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Abstract

Sequential Monte Carlo methods (SMC) or Particle Filters are the de facto standard

for approximate filtering in probabilistic state space models. Highly informative ob-

servations can cause classical SMC algorithms that resample naively using importance

weights, such as the Bootstrap Particle Filter (BPF), to provide poor approximations

of the filtering distribution: the Auxiliary Particle Filter (APF) generalizes the vanilla

SMC framework to allow for observations to be incorporated into the resampling via

the so called simulation weights. It is however not always clear when and why the

APF performs better than the BPF: Elvira et al. [24] showed that when transition den-

sities overlap significantly the APF can perform poorly and used this observation to

motivate the use of a weighted mixture of transition kernels distribution as proposal,

where the mixture weights are the simulation weights. In this work, we further exploit

the structure of this weighted mixture proposal: these simulation weights should be

chosen to satisfy our ultimate goal of minimizing the variance of the importance sam-

pling weights, which is related to the discrepancy between proposal and posterior. We

exploit this fact by designing a novel, fully online framework to build convex optimiza-

tion strategies for adaptation of the simulation weights by minimizing the discrepancy

between proposal and posterior evaluated at a deterministically chosen set of points,

which crucially leverages the structure of SMC inference. This leads to a novel class of

algorithms which we name Optimization Auxiliary Particle Filters (OAPF). While in

its basic form the algorithm can be significantly more expensive than its competitors,

we provide a simple strategy to reduce its cost and show empirically how it can at the

same time improve estimation of the filtering distribution when using a large number

of particles. This is most clear with Linear Gaussian systems where the underlying

distribution is known; for models where this is not true, we show generally improved

Effective Sample Size and sample weight variance. Finally, we suggest that there are

several promising directions of future work for reducing the time complexity of the

algorithms while maintaining performance, as well as smarter strategies for the choice

of evaluation points.
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Chapter 1

Introduction

The optimal filtering problem [3] is a classical task that has been extensively studied

by different communities, from Signal Processing to Statistics: it consists of formu-

lating a flexible latent variable probabilistic model for time series (called state space

model) where the unknown quantity of interest can be sequentially estimated. Con-

ducting Bayesian inference in these models allows to perform efficiently in a plethora

of applications including target tracking, spread of infectious diseases, Global Posi-

tioning Systems, but also Machine Learning (ML) applications [68, 59, 49]. However,

exact inference can only be performed in an extremely limited class of state space

models, most notably in Linear Gaussian systems where one can exploit the Kalman

Filter [40]. In this context, the most popular approximate inference techniques are

Sequential Monte Carlo Methods (SMC), often referred to as Particle Filters [69, 26].

In this thesis, we retrace interpretations and derivations of Auxiliary Particle Filters,

originally invented to tackle highly informative likelihoods, and propose a new class

of algorithms that can provide better performance in many scenarios.

1.1 Structure

In Chapter 2 we introduce the necessary background to understand the methodology

of SMC: to remain relevant to the work introduced in this dissertation, we discuss

core methodological concepts with an algorithmic perspective, leaving convergence

proofs to more theoretical works. In Chapter 3 the core reasoning and methodology

behind our novel class of algorithms is developed: their performance is experimentally

verified in Chapter 4. Finally, in Chapter 5 we discuss implications of our experimental

findings, and propose directions for future work.
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Chapter 1. Introduction 2

1.2 Contributions

The contributions of this work span the whole document and are specifically:

• The development of a novel class of online particle filtering algorithms, here

named Optimized Auxiliary Particle Filter, for filtering in generic state space

models, as a potential alternative to the classical and widely used algorithms

such as the Bootstrap Particle Filter [28] and the Auxiliary Particle Filter [65]

• We propose simple strategies that reduce the computational complexity of the

algorithm significantly and sometimes improve the accuracy of its estimates at

the same time. A more in-depth treatment of such strategies is left as further

work, but experiments suggest that there is promise in reducing the complexity

of OAPF.

• An updated review, comparison and analysis of Auxiliary-like particle filters

building on [27, 45, 72, 36, 21] (previous surveys/papers on improval strategies

for PFs with a focus on APF), including discussion of more recent work by Elvira

et al. [23, 24] and other more recent work [47, 2]

• In Chapters 2 and partially 3, we unify the the different perspectives behind the

APF and explain in detail its relationship with Marginal Particle Filters and other

SMC algorithms, providing the first (to the best of our knowledge) in-depth and

accessible treatment of this widely used, but rarely explained, algorithm.



Chapter 2

Background & Related Work

In this Chapter we explain the most relevant concepts that need to be understood in

order to implement and assess Particle Filtering algorithms. In Section 2.3 we provide

an up-to-date literature review on state of the art methodology that tries to generalize

and go beyond the original Auxiliary Particle Filter, partially updating the excellent

survey by Whiteley et al. [72] but only focussing on inference.

2.1 Monte Carlo methods

Monte Carlo (MC) methods are a very broad class of methods in computational statis-

tics that originated in physics [22, 54] . They can be informally described as attempt-

ing to infer unknown quantities that are related to a population using random samples

from that population. A MC estimator Î of an expectation with respect to p(xxx) of

an integrable test function f can be obtained by generating a set of independent and

identically distributed (i.i.d.) samples from p(xxx) and taking an empirical average:

I = Ep(xxx)[ f (xxx)] =
∫

f (xxx)p(xxx)dxxx≈ Î =
1
N

N

∑
n=1

f
(

xxx(n)
)

xxx(n) ∼ p(xxx) (2.1)

Another class of MC methods known as Markov Chain Monte Carlo (MCMC) [66] do

not require samples to be i.i.d., but these are not in the scope of this thesis. The standard

MC estimator Î is unbiased, i.e. Ep(xxx)

[
Î
]
= I . Besides biasedness, the typical metric

of evaluation for the performance of a MC estimator is its variance, as it represents the

expected squared deviation from the true value of the desired quantity:

Vq

[
Î
]
= Eq

[(
Î − I

)2
]
=

1
N

(∫
f 2(xxx)p(xxx)dxxx− I 2

)
(2.2)

3



Chapter 2. Background & Related Work 4

It is well known that some MC estimators while biased can have lower variance than

unbiased estimators. The main selling points for MC methods compared to other ap-

proximate inference techniques such as Variational methods [60, 38, 5] are their de-

sirable asymptotic properties, since most estimators are consistent (i.e. asymptotically

unbiased), as well as a variance of approximation error that decreases with O(1/N)

regardless of the dimensionality of the random vector xxx [21]. Consistency of the esti-

mators is proved by standard law of large numbers arguments [66].

2.1.1 Importance Sampling

Importance Sampling (IS) is a MC method, but its origin go back to the 1950s in

the context of rare event estimation in statistical physics [39]. Some of the appeal

towards IS lies in its relative implementation simplicity and easier theoretical treatment

compared to alternative MC methods such as MCMC. At its core, IS is a technique

to approximate integrals with probabilistic inference being a special case. The main

idea behind IS for inference is that MC can still be performed when it not possible

to sample from the distribution of interest. Consider the task of forming an estimator

for integral I which is an expectation of some integrable test function f (xxx) under a

posterior distribution π(xxx) = p(xxx,D)/p(D). The expectation can be easily rewritten

by introducing an artificial density q called ”proposal” in the following way:

I = Eπ[ f (xxx)] =
∫

f (xxx)π(xxx)dxxx (2.3)

=
1∫

p(xxx,D)dxxx

∫
f (xxx)

p(xxx,D)

q(xxx)
q(xxx)dxxx (2.4)

=
1

Eq

[
p(xxx,D)

q(xxx)

] ·Eq

[
f (xxx)

p(xxx,D)

q(xxx)

]
(2.5)

{
xxx(n)
}N

n=1
∼ q(xxx) ≈ 1

�
�1

N ∑
N
n=1

p(xxx(n),D)
q(xxx(n))

·
�
�
�1

N

N

∑
n=1

f
(

xxx(n)
) p
(

xxx(n),D
)

q
(
xxx(n)
) def

= ÎSN

(2.6)

where samples are drawn i.i.d. The ratio
p(xxx(n),D)

q(xxx(n))
is a key quantity in IS and is called

importance weight w(xxx(n)). While these weights are a function of the sample xxx(n) this

will often be implicit as common in the literature. The usual interpretation for the

weight assigned to sample xxx(n) is that of an importance factor which takes into account

that xxx(n) was sampled from the ”wrong” distribution. Notice that in this estimator a
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MC estimate is formed concurrently, with the same set of samples, for both the nor-

malizing constant of π and the unnormalized expectation. Thanks to this property the

estimator ÎSN is often referred to as self-normalized. It is possible to show that this

self-normalized estimator is not unbiased, but it is at least consistent, and it is easy to

see that the estimate of the normalising constant in unbiased. The fact that a useful esti-

mator can be formed without knowledge of the normalizing constant is very appealing

for Bayesian inference. Finally, a fact that will be used throughout is that weighted IS

samples can be used to form an empirical measure as an approximation of the target

posterior:

π(xxx)≈
N

∑
n=1

w(n)
δxxx(n)(xxx) (2.7)

2.1.2 Sequential Importance Sampling

In a context where the distribution of interest assumes some sort of sequential structure,

applying IS ”blindly” is not computationally efficient. In this thesis the focus is on

sequential structure that arises from evolution over time, but the methods are more

generally applicable. Consider the sequential estimation of a (posterior) probability

distribution π(xxx1:t) where t is the time index, expressed as a function of its random

variables xxx1:t . Without imposing any additional structure, applying IS implies using a

distribution of the same form qt(xxx1:t) which therefore proposes an entire trajectory of

samples at each time step. Since computing importance weights in Θ(t) is undesirable,

in practice one assumes an autoregressive structure on the proposal, which then takes

the form:

qSIS
t (xxx1:t) = qt−1 (xxx1:t−1)qt (xxxt |xxx1:t−1) (2.8)

so that proposing trajectory xxx(n)1:t amounts to sampling xxx(n)t ∼ qt (xxxt |xxx1:t−1) and simply

append this to the previous trajectory assigned to the same index: xxx(n)1:t ← xxx(n)1:t−1∪ xxx(n)t .

The computation of importance weights also reduces in complexity, since they can

now be easily expressed in terms of weights from the previous timestep and therefore

computed incrementally:

wt (xxx1:t) =
πt (xxx1:t)

qt (xxx1:t)
(2.9)

=
πt−1 (xxx1:t−1)

qt−1 (xxx1:t−1)

πt (xxx1:t)

πt−1 (xxx1:t−1)qt (xxxt |xxx1:t−1)
(2.10)

= wt−1 (xxx1:t−1) ·
πt (xxx1:t)

πt−1 (xxx1:t−1)qt (xxxt |xxx1:t−1)
(2.11)
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where we can define the second term as ϖ(xxxt−1,xxxt), the incremental importance weight

which can be computed in Θ(1). The method just described in what is known as

Sequential Importance Sampling (SIS), and as we will see forms the basis of particle

filtering.

2.2 State Space models and Filtering

State space models are probabilistic formulations that attempt to model the temporal

evolution of a dynamical system. In this thesis, the focus will be on first-order Markov

state space models 1. In these models, a discrete-time multivariate stochastic process

{xxxt}t≥1 or hidden state is observed through a sequence of measurements {yyyt}t≥1 and

these stochastic processes are sampled from densities of the form:

xxxt ∼ fθθθ(xxxt | xxxt−1) (2.12)

yyyt ∼ gφφφ(yyyt | xxxt) (2.13)

often referred to as transition density f and observation density g, with corresponding

parameters θθθ,φφφ. This thesis is concerned with inference, and it is assumed that param-

eters are fixed known quantities and they will therefore be omitted. For recent reviews

of parameter estimation in state space models, see [42, 52]. There is also an implicit

assumption of model correctness; for recent work on particle filtering in misspecified

models, see [6].

Typical inference tasks that arise in state space models of this form are filtering and

smoothing, respectively the sequential estimation of p(xxx1:t | yyy1:t) or p(xxxt | yyy1:t) and

p(xxxt | yyy1:T ) with T > t. This thesis is focussed on filtering problems; a recent survey

on smoothing techniques is [51].

The following are the two defining equations for the filtering task:

p(xxx1:t | yyy1:t) = p
(
xxx1:t−1 | yyy1:t−1

) f (xxxt | xxxt−1)g(yyyt | xxxt)

p
(
yyyt | yyy1:t−1

) (2.14)

p(xxxt | yyy1:t) =
g(yyyt | xxxt) p

(
xxxt | yyy1:t−1

)
p
(
yyyt | yyy1:t−1

) (2.15)

The latter distribution can be easily obtained from the former by marginalization of

xxx1:t−1. While one is typically interested in inferring 2.15 which we name State Filtering

1Also known as Hidden Markov Models
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Distribution (SFD), we will see that traditional particle filtering algorithms perform IS

with 2.14 or Trajectory Filtering Distribution (TFD) and form estimates exploiting the

MC marginalization property.

2.2.1 Particle Filtering

The MC methods used to perform approximate filtering in state space models are based

on sequential importance sampling, and are generally known as Sequential Monte

Carlo (SMC) or Particle Filters (PFs). These can be defined as a set of algorithms

used to sequentially approximate a distribution of interested via weighted samples or

”particles”. A first attempt at such an algorithm could be using standard SIS to approx-

imate filtering distributions, setting πt(xxx1:t) to be p(xxx1:t | yyy1:t) or p(xxxt | yyy1:t); the former

is the standard SMC choice. However, performing IS on a space of increasing dimen-

sion t has additional consequences that unlike computational complexity are not fixed

by vanilla SIS. Indeed, it can be easily shown that the variance of importance weights

increases exponentially with t for simple models where the filtering distribution (as

well as the IS proposal) factorize [21, 59]. This fundamental problem manifests it-

self, among other ways, through a phenomenon known as weight degeneracy: after a

few steps, all but one importance weight will be ≈ 0, which implies the posterior is

approximated using a single sample. To alleviate this issue one can introduce a resam-

pling step in the SIS algorithm: before proposing new particles at time t, the previous

(weighted) set of particles gets replaced by a new set of unweighted particles, where

these have been sampled (usually with replacement) with probability proportional to

wt−1. Intuitively, this allows to eliminate particles with very low weight with high

probability, which would bring little contribution to posterior estimates. Additionally,

resampling can also nicely be interpreted as a smart choice of proposal, where rather

than the vanilla SIS proposal 2.8, one uses:

qSMC
t (xxx1:t) = p̂t−1

(
xxx1:t−1 | yyy1:t−1

)
qt (xxxt |xxx1:t−1,yyy1:t) (2.16)

(where the added conditioning on on yyy1:t−1 and yyy1:t respectively comes from the

context of state space models). In 2.16, the first term is the particle approximation of

the target distribution at t−1, namely ∑
M
m=1 w(m)

t−1δ
xxx(m)

t−1
(xxxt−1). Sampling from qSMC

t can

be achieved by first sampling from p̂t−1
(
xxx1:t−1 | yyy1:t−1

)
and since this is a mixture it

can be achieved by resampling xxx(m)
t−1 with probabilities w(m)

t−1; the resulting samples from

this operation can be used then to sample from the second term in 2.16.



Chapter 2. Background & Related Work 8

Evaluating PFs can be challenging: in Linear Gaussian systems one can directly com-

pare the approximate distributions with that given by the KF; for other models this is

not possible, and so one has to resort to approximate means. Generally, one would be

interested in minimizing the theoretical (conditional on previous particles and current

measurement) variance of the importance weights. It is easy to show that the proposal

which minimizes this objective is p(xxxt | xxxt−1,yyyt), often referred to as the ”optimal SMC

proposal” or ”optimal SMC kernel” [20]. Of course, computing this proposal and sam-

pling from are intractable tasks. The Effective Sample Size (ESS) has been established

in IS and SMC as a measure of the theoretical number of independent samples that

have been generated from the target distribution [46]. Since this is also intractable, it

is most commonly approximated by 1/www>www where www are the normalized IS weights.

Issues with this metric have been highlighted in [53].

2.2.2 The Auxiliary Particle Filter

The Auxiliary Particle Filter (APF) that was originally presented in [65] is a variation

of the standard BPF. In this Section, we try to merge several perspectives from the

literature, including the original one by Pitt and Shepard.

More generally, the APF can be thought of a class of PF algorithms which attempt to

incorporate measurement information into the resampling step. Indeed, a standard PF

algorithm such as the BPF performs resampling at the end of iteration t−1, and thus

resampling strategies use importance weights from t − 1. However, one can equiva-

lently resample at the beginning of iteration t. Since it is reasonable to assume that

iteration t starts as the t-th measurement becomes available, this information could be

used to perform resampling of the particles from the previous iteration. This allows

the set of particles to move into a region of higher posterior probability earlier in the

algorithm. It is then intuitive that APF algorithms will generally tend to perform more

accurate approximations with highly informative likelihoods.

Another way to see what the APF does, is to interpret it as a change to the SMC

proposal, where now the resampling part of the proposal is not the previous particle

approximation, but some arbitrary distribution that incorporates the measurement:

qAPF
t (xxx1:t) = qt(xxx1:t−1 | yyy1:t) ·qt(xxxt | xxx1:t−1,yyy1:t) (2.17)

This equation mirrors the SMC proposal in 2.16, but allows the left part to depend

on yyyt , not restricting it to be the previous particle approximation. Algorithm 1 below
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shows details for the procedure for a generic particle filter.

Notice the ratio wt−1/λt that is multiplied by the vanilla SMC IS ratio. When λt =wt−1

(i.e. particles are resampled according to wt−1) we recover vanilla SMC algorithms;

the more general case represents the class of APF algorithms. The role of this ratio was

already explored in e.g. [27, 11]. A perhaps subtle point is that one should not use the

resampled particles xxxi(m)

t−1 in the computation of the IS weights, but simply xxx(m)
t−1 in order

to reduce the variance of the weights [12] 2. There are several free parameters that one

can select in order to obtain concrete algorithms: the choice of λt , the choice of pro-

posal qt(xxxt | xxxt−1,yyy1:t) , the choice of resampling strategy (multinomial, strafitied, etc.)

. For example, by choosing the proposal for xxxt to be f (xxxt | xxxt−1) , and setting λt = wt−1

one obtains the Bootstrap PF [28]; the original APF chooses λt = wt−1 · p(yyyt | xxxt−1)

and f (xxxt | xxxt−1). This is motivated by an ”optimal” choice which simply sets simu-

lation weights equal to their true value under the probabilistic dynamics of the state

space model, namely λt = p(xxxt−1 | yyy1:t). If one were to select the optimal simulation

weights, and at the same time be able to propagate particles using the optimal SMC

kernel, the resulting algorithm is often referred to as fully adapted APF [36, 21, 72].

Interestingly, it is not always the case that this theoretical algorithm always performs

better than even the BPF [36].

Algorithm 1: Generic Particle Filter

1. Draw M samples from prior: xxx(m)
1 ∼ p(xxx1) and set w(m)

1 = 1/M for all m

2. For each t = 2 . . .T :

• Resampling: From set of weighted particles
{

xxx(m)
t−1,w

(m)
t−1

}
, resample

using simulation weights qt(xxx
(m)
t−1 | yyy1:t)

def
= λ

(m)
t to obtain resampled

indices i(m) for m = 1 . . .M

• Draw new particles from the proposal: xxx(m)
t ∼ qt(xxxt | xxxi(m)

t−1,yyy1:t) using

resampled indices

• Calculate new importance weights:

www(m)
t =

p(xxx(m)
1:t | yyy1:t)

qt(xxx
(m)
1:t | yyy1:t)

∝
w(m)

t−1

λ
(m)
t

·
g(yyyt | xxx

(m)
t ) f (xxxt | xxx

(m)
t−1)

qt(xxx
(m)
t | xxx(m)

t−1,yyy1:t)
(2.18)

2resampled particles are then just used for propagation
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2.2.3 M2 Particle Filtering

We have already hinted in Section 2.2.1 that performing IS with target p(xxx1:t | yyy1:t)

causes problems. A more theoretically elegant solution than explicitly introduce re-

sampling was proposed in Klaas et al. [45]: in their framework of Marginal Particle

Filters (MPF), the SFD is used as target distribution, and the marginalization of xxxt−1

in the IS numerator is used to motivate the use of a mixture proposal to be used in

the IS denominator, where the weights are the APF simulation weights (forming what

they call Auxiliary Marginal Particle Filter (AMPF)), since sampling from a mixture

is equivalent to resampling followed by propagation from the mixture kernels. This

obviously requires a O(M2) cost for the computation of the IS weights, but Klaas et al.

point out that standard N-body methods can be used to reduce the cost to O(M logM)

for a controllable approximation error. The same proposal was reintroduced from the

perspective of Multiple Importance Sampling (MIS) by Elvira et al. [23, 24]: when

simulating from multiple kernels, it is better in terms of variance of estimators to use

the full mixture in the IS weight (see [25] for more precise results). This perspective

allowed to make a better selection for the simulation weights which takes into account

whether transition kernels (used for propagation of particles in [23, 24]) overlap signif-

icantly: when they do, APF can perform poorly, and their novel choice of λ improves

the situation.

2.3 Related Work

There have been several attempts at improving the accuracy of the estimates from

vanilla SMC algorithms beyond the original APF. Early work by Godsill et al. [27] dis-

cusses the role of the ratio wt−1/λt−1 (with different notation) , as well using MCMC

to sample from the optimal SMC proposal. The work by Klaas et al. [45] already de-

scribed in the previous Section showed promise in using a mixture proposal and makes

it clear what a reasonable choice for both simulation weights and kernels should be

when targeting the SFD (we expand on this in Section 3.1). An interesting paper by

Kronander and Schön [47] follows the idea that likelihood information should be used

to propagate the particle, and form a linear time PF by combining this insight with

MIS guarantees for the choice of importance weight. Guarniero et al. develop offline

methods for the estimation of λ’s via a parameterized approach [29, 30] in a similar

manner to this work (the main difference being their offline focus). They propose a
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generic framework called twisted-auxiliary SMC: the simulation weights in APF can

be seen as a special case of a positive function named twisting potential within the

framework. Twisting potentials are seen as free parameters that should be optimized

according to some global objective function that represents the ultimate goal of in-

ference. Their work builds on a line of research that to the best of our knowledge

originated in [36, 21], where the APF is interpreted as a standard SMC algorithm that

estimates a different target distribution. For an accessible treatment of this line of

research, see this survey by Naesseth et al. [59]. These works have been recently ex-

tended by Heng et al. [31].

Other interesting works that optimize a proposal in an online fashion include Cornebise

et al. [16], who adapt a mixture of experts proposal in order to approximate the opti-

mal SMC kernel. Akyildiz et al. [2] take an approach that could be complementary to

APF: they move the particles in regions of high likelihood preemptively via gradient

methods.

The excellent report by Whiteley and Johansen [72] describes and summarizes a larger

range of improval strategies for the APF covering parameter estimation and use of

MCMC moves, as well as providing an insightful treatment of its asymptotic variance

and comparisons with vanilla SMC.



Chapter 3

Methodology

In this Section, we go through the reasoning behind the development of OAPF, a novel,

online class of PF algorithms that find simulation weights by solving an optimization

problem, and uses the same weighting strategy as M2 algorithms such as Improved

Auxiliary Particle Filter (IAPF) [23] and AMPF [45]. Furthermore, we investigate

the potential for highly reducing the computational cost of the optimization problem

with a concrete example, and suggest a simple strategy that will prove accurate in the

experiments (Chapter 4).

We start by motivating the use of a mixture-type proposal, building on the concepts

explained in Sections 2.2.3: the use of a mixture of kernels proposal, which is a linear

combination of the simulation weights, will be the key ingredient that enables the

development of a convex optimization problem. Two distinct concrete optimization

strategies are proposed in Sections 3.2.2 and 3.2.1, and for both a thorough review of

the existing algorithms is provided. Finally, in Section 3.2.3 we suggest a simple way

to control the computational cost and, as will be shown in the experiments, increase

the estimation accuracy as well when using a large number of particles. A note on

analysing runtime complexity: in this work, we ignore complexity terms that come

from the dimensionality of the state space 1.

1For example, evaluation of a Gaussian probability density function takes D3 where D is the dimen-
sionality of the random vector, because of the inversion of the covariance matrix. Cholesky decompo-
sitions and forward-backward substitutions are used in practice, but these don’t change the asymptotic
complexity.

12
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3.1 Selecting a mixture proposal

We have briefly mentioned in the previous Chapter how already in [45] clear benefits

were shown from giving up on the linear-time (in the number of particles) cost for

an online SMC algorithm that is interested in estimating p(xxxt | yyy1:t). This paper also

suggests between the lines what the form of a ”optimal” mixture proposal could look

like. Consider the usual PF approximation of the SFD:

p(xxxt | yyy1:t)≈ g(yyyt | xxxt)
M

∑
k=1

w(k)
t−1 f (xxxt | xxx

(k)
t−1) (3.1)

which makes use of the M particle approximation of the same distribution at t − 1.

Now by considering the form of the one step optimal SMC proposal p(xxxt | xxxt−1,yyyt) =
g(yyyt |xxxt) f (xxxt |xxxt−1)

p(yyyt |xxxt−1)
, one can equivalently express 3.1 as:

p(xxxt | yyy1:t)≈
M

∑
k=1

w(k)
t−1 p(yyyt | xxx

(k)
t−1)p(xxxt | xxx

(k)
t−1,yyyt) (3.2)

This suggests that if our proposal is a weighted mixture of kernels, in order to match

the posterior as closely as possible, then it should satisfy:

• The weights should be as close as possible to w(k)
t−1 p(yyyt | xxx

(k)
t−1). These correspond

to the optimal choice for the simulation weights λ of the APF.

• The kernels used to propagate the particles should be as close as possible to

p(xxxt | xxx
(k)
t−1,yyyt)

These are the same conditions for full adaptation of the APF. However, as mentioned

in Chapter 2, Johansen et al. [36, 72] show that somewhat counter-intuitively 2 even

a fully adapted APF does not necessarily outperform BPF in all situations. For the

APF case, some light had been shed in [24] from the perspective of kernels overlap. It

does not seem clear whether a fully adapted version of the AMPF (Auxiliary Marginal

Particle Filter), which essentially just uses full mixtures in the IS weight computations,

would outperform other PFs in all scenarios 3. As we will see soon, in this work we fix

the kernels used to propagate the particles to be the transition kernels, and all the work

into matching the mixture proposal closely will go into efficient amplification via the

mixture weights.

Elvira et al. showed that using a full mixture is beneficial not only for the IS weight

2Especially considering the previous line of reasoning of matching the mixture posterior
3although it would likely not
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computation, but also for the selection of simulation weights: this led to an improved

APF (IAPF), with a better choice of λ [23]. The main question is then what could be

an ”optimal” choice for these ”simulation” weights λ, so that the resulting distribution

achieves minimum variance of the importance weights. The APF and IAPF make

explicit, analytic choices for this weight. Previously in this Section, we have seen

that the APF choice can be interpreted as trying to optimally match the weights of

the approximate mixture posterior. APF’s choice can also be intepreted as a direct

approximation of the (smoothing) distribution p(xxxt−1 | yyy1:t)
4 evaluated at each particle,

i.e. p(xxx(m)
t−1 | yyy1:t), where the m-th kernel is approximated with a Diract delta mass at its

center :

p(xxx(m)
t−1 | yyy1:t) =

w(m)
t−1︷ ︸︸ ︷

p(xxx(m)
t−1 | yyy1:t−1)

∫ f (xxxt | xxx
(m)
t−1)p(xxxt | yyy1:t)

p(xxxt | yyy1:t−1)
dxxxt (3.3)

≈ ∝ w(m)
t−1 ·

∫
δ

µµµ(m)
t
(xxxt)g(yyyt | xxxt)dxxxt (3.4)

= w(m)
t−1 ·g(yyyt | µµµ

(m)
t ) (3.5)

where notice that 3.4 performs both an approximation (by replacing f (xxxt | xxx
(m)
t−1) with

δ
µµµ(m)

t
) as well as the exclusion of a proportionality constant (by replacing p(xxxt | yyy1:t)/p(xxxt |

yyy1:t−1) with g(yyyt | xxxt)). Moreover, it is also interesting to observe that, if particles were

resampled exactly from p(xxxt−1 | yyy1:t), then the resulting new set of particles would be

automatically distibuted according to p(xxxt | yyy1:t).

On the other hand, IAPF chooses λt by looking at transition kernels overlap. It is dif-

ficult to intepret the IAPF choice as some approximation of p(xxx(m)
t−1 | yyy1:t), but such an

intepretation would be appealing since it would preserve a derivation of the simula-

tion weights follows by purely applying the rules of probability while making some

approximation.

In this work, we observe that it would be desirable to make a choice of simulation

weights that is more flexible than choosing an analytic form: we will see how to do so

in the next Section.

3.2 Optimization of simulation weights

Recent work by Zhao et al. [74] has started to attempt to fit a distribution to the true

filtering posterior using optimization in an online fashion, in this case with variational

4This fact was already explicited in [27]
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methods. However, Zhao et al. use the inclusive 5 Kullback-Leibler (KL) divergence

typical of VI for machine learning applications: this direction of KL is well known

to strongly underestimate the variance of the true posterior (a phenomenon sometimes

referred to as zero-forcing [57]), which is undesirable in a PF setting. In this thesis,

we will propose a different optimization procedure that adapts a proposal to the target

posterior p(xxxt | yyy1:t), which also addresses the desiderata expressed in the previous

Section. More specifically, while we fix the functional form of the proposal to be

a weighted mixture of kernels, we optimize the simulation weights by minimizing a

convex objective derived by imposing that the proposal should match the posterior

at a set of locations. These locations are not randomly chosen : they should exploit

knowledge given by the particle approximation at t−1,
{

w(m)
t−1,xxx

(m)
t−1

}M

m=1
.

With this spirit, we can think of imposing a constraint for each particle, forcing the

proposal to closely match the posterior at some representative point associated to that

particle. For example, we could impose strict equality between proposal and posterior

at locations
{

zzz(m)
}M

m=1
:

M

∑
k=1

λ
(k)
t f (zzz(m)

t | xxx(k)t−1) = g(yyyt | zzz
(m)
t )

M

∑
k=1

w(k)
t−1 f (zzz(m)

t | xxx(k)t−1) for m = 1, . . . ,M (3.6)

These points could be chosen to be the means of the transition kernels. In matrix

notation, letting λλλ =
(

λ
(1)
t ,λ

(2)
t , . . . ,λ

(M)
t

)>
, www =

(
w(1)

t−1,w
(2)
t−1, . . .w

(M)
t−1

)>
, and fff (m) =(

f (zzz(m)
t | xxx(1)t−1), f (zzz(m)

t | xxx(2)t−1), . . . , f (zzz(m)
t | xxx(M)

t−1)
)>

, the constraints become :

λλλ
> fff (m) = g(yyyt | zzz

(m)
t )�www> fff (m)︸ ︷︷ ︸

π̃ππ
(m)

for m = 1, . . . ,M (3.7)

Where � is elementwise multiplication, in this case between a scalar and a vector.

More compactly, we can express 3.7 as :

FFF︷ ︸︸ ︷
fff (1)

>

...
...

...

fff (M)>


 λλλ

=


g(yyyt | zzz

(1)
t )� fff (1)

>

...
...

...

g(yyyt | zzz
(M)
t )� fff (M)>


 www


so that :

FFFλλλ = ggg�FFFwww (3.8)

5That is, KL(q || p) where q is the proposal, p the true posterior.



Chapter 3. Methodology 16

A solution for λλλ could be found by ( letting ggg�FFFwww := π̃ππ ):

λλλ = FFF−1
π̃ππ (3.9)

Of course, this linear system of M equations does not need to have a unique solution

(or one at all) in general. Moreover, λλλ need to be used for the ”delayed” resampling

of particles, and therefore need to be nonnegative 6. We can thus turn this into a

constrained optimization problem. Two distinct strategies will be presented in the

following subsections.

3.2.1 Optimization via Linear Programming

One possible approach is to encode this problem as the following Linear Program (LP):

Minimize ∑m ξm w.r.t λλλ,ξξξ

λλλ
> fff (m) = π̃ππ

(m)
+ξm for m = 1, . . . ,M

Subject to: λλλ,ξξξ≥ 0

with 2M variables and 3M constraints. We have turned each of the constraints

from 3.7 into a relaxed version with added residuals ξξξ of the same dimension of λλλ.

This LP jointly optimizes for λλλ and for residuals ξξξ. Linear Programming problems

are extremely well studied, and there are two main class of algorithms that are used to

solve them: interior point methods and Simplex variants [15, 7].

The worst case case complexity of the Simplex algorithm is exponential in the number

of constraints [15], however this almost never arises in practice, where the complex-

ity is approximately O(nvar · n2
constr) [7] (that is, in our case, O(M3)). Interior point

methods may generally be less accurate than Simplex, but their worst case runtime is

approximately O(M3)[7].

3.2.2 Optimization via Non-Negative Least Squares (NNLS)

This constrained optimization problem can be approached as a Non-Negative Least

Squares (NNLS) problem:

Minimize
∥∥FFFλλλ− π̃ππ

∥∥
2 w.r.t λλλ

Subject to: λλλ≥ 0

6One can normalize them afterwards. Of course, they could not all be 0 either.



Chapter 3. Methodology 17

of the typical form ‖AAAxxx−bbb‖2
2, which can be more explicitly simplified and refor-

mulated as the following Quadratic Program (QP):

Minimize 1
2λλλ
>FFF>FFFλλλ−FFF>π̃ππ

Subject to: λλλ≥ 0

This problem is convex so that a unique solution exists, and can be found by a

plethora of constrained convex optimization routines. Firstly, note that a widely used

ad-hoc algorithm based on active-set methods exists by Lawson et al. [48]. This al-

gorithm has been extended into a faster version [8]. Note also that there exist fast

randomized and approximate algorithms for constrained least squares problems based

on Iterative Hessian Sketching (IHS), for which a survey is given in [64]. These al-

gorithms iteratively refine a solution by sampling random matrices 7 SSS ∈ RK×M (with

K << M, M being the number of constraints in our setting) and following the update

rule:

λλλ
(l+1) = argmin

λλλ∈C

1
2

∥∥∥SSS(l+1)AAA(λλλ−λλλ
(l))
∥∥∥2

2
−
(

AAA>(bbb−AAAλλλ
(l))
)>(

λλλ−λλλ
(l)
)

(3.10)

where l denotes the iteration index 8, C the convex constraint region (in our case, it

would be the space of positive real vectors) and for our setting AAA = FFF>FFF ,bbb = π̃ππ. IHS

algorithms are thus relatively simple to implement, have strong theoretical guarantees

of approximation, and importantly reduce the runtime to O(log1/ε) ·O(KM2) where

ε is related to the closeness in approximation, so that their application to our optimiza-

tion problem could be interesting further work. Finally, note that very recent work

on exact NNLS [58] provides fast and sparse solutions, which are useful for reducing

the complexity in the weighting step. The usefulness of a sparse solution will become

more apparent once we discuss strategies to reduce the runtime of the optimization

problem significantly.

The optimization problem we presented defines a class of algorithms (since Optimiza-

tion strategy , selection of evaluation points and other choices such as kernels used to

propagate the particles remain as free parameters) which we name Optimized Auxil-

iary Particle Filter (OAPF). This is described in full detail below in Algorithm 2. Com-

pared with the generic PF Algorithm 1, it has the MPF or equivalently IAPF O(M2)

importance weight computation.

7for details on how these need to be chosen, see [64]
8note that this is the iteration index within the same SMC iteration, to optimize the simulation

weights
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Algorithm 2: Optimized Auxiliary Particle Filter

1. Draw M samples from prior: xxx(m)
1 ∼ p(xxx1) and set w(m)

1 = 1/M for all m

2. For each t = 2 . . .T :

• Selection: select points where to evaluate the posterior
{

zzz(m)
}M

m=1

• Optimization: compute simulation weights λλλ by optimizing pro-

posal λλλ
> fff (m) to be close to π̃ππ

(m) for all m, subject to λλλ≥ 0

• Propagation: sample xxx(m)
t from proposal λλλ

> fff in two steps:

– Resampling: From set of weighted particles
{

xxx(m)
t−1,w

(m)
t−1

}
, re-

sample using λ
(m)
t to obtain resampled indices i(m) for m =

1 . . .M

– Draw new particles from the proposal: xxx(m)
t ∼ qt(xxxt | xxxi(m)

t−1,yyy1:t)

using resampled indices

• Weighting: calculate new importance weights:

www(m)
t =

p(xxx(m)
t | yyy1:t)

qt(xxx
(m)
t | yyy1:t)

∝
g(yyyt | xxx

(m)
t )∑

K
k=1 w(k)

t−1 f (xxx(m)
t | xxx(k)t−1)

∑
K
k=1 λλλ

(k)
t f (xxx(m)

t | xxx(k)t−1)
(3.11)

3.2.3 Reducing time complexity

The bottleneck in time complexity lies in the optimization stage of OAPF: both strate-

gies previously described take approximately O(M3) steps. For large M (103,104

etc.), not only will the algorithm be slow, but as experiments confirm (more on this

in Chapter 4), numerical optimization issues arise that negatively impact performance.

In Figure 3.1, a one dimensional example shows how it is likely unnecessary to in-

clude all evaluation points in the optimization problem. By considering only a subset

K << M, the matrix FFF gets reduced from M×M to K×K, and the target vector π̃ππ

from M× 1 to K× 1, giving a runtime of O(K3). For small enough K (i.e. such that

K3 < M2), the bottleneck in the algorithm becomes the weighting step, which as dis-

cussed in Section 2.2.3 can be reduced to O(M logM) with accurate and controllable

approximations. Furthermore, note that by only solving the optimization problem for

K simulation weights, the other are automatically set to 0: when K << M, then λλλ will
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Figure 3.1: In blue, evaluations of a posterior generated by multiplying a mixture of

100 Gