validation and test set using a 80%/10%/10% split. For an accurate esti-

mation of the JS divergence, additional 100,000 test set samples are generated. The

models are trained using the ADAM optimizer with a learning rate of 1e−04 and oth-

erwise default parameters [58]. Each model is trained for 50 epochs, using batch size

100. The best epoch is chosen by lowest validation error.

19
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4.1.1 Univariate density estimation using marginal flows

The marginal flow is evaluated on five different distributions: Gaussian, Gaussian mix-

ture distribution, uniform distribution, gamma distribution and lognormal distribution1.

To find hyperparameters that work well on all tested distributions, I perform a simple

grid-search over the suggested hyperparameters by Huang et al. [28] 2 In addition, I

perform a random search [59] over a larger search space. Optimization hyperparam-

eters such as the learning rate and weight decay are not evaluated, since they highly

depend on the dataset and are not in focus here. They will thus remain constrant

throughout the experiments. Given the best hyperparameters, I then further analyze

the predicted distributions using point-wise JS divergence.

4.1.2 Copula estimation using copula flows

The copula flow is evaluated on its ability to fit samples from the Clayton, Frank and

Gumbel copula, respectively. Copula samples are generated using the conditional dis-

tribution method, and then expanded to R using Φ−1, which is the logit function or the

inverse Gaussian CDF. Similar to the marginal flow experiments, I first perform a grid

search over the hyperparameters of the flow, following suggested hyperparameters by

Dinh et al. [42] and then an additional random search on a larger search space 3.

4.1.3 Joint distribution estimation using bivariate CM Flows

To find out which architecture is most effective for the CM Flow, I perform experi-

ments using joint distributions with Clayton, Frank and Gumbel copulas and bimodal

gaussian marginal distributions. The joint samples are generated by first sampling

from the respective copula distribution and then transforming each of the marginals

to a gaussian mixture marginal. The marginals are transformed by randomizing the

origin Gaussian distribution of each sample and transforming it via inverse probability

transform.

In each experiment, the marginal and copula flow use the hyperparameters found

earlier: the marginal flow is kept at 10 flow layers and 1 hidden layer with 128 hid-

1The parameters for the distributions are: 1. N(−2,3) 2. Gaussian mixture containing 50% N(2,2)
and 50% N(12,2) 3. U(−1,3) 4. Γ(α = 5) 5. LN(0,−1)

2The tested hyperparameters include: 1. Flow layers: 5 and 10, 2. Number of hidden layers: 1 and
2, 3. Number of hidden units: 64 and 128, 4. Number of sigmoid units: 64 and 128.

3The tested hyperparameters are the type of transformation function Φ (sigmoid function or gaussian
CDF), the number of invertible blocks (4, 8 or 16) and the number of hidden units (32, 64, 128)
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den units, with 16 sigmoid units and 2 sigmoid layers. The copula flow is kept at 8

invertible blocks and 32 hidden units.

To compare CM Flows to a parametric model under false assumptions, I also per-

form three experiments of a parametric copula fit, using false copula assumptions. The

fit is performed using the copulae package, based on scipy.optimize.minimize. The

dataset is the same as for the CM Flows, with Gaussian mixture marginals and the

Clayton, Frank and Gumbel copula, respectively. For the Clayton copula, a Gum-

bel copula was assumed, for the Frank and Gumbel copula a Clayton copula was

assumed. The CM Flow is evaluated on the three copula types, using the Gaussian

mixture marginals in every experiment. Figure 4.1 shows the input datasets.
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(a) Clayton
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(b) Frank
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X1
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1
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1

2

X2

(c) Gumbel

Figure 4.1: Input dataset for bivariate CM Flows experiments, with a Clayton, Frank

and Gumbel copula respectively and Gaussian mixture marginals. The marginals are

shown at the top and right side of each plot.

4.2 Multivariate CM Flows

The successful estimation of R-Vines depends on the success of the copula flows in

estimating both the conditional and unconditional copula, on the marginal flow on

estimating the marginal distributions, and on the tree selection algorithm to select suit-

able trees within the R-Vine. Due to the focus of this thesis on CM Flows, I omit an

exploration of different tree selection algorithms and refer to Dißmann et al. [25] and

Czado et al. [54]. The ability of marginals flows to estimate the marginal distributions,

and of copula flows to estimate unconditional copulas is shown by the experiments in

section 4.1. What remains is an evaluation of the estimation of conditional copulas

with the copula flow and finally the evaluation of R-Vines on different datasets.
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4.2.1 Conditional copula flows for conditional copulas

To test the copula flows ability to estimate conditional copulas, I perform three exper-

iments similar to the ones on unconditional copulas in section 4.1. For Clayton, Frank

and Gumbel copula respectively, I train the copula flow on samples of one marginal of

the copula, given samples of the other marginal as conditional inputs. I then evaluate

the JS divergence of the predicted copula to the true copula.

