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Abstract

Synapses, the connections between neurons, regulate the flow of information within

neuronal networks in the brain. For a long time, it has thus been thought that these

synaptic connections only change when new information is incorporated into a net-

work. Surprising therefore are recent observations that synapses within neuronal net-

works are constantly remodelled at high rates, although the activity and function of the

networks stay remarkably stable. This opens up the question of how this stability is

maintained despite the volatility of the synaptic connections.

A possible answer to this question comes from recent observations that neuronal

networks in the brain exhibit sloppiness, which suggests that not all network compo-

nents have an equal influence on a network’s overall activity and function. This led

to the idea that the overall behaviour of a network is strongly influenced by a small

subset of its synapses, which might stabilise the overall network, whereas most other

synapses are free to change. The identity of these stabilising synapses has however not

been elucidated yet. In this dissertation, we investigate the influence of different types

of synapses on the activity of a computational spiking neuronal network (SNN) model.

Combining and extending recent findings, we for the first time show that a very small

subgroup of synapses indeed has a disproportionately large influence on the activity of

such a neuronal network. This subgroup consists of highly active inhibitory synapses

with large synaptic weights. We then test the effect of rewiring these synapses on the

representation of information within an SNN and find that, although it affects the activ-

ity and information content of individual neurons, this does not alter the performance

of a decoder designed to read out information from the network. Overall, this suggests

that the small subgroup of inhibitory synapses might have a stabilising influence on

the activity of a neuronal network, but their role with regard to a network’s function

remains to be further elucidated.

In general, computational studies such as ours provide insights into the dynamics

of neuronal networks and the principles of brain function beyond what is currently

directly experimentally accessible in the brain.
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Chapter 1

Introduction

Synapses, the structures at which electrical signals are transmitted from one neuron to

the other, are crucial components of the neuronal networks in our brain. They regulate

information flow not only by relaying signals between neurons, but also by determin-

ing whether a signal promotes a neuron’s activity (excitatory signal) or attenuates it

(inhibitory signal), and how much influence a signal has. Consequently, it has tradi-

tionally been thought that the specific patterns and properties of synaptic connections

determine the way information is processed and stored within these networks, and any

changes in synaptic connections have been thought to reflect the incorporation of new

information into the network [1–3]. Surprising, therefore, are recent observations that

synapses in the brain constantly change at a high rate, without necessarily altering

network function or adding/removing stored information [1, 4, 5]. Understanding how

neuronal network stability is maintained despite the volatility of synaptic connections

promises to give important insights into the dynamics of neuronal networks and the

principles of brain function.

This dissertation mainly builds on two recent findings that offer clues about how

the contradiction of a stable network with unstable synapses might be resolved. Firstly,

Panas et al found that neuronal networks exhibit sloppiness [6]. Sloppiness is a con-

cept from complex systems theory which describes systems whose overall behaviour

depends only on a small subset of components, called ‘stiff’ parameters [7–9]. Most

other components, called ‘sloppy’ parameters, are free to change without significantly

affecting the overall system. In the context of neuronal networks, it seems that the stiff

parameters correspond to a small number of highly active neurons, which have been

proposed to support and maintain overall network stability [6]. Secondly, Mongillo

et al observed that rewiring all inhibitory synapses within a computational neuronal

1



Chapter 1. Introduction 2

network model strongly affected overall network activity and lead to the loss of stored

information, whereas rewiring excitatory synapses, which made up a much larger pro-

portion of the network, had little effect overall [10]. The two findings above suggest

the following: Firstly, not all neurons and their synapses seem to have an equal in-

fluence on the overall activity and function of a network. Secondly, a small subset of

highly active neurons, and therefore also their synapses, seem to have a large influ-

ence [6]. And thirdly, the precise locations of inhibitory synaptic connections within a

network seem to matter more than the precise locations of excitatory connections [10].

In this dissertation, we aimed to combine and explicitly investigate these three points,

by testing the hypothesis that neuronal network stability is supported by small number

of inhibitory synapses which transmit signals of highly active neurons.

To investigate our hypothesis, we systematically assess the effect of rewiring dif-

ferent groups of synapses on the overall activity of a spiking neuronal network (SNN)

model, which is a simplified computational model of a neuronal network in the brain.

We show that rewiring a small subgroup of inhibitory synapses has a disproportion-

ately large influence on the activity of the overall network, whereas rewiring most

other synapses has little effect. In line with our hypothesis, this subgroup of inhibitory

synapses transmits signals of highly active neurons, but is also characterised by high

synaptic weights. Due to their strong influence on the overall network, we argue that

overall network stability can be maintained by keeping these synapses stable. Finally,

we assess the effect of synaptic rewiring on an SNN that models how visual infor-

mation is represented in the brain. We find that, although rewiring the subgroup of

inhibitory synapses affects the network’s activity, this has surprisingly little effect on

its function, as it does not significantly affect the performance of a decoder designed to

recover information from the network. Nevertheless, the small subgroup of inhibitory

synapses might have other roles in the brain, beyond what we have modelled here,

which might include supporting stable storage or parallel processing of information.

This dissertation is structured as follows. After providing some background on the

fundamental principles of neuronal communication, Chapter 2 will review evidence

of high synaptic volatility in the brain, and discuss how the concept of sloppiness

might explain how neuronal networks maintain global stability despite the volatility of

their synapses. Chapter 3 will describe the computational models and methods used to

evaluate the effect of synaptic remodelling. Chapter 4 contains experiments and results.

Finally, Chapter 5 will summarise and discuss our results, consider limitations, point

out future work, and present our conclusions.



Chapter 2

Background

In a typical network in the brain, every neuron receives thousands of synaptic inputs

from other neurons [11, 12]. Each incoming signal triggers a transient increase or de-

crease in the neuron’s membrane potential, depending on whether it stems from an

excitatory or inhibitory synapse respectively. If multiple incoming signals manage

to increase a neuron’s membrane potential above a certain threshold, one or multiple

action potentials will be triggered. Action potentials are sudden spikes in electrical

potential, and the stronger a signal, the higher the frequency at which spikes will be

generated. Action potentials are initiated at a neuron’s cell body and can travel long

distances along its axon. A neuron’s synapses are located at the end of the axon, and

every time an action potential arrives, the synapses transmit the signal to all connected

neurons. Synapses are unidirectional and weighted, which means that the signal will

always flow from the presynaptic to the postsynaptic neuron, and the amount of influ-

ence the signal has on a postsynaptic neuron depends on the weight of each individual

synapse. The type of synapse is determined by the identity of the presynaptic neu-

ron; excitatory neurons send signals via excitatory synapses and inhibitory neurons via

inhibitory synapses [11, 13]. Overall, a neuron thus performs computations by inte-

grating many different input signals and distributing its outputs to a selection of other

neurons. Which inputs a neuron receives, where it sends its outputs, and how each

signal is weighted is determined by the synapses within the network.

Understanding the way synapses connect neurons to form the many different types

of neuronal networks in the brain seems to be one of the keys to understanding how

the brain carries out the vast array of computations that underlie its function [14–18].

Therefore, a lot of research in past decades has gone towards studying the connec-

tivity structure of different networks in the brain and relating it to their activity and

3
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functions [18–20]. Until recently, the general consensus in most studies, which has

also served as inspiration for the construction of artificial neural networks, has been

that once a network’s function has been established, it remains relatively static unless

learning or a new experience takes place [2, 3]. In this case, synaptic connections will

change to enable the network to adapt and incorporate any new information, a process

called synaptic plasticity [2,21,22]. However, recent research has shown that neuronal

networks are much more dynamic than that, with synaptic changes occurring at a high

rate even when no learning takes place [1,4,5]. These observations indicate that, given

the remarkable stability of neuronal networks in the brain, not every synaptic change is

likely to alter network function or add/remove stored information [4, 10, 23–25]. This

highlights that our understanding of neuronal network dynamics in the brain is still

incomplete.

The following section of this chapter will review evidence of high synaptic volatil-

ity in the brain. The second section will then present evidence that suggests how the

brain might maintain stability despite the dynamic nature of its components.

2.1 Synaptic Volatility in the Brain

The fact that synaptic changes enable networks to adapt and learn is a well-accepted

phenomenon and has been extensively studied [2, 21, 22, 26–28]. Studies investigating

the effect of sensory deprivation, such as the long-term closing of one eye, have shown

that cortical networks can significantly reorganise their synaptic connections to adapt

to lasting changes in network inputs [28–34]. Furthermore, learning seems to induce

changes to synaptic weights [35–37] and cause the formation of new synapses [38–41]

in relevant brain regions. Moreover, experimental weakening or deletion of selected

synapses can erase specific memories or learned skills [36, 42, 43], and inhibition of

synaptic changes has been shown to prevent learning [37, 44].

Many of the studies investigating the link between synaptic changes and learning

conducted measurements only at limited time points and often averaged over multiple

laboratory animals, which likely contributed to the perception that synaptic changes

predominantly occur due to, and contribute to, network adaptation and learning [3].

However, enabled by the development of modern imaging techniques, more and more

studies have started to track synaptic changes in living animals over longer time peri-

ods. These studies revealed that, even under so-called ‘baseline’ conditions in which

animals do not experience or learn anything new, synapses in the brain seem to undergo
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significant remodelling. Estimates of synaptic volatility vary depending on brain area,

age of animal (all studies below were done in adult mice), and imaging technique used.

Regarding synapse formation and disappearance, older studies seem to report lower

turnover rates ranging from 4% turnover within one month in the visual cortex [45]

over 3-5% within two weeks in the barrel cortex [46] to 27% within one month in the

somatosensory cortex [47]. Other, mainly newer, studies have reported much higher

rates of 20% turnover within one day in the barrel cortex [34], 31% turnover within

four days in the auditory cortex [5], and 100% turnover within 3-4 weeks in the hip-

pocampus [4]. These studies imaged synaptic changes at much smaller intervals (1-3

days) than the older studies with lower estimates (2 weeks). The difference in esti-

mates may thus partly be attributable to the differences in imaging intervals, which is

supported by one study’s observation that increasing imaging intervals decreased their

estimate of synaptic volatility [46]. This could suggest that a proportion of synapses

in the brain appear and disappear at high rates, which would likely not be detectable

at large intervals, while other synapses might be more stable. Even synapses that per-

sist for many weeks have however been reported to fluctuate in weight under baseline

conditions [48]. Interestingly, despite the volatility of individual synapses, the overall

synapse numbers, as well as the distribution of synaptic weights seem to stay constant

within neuronal networks [4, 34, 48, 49], a principle which we will adhere to in the

computational models used in this dissertation.

One possible explanation of high synaptic volatility in neuronal networks is that,

even under baseline conditions, the brain is extremely sensitive to small fluctuations

in environment that are hard to control for in experiments [3]. This would mean that

all observed synaptic changes are essentially due to plasticity mechanisms. This is

unlikely however, as plasticity mechanisms are activity-dependent, and studies which

blocked neuronal activity in slice cultures [49–51] and in vivo [52] still observed sub-

stantial synaptic volatility, albeit with altered dynamics. Whether the spontaneous

fluctuations of synaptic connections within neural networks serve a specific function

is still unclear. One factor might simply be biological constraints, as synapses them-

selves are complex structures composed of many dynamic elements, such as receptor

molecules and adhesion proteins, that are constantly turned over [53–55].

One should note that a major limitation of the studies above is that they almost

exclusively focus on excitatory connections. Excitatory synapses are much easier to

monitor because most are situated on dendritic spines, which are small protrusions on

the surface of neurons [56,57]. Inhibitory synapses are much harder to detect and track
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as they can be located on any part of the postsynaptic neuron [58, 59]. It is therefore

unclear whether inhibitory synapses display similar dynamics to excitatory synapses,

although one study reported that inhibitory synapses frequently seem to disappear and

reappear again at the same sites on postsynaptic neurons [59].

Overall, the evidence above indicates that neuronal networks in the brain have to

constantly deal with both spontaneous and plasticity-induced changes to their synap-

tic connections, while keeping their overall network stable. Even learning-induced

changes that add information to the network should not destabilise overall network

function, disturb other ongoing processes, or lead to the loss of previously stored in-

formation. How the brain manages to maintain overall network stability in the face of

synaptic volatility is still poorly understood. One candidate explanation, which we will

further explore in this dissertation, is sloppiness. The next section will explain what

sloppiness is and review evidence of sloppiness in neuronal networks.

2.2 Sloppiness in Neuronal Networks

Where does the concept of sloppiness stem from? Mathematical and computational

models are invaluable tools that help researchers characterise, study and understand

complex systems [60–62]. These models often contain large amounts of parameters

that need to be estimated from experimental data. This is often difficult because the

models tend to be loosely constrained, which means that many different parameter

combinations can fit the data well [62, 63]. The key observation that led to the idea of

sloppiness is that, in many cases, each of these possible parameter combinations seem

to yield the same accurate and useful predictions [7, 61, 62, 64–67]. This indicates that

the precise value of these ‘sloppy’ parameters is not important for the overall system’s

behaviour [7]. However, although most parameters can vary greatly, the predictions of

these models seem to depend on a small subset of tightly constrained, ‘stiff’ parame-

ter combinations, and changes in these will strongly affect a model’s behaviour (Fig-

ure 2.1). This phenomenon, called sloppiness, has been characterised in many models

of complex systems, such as models of biochemical signalling networks [62, 64], in-

teratomic potentials [65], radioactive decay [66], or insect flight [67]. The ubiquity

of sloppiness in complex systems models indicates that the underlying systems also

consist of components with unequal influence on the overall system, with a small sub-

set of stiff components tightly controlling system behaviour, while the other, sloppy,

components are free to vary [66].
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Figure 2.1: Schematic drawing of the surface contours of the likelihood function of a

sloppy model. Along sloppy directions, the likelihood is essentially flat and parame-

ter changes along these directions (blue arrow) do not significantly affect the model.

Parameter changes along stiff directions (red arrow), where the likelihood is strongly

curved, lead to large changes in model behaviour. In many models, the stiff/sloppy

directions consist of combinations of multiple parameters. In models of neuronal net-

works, however, they interestingly correspond to individual network parameters [6]. Fig-

ure adapted from [68]

Sloppiness in neuronal networks was first observed by Panas et al in 2015 [6]. The

authors identified stiff and sloppy components in pairwise maximum entropy mod-

els fitted to the recordings of the activity of neuronal networks in culture and in the

visual cortex of macaques’ brains. Interestingly, the stiff dimensions of the models

were consistently associated with a small number of highly active neurons within the

networks, which exhibited stable activity over time. The neurons associated with the

sloppy directions in contrast strongly fluctuated in activity. Importantly, the overall

activity of the networks remained stable over time, indicating that network stability is

maintained by the small number of highly active stiff neurons while the other, sloppy

neurons are free to change [6]. This is supported by earlier observations that neuronal

networks in the hippocampus of rats contain a large number of neurons with highly

variable activity, whereas a small proportion of highly active neurons, in line with the

overall population activity, seem to remain stable over time [69]. Similarly, Okun et

al [70] report that the visual cortex of mice and monkeys contains “chorister” neurons

whose activity is highly correlated with the activity of the overall neuronal population,

whereas the activity of other “soloist” neurons is only weakly correlated. This suggests

that the “chorister” neurons correspond to stiff neurons that strongly influence overall

population activity, whereas sloppy “soloist” neurons are free to change.

Neuronal networks do not only seem to be sloppy in their electrical activity but also

in the way they represent information. In the hippocampus, neurons called place cells

represent information about the location a person/animal is currently in [71]. When
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monitoring the activity of place cells in the hippocampus of mice while these were

running along a linear track, Ziv et al [72] noticed that 15-25% of place cells consis-

tently represented the animals’ locations over several weeks, whereas other cells only

represented spatial information within one or few recording sessions. Nevertheless, a

decoder trained on data recorded on one day could still reliably predict an animal’s

location from data recorded on a different day [72]. This indicates that a small number

of functionally stable neurons seem to suffice for reliable encoding and representation

of information within networks over time.

As explained in section 2.1, neuronal networks have to constantly deal with spon-

taneous and plasticity-induced changes to their components, which should not desta-

bilise overall network function, disturb other ongoing processes or lead to the loss of

previously stored information. Sloppiness seems to provide a candidate explanation

for how this is possible. During sleep, place cells in the hippocampus replay spatial

information learned during the day, which is thought to support the consolidation of

spatial memories [73, 74]. When recording the activity of place cells during sleep, be-

fore and after rats learned to navigate a new environment, Grosmark and Buzsaki [75]

noticed that the activity of some slow-firing neurons was strongly altered by the new

experience, which suggests that plasticity took place in their synaptic connections. In

contrast, the activity of other, fast-firing, neurons remained unaltered by the new expe-

rience [75]. This suggests that these highly active neurons form a stable subnetwork

that maintains overall network stability while plasticity takes place in other neurons,

thus allowing the network to process and learn new information without compromising

its overall function [75].

A similar principle has also been observed with regards to the processing of sen-

sory information in the brain. Ponce-Alvarez et al [76] recorded the activity of neurons

in the auditory cortex of mice, both under baseline conditions and in response to sound.

Similar to Panas et al [6] above, the authors then identified stiff and sloppy directions in

pairwise maximum entropy models fitted to the recordings [76]. In line with previous

observations, the stiff directions seemed to correspond to a minority of highly active

neurons with low fluctuations in activity, whereas the activity of sloppy neurons varied

greatly. Importantly, the variability in the activity of sloppy neurons not only con-

sisted of spontaneous fluctuations but also represented the brain network’s response

to sound [76]. Furthermore, the activity of stiff neurons was not simply static, but

rather exhibited small periodic changes which correlated with changes in cortical state

of the network. Cortical states are different modes of overall network activity in the
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brain, with different frequencies of electrical activity and different levels of synchroni-

sation across neurons [77]. Interestingly, a network’s cortical state seems to influence

how information is processed within the network [78]. Taken together, this indicates

that stiff neurons control overall network activity, which allows sensory information to

be processed by sloppy neurons without perturbing the whole network. Furthermore,

by controlling changes in cortical state, stiff neurons might provide more than just

generic stability, but might rather supply a framework that controls how information is

processed within the network [76].

Overall, the evidence above suggests that within a neuronal network, a small sub-

set of neurons, and thus also their synapses, have a disproportionately high influence

on the overall network activity. The stability of these neurons and their synaptic

connections seems to ensure overall network stability and allow other components

to change spontaneously and to process information. Not much is currently known

about the identity of these stabilising stiff neurons and the properties of their synapses,

except that stiff neurons tend to be highly active, i.e. fire action potentials at high

rates [6, 69, 75, 76]. This is because the types of experimental recordings used in the

studies above, which allow researchers to monitor the activity of a large number of

neurons in a network at the same time, do not permit any detailed characterisation of

individual neurons [79, 80].

To gain further insights into neuronal network dynamics and the properties and

roles of individual neurons beyond what is currently directly measurable in the brain,

computational models of neuronal networks can be immensely useful tools. In the case

of the identity of the stabilising stiff neurons and synapses, a computational study by

Mongillo et al [10] provides clues that stiff neurons might be inhibitory neurons. The

authors built a spiking neuronal network model with parameters determined by exper-

imental measurements in the mouse brain [10, 81], and found that complete rewiring

of inhibitory synapses in the model strongly altered overall network activity and led to

the loss of stored memories. In contrast, completely rewiring all excitatory synapses

had little effect overall, although these constituted the majority of synapses within

the network [10]. As in the living brain, the inhibitory neurons within the network

model tended to have higher firing rates than the excitatory neurons [10]. Mongillo

et al’s observation thus agrees with the fact that stiff neurons seem to be highly ac-

tive. In fact, Mongillo et al argue that the higher firing rates of inhibitory neurons

are the determining feature that provides inhibitory synapses with a high influence on

the overall network, but they do not explicitly test this in their model. Furthermore,
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although inhibitory synapses are less frequent than excitatory ones in the model, they

still constitute a fairly large proportion (25%) of synapses. This opens up the question

of whether maybe not all, but only a fraction, of these inhibitory synapses are stiff,

perhaps the ones that transmit signals of especially active inhibitory neurons.

In this dissertation, we expand upon Mongillo et al’s [10] research and explic-

itly test whether overall network activity is determined by a small number of in-

hibitory synapses that transmit signals of highly active neurons. To do so, we repro-

duce Mongillo et al’s [10] spiking neuronal network model and systematically assess

the effect of rewiring selected synapses on the network’s overall activity. We find that,

although synapses of inhibitory neurons with high firing rates seem to have a large

influence on the overall network, firing rate is not the only determining factor. The

synapses with the highest influence seem to be inhibitory synapses characterised by a

high presynaptic firing rate and high synaptic weight. Finally, we test what effects the

impact of synaptic rewiring has on the way information is represented in a neuronal

network. The following chapter will provide details of our computational neuronal net-

work models, and will explain the methods we used to evaluate the effect of synaptic

remodelling on the networks’ activity and function.



Chapter 3

Methods

3.1 The Spiking Neuronal Network Models

In order to investigate the effect of synaptic remodelling on the activity and function of

neuronal networks, we used two computational spiking neuronal network (SNN) mod-

els, which are networks composed of simulated spiking (action-potential-producing)

neurons. The first model (random network model), a randomly connected SNN previ-

ously used by Mongillo et al [10], allowed us to test the effect of synaptic remodelling

on the activity of a neuronal network. The second model (ring model), a modified

version of the randomly connected network, models the phenomenon of orientation

selectivity in the visual cortex (explained in detail in section 3.1.2 below), and allowed

us to test the effect of synaptic remodelling on the representation of information within

a network.

Both SNNs are composed of NE excitatory (E) and NI inhibitory (I) leaky integrate-

and-fire (LIF) neurons. LIF neurons are simplified models of biological neurons, which

model the state of a neuron in terms of its membrane potential at a given time t [82]

(Figure 3.1A). In our model, the membrane potential νi
a(t) of a neuron i in population

a (= E;I) evolves according to

ν̇
i
a(t) =−

νi
a(t)
τm

+hi
a(t)+

Hext,i
a

τm
(3.1)

where i = 1, ...,Na [10]. Equation 3.1 shows that the membrane potential of a neuron

is influenced both by recurrent synaptic inputs hi
a(t) from other neurons within the net-

work, as well as by a constant external input Hext,i
a that represents input from neurons

in other brain regions [10] (Figure 3.1A). The time constant τm ensures that, without

any new inputs, the membrane potential decays towards the neuron’s resting potential

11
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νrest (= 0mV in this case).

Any time a neuron’s membrane potential reaches a fixed threshold θ, an action

potential (also called spike) is generated and the neuron’s membrane potential is reset

to its reset potential νreset :

ν
i
a(t

+) = νreset if ν
i
a(t)≥ θ (3.2)

The LIF model does not explicitly model the membrane potential dynamics underly-

ing each action potential, but rather just records the times at which action potentials are

triggered. This is because, in biological neurons, the membrane voltage-changes dur-

ing an action potential are highly stereotyped, and information in the brain is thought

to be transmitted by the timing of action potentials and the rate at which they are gen-

erated [82]. Therefore, it is considered sufficient for many purposes to only model

sub-threshold membrane dynamics, as this saves computational resources and enables

much more efficient simulations of large networks [82].

Every time an action potential has been generated, the LIF neuron remains at its

reset potential νreset for the duration of a refractory period τarp during which no new

spikes can be generated. After this, equation 3.1 resumes from νreset [10]. At the

beginning of each simulation, the starting value νi
a(0) of each neuron was initialised

randomly.

The recurrent synaptic input hi
a(t) that a given neuron i in population a receives

from other neurons in the network is given by

hi
a(t) =

NE

∑
j=1

c ji
Eaw ji

Ea ∑
k

δ(t− t j
E,k)−

NI

∑
j=1

c ji
Iaw ji

Ia ∑
k

δ(t− t j
I,k) (3.3)

where c ji
ba = 1 if a synaptic connection exists from neuron j in population b to neu-

ron i in population a, otherwise c ji
ba = 0 [10]. The model does not allow connections

of a neuron with itself. w ji
ba denotes the weight of each synapse. The first part of

the equation corresponds to all excitatory inputs received by neuron i, the second part

corresponds to the inhibitory inputs. The sums over j are sums over all presynaptic

neurons in the corresponding population, and the sums over k are over all action po-

tential emission times t j
E,k of neuron j [10]. The δ function is the Kronecker delta,

which means that δ(t − t j
b,k) = 1 if neuron j generated an action potential at time t,

and δ(t− t j
b,k) = 0 otherwise (Figure 3.1A). The synaptic inputs are transmitted from a

presynaptic to a postsynaptic neuron with a small delay τdelay.

Our two models, the random network model and the ring model, are both com-

posed of LIF neurons as defined above, but differ slightly in their external inputs and
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Figure 3.1: A: Schematic diagram of a leaky integrate-and-fire (LIF) neuron. LIF neu-

rons model the state of a neuron i in terms of its membrane potential νi
a(t). The LIF

neuron receives external inputs (green) as well as recurrent excitatory (red) and in-

hibitory (blue) synaptic inputs from other neurons in the network, and outputs a train of

action potentials. Variable names are defined in the main text. Figure adapted from [84].

B: Schematic drawing of the random network model composed of excitatory (red) and

inhibitory (blue) LIF neurons. Adapted from [10].

synaptic connections, which will be explained below. All parameter values for both

networks are reported in Tables A.1-3 in the appendix. Both models were implemented

in Python 3.7 using the Brian2 simulator package (version 2.3) [83].

3.1.1 The Random Network Model

The random network model consists of NE = 32,000 excitatory and NI = 8,000 in-

hibitory neurons [10] (Figure 3.1B), which reflects the fact that networks in the brain

contain more excitatory than inhibitory neurons [85, 86]. Each neuron i within a pop-

ulation a (= E;I) receives the same constant external input, Hext,i
a = Hext

a . The synap-

tic connections between neurons were defined as follows [10]. The c ji
ba values were

randomly set to 1 with probability Cba. The Cba values for the different synaptic

populations range from 0.2 to 0.4 (Table A.1), which means that the network is rel-

atively sparsely connected. The synaptic weights w ji
ba were independently drawn from

a lognormal distribution, which corresponds to the way synaptic weights seem to be

distributed in the brain [87]. The distribution is parametrised by

p(x) =
1

σbax
√

2π
exp
(
−(ln(x)−µba)

2

2σ2
ba

)
(3.4)
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The values for µba and σba were chosen such that the mean and variance of the resulting

weight distribution align with the distribution of synaptic weights measured in the

auditory and barrel cortices of mice [10, 22, 81]. Because the mean synaptic input that

a given neuron receives depends on the number of neurons Na within the network, as

well as the connection probabilities Cba [88], all synaptic weights were scaled by

w̃ ji
ba =

w ji
ba√

CbaNa
(3.5)

3.1.2 The Ring Model

Area V1 of the visual cortex, a brain area that processes visual information from our

eyes, contains excitatory neurons that selectively respond if we view lines or bars of

light oriented at specific angles [90]. Each of these neurons has a preferred orientation

(PO), and will respond most strongly if a line at this orientation is shown, whereas lines

perpendicular to the neuron’s PO will suppress the neuron’s activity (Figure 3.2A) [90].

Together, a population of these orientation selective cells (also called ‘simple cells’)

will consist of neurons with different POs such that they cover all possible angles.

Since its discovery, the phenomenon of orientation selectivity has been extensively

studied as a canonical example of how neuronal circuits carry out computations in the

brain [91–94], and many computational models of orientation selectivity have been

Figure 3.2: Orientation selective neurons (simple cells) in the visual cortex. A: Bars of

light (yellow) at different orientations elicit very different responses in a given simple cell.

This neuron preferentially responds to horizontal bars. A stronger response means that

the neuron fires more action potentials (vertical black bars). B: The response properties

of a simple cell are thought to arise at least partly from the way its inputs from neurons

in the LGN are organised. Adapted from [11,89].
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proposed [94–99]. It is generally accepted that the phenomenon arises at least partly

from the way the neurons’ excitatory inputs from the lateral geniculate nucleus (LGN;

a brain area) are organised [94,95] (Figure 3.2B). Neurons in the LGN each respond to

points of light at a specific location in our visual field. In the visual cortex, a given sim-

ple cell will receive inputs from multiple excitatory LGN cells that respond to points

located next to each other such that they form a line (Figure 3.2B). The input to a sim-

ple cell will now be strongest if a bar of light falls exactly on this line such that all LGN

cells that send inputs to the simple cell are excited [95]. The further the bar will be off

the line, the weaker is the input which the simple cell will receive from the LGN.

However, orientation selectivity is not only thought to arise due to feedforward

inputs from the LGN. Lateral connections between neurons within the V1 (excitatory

simple cells & inhibitory neurons) are thought to ensure contrast-invariance, which

means that simple cells respond in the same way to stimuli with low and high contrast,

as well as amplification and sharpening of the neurons’ responses [94, 97, 99]. It is

still debated to which extent these lateral connections within the networks of different

species (mice, cats, monkeys, humans, ...) are random or feature-specific. In the latter

case, the connection probability between two neurons would depend on the difference

in their POs [97, 99].

In our study, we wanted to test the effect of synaptic rewiring on the orientation

selectivity of neurons in the visual cortex. For this purpose, we decided to use a net-

work model that is as closely related to our random model as possible, to maximise the

comparability of our results. Our model is therefore composed of the same LIF neu-

rons with the same connection probabilities and biologically plausible distributions of

synaptic weights. Because the population of orientation selective neurons responding

to a given area of the visual field is likely a lot smaller than 40,000 neurons, the size

of our random model, we reduced the number of neurons in our ring model by a factor

of 10, thus NE = 3,200 and NI = 800. The model again receives constant external exci-

tatory inputs Hext
a that are the same for every neuron i within a population a (= E;I). In

addition, the model receives excitatory inputs from the LGN. Inhibitory neurons each

receive a combined input of rLGN
I = 80Hz from the LGN. Excitatory neurons receive an

input of on average rLGN
E = 100Hz, but the input to each individual excitatory neuron i

depends on the neuron’s PO and the orientation of the stimulus α [99], according to

rLGN,i
E = rLGN

E [1+ηLGN cos(2(α−POi))] (3.6)

where i = 1, ..., NE . ηLGN controls the amount of input tuning, i.e. how strongly the in-



Chapter 3. Methods 16

put changes for different (s−POi). The spike times of the LGN neurons are modelled

as Poisson point processes, where rLGN,i
E is the driving rate and Poisson spike trains

are generated with the corresponding rate at each point in time. This represents a good

approximation of stochastic neuronal firing in the brain [82]. Excitatory and inhibitory

neurons all receive their LGN inputs via excitatory synapses of strength wLGN . The

POs of the excitatory neurons were defined such that the excitatory population covered

the range of angles between 0 and 180 degrees at evenly spaced intervals.

We tested two versions of the ring model, one with the same random lateral con-

nectivity as in the random network model (Section 3.1.1 & Figure 3.1B), and one

with feature-specific excitatory-to-excitatory (EE) connections. We implemented the

feature-specific connections by varying the probability Ci j
EE of a given EE connection

depending on the difference in PO between two excitatory neurons i and j. This was

defined such that the average EE connection probability CEE remained the same as in

the randomly connected networks:

Ci j
EE =CEE [1+ηFS cos(2(POi−PO j))] (3.7)

where i, j = 1, ..., NE ; i 6= j. ηFS represents the amount of tuning of the feature-specific

connections.

For each of the two versions of the ring model, the parameters ηLGN and ηFS were

defined such that the response of the networks to a given stimulus was approximately

equal. The first version of the model received strongly tuned input from the LGN

(ηLGN = 1), and the EE connections were completely random (ηFS = 0) (Figure 3.3A).

To match the response properties of the first version, the second version received only

a weakly tuned signal from the LGN (ηLGN = 0.2), which was then sharpened by

feature-sepcific EE connections within the network (ηFS = 0.5) (Figure 3.3B).

3.2 Synaptic Rewiring

In order to assess the influence of different types of synapses on the activity/function

of our networks, we systematically rewired different groups of synapses and evaluated

the effect this had on the networks. This section will explain how we rewired the

different groups of synapses, while the next section will describe the methods we used

to measure the effect of synaptic rewiring.

When rewiring synapses, we either completely rewired a whole synaptic population

or a subpart of a synaptic population. The four synaptic populations within our model
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Figure 3.3: Tuning of LGN inputs and EE connectivity in the two versions of the ring

model. A: The first model receives strongly tuned inputs from the LGN, and EE connec-

tions are uniformly random. B: The second model receives weakly tuned LGN inputs

and has feature-specific EE connections.

are excitatory-to-excitatory (EE), excitatory-to-inhibitory (EI), inhibitory-to-excitatory

(IE) and inhibitory-to-inhibitory (II) synapses. When completely rewiring one of these

populations, we simply removed all existing synapses of that population within the

network, and generated them anew by the random process described in Section 3.1.1.

In some experiments, we only rewired a subpopulation of synapses, selected by some

criterion (presynaptic firing rate, synaptic weight, synaptic impacts). In this case, the

presynaptic neuron of each of these synapses was kept fixed, while we randomly chose

a new postsynaptic neuron for each synapse.

3.3 Evaluation

3.3.1 Evaluating Activity Changes

To measure the effect of synaptic rewiring on the activity of a neuronal network, we

compared the firing rate vectors of our models before and after rewiring. The firing

rate vectors are Na-dimensional, with each entry corresponding to the firing rate of a

given neuron within the population a (=E;I).

To obtain the firing rate vectors for the random network model, the simulation was

briefly run until t = 1s to ensure that the network reached a stable firing regime. Then,

the network’s state was stored, and the simulation was continued until t = 11s. The
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firing rate vectors for the excitatory and inhibitory neuron populations of the network

under default conditions were computed by calculating the firing rate (spikes per sec-

ond) of each neuron within the time interval (1,11)s. The network was then reset to the

previously stored state at t = 1s, synapses were rewired, the simulation was run again

until t = 11s, and the firing rate vectors for the network under rewired conditions were

computed as before. The simulation length was longer than in Mongillo et al’s [10]

experiments (3s), but was chosen because it allowed a more reliable estimation of in-

dividual neurons’ firing rates and thus produced more robust results.

To obtain the firing rate vectors for the ring model, the network was initialised, the

network state stored, and a simulation was run. The simulation consisted of showing

the network a sequence of 16 stimuli, representing orientations between 0 and 180

degrees, for 3.5s each. Firing rate vectors were computed separately for each stimulus,

for the interval (0.5,3.5)s after stimulus onset. The first 0.5s were discarded to allow the

network’s response to transition from one stimulus to the next. The firing rate vectors

after rewiring were again obtained by resetting the network, rewiring the synapses and

re-running the simulation. Because the LGN inputs to the ring model are generated

by a Poisson process, they present a source of randomness in the simulations. We

thus ensured that exactly the same LGN input was fed into the network for default and

rewired simulations, which allowed us to rule out any firing rate differences caused by

random differences in LGN inputs.

To quantify the difference in firing rates due to rewiring, we computed the cosine

similarity between the corresponding firing rate vectors. We opted to use cosine sim-

ilarity, rather than the Pearson’s correlation coefficient used by Mongillo et al [10],

because the measure considers firing rate changes of neurons relative to the mean of

the population, rather than absolute changes [100], and is thus more meaningful when

comparing the effect of synaptic rewiring on populations with different means. (This

is valid in our case because rewiring neither changes the mean nor the distribution of

firing rates.) For each of our experiments, we verified that the two measures revealed

the same trends. A more detailed justification, as well as an example of the results of

experiment 4.1.1 with the correlation coefficient can be found in Appendix B.1.

3.3.2 Evaluating Ring Model Function

To evaluate the effect of synaptic rewiring on the function of the ring model, we firstly

investigated how rewiring affected the representation of different stimuli within the
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network. This was done by comparing the orientation selectivity indices (OSIs) of

the network’s excitatory neurons before and after rewiring. We then tested whether

any shifts in the representation of the stimuli affected the performance of a decoder

designed to recover stimulus information from the network’s activity.

3.3.2.1 Comparing Orientation Selectivity Indices

A neuron’s OSI measures how selectively the neuron responds to stimuli oriented at

angles close to its PO. It takes values between 0 (not selective) and 1 (very selective).

We computed each neuron’s OSI as

OSI =

√
(∑k R(αk)sin(2αk))

2 +(∑k R(αk)cos(2αk))
2

∑k R(αk)
(3.8)

where R(αk) signifies the neuron’s firing rate in response to stimulus k [101]. R(αk)

was extracted from the network’s firing rate vectors, computed as explained above.

To quantify any shift in OSIs, we calculated Pearson’s correlation coefficient of the

network’s OSIs before and after rewiring.

3.3.2.2 Decoder

To recover stimulus information from the network’s activity, we designed a simple lin-

ear decoder. This type of decoder was chosen because it can be biologically interpreted

as a readout neuron that integrates inputs from a subset of the population by computing

a weighted sum [102]. The decoder has the form

y(α) = MT r(α) (3.9)

where r(α) is the normalised excitatory firing rate vector of the network’s response to

stimulus α. M is a NE × 2-dimensional weight matrix, where each row corresponds

to a two-dimensional vector oriented at the corresponding neuron’s PO. y(α) is thus

also a two-dimensional vector, and the orientation of this vector gives the decoder’s

prediction of the stimulus orientation. The decoder may also read out information

from only a subset of the excitatory population, in this case only the corresponding

subsets of the firing rate vector and the weight matrix M are used.



Chapter 4

Experiments and Results

4.1 The Random Network Model

To test the effect of synaptic rewiring on the overall activity of a neuronal network, we

successfully reproduced the random network model from Mongillo et al [10]. As in

Mongillo et al [10], our network has lognormal firing rate distributions (Figure 4.1A)

that are comparable to the firing rate distributions measured in the brain [10, 81, 87].

Like in biological neuronal networks [81], the mean and median firing rate of the

Figure 4.1: Neuronal activity of the random network model. A: Firing rate distributions

of the excitatory (red) and inhibitory (blue) neuronal populations. The inset shows mem-

brane potential traces of a randomly chosen excitatory and inhibitory neuron. B: Overall

excitatory population activity within the network. The top panel shows the spike times

for 100 randomly selected excitatory neurons. The dynamics of the inhibitory population

are similar, just with generally higher firing rates.

20
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network’s inhibitory neurons (mean: 5.45 Hz; median: 4.6 Hz) is higher than that of

the excitatory neurons (0.90 Hz; 0.60 Hz). The network operates in an asynchronous

irregular regime (Figure 4.1B), in which excitation and inhibition are balanced and

the average input to the neurons is slightly below threshold [10, 103]. The neurons’

activity is thus driven by random fluctuations in their input [103]. In the subsequent

experiments, we systematically rewired groups of synapses within the network, and

evaluated the effect this had on the network’s overall activity.

4.1.1 Rewiring Inhibitory Synapses Affects Network Activity

As a starting point, we repeated one of Mongillo et al’s [10] experiments and evaluated

the effect of rewiring entire synaptic populations (EE, EI, IE, or II) by comparing

the network’s firing rate vectors before and after rewiring. In line with Mongillo et

al’s [10] observations, we found that rewiring excitatory synapses (EE and EI) had

little effect on the overall activity of the network, although these constitute the majority

of the network’s synapses (Figure 4.2). In contrast, rewiring inhibitory synapses, more

specifically IE synapses, had a large effect on the activity of the excitatory population

of the network (Figure 4.2). Rewiring II synapses had a modest effect on both the

inhibitory and excitatory firing rate vectors. The means and distributions of firing rates

(Kolmogorov-Smirnov; p > 0.2) were not affected by any rewiring, which is in line

with experimental observations in biological networks [6].

In general, any changes to the overall activity of a network’s excitatory neurons is

thought to have a larger effect on the population readout than changes to the activity of

Figure 4.2: Cosine similarities of the excitatory (red) and inhibitory (blue) firing rate vec-

tors before and after rewiring different synaptic populations. The numbers in brackets

indicate the proportion of synapses of the given population within the network. Data

from n=12 independent network simulations.
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inhibitory neurons. This is because excitatory neurons form long-range connections to

other brain regions, whereas inhibitory neurons are thought to only connect locally to

neurons within a network [104]. Thus, other brain regions are thought to read out the

information of a network from the activity of its excitatory neurons. In the experiments

below, we therefore mainly focus on the strong influence of IE synapses on the overall

activity of the network’s excitatory neurons, but also examine the more moderate effect

of II synapses on the overall network.

4.1.2 Inhibitory Synapses of Highly Active Presynaptic Neurons

Have a Strong Influence

Because the stiff parameters in neuronal networks seem to be associated with highly

active neurons [6, 69, 75, 76], we wanted to test whether the synapses that transmit

signals of highly active inhibitory neurons have a disproportionately large influence on

the activity of the network. We thus tested the effect of rewiring different proportions of

inhibitory synapses, chosen such that these proportions always constituted the synapses

of the inhibitory neurons with the highest firing rates (Figure 4.3). The results indicate

that inhibitory synapses of highly active neurons indeed seem to have a larger influence

on the excitatory population activity than the synapses of inhibitory neurons with lower

rates (Figure 4.3).
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Figure 4.3: Effect of rewiring inhibitory synapses by presynaptic firing rate (solid lines)

compared to rewiring the same proportion of randomly selected synapses (dashed

lines). Effect on the excitatory population activity is indicated in red, effect on inhibitory

activity is in blue. Due to the low variability of results between independent simulations

in the previous experiment (Figure 4.2), the sample size was reduced to n=3 in this

experiment. Markers: mean; shading: range.
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4.1.3 Firing Rate is Not the Whole Story

In their paper, Mongillo et al [10] propose that the high influence of inhibitory synapses

on the overall network activity arises due to the generally higher firing rate of inhibitory

neurons in the model [10]. Our observations above seem to support this claim. How-

ever, it is not clear whether the high influence of inhibitory synapses stems from their

high activity alone. To investigate this, we changed the ratio of excitatory to inhibitory

neuron numbers in our model, which changed the difference between the model’s mean

excitatory and inhibitory firing rates (Table 4.1, Figure 4.4A). We then re-evaluated the

effect of completely rewiring one of the synaptic populations (EE, EI, IE, II) on the

model’s firing rate vectors (as in Section 4.1.1).

If the difference between the mean population firing rates is the only factor that

determines the effect of synaptic rewiring, we would expect to see a complete reversal

of the effect when swapping the mean firing rates of inhibitory and excitatory neurons.

This however does not seem to be the case (Figure 4.4B). The effect of EI rewiring on

the inhibitory population, after swapping the difference in mean firing rates, is not as

strong as the effect of IE rewiring on the excitatory population in the original model.

Similarly, the effect of EE rewiring does not mirror the modest effect of II rewiring on

both populations in the old model. This indicates that firing rate is not the whole story,

but rather that other properties of the network’s inhibitory synapses also play a part in

the effect of inhibitory synaptic rewiring.

model 1 2 3 4

NE 32,000 20,000 8,000 4,000

NI 8,000 20,000 32,000 36,000

mean E firing (Hz) 0.90 1.20 2.53 4.50

mean I firing (Hz) 5.45 2.02 1.68 0.98

Table 4.1: Neuron numbers and mean excitatory (E) and inhibitory (I) firing rates in four

different versions of our random network model. Model 1 is the original version.

4.1.4 Synaptic Weights Matter

The parameters for the lognormal synaptic weight distributions for each synaptic pop-

ulation were taken from experimental measurements in the mouse auditory and barrel

cortices (EPSP/IPSP measurements) [10, 22, 81]. Although the distributions have sim-
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A

B

Figure 4.4: Impact of firing rate differences on the effect of synaptic rewiring. A: Distri-

bution of inhibitory (blue) and excitatory (red) firing rates in four different versions of our

random network model. B: Effect of rewiring entire synaptic populations on the firing

rate vectors of the four versions of the model, as a function of the difference in mean

excitatory (E) and inhibitory (I) firing rates. If the difference in mean firing rates was

the only factor to determine the effect of rewiring, the EI and IE plots, and the EE and

II plots should be mirror images of each other. N=3. Markers: mean; shading: range.

Star-shaped marker: values for original model (Model 1).
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ilar medians (EE: 0.27mV, EI: 0.36mV , IE: 0.42mV , II: 0.39mV), the distribution

of IE weights has a heavier right tail (Figure 4.5A), also indicated by a higher kur-

tosis (EE: 30, EI: 12.13, IE: 82.90, II: 29.27) and skewness (EE: 3.61, EI: 2.44, IE:

5.57, II: 3.54). This means that the population of IE synapses contains more synapses

with large weights. We thus wondered whether synaptic weight played a role in the

influence of inhibitory synapses on the activity of our network. To test this, we re-

peated the experiment described in Section 4.1.2, but this time rewired synapses with

the highest weights first. This resulted in a very similar effect to the one observed when

rewiring by firing rate (Figure 4.3), both when rewiring IE synapses (Figure 4.5B) and

II synapses (Supplementary Figure B.2A). Inhibitory synapses with a high weight had

a larger influence on excitatory population activity than synapses with lower weights.

This indicates that not only the firing rate of a synapse’s presynaptic neuron, but also

the weight of the synapse, determines its influence on the activity of a network.
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Figure 4.5: Influence of IE synaptic weight. A: Synaptic weight distribution of each of

the different synaptic populations. Box extends from Q1 to Q3, line indicates median.

Whisker range: (Q1 - 1.5IQR; Q3 + 1.5IQR), where IQR = Q3-Q1. B: Effect of rewiring

IE synapses by synaptic weight (solid lines) compared to rewiring the same proportion

of randomly selected synapses (dashed lines). Effect on the excitatory population ac-

tivity is indicated in red, effect on inhibitory activity is in blue. N=3. Markers: mean;

shading: range.

4.1.5 Firing Rate and Synaptic Weight Interact

The firing rate of a given excitatory neuron within our network negatively correlates

with both the summed firing rate of all its presynaptic inhibitory neurons (Spearman’s
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correlation: −0.57), as well as the summed weight of all its incoming IE synapses

(−0.69) (Figure 4.6A). We wanted to investigate whether these two factors interact.

To combine the two, we defined the ‘impact’ of a synapse as: synapse weight× presy-

naptic firing rate. The correlation of the excitatory firing rates with the total IE synaptic

impact received (−0.84) is higher than with one of the two factors alone (Figure 4.6A).

This suggests that they might indeed interact in determining the influence of a given

IE synapse on the overall activity of the network’s excitatory neurons.

If presynaptic firing rate and weight interact, rewiring IE synapses with high synap-

tic impacts should cause a stronger effect than rewiring the same proportion of synapses

with high presynaptic firing rates or weights alone. This indeed is the case (Figure

4.6B). In fact, rewiring 30% of the network’s highest impact IE synapses (Figure 4.6B,

solid arrow) results in an effect that is as strong as when rewiring 100% of IE synapses.

To achieve the same effect, about 50% of IE synapses with high weights or 90% of IE

synapses with high firing rates would have to be rewired. Moreover, rewiring 1.25% of

highest impact IE synapses (Figure 4.6B, dashed arrow), which only constitute 0.23%

of all synapses, already achieves an effect that is stronger than when rewiring 100%

BA

Figure 4.6: Influence of IE synaptic impact. A: Correlation of excitatory (E) neuron firing

rate with the total firing rate of the presynaptic inhibitory (I) neurons, the total weight

of I synapses received and the total synaptic input received. B: Effect of rewiring IE

synapses by synaptic impact (solid lines) compared to rewiring the same proportion of

randomly selected synapses (dashed lines). Effect on the excitatory population activity

is indicated in red, effect on inhibitory activity is in blue. The arrows point at the effect

of rewiring 1.25% (dashed) and 30% (solid line) of IE synapses. N=3. Markers: mean;

shading: range.
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of any of the other synaptic populations (EE, EI, II) (Figure 4.2). Again, rewiring

II synapses by synaptic impact resulted in a similar, but more moderate effect on the

excitatory and inhibitory populations of the model (Supplementary Figure B.2B). In

line with our hypothesis, this indicates that there indeed is a small subset of inhibitory

synapses that strongly influence the activity of the overall network. This small popula-

tion seems to be characterised by a high synaptic impact.

4.2 The Ring Model

Our experiments on the random network model indicate that a small proportion of in-

hibitory synapses with high synaptic impacts has a disproportionately large influence

on the activity of the overall network. To test whether the same principle applies to a

network’s function, we built a ring model of orientation selectivity with similar param-

eters as the random network model. The only major differences are that the model is

smaller by a factor of 10, and that it receives inputs from the LGN, which convey infor-

mation about the stimulus orientation (details in Methods 3.1.2). Furthermore, while

one version (version 1) of the model contains completely random synaptic connections,

the other version (version 2) has feature-specific EE connections that vary depending

on the difference between two neuron’s preferred orientations (POs). Like the random

network model, the ring model has lognormal firing rate distributions (Figure 4.7A).

The ring network models the response of excitatory simple cells in the visual cortex

when we view lines oriented at different angles. Each simple cell has a PO at which it

will respond most strongly, whereas it will only respond weakly to orientations orthog-

onal to its PO. How selective a given neuron is for orientations close to its PO is char-

acterised by the neuron’s tuning curve (Figure 4.7B). When a given angle is shown to

the network, the activity of the network’s overall excitatory population forms a bump,

with neurons with a PO close to the stimulus orientation being most active (Figure

4.7C). Both versions of our ring model display contrast invariance, which means that

a range of different LGN input strengths (rLGN
E = [60Hz,110Hz]; rLGN

I = 0.8× rLGN
E )

elicits a network response with the same magnitude and shape (as in Figure 4.7C).

To investigate the influence of different types of synapses on the ring model, we

first assessed the effect of synaptic rewiring on the model’s activity, and the orientation

selectivity of its excitatory neurons. We then assessed the effect of synaptic rewiring

on the performance of a decoder designed to read out stimulus information from the

network’s activity.
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A B C

Figure 4.7: Characteristics of the Ring Model. A: Firing rate distributions of the net-

work’s excitatory (red) and inhibitory (blue) neuronal populations. The distribution

shows each neuron’s average response to 16 different stimuli. B: Example of a re-

sponse of a single excitatory neuron to stimuli at 16 different orientations. The curve

that is formed by the neuron’s responses is called the neuron’s tuning curve. The pre-

ferred orientation (PO) of the displayed neuron is close to 90 degrees. C: Response

of the network’s excitatory population to a stimulus oriented at 90 degrees, as a func-

tion of each neuron’s PO. The figures shown are from the ring model version 1 with no

feature-specific connectivity, but are the same for the other model version.

4.2.1 Synaptic Rewiring Affects Network Activity and Orientation

Selectivity

As a starting point, we assessed the effect of rewiring entire synaptic populations (EE,

EI, IE, II) on the ring model. In addition to measuring the effect on the network’s

activity as before, we measured changes in the orientation selectivity of the model’s

excitatory neurons by comparing their orientation selectivity indices (OSIs) [99] before

and after rewiring. The effect of synaptic rewiring on the model’s firing rate vectors

followed the same trend as in the random network model (Figure 4.8A). Rewiring

IE synapses elicited the largest effect on the activity of the excitatory population and

rewiring II synapses had a modest effect on both the excitatory and inhibitory pop-

ulations, whereas rewiring excitatory synapses (EE, EI) barely had any effect on the

model’s activity. As before, the means and distributions of firing rates remained un-

altered (Kolmogorov-Smirnov; p > 0.4). The effect of rewiring was similar in both

versions of our model, which indicates that the presence of feature-specific excitatory

connections does not significantly alter the influence of given synapses on the network.

Synaptic rewiring also caused a shift in the OSIs of the network’s excitatory neu-

rons. As with the network activity, the largest shift was induced by rewiring IE synapses

(Figure 4.8B), and the effect was similar for both model versions. The distribution of
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OSIs did not change. The OSI quantifies how broad or narrow a neuron’s tuning curve

is. Neurons with OSIs close to 1 have a very narrow tuning curve and therefore se-

lectively respond to stimuli at their PO, whereas neurons with lower OSIs have wider

tuning curves and are less selective, and their responses thus contain less information

about the current stimulus orientation. In the case of IE rewiring, neurons’ OSIs often

shifted by values of 0.2 or more (Figure 4.8B). This suggests that IE rewiring might

change the information content of individual neurons, with some neurons containing

more precise information about the stimulus angles after rewiring, and others less.

A

B

Figure 4.8: Effect of synaptic rewiring on the ring model version 1. A: Cosine similar-

ities of the excitatory (red) and inhibitory (blue) average firing rate vectors before and

after rewiring different synaptic populations. The average was taken over the network’s

response to 16 different stimuli. N = 6 independent simulations. B: Correlation of ex-

citatory neuron OSIs before and after rewiring. N = 6. The bottom row provides more

detail on how the OSIs shifted for each type of rewiring. Density plots on top and right

axes show OSI distributions before and after rewiring. Synaptic rewiring elicited similar

effects on the model version 2 (Supplementary Figure B.3).
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4.2.2 Shift in Activity, but not in OSIs, Affects Decoder Performance

To test whether the shifts in neuronal activity and orientation selectivity affect the rep-

resentation of stimulus information in the ring model, we constructed a linear decoder

designed to read out the stimulus orientation from the network’s activity. Because exci-

tatory neurons form long-range connections to other brain regions, whereas inhibitory

neurons mainly connect to neurons locally within a network [104], our decoder only

received inputs from excitatory neurons. The decoder can thus be biologically inter-

preted as a readout neuron that is situated in a downstream brain region and reads out

the information represented by the network of orientation-selective simple cells. Be-

cause the network contains excitatory neurons with a wide range of mean firing rates

(Figure 4.7A), we normalised the firing rate of each neuron with the neuron’s mean

firing rate before feeding it into the decoder. This can biologically be interpreted as the

decoder neuron adapting its synaptic weights to the mean firing rates of the synapses’

presynaptic neurons.

The decoder achieves a mean absolute error (MAE) and mean decoding variance

ranging from 8.0± 2.46 degrees (MAE ± variance) and 0.53± 0.054 degrees (mean

decoding variance ± variance), when reading out from a population subset of 0.5%

(16 neurons), to 0.23± 0.0034 degrees and 5.2× 10−4± 6.5× 10−8 degrees, when

reading out from 100% (3,200 neurons) of the population (evaluated for 16 orientations

between 0 and 180 degrees; N = 6 independent simulations). Initial exploration of the

decoder performance on different population subsets indicated that reading out from

a subset of neurons with high OSIs, instead of a random subset, did not significantly

improve the decoder’s performance. This suggests that a shift in OSIs due to rewiring

might not affect the decoder much. To test this, we evaluated the performance of

the decoder on different random population subsets of the network, before and after

rewiring different proportions of IE synapses. As in the experiment in Section 4.1.5, we

always rewired the subset of IE synapses with the highest synaptic impacts. Because

synaptic rewiring not only leads to a shift in OSIs but also in neuron firing rates, we

tested two different cases: In the one case (constant normalisation), we normalised the

neuron firing rates after rewiring with their original mean firing rates before rewiring.

In the other case (adapted normalisation), we adapted the normalisation and used the

neuron’s new means after rewiring to normalise their firing rates after rewiring. The

latter case corresponds to a decoder neuron that would be able to adapt its synaptic

weights to changes in the mean rates of its individual synaptic inputs, a mechanism
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Figure 4.9: Difference in decoder mean absolute error (MAE) before and after rewiring

different proportions of IE synapses in the ring model version 1. Positive differences

indicate worse decoder performance after rewiring. On the left, the neuron’s mean

firing rates before rewiring were used to normalise both the firing rate vectors before

and after rewiring. On the right, the normalisation was adapted and the neuron’s firing

rates after rewiring were normalised with their means after rewiring. N = 6. Markers:

mean; shading: range.

which possibly exists in the brain [105–107].

IE rewiring significantly worsened the MAE of the decoder with constant normal-

isation, but not the performance of the decoder with adapted normalisation in our ring

model version 1 (Figure 4.9). The same trend was observed for the mean decoding

variance (Supplementary Figure B.4). This indicates that the shift in neuron firing

rates induced by IE rewiring has the potential to affect the ability of a downstream de-

coder that does not compensate for shifts in mean firing rates. As no rewiring effects on

the decoder could be observed when the normalisation of the firing rates was adapted,

the shift in OSIs induced by IE rewiring does not seem to affect decoder performance.

One should note however that even in the case of the decoder with constant normalisa-

tion, rewiring only has a significant effect if a small subset (≤ 20%) of the population

is used as input to the decoder (Figure 4.9). When decoding from larger subsets, the

difference became negligible. Overall, the results indicate that the shift in orientation

selectivities, within the range it occurs in our network, does not affect the representa-

tion of information within the ring model enough to alter the population readout. Only

the shift in firing rates seems to affect the readout, but this can be compensated by

simply scaling the decoder neuron’s synaptic weights according to the mean input rate

to its synapses, or by reading out from a large enough subset of the population.
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Discussion and Conclusions

In this dissertation, we investigated the influence of different types of synapses on the

activity and function of a neuronal network. This was motivated by recent observations

that neuronal networks are sloppy, which means that their overall behaviour seems to

depend on a small number of ‘stiff’ components, whereas the other ‘sloppy’ compo-

nents are free to change without significantly affecting the overall network [6, 72, 75,

76]. In the brain, neuronal networks constantly face both spontaneous and plasticity-

induced changes to their synaptic connections. Sloppiness provides a candidate ex-

planation for how neuronal networks allow for these changes, while not letting them

destabilise overall network function, disturb other ongoing processes or cause the loss

of stored information. The idea is that a small number of stable, stiff synapses might

support overall network stability and allow other synapses to change.

Experimental studies that analysed recordings of neuronal activity in the brain sug-

gest that stiff synapses might be associated with highly active neurons [6, 69, 70, 76].

However, due to constraints of current experimental recording techniques, it is difficult

to further characterise the properties and role of stiff network components directly in

the brain, without having specific clues about what to look for. This is where computa-

tional models of neuronal networks can be immensely useful tools. In this dissertation,

we built on a previous computational study by Mongillo et al [10], in which the au-

thors observed that rewiring all inhibitory synapses within a spiking neuronal network

(SNN) model strongly affected the activity of the overall network, whereas rewiring

excitatory synapses had little effect overall. In our experiments, we investigated the in-

fluence of different types of synapses on the activity and function of two SNN models

in more detail. Combining the experimental observations [6, 69, 70, 76] and Mongillo

et al’s [10] results, our hypothesis was that a small subgroup of inhibitory synapses

32
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that transmits signals of highly active neurons has a disproportionately high influence

on the activity and function of neuronal networks, and might thus constitute the stiff

components that control overall network stability.

To investigate this hypothesis, we first measured the effect of rewiring different

groups of synapses on the overall activity of a randomly connected network model.

This revealed that a small subgroup of inhibitory synapses indeed had a disproportion-

ately large effect on the activity of the network. This small subgroup was composed of

IE synapses with high synaptic impacts, which we defined as presynaptic firing rate ×
synaptic weight. The influence of these IE synapses was concentrated on the activity of

the network’s excitatory neurons, which constitute the majority of the network and are

thought to convey the network’s information content to other brain regions. The activ-

ity of the network’s inhibitory neurons was most strongly influenced by a subgroup of

II synapses, also characterised by high synaptic impacts. Our findings therefore sup-

port our hypothesis, but highlight that not only the firing rate of a synapse’s presynaptic

neuron, but also the synaptic weight seem to determine the influence of a synapse on

the activity of the overall network. This is new knowledge, as Mongillo et al [10] had

originally hypothesised that only the firing rate of the presynaptic neuron determines

the influence of a synapse. We moreover show for the first time that, in line with the

idea of sloppiness, a very small proportion of synapses indeed has a disproportionately

large influence on the activity of a spiking neuronal network model.

Following these findings, we then tested the effect of synaptic rewiring on the func-

tion of a ring model, which models the phenomenon of orientation selectivity in the

visual cortex. As in the random network model, rewiring IE synapses caused a strong

shift in the network’s excitatory activity, and moreover altered the strength of orienta-

tion selectivity of individual excitatory neurons (measured by the OSI). To test whether

these shifts affected the representation of stimulus information in the ring model, we

constructed a biologically interpretable linear decoder designed to read out the stim-

ulus orientation from the network’s activity. Against our initial intuition, the shift in

OSIs induced by IE rewiring did not affect the representation of information within the

ring model enough to alter the population readout. In contrast, the shift in firing rates

induced by IE rewiring affected the readout, but this could be compensated by scaling

the decoder’s synaptic weights according to the mean input rates to its synapses, or by

reading out from a large enough subset of the network’s excitatory population.

Overall, our experiments support the idea that neuronal networks are sloppy, in

that their activity seems to be strongly influenced by a small number of stiff inhibitory



Chapter 5. Discussion and Conclusions 34

synapses with high synaptic impacts, whereas most other sloppy synapses can change

without significantly affecting the overall network. Therefore, if a network’s stiff

synapses remain stable, the activity of the overall network is expected to remain stable

too. It is however less clear what implications this sloppiness has for the function of

a neuronal network, as we could not detect a significant influence of stiff synapses on

the representation of information within our ring model.

In light of our findings, this section will discuss a number of open questions that re-

main: How do the results of our simulations fit in with experimental observations in the

brain? Is the high influence of a stiff synapse on a neuronal network determined only

by its high synaptic impact, or does the synapses’ inhibitory, rather than excitatory,

nature play a role? And finally, what is the role of stiff synapses in neuronal networks?

Before discussing these questions, it will be useful to consider the limitations of our

computational models that relate to the biophysical complexity of biological neuronal

networks. These will be explained below, before the open questions will be discussed.

5.1 Model Limitations

Our SNN models are constructed to align with experimental data from the brain in sev-

eral ways: The models’ firing rate distributions are lognormal, with higher inhibitory

than excitatory rates, and their spiking patterns reproduce the asynchronous spiking be-

haviour of neuronal networks in the cortex [10, 87, 96]. Moreover, the synaptic weight

distributions and connection probabilities match experimental measurements from the

mouse barrel and auditory cortex [10, 22, 81]. For investigating the dynamics of large

neuronal networks, the leaky integrate-and-fire (LIF) neurons, which are the building

blocks of our SNN models, are generally considered good approximations of biolog-

ical neurons, despite the fact that they make a number of simplifications (discussed

below) [82,84,96]. These simplifications can be beneficial in several ways, as they im-

prove computational efficiency, and make it easier to understand the dynamics of the

network and relate them to individual features of the model [84]. Furthermore, more

complicated models, such as the Hodgkin-Huxley model [108], contain large numbers

of parameters that are often hard to estimate [84]. Nevertheless, it is important to keep

in mind that neuronal networks in the brain are incredibly complex, and that our mod-

els do not account for a number of aspects that contribute to this complexity. The ones

most relevant for our study will be pointed out below.

The first simplification that LIF neurons make is that they model neurons as a single
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dendrites

axon

biological neuron
single-compartment 

model

cell body

Figure 5.1: Single-compartment models, such as our LIF neurons (left), can be ex-

tended to include multiple compartments and approximate the physical structure of a

neuron (right) to varying degrees of complexity. Figure adapted from [82].

compartment. This means that the state of a neuron at a given time point is described

by a single variable, the membrane potential v(t). However, biological neurons have a

complex physical structure that consists of a cell body and long, branching protrusions

that form the neuron’s dendrites and axon (Figure 5.1, right). The membrane potential

of a neuron varies along these protrusions, and incoming synapses can have different

influences on the activity of a neuron depending on where they are located; a synapse

on the far end of a dendrite for example is likely to have less of an influence than a

synapse located close to the neuron’s cell body [82, 109, 110]. In our SNN models,

IE synapses with high synaptic impacts had the largest influence on the activity of

the overall network. It is likely that, for biological networks, the definition of the

synaptic impact would have to be extended to take the location of a given synapse into

account. To test this, one could use multi-compartment models, which approximate the

physical structure of individual neurons to varying degrees of complexity, by modelling

the membrane potential of a neuron in terms of multiple, coupled compartments [82]

(Figure 5.1). The challenge here however is to model these compartments in a way

that still permits simulations of large enough neuronal networks.

Secondly, our models assume that the intrinsic membrane potential dynamics of

each neuron within a network are the same. Neuronal networks in the brain however

contain a wide range of different neuron types, with different membrane potential dy-

namics, responsiveness and spiking behaviours [111–113]. For example, some types

of inhibitory neurons tend to have higher firing rates than others solely due to their

intrinsic properties [81, 113]. Since firing rate is a factor that determines the influence

of a synapse in our model, it would be relevant to extend the model to include these

different types of inhibitory neurons. This could be achieved by using the set of LIF

neuron types recently defined by Teeter et al [113], which model the different neu-

ron types characterised in the brain. Perhaps, this would allow one to match the high
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influence IE synapses in our model to a specific inhibitory neuron type. A biological

study could then specifically investigate the dynamics of the synapses of this inhibitory

neuron type further.

Thirdly, our models use relatively simple approximations of the dynamics of indi-

vidual synapses. Our synapses are current-based, which means that every time a presy-

naptic neuron fires, the effect on the membrane potential of a postsynaptic neuron is the

same [114]. In biological networks however, the effect of a synapse at time t depends

on the membrane potential of the postsynaptic neuron at that time t [82]. The dynamics

of neuronal network models with conductance-based synapses, which take this prop-

erty into account, are slightly different to models with current-based synapses [114].

It would therefore be interesting to test whether our predictions hold for models with

conductance-based synapses. Furthermore, conductance-based synapses allow refin-

ing the model to include different subtypes of excitatory and inhibitory synapses,

that are different depending on the types of neurotransmitter receptors present at the

synapse [82].

Overall, these limitations highlight that neuronal networks are complex, and that

there are multiple factors that could affect the influence of a given synapse on the

overall network, beyond what we have included in our models. However, our mod-

els constitute an important starting point that provides a fundamental understanding

of the dynamics of neuronal networks in relation to their synapses. As a next step,

our models could be gradually refined, perhaps starting by adding conductance-based

synapses and then different neuronal cell types. At each added level of complexity,

one could test whether our findings still hold, which would help to gradually build up

an understanding of the influence of different synapses in more complex networks.

5.2 Open Questions

5.2.1 How do our Results Fit in with Experimental Observations?

Our experiments indicate that overall network activity might be kept stable by a small

number of stiff, high impact IE synapses. This implies that these, too, would thus have

to be stable themselves. Despite generally high synaptic volatility in the brain, some

synapses seem to indeed be more stable than others [5, 47, 51]. These stable synapses

tend to be larger, which is indicative of a high synaptic weight [5, 47, 51]. As synaptic

weight is one factor that contributes to a high synaptic impact in our model, this thus
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supports the idea that high impact synapses are more stable. It has to be kept in mind

however that the studies cited above exclusively focused on excitatory synapses as

these are easier to monitor. It is not clear yet whether the same principle applies to

inhibitory synapses, and whether inhibitory synapses are generally more stable than

excitatory synapses. Despite the technical difficulties, a systematic comparison of the

stability of inhibitory with excitatory synapses in the brain would thus be beneficial.

Despite the activity changes induced by IE rewiring, our decoder was able to reli-

ably read out stimulus information from our ring model. This could be achieved either

by reading out from a large enough subset of the population or by adapting the de-

coder’s synaptic weights to changes in the mean rates of its individual inputs. In the

brain, the latter would require neurons to monitor the average activity of each of their

synapses, and individually adapt their synaptic weight if lasting changes to the activ-

ity occur. Alongside other homeostatic mechanisms, biological neurons indeed seem

to scale their synaptic weights to adapt to changes in their inputs [106, 115–118], al-

though it has been debated whether this occurs at the level of individual synapses [107]

or whether neurons only collectively scale all their synapses when changes in their

overall input occur [115,119]. If the former was the case, this might present a possible

mechanism that supports robust network function in the face of synaptic volatility.

5.2.2 Does Inhibition Play a Role in Determining the Influence of a

Synapse?

Inhibitory synapses within our network models generally have higher synaptic impacts

than excitatory synapses. This is due to the higher firing rates of the inhibitory neurons

in our models, as well as the heavier tail of the IE synaptic weight distribution. The

question therefore is: does the effect of inhibitory synaptic rewiring on the activity of

our networks solely stem from their higher synaptic impacts, or does the synapses’

inhibitory nature play a role? The former would likely be the case if inhibitory and

excitatory synaptic signals had symmetric effects on the dynamics of a network. How-

ever, due to the way neurons integrate synaptic signals, the effect of inhibition and

excitation is not strictly symmetrical. Multiple excitatory inputs arriving at the same

time, or in quick succession, can only increase a neuron’s membrane potential until

it reaches the neuron’s threshold, where an action potential will be triggered and the

neuron’s membrane potential will be reset. In contrast, multiple inhibitory inputs can,

in theory, decrease the membrane potential of a neuron in our model indefinitely. The
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neuron threshold thus adds asymmetry to the system. One should note however that

the effect of inhibitory inputs is not strictly the same in our model as in biological net-

works, as the influence of a synapse depends on the current membrane potential of a

biological neuron, and inhibitory inputs can only decrease a neuron’s membrane poten-

tial up to a certain point (another argument for adding conductance-based synapses to

our models, see Section 5.1). Nevertheless, the argument with the threshold still holds.

To quantify the asymmetric influence of excitation and inhibition, it would be use-

ful to modify our random network model such that both the firing rate and synaptic

weight distributions are either swapped or equal, and then re-evaluate the effect of

synaptic rewiring. I briefly attempted to simulate this, by swapping all parameters for

excitatory and inhibitory neurons or by making them equal, but could not obtain a sta-

ble network model in either case. With considerably more parameter fine-tuning, it is

likely feasible to obtain a network with equal firing rate and synaptic weight distribu-

tions, which would make it possible to investigate how much of the effect of synaptic

rewiring stems from the synapses’ inhibitory nature rather than their high synaptic im-

pacts.

5.2.3 What is the Role of Stiff Synapses in Neuronal Networks?

Although rewiring IE synapses affected the firing rates and the tuning curves (mea-

sured by the OSI) of individual neurons in our ring model, the latter did not have a

significant effect on the population readout. This might indicate that information can

be robustly represented in the face of synaptic volatility, and does not require stabil-

ising stiff synapses, as long as downstream neurons read out information from a large

enough subset of the population or dynamically adapt their synaptic weights to changes

in the mean rate of their inputs. One should however keep in mind that the task that we

set our ring model and decoder was relatively simple. Firstly, the network in our ring

model is relatively strongly driven by its inputs from the LGN, which stayed the same

before and after rewiring. Secondly, networks in the brain tend to perform multiple

computations within the same network. In addition to information about the stimulus

orientation, area V1 of the visual cortex for example also processes information about

colour or the direction of stimulus movement [11].

Stiff neurons and synapses might play a role in ensuring that networks can per-

form multiple computations in parallel, without them interfering with each other. Ev-

idence that supports this idea comes from a recent study by Ponce-Alvarez et al [76]
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in which the authors analysed a pairwise maximum entropy model fitted to recordings

of neuronal activity in area A1 of the mouse auditory cortex (Area A1 is the auditory

counterpart of the visual area V1). Interestingly, neurons that represented information

about sound were associated with sloppy directions of the model [76]. In contrast,

neurons associated with stiff directions exhibited stable activity, were less responsive

to sound, and seemed to control the networks’ cortical state, which is the overall mode

of network activity [76,77]. In light of these observations, the authors propose that stiff

neurons control and stabilise the activity of the overall network, such that sloppy neu-

rons can locally respond to and process information about sound, without influencing

the whole network [76]. This might permit multiple processes to take place in paral-

lel, without interfering with each other. The authors also propose that the synapses of

sloppy neurons might be subject to more synaptic plasticity, which would allow the

network to locally adapt its computations or store new information, without interfering

with other network functions [76]. This fits with our observation that, as long as a

small subgroup of stiff synapses is stable, other synapses can undergo changes without

affecting the overall network.

Stiff synapses might also play a role in the storage of information within a net-

work. In addition to their random network model, Mongillo et al [10] also analysed a

spiking attractor network, which is an SNN that can store multiple patterns of activity

as memories. A given stored activity pattern can be activated by briefly increasing the

external input to a subset of neurons that, in the given activity pattern, should be highly

active [10]. The network will then settle into the activity pattern (also called attractor

state), even if the input is restored to baseline levels, until a new memory pattern is

activated by selectively increasing the input to a different subset of neurons again [10].

The authors tested the effect of rewiring all EE synapses within this network, which

barely had any effect. In contrast, rewiring all II synapses led to loss of the stored

memory patterns [10]. This suggests that the stability of inhibitory synapses might

be more important for the storage of information within a neuronal network than the

stability of excitatory synapses. Mongillo et al [10] however did not separately test the

effect of EI and IE synaptic rewiring in the network, the latter of which would have

been especially interesting in light of our findings.

Overall, although stiff synapses did not seem to have a significant influence on

the representation of information within our ring model, other studies indicate that

they might play a role in the stable storage [10] or the parallel processing [76] of

information within networks.
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5.3 Conclusion

All in all, in this dissertation, we systematically assess the effect of rewiring different

groups of synapses on the activity and function of two spiking neuronal network mod-

els. We show for the first time that a very small subgroup of inhibitory synapses has

a disproportionately large influence on the overall activity of such a neuronal network.

This subgroup consists of IE synapses with high synaptic impacts, which we define as

presynaptic firing rate × synaptic weight. This extends previous findings by Mongillo

et al [10] and demonstrates that not only firing rate but also synaptic weight determine

the influence of a synapse. Building on the idea of sloppiness in neuronal networks,

the small subgroup of high impact IE synapses might be the stiff synapses that keep

a network stable, while allowing other synapses to change. This might explain how

neuronal networks maintain stability despite high rates of synaptic volatility.

In a ring model of orientation selectivity, we show that the subgroup of high im-

pact IE synapses has a high influence on the mean activity of the network’s neurons,

but does not significantly affect the way they represent information. As long as down-

stream neurons that read out this information can dynamically adapt to fluctuations in

the network’s mean firing rates, a network such as the ring model might not need to

rely on stabilising stiff synapses. However, stiff synapses might have other functions

within neuronal networks in the brain, beyond what we have modelled here. These

might include supporting stable storage or parallel processing of information within

networks.

Overall, our computational study enhances our understanding of the dynamics of

neuronal networks. Our experiments provide a starting point upon which future re-

search can build, for example by gradually adding more complexity to our models

and thus refining our characterisation of the properties and role of stiff synapses. This

might then lead to the design of targeted biological experiments, that can characterise

the role of stiff synapses directly in the brain. In the long run, this promises to con-

tribute to our understanding of the principles of brain function.
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Appendix A

Model Parameters

A.1 Single-Cell Parameters

single-cell parameters (E and I)

vrest 0 mV resting potential

θ 33 mV spike emission threshold

vreset 25.75 mV reset potential

τm 10 ms membrane time constant

τarp 1 ms absolute refractory period

τdelay 0.01ms synaptic delay

Table A.1: Single-cell parameters for the LIF neurons in both the random network model

and the ring model. Parameters are the same as in Mongillo et al [10]. The high value

of the reset potential is somewhat unusual, but was kept to increase the comparability

of our results with those of Mongillo et al [10]. The high reset parameter had no effect

on the nature of our results. To confirm this, I ran some of our experiments with an

altered version of our model with vreset = 0 mV, which produced the same results.
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A.2 Network Parameters

network parameters (random network)

NE 32,000 number of E neurons

NI 8,000 number of I neurons

Hext
E 72.6 mV external excitatory input to E neurons

Hext
I 57.8 mV external excitatory input to I neurons

CEE 0.2 probability of E→ E connection

CEI 0.4 probability of E→ I connection

CIE 0.3 probability of I→ E connection

CII 0.4 probability of I→ I connection

network parameters (ring model)

NE 3,200 number of E neurons

NI 800 number of I neurons

Hext
E 33 mV external excitatory input to E neurons

Hext
I 26.4 mV external excitatory input to I neurons

rLGN
E 100Hz rate of average LGN inputs to E neurons

rLGN
I 80Hz rate of LGN inputs to I neurons

wLGN 0.1 mV synaptic efficacy of input synapses from the LGN

ηLGN (vers.1) 1 tuning of LGN inputs for model version 1

ηLGN (vers.2) 0.2 tuning of LGN inputs for model version 2

ηFS (vers.1) 0 tuning of feature-specific EE connections for model version 1

ηFS (vers.2) 0.5 tuning of feature-specific EE connections for model version 1

CEE 0.2 average probability of E→ E connection

CEI 0.4 probability of E→ I connection

CIE 0.3 probability of I→ E connection

CII 0.4 probability of I→ I connection

Table A.2: Network parameters for the random network and ring models. Parameters for

the random network model are the same as in Mongillo et al [10], except that the input

Hext
E to the excitatory neurons is slightly lower. This was done to make the simulation

more stable over longer run times, as the network with the original input values tended

to collapse after about 3s. Parameters for the ring model were adapted to accommodate

the smaller network size and the additional LGN inputs.
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A.3 Synaptic Weights

synaptic efficacies (both models)

WEE 0.37 mV mean E→ E synaptic efficacy

WEI 0.66 mV mean E→ I synaptic efficacy

WIE 0.44 mV mean I→ E synaptic efficacy

WII 0.54 mV mean I→ I synaptic efficacy

µEE -13.9 mV mu E→ E synaptic efficacy

µEI -15.69 mV mu E→ I synaptic efficacy

µIE 7.16 mV mu I→ E synaptic efficacy

µII -12.9 mV mu I→ I synaptic efficacy

σEE 26.07 mV sigma E→ E synaptic efficacy

σEI 20.79 mV sigma E→ I synaptic efficacy

σIE 31.68 mV sigma I→ E synaptic efficacy

σII 25.74 mV sigma I→ I synaptic efficacy

Table A.3: Parameters for the lognormal distribution of synaptic weights in the random

network model and ring models. Parameters are the same as in Mongillo et al [10].



Appendix B

Supplementary Figures

B.1 Cosine Similarity vs Correlation Coefficient

The purpose of the Supplementary Figure B.1 below is to illustrate why, in contrast to

Mongillo et al [10], we decided to use cosine similarity instead of Pearson’s correlation

coefficient to quantify the effect of synaptic rewiring on the population activity.

Because the mean and the distribution of the firing rate vectors do not change due

to rewiring, computing the correlation coefficient between the two firing rate vectors is

equivalent to computing the cosine similarity of the vectors after their arithmetic mean

has been subtracted [100,120]. This means that the correlation coefficient places larger

emphasis on the absolute changes of firing rates of the individual neurons, while the

cosine similarity considers relative changes. This is preferable in our case, because

the cosine similarity allows a more meaningful comparison of the effect of synaptic

rewiring on populations with different means.

The two measures overall showed the same trends in all our experiments. The only

difference is that the correlation coefficient indicates a larger effect of II rewiring on

the firing rates of the inhibitory population (Figure B.1A). This is mainly because the

inhibitory neurons in our model have a larger mean firing rate than excitatory neurons,

which permits larger fluctuations in neuronal activity per se. When considering the

neuron’s firing rates relative to the population mean (Figure B.1B), it becomes apparent

that II rewiring in fact does not seem to affect the inhibitory population much more than

the excitatory population.
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A

B

Figure B.1: A: Firing rate changes due to rewiring measured by the cosine similarity

(top) and Pearson’s correlation coefficient (bottom). Figure corresponds to the experi-

ment described in Section 4.1.1. B: Relative firing rate changes of individual excitatory

(red) and inhibitory (blue) neurons as a function of their firing rates under default condi-

tions. Although the correlation coefficient (A, bottom) suggests a strong absolute effect

of II rewiring on the inhibitory population, the effect is much weaker when considered

in relation to the mean firing rate of the inhibitory population (B). We therefore decided

to use cosine similarity instead of the correlation coefficient as a measure of population

firing rate changes.
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B.2 Effects of II Synaptic Rewiring on the Random Net-

work Model

A B

Figure B.2: Effects of rewiring II synapses by weight (A, solid lines) and synaptic im-

pact (B, solid lines) compared to rewiring the same proportion of randomly selected II

synapses. Effect on the excitatory population is in red, effect on inhibitory activity is in

blue. Figures correspond to Figures 4.5B and 4.6 respectively.
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B.3 Effects of Synaptic Rewiring on the Ring Model Ver-

sion 2

A

B

Figure B.3: Effect of synaptic rewiring the ring model version 2. A: Cosine similarities

of the excitatory (red) and inhibitory (blue) average firing rate vectors before and after

rewiring different synaptic populations. The average was taken over the network’s re-

sponse to 16 different stimuli. N = 6. B: Correlation of excitatory neuron OSIs before

and after rewiring. N = 6.
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B.4 Effect of IE Rewiring on Decoder Variance

Figure B.4: Difference in decoder variance before and after rewiring different propor-

tions of IE synapses. On the left, the neuron’s mean firing rates before rewiring were

used to normalise both the firing rate vector before and after rewiring. On the right, the

normalisation was adapted and the neuron’s firing rates after rewiring were normalised

with their means after rewiring. N = 6. Markers: mean; shading: range.