4.2.2 Multivariate joint distribution estimation with R-vines

To evaluate the performance of the R-Vine estimation algorithm, I estimate the R-Vine

for four different datasets. Each dataset has the same R-Vine structure and marginal

distributions, but different copula distributions. The first three datasets contain only

Clayton, Frank and Gumbel copulas, respectively. The fourth dataset is a mixed

dataset, containing both Clayton, Frank and Gumbel copulas. Figure 4.2 illustrates

the R-Vine informing the datasets, table 4.1 shows the copula type for each bivariate

copula in the R-vine. All datasets have Gaussian mixture marginals, as in the CM

Flows experiments. The multivariate CM Flow is evaluated upon its ability to sample

the correct R-Vine copula, using JS divergence.

(1)

2

1

3 4

C1

C2
C3

(2)

C1

C2

C3

(3)

C23|1

C34|1

C23|1

C34|1

C24|13

Figure 4.2: R-Vine mixed dataset structure with four dimensions, specified by three

trees.

BIVARIATE COPULA

CLAYTON C1, C23|1

FRANK C2, C34|1

GUMBEL C3, C24|13

Table 4.1: Bivariate copulas for mixed R-Vine dataset. Clayton copula uses θ = 2,

Frank and Gumbel θ = 5.
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Results

5.1 Bivariate CM Flows

5.1.1 Marginal flows

I first perform the grid and random search for the marginal flows to find the best hyper-

parameters for the five types of univariate distributions. As a non-parametric tool, the

CM Flows should perform well without knowledge of the underlying dataset distribu-

tion. The hyperparameters can thus not be tuned to a single distribution. Rather, it is

important to find a set of hyperparameters that works well for most distributions. The

grid search on Gaussian, Gaussian mixture, uniform, gamma and lognormal distribu-

tion reveals that 2 sigmoid layers, 5 flow layers, 1 hidden layer, 128 hidden units and

16 sigmoid units are the best hyperparameters for the majority of distributions. The

random search achieves lower NLL results on some distributions, but does not find

a similar hyperparameter setting that works best for all distributions. I will thus use

the grid search results for further analysis and for the CM Flows. Detailed results are

reported in chapter B.1 in the appendix.

Given these hyperparameters, I evaluate the density estimation of marginal flows

on the distributions using the average point-wise JS divergence of the predicted and

true distributions. As expected given Huang et al. [28], the DDSF fits the distributions

well and shows a very low JS divergence to the true distributions, as shown in table

5.1. For all distributions, the JS divergence remains below 0.05, indicating a good

fit. Figure 5.1 supports this assertion: the DDSF shows a good density estimation

on Gaussian mixture, gamma and lognormal distribution, with a slight overfit on the

uniform distribution and a slight underfit on the Gaussian and lognormal distribution.

23
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Generally, the DDSF appears to be suitable as a marginal flow.
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Figure 5.1: Density estimations of the trained marginal flow (blue) on a grid in compari-

son to samples from the test sets (yellow). Each dataset is normalized.

5.1.2 Copula flows

As with the marginal flows, a grid search and random search is performed first to find

the most suitable hyperparameters for the distributions. Again, the goal is not to find

hyperparameters tuned to a single copula distribution, but ones that work well on most

tested copula types. The grid search finds that the Gaussian CDF and 32 hidden units

are favorable for each copula, and 8 invertible blocks achieve a lower validation NLL

for the Clayton and Gumbel copula. The random search also finds that the Gaussian

CDF transformation is the better transformation. Details on both searches are found

in chapter B.1 in the appendix. Thus, I will use a Gaussian CDF transformation, 32

hidden units and 8 invertible blocks for further analysis and the CM Flows.

Using these hyperparameters, the copula flow is evaluated on the Clayton, Frank

and Gumbel copula. Given Dinh et al. [42]’s results, I expect the RealNVP to perform

well on the copula samples. Table 5.1 shows that this expectation is met: the marginals

of each copula appear uniform and show a low T and M metric, with values below

6e−05 for the T metric on each copula and below 8e−04 for the M metric. The copula
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flow fits the Clayton copula best, with a JS divergence of only 0.04, then the Frank

copula with a divergence of 0.047 and finally the Gumbel copula with a JS divergence

of 0.053. Figure 5.2 shows almost no visible differences between the true and estimated

copulas. Generally, the divergence is low and the marginals are uniform, showing that

the RealNVP is suitable as a copula flow.
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Figure 5.2: The first row shows samples from the trained copula flows for each copula

type. For comparison, the second row shows samples from the true copulas. The first

marginal is depicted on top of the graph, the second marginal on the right side.

5.1.3 CM Flows

To find out which architecture of the CM Flow performs best, I evaluate the divergence

of the true and predicted marginals of the joint distribution for the three copula types

using Gaussian mixture marginals. It is not obvious which architecture will perform

best: on the one hand, the 2-step model can be expected to train in a more stable way,

since the marginal flows are first trained fully before transforming the data as input to
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MARGINAL FLOW JSD(X̂ ,X)

GAUSSIAN 3.12e−02

GAUSSIAN MIXTURE 2.37e−02

UNIFORM 2.0e−03

GAMMA 3.71e−02

LOGNORMAL 4.34e−02

COPULA FLOW JSD(Ĉ,C) T(1,25) T(2,25) M(1,25) M(2,25)

CLAYTON 4.04e−02 4.96e−05 4.78e−05 8.6e−05 7.74e−04

FRANK 4.77e−02 5.25e−05 4.73e−05 1.68e−04 1.01e−04

GUMBEL 5.27e−02 3.60e−05 3.72e−05 1.31e−04 7.53e−05

COND. COPULA FLOW JSD(Ĉ,C) T(2,25) M(2,25)

CLAYTON 4.01e−02 6.63e−04 1.01e−04

FRANK 4.38e−02 6.64e−04 8.75e−04

GUMBEL 4.32e−02 6.66e−04 1.12e−03

Table 5.1: Marginal flow, copula flow and conditional copula flow validation set results

on multiple datasets. Clayton copula uses θ = 2, Frank and Gumbel θ = 5. JSD(X̂ ,X)

is the average point wise JS divergence between the true and estimated distribution

over a grid. JSD(Ĉ,C) describes the JS divergence between the true copula and the

predicted samples of the flow. T and M measure the uniformity of the marginals, as

described in equations 3.4 and 3.5.

the copula flows. On the other hand, the 1-step model might result in a more robust

copula flow, since it trains on outputs of different training stages of the marginals flows.

The pretrained 1-step model has the benefit of initializing with the trained marginal and

copula flows, but runs the danger of overfitting.

Regarding the marginal fit as seen in table 5.2, the 1-step and pre-trained 1-step

model perform similarly, with a JS divergence between 0.07 and 0.09. The 2-step

model performs much better, with a JS divergence between 0.03 and 0.04. This indi-

cated a better fit to both marginals with the 2-step flow, which can be expected to result

in a better estimation of the copula as well. Figure 5.3 partly supports this claim. The

predicted copula of the 2-step CM Flow seems more concentrated at the lower tail, as

in the ground-truth Clayton copula. However, the marginals of the 2-step CM Flow

appear less uniform.
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To investigate the uniformity of the marginals further, I evaluate the T and M met-

ric for each architecture and copula type. Table 5.2 shows that the 1-step CM Flow

produces predicted copula samples with much more uniform marginals than the other

architecture types, showing a T metric between 5e-05 and 9e-05 compared to above

0.001 for the 2-step and pre-trained 1-step model. The choice between the 2-step and

1-step model is thus a choice between the fit of the marginals of the joint distribution

and the uniformity of the predicted copula marginals. Both are important for a good

fit: the marginals need to be fit to be transformed into uniform marginals, while the

predicted copula marginals need to be uniform in order to result in a copula. However,

the marginal fit is only an intermediate goal and thus less important than the copula

fit. This means that for further investigation, I will use the 1-step model. Note that the

multivariate CM Flow can not be trained in 1-step because of the sequential estimation

of R-vine trees and will use the 2-step model.
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(a) 1-step CM Flow

0.0 0.2 0.4 0.6 0.8 1.0
X1

0.0

0.2

0.4

0.6

0.8

1.0

X2

(b) 2-step CM Flow
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(c) Pre-trained 1-step CM Flow

Figure 5.3: Comparison of the Clayton copula estimate of the CM Flow architectures.

The 1-step CM Flow trains both marginal and copula flows at the same time, the 2-step

CM Flow trains the marginal flows first and then trains the copula flow on the marginal

flow outputs. The 1-step CM Flow with pre-training first trains the CM Flow as a 2-step

model and then retrains it as a 1-step model. The marginal distributions are given at

the top and right side of each plot.

It now remains to see how well the CM Flow performs on the three datasets. Table

5.3 shows that the JS divergence between predicted and true copula is low for the

Clayton and Frank copula, being between 0.08 and 0.01. For the Gumbel copula,

the JS divergence is higher, at 0.2. The marginals appear to be relatively uniform,

with a T metic between 0.001 and 0.002 and an M metric between 0.01 and 0.03 for

each dataset. Curiously, the marginals appear less uniform than in the experiment in
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1-STEP JSD(X̂1,X1) JSD(X̂2,X2) T(1,25) T(2,25) M(1,25) M(2, 25)

CLAYTON 8.55e−02 8.51e−02 6.11e−05 5.41e−05 1.21e−04 7.53e−05

FRANK 8.55e−02 8.51e−02 5.07e−05 6.17e−05 1.36e−04 1.45e−05

GUMBEL 7.88e−02 7.90e−02 8.51e−05 7.70e−05 1.59e−04 1.64e−05

2-STEP

CLAYTON 3.13e−02 3.62e−02 1.60e−03 1.85e−03 3.47e−03 3.47e−05

FRANK 3.04e−02 3.53e−02 1.4e−03 1.2e−03 2.43e−03 2.43e−03

GUMBEL 3.75e−02 3.48e−02 1.64e−03 1.5e−03 3.14e−03 2.8e−03

PRE-TRAINED 1-STEP

CLAYTON 8.08e−02 8.09e−02 1.55e−03 1.74e−03 2.61e−03 3.47e−03

FRANK 8.08e−02 8.09e−02 1.65e−03 1.34e−03 2.97e−03 3.13e−03

GUMBEL 8.14e−02 8.14e−02 1.64e−03 1.46e−03 3.43e−03 2.61e−03

Table 5.2: Validation set evaluation results for the CM Flow trained on joint distribution

samples. Clayton copula uses θ = 2, Frank and Gumbel θ = 5. JSD(X̂1,X1) and

JSD(X̂2,X2) are the point-wise JS divergence between the true and estimated marginal

distribution using a grid on the marginal flow. The T and M metrics are defined as in

equation 3.4 and 3.5.

table 5.2, which might be related to the random seed. Figure 5.4 shows that the CM

Flow places most of the weight in the correct tails, but shows patterns in the second

and fourth quadrant that are not present in the underlying copula. The unexpected

pattern most likely comes from the bimodal marginal distributions of the input dataset,

which are not projected perfectly onto a normal distribution by the marginal flows.

The marginals appear uniform for the Clayton and Frank copula and more noisy for

the Gumbel copula.

To investigate the transformation of the marginals, I take a closer look at the out-

puts of the marginal flows. Ideally, the marginal flows should project the marginals

onto a uniform distribution, leaving only the copula as the joint distribution of the

marginals to remain. Figure 5.5 shows that this is not the case: although the marginals

appear relatively uniform, the original marginal distribution still reflects itself in the

joint distribution of the marginals. Thus, the CM Flow could benefit from a further

investigation of the DDSF and alternatives, to find a better fit of the marginals.

To see whether CM Flows can be recommended to use when the underlying distri-
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(a) Estimated Clayton Copula
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(b) Estimated Frank Copula
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(c) Estimated Gumbel Copula

0.0 0.2 0.4 0.6 0.8 1.0
X1

0.0

0.2

0.4

0.6

0.8

1.0

X2

(d) True Clayton copula
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(e) True Frank copula

0.0 0.2 0.4 0.6 0.8 1.0
X1

0.0

0.2

0.4

0.6

0.8

1.0

X2

(f) True Gumbel copula

Figure 5.4: The first row shows samples from the estimated copula of the trained 1-step

CM Flow for the three datasets. The second row shows samples from the true copula

of each dataset. The marginal distributions are given at the top and right side of each

plot.

bution is unknown, I compare the CM Flow to a parametric model under false copula

family assumptions. A parametric model that, for example, assumes a Gumbel copula

when the true copula is a Clayton copula can never find a very close fit because of the

inherent differences between Clayton and Gumbel copulas. The CM Flow does not as-

sume a copula family, and should thus be able to find a closer fit. Table 5.3 shows that

this is the case for the Clayton and Frank copula. The parametric model only achieves a

JS divergence of around 0.13 for both copulas, while the CM Flow achieves 0.1 for the

Clayton copula and 0.09 for the Frank copula. For the Gumbel dataset, however, the

parametric model outperforms the CM Flow, with a JS divergence of 0.15 compared to

0.22 of the CM Flow. The poor performance on the Gumbel dataset most likely comes

from the modes of the bimodal gaussian distribution in the second and fourth quadrant,

as seen in figure 5.4. The used Gumbel copula shows a strong positive dependency be-
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CM FLOW JSD(Ĉ,C) T(1,25) T(2,25) M(1,25) M(2,25)

CLAYTON 9.96e−02 1.28e−03 1.02e−03 2.53e−03 1.94e−03

±4.46e−03 ±4.45e−04 ±3.49e−04 ±8.79e−04 ±6.92e−04

FRANK 8.99e−02 1.11e−03 1.03e−03 2.50e−03 2.00e−03

±3.74e−03 ±3.63e−04 ±3.53e−04 ±9.57e−04 ±6.71e−04

GUMBEL 2.22e−01 1.26e−03 1.05e−03 2.70e−03 1.88e−03

±5.59e−03 ±4.11e−04 ±3.75e−04 ±9.59e−04 ±6.67e−04

PARAMETRIC JSD(Ĉ,C)

CLAYTON 1.29e−01

±5.26e−03

FRANK 1.3e−01

6.84± e−03

GUMBEL 1.55e−01
±8.97e−02

Table 5.3: Test set evaluation results for the 2-step Copula Flow and the parametric

model trained on joint samples. Mean and standard deviation are evaluated on 10

experiments. Clayton copula uses θ = 2, Frank and Gumbel θ = 5. The parametric

model assumes a Gumbel copula for the Clayton dataset and a Clayton copula for both

the Frank and the Gumbel dataset. JSD(Ĉ,C) describes the JS divergence between

the true copula and the estimated samples of the flow. T and M measure the uniformity

of the marginals, as described in equations 3.4 and 3.5.

tween the variables, and thus does not have a lot of weight in the lower right and upper

left corner of the graph. The placed weight by the CM Flow might cause the high JS

divergence. In summary, CM Flows can outperform parametric models under false

assumptions on some datasets, but do not seem to separate the marginal distributions

fully from the copula.

An exploration of the CM Flows given 1,000 and 100,000 observations can be

found in chapter B.2 of the appendix.
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(a) Clayton Copula
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(b) Frank Copula
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(c) Gumbel Copula

Figure 5.5: Training set output of the two trained marginal flows for each copula type,

concatenated and transformed to uniform marginals. The marginals are depicted on

the top and right side of each plot.

5.2 Multivariate CM Flows

5.2.1 Conditional copula flow

The multivariate CM Flow requires a conditional copula flow that can estimate one

marginal of the copula given the other marginal. The conditional copula flow here

is also a RealNVP [27] which received one marginal as input and the other marginal

as a conditional input. In their paper, Dinh et al. [42] only report results for a class-

conditional model. It is thus not obvious, how the conditional copula flow will perform,

given that the conditional input is a continuous distribution. The given conditional cop-

ula flow is evaluated on samples of the three copulas using one marginal as conditional

input and training it on the other. Table 5.1 shows that conditional copula flows achieve

a low JS divergence, being lower than 0.05 for all tested copula types. T (1,25) and

M(1,25) are not evaluated, since they are directly drawn from a uniform distribution.

T (2,25) is slightly higher than in the unconditional copula flow, being at 6e−04 in-

stead of 5e−05. M(2,25) is similar to the unconditional copula flow, being between

1e−04 and 0.001. Figure 5.6 confirms this: the estimated copula shows almost no

noticeable difference to the true copula, while the estimated marginals are slightly less

uniform than the ground truth in the lower panel. Overall, conditional copula flows

seem to adequately estimate the conditional copula and we can move on to test the

performance of the R-Vines.
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(a) Estimated Conditional Clayton
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(b) Estimated Conditional Frank
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(e) True Frank copula
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(f) True Gumbel copula

Figure 5.6: The first row shows the estimated conditional copula samples for Clayton,

Frank and Gumbel copula. For comparison, he second row shows the true copula for

each dataset. X1 is given as conditional input, while X2 is the target distribution. The

distribution of X1 is shown on the top side of the plot, the estimated distribution X2 is

shown on the right side.

5.2.2 R-Vines copula estimation

The performance of multivariate CM Flows is evaluated using the JS divergence of

the true und predicted multivariate copula. Given that the multivariate dataset also

only contains 10,000 observations, the JS divergence is expected to be higher than

for the bivariate CM Flows. Multivariate CM Flows can also be expected to perform

worse on the Gumbel copula, since it is build upon bivariate CM Flows, which have

shown to not fit the Gumbel copula well. Table 5.4 shows that this is the case: the JS

divergence is between 0.31 and 0.66 depending on the dataset. The JS divergence is

lowest for the Frank copula dataset, 0.31, higher for the Clayton copula dataset with

0.39, then the mixed dataset with 0.53 and finally the Gumbel copula dataset with 0.66.
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Overall, the JS divergence is quite high, indicating a suboptimal fit of the multivariate

copulas. Because of this, a comparison with a parametric model under false copula

family assumptions is omitted.

To further investigate why the estimated multivariate copula differs from the true

copula, I take a look at some of the estimated dimensions of the multivariate copula.

Figure 5.7 shows that similar to the bivariate CM Flows results, most of weight of the

copula is in the right place, but that unexpected patterns appear. Here, the patterns

represent just one of the bimodal gaussians, since the conditional copula flow receives

one marginal as an input. Overall, this suggests that the suboptimal performance of the

multivariate CM Flow rather comes from the issues the bivariate CM Flow has already

shown than from the R-vine selection algorithm.

GAUSSIAN MIXTURE MARGINAL JSD C

CLAYTON 3.87e−01 ±2.05e−02

FRANK 3.10e−01 ±3.35e−02

GUMBEL 6.61e−01 ±4.64e−03

MIXED 5.31e−01 ±1.97e−02

UNIFORM MARGINAL JSD C

CLAYTON 1.24e−01

FRANK 7.18e−02

GUMBEL 1.11e−01

MIXED 1.87e−01

Table 5.4: R-Vine test set results for a 4 dimensional dataset. For the Clayton, Frank

and Gumbel dataset only the Clayton, Frank and Gumbel copula respectively were used

to simulate the R-Vine data. For the mixed dataset a model with a mixture of the three

copulas was used. JS divergence C describes the JS divergence between the true

copula and the predicted samples of the multivariate CM Flow. For Gaussian mixture

marginals, mean and standard deviation are reported for 10 experiments. The uniform

marginal experiment is only performed once, for comparison.

To further verify, that the suboptimal performance of the R-Vines can be attributed

to the insufficient projection of the marginals flows and the difficulty of estimating the

Gumbel copula of the copula flows, I test the copula estimation using only uniform

marginals for the four datasets, and disable the marginal transformation. This copula
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(e) True dim. 2 and 3
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(f) True dim. 1 and 4

Figure 5.7: The first row shows the estimated conditional copula of the multivariate CM

Flow for the mixed dataset in three exemplary dimension pairs. The second row shows

the true multivariate copula for these dimensions. The marginal distributions are given

at the top and right side of each plot.

estimation should result in better results for at least the Clayton, Frank and Gumbel

copula datasets, since they were estimated well in the copula flow. Table 5.4 confirms

this expectation, showing a low JS divergence for all datasets. This suggests that the

R-vine estimation technique can work, if the marginal flows projection is improved.



Chapter 6

Discussion

This chapter discusses the results obtained in chapter 5. First, the direct density esti-

mation results are discussed, namely the experiments for the marginal flow and condi-

tional and unconditional copula flows. Then, the results for the bivariate CM Flow are

discussed, followed by a discussion of the multivariate CM Flow experiments.

6.1 Direct density estimation

The results on marginal flows and copula flows indicate that they work well on direct

density estimation, confirming the results stated by Wiese et al. [2]. They both show a

low divergence to the given true distribution, indicating a good fit.

Slight aberrations in the estimated density of the marginals flows appear for some

distributions such as the Gaussian distribution and lognormal distribution, which it

seems to underfit, and the uniform distribution which is seems to overfit. This and the

diverse results of the hyperparameter search on each distribution show that the flows

work best when they are adapted to each given dataset, but that a single hyperparameter

setting can work for a multitude of distributions. Whether the flows should be tuned to

each dataset at hand is a design choice that trades performance against ease of usage.

The copula flows indicate a good fit on the tested copulas, showing a JS divergence

below 0.06 for each dataset. On the other side, Wiese et al. [2] show that neural net-

works do not model the tail sufficiently. Thus, we cannot conclude how good or bad

copula flows are at estimating the tails. In practice, since observations in the tails are

rare and underestimating the tails is a serious risk, tail behavior could be assumed as

suggested in Wiese et al. [2].

Surprisingly, the conditional copula flows as evaluated in section 5.2 show a lower

35
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JS divergence than the unconditional copula flows. This is unexpected, since the cop-

ula is the dependence structure between the variables, and should not be affected if

one uniform marginal is given. The improved performance could derive from the fact

that the flow only has to model a one-dimensional distribution, while using the other

marginal as a conditional input. They have access to one marginal during sampling,

and can generate the other marginal accordingly. This resembles the conditional sam-

pling method for parametric copulas and seems to work better than creating the full

copula from random noise. Another positive side effect is that one marginal will be

fully uniformly distributed, since it is sampled directly from a uniform distribution.

This result warrants further investigation into the trade-off between training the bivari-

ate CM Flows with an unconditional or a conditional CM Flow.

6.2 Bivariate CM Flows

The CM flows show mixed results. On the Clayton and Frank copula datasets, they

perform well and beat the parametric baseline which was given false copula family

assumptions. On the Gumbel copula, the divergence between the found and true copula

is higher than for the parametric model which assumes as Clayton copula. As seen in

section 5.1.3, this divergence largely results from the insufficient transformation of the

marginal flows. They seem to transform the data to a mostly uniform distribution, but

do not remove the bimodal Gaussian completely. Subsequently, the CM Flow learns

the modes of the bimodal Gaussian and projects samples to where they were. For

the Clayton and Frank copula, this is not a big problem, since they are more spread

out. The Gumbel copula, however, is concentrated around the diagonal and thus any

projection of data away from the diagonal increases the divergence. To further improve

the CM Flows, a more thorough investigation of the marginal flows, including a larger

hyperparameter search and a test of alternatives to the DDSF is needed. For example

Neural Spline Flows [60] promise higher flexibility in density estimation. For higher

efficiency, unconstrained monotonic neural networks [46], cubic-spline flows [61] or

block neural autoregressive flows [62] could be tested.

The evaluation of the training architectures of CM Flows shows that the model

trained in two steps achieves a better marginal flow fit, while the model trained in one

step achieves more uniform copula marginals. The former can be explained by the fact

that the 2-step CM Flow trains each marginal flow independently of the copula flow.

Thus, the resulting marginal fit should be optimal. The latter result is more paradoxical.
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Since the marginal flow fit is worse, one would assume the copula flow to result in less

uniform marginals. However, the training of the copula flow within the 1-step CM

Flow might be more efficient: when performing the backward step of each marginal

flow, the computational graphs of both flows are retained and used for the backward

step of the copula flow. The influence of both marginal flows parameters on the copula

flow is thus included in the backward step of the copula flow. When performing the

optimization step, the copula flow parameters are thus changed with knowledge of the

marginal flow parameters, since they construct the inputs for the copula flow. This

should not be an issue for the separation of marginal and copula, since the marginal

flows are still optimized without knowledge of each other. One danger in the 1-step

model is that the copula flow loss might crowd out the marginal flow losses when

choosing the best validation loss epoch and thus choose an epoch where the copula

flow performs well, but not the marginal flow. Overall, the results are not obvious as to

whether one of the architectures always performs better than the other, but rather that

there is a tradeoff between different strengths of the models.

6.3 Multivariate CM Flows

The experiments on multivariate CM Flows show that they are not able to capture the

multivariate copula density well. The JS divergence between the true and estimated

copula is between 0.31 and 0.67 depending on the dataset. As expected, the fit on

Clayton and Frank copula datasets is better than on the Gumbel and mixed datasets.

The results in section 5.2 show that the suboptimal fit is most likely a propaga-

tion of the problems the bivariate CM Flow has already shown. As seen in the results

on bivariate CM Flows (section 5.1.3), the marginal flows do not model the marginal

density well enough to fully project it onto a uniform distribution. The results of the

marginal flows inform both the estimation of the first tree as well as the estimation of

the bivariate unconditional and conditional copulas in the first tree, which then further

transforms the data for the second tree, and so on. Thus, a bad fit in the marginal

flows propagates through the R-Vine, changing the estimation of the multivariate cop-

ula. This is confirmed by the experiments on multivariate distributions with uniform

marginals: the R-Vine performs much better, indicating that much of the performance

is driven by the fit the marginal flows achieve. Comparing the estimated copula to the

true copula in figure 5.1 shows that the estimation does put most of the weight in the

correct places, further indicating that is not the estimated R-vine tree that causes the
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issue.

Another reason for the lacking performance of R-Vine is the low number of ob-

servations they are trained on. The multivariate CM Flow needs to not only transform

the marginals and find bivariate copulas using only 10,000 data points, but finds the

maximum spanning tree based on the transformed marginals and found copulas of the

previous tree. More data might improve the transformation of the marginals and the

accuracy of the found copulas, and consequently result in a more meaningful Kendall’s

tau, which informs the found tree.



Chapter 7

Conclusion

7.1 Summary

This thesis evaluates the ability of bivariate and multivariate CM Flows to estimate

copulas given synthetic data. Marginal flows and copulas flows were first implemented

and evaluated independently, then in combination as a bivariate CM Flow. Then, the

CM Flow was extended on multiple dimensions using R-Vines.

As expected, for marginal flows and copula flows, the results were positive. Both

flows capture the respective dataset and show a low divergence between their estimate

and the ground truth. CM Flows perform a much harder task, the estimation of the

copula from joint distribution samples, and are thus expected to perform worse than

copula flows, which are trained directly on the copula. However, they still achieved

a JS divergence of under 0.1 for the Clayton and Frank copula dataset, which out-

performs a parametric model that assumes a false copula family, which achieved a JS

divergence of over 0.129 for the two datasets. Only for the Gumbel copula, the CM

Flows performed much worse, with a mean JS divergence of 0.22, compared to 0.15 of

the parametric model. This shows that CM Flows can only be a more reliable copula

estimation technique than parametric models if the performance on the Gumbel copula

can be improved in the future. One starting point for an improvement of the CM Flows

could be the marginal flows, which do not seem to transform the marginal distributions

to uniform distributions well enough.

To evaluate the performance of multivariate CM Flows, again the divergence be-

tween the true multivariate copula and the predicted copula was evaluated. The results

show a high divergence between the predicated and true copula, being 0.31 for the

Frank copula dataset and 0.61 for the Gumbel copula dataset the predicated and true

39
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copula. Largely, these issues can be attributed to the issues the CM Flows have already

shown in the bivariate case. Thus, an improvement of the CM Flows can be expected

to improve the multivariate CM Flow as well.

7.2 Future work

The main objective of future work would be to improve the performance of CM Flows,

particularly on datasets with a strong dependence between the marginals such as the

Gumbel copula. As seen in the results on CM Flows in section 5.1.3, the CM Flows do

not fully separate the marginal from the copula. Approaches for improvement should

thus focus on improving the marginal flow, by either performing a more extensive hy-

perparameter search for the DDSF, or by exchanging the DDSF by another normalizing

flow, as the ones mentioned in section 6.1.

Another objective would be to enable CM Flows to become a full multivariate

simulation tool rather than just a copula estimation tool. For this, the CM Flow needs

to be enabled to generate joint samples and to estimate copula and joint densities. To

generate joint samples, the marginal flows need to be able to generate samples. One

way to enable this would be to write a sampling function for DDSFs. Another way

would be to replace DDSFs by a different normalizing flow that can generate samples.

The estimation of copula densities does not require a replacement of the copula flow,

just an integration of the Gaussian CDF transformation into the change of variable

formula. To estimate joint densities again the change of variables formula can be

employed.

For the R-vines, there are also several approaches for future work. Once the per-

formance of the CM Flows is improved, different tree selection algorithms could be

tested and the overall R-vine selection algorithm could be improved, using Kraus and

Czado [63] for example. To avoid the use of regular vines, the copula flow could also

be changed to allow multiple dimensions.

Ultimately, CM Flows are a practical tool and could be used, to estimate copu-

las in empirical data. The CM Flows could for example be directly used to measure

dependencies [7] or to estimate mutual information [30], or to measure dependencies

[7]. Once extended to allow the simulation of joint samples, CM Flows can be used to

model multivariate distributions [9, 10].
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[52] O. Morales-Nápoles. Counting Vines. In Dependence Modeling, pages 189–218.

WORLD SCIENTIFIC, Dec 2010. ISBN 978-981-4299-87-9. doi: 10.1142/

9789814299886 0009.

[53] Dorota Kurowicka. Optimal Truncation of Vines. In Dependence Modeling,

pages 233–247. WORLD SCIENTIFIC, Dec 2010. ISBN 978-981-4299-87-9.

doi: 10.1142/9789814299886 0011.

[54] Claudia Czado, Stephan Jeske, and Mathias Hofmann. Selection strategies for

regular vine copulae. Journal de la Société Française de Statistique, 154(1):
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Appendix A

Additional Background

COPULA θ ∈ BIVARIATE COPULA Cθ (u,v)

CLAYTON [−1,∞) [max{u−θ + v−θ −1;0}]−1/θ

FRANK [1,∞)
1
θ

log
[
1+

(eθu−1)(e−θv−1)
e−θ −1

]
GUMBEL (−∞,∞) exp

[
− ((− log(u))−θ +(− log(v))−θ )(1/θ)

]
Table A.1: Definitions for Clayton, Frank and Gumbel copula.
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Appendix B

Additional Results

B.1 Hyperparameter Search

This appendix includes additional result for the grid and random search of marginal

flows and copula flows. Table B.1 shows the grid search results for the marginal flows.

It can be seen, that 5 flow layers, 1 hidden layer, 128 hidden units, 16 sigmoid units

and 2 sigmoid layers are the best hyperparameters for most datasets. Regarding the

random search results in table B.2, no clear best hyperparameters emerge. The grid

search results on copula flows in table B.3 show that the Gaussian CDF is the preferable

transformation function over the sigmoid function for all datasets, as well as 32 hidden

units, the best number of hidden blocks across datasets is 8. The random search in

table B.4 finds slightly different results: while also finding the Gaussian CDF, it finds

that 4 inverted blocks and 512 hidden units are preferable for two of three datasets.

B.2 Bivariate CM Flows

To see how the CM Flows’ performance changes with more or less data, I perform

additional experiments using datasets with 1,000 and 100,000 observations, respec-

tively. Table B.5 shows that the CM Flows do not perform significantly worse under

just 1,000 observations than under 10,000. With 100,000 observations, however, the

copula marginals appear much more uniform, while the JS divergence stays similar.

Unfortunately, the JS divergence of the Gumbel copula only seems to rise with more

observations.
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MARGINAL FLOW L. HIDDEN L. HIDDEN U. SIGM. U. SIGM. LAYER VAL. NLL

GAUSSIAN 5 1 128 16 2 1.29572

GAUSSIAN MIXTURE 10 1 128 8 2 1.02936

UNIFORM 5 2 128 16 2 1.22809

GAMMA 5 1 64 8 2 1.19813

LOGNORMAL 5 1 128 16 2 1.11292

Table B.1: Marginal flow grid search validation set results. Tested hyperparameters are

the number of flow layers, number of hidden layers, number of hidden units, number of

sigmoid units and number of sigmoid layers. The validation set NLL is reported for the

best hyperparameters.

MARGINAL FLOW L. HIDDEN L. HIDDEN U. SIGM. U. SIGM. LAYER VAL. NLL

GAUSSIAN 8 4 1 4 1 1.25505

GAUSSIAN MIXTURE 2 1 2 4 1 1.07675

UNIFORM 1 16 64 128 4 1.24605

GAMMA 8 4 1 4 1 1.25505

LOGNORMAL 2 1 64 2 2 1.07824

Table B.2: Marginal flow random search validation set results. Tested hyperparameters

are the number of flow layers, number of hidden layers, number of hidden units, number

of sigmoid units and number of sigmoid layers. The validation set NLL is reported for

the best hyperparameters. The search space included number of flow layers, number

of hidden layers and number of sigmoid layers in {20, ...,25}, and number of hidden

units and number of sigmoid units in {20, ...,210}.

TRANSFORM. INV. BLOCKS HIDDEN U. VAL. NLL

CLAYTON(2) GAUSSIAN CDF 8 32 2.39730

FRANK(5) GAUSSIAN CDF 16 32 2.51388

GUMBEL(5) GAUSSIAN CDF 8 32 1.55832

Table B.3: Copula flow grid search results. Tested hyperparameters are the type of

transformation function, the number of inverted blocks and the number of hidden units.

The validation set NLL is reported for the best hyperparameters.
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TRANSFORM. INV. BLOCKS HIDDEN U. VAL. NLL

CLAYTON(2) GAUSSIAN CDF 4 512 2.15621

FRANK(5) GAUSSIAN CDF 4 512 2.30680

GUMBEL(5) GAUSSIAN CDF 64 256 1.37167

Table B.4: Copula flow random search results. Tested hyperparameters are the type of

transformation function, the number of inverted blocks and the number of hidden units.

The validation set NLL is reported for the best hyperparameters.The search space in-

cluded sigmoid and gaussian CDF transformation, number of blocks in 20, ...,27 and

number of hidden units in {20, ...,210}.

1,000 OBS. JSD C T(1,25) T(2,25) M(1,25) M(2,25)

CLAYTON 1.17e−01 2.08e−03 1.91e−03 3.47e−03 3.77e−03

FRANK 9.66e−02 1.99e−03 1.66e−03 3.77e−03 2.8e−03

GUMBEL 1.81e−01 1.55e−03 1.79e−03 2.8e−03 4.05e−03

100,000 OBS. JSD C T(1,25) T(2,25) M(1,25) M(2,25)

CLAYTON 9.52e−02 4.51e−06 3.32e−06 8.43e−06 9.89e−06

FRANK 7.5e−02 4.39e−06 4.5e−06 7.53e−06 8.75e−06

GUMBEL 2.14e−01 6.56e−06 5.82e−05 1.29e−06 9.99e−06

Table B.5: Test set evaluation results for the copula flow trained on 1,000 and 100,000

copula samples. Clayton copula uses θ = 2, Frank and Gumbel θ = 5. JS divergence

C describes the JS divergence between the true copula and the estimated samples of

the flow. T and M measure the uniformity of the marginals, as described in equations

3.4 and 3.5.
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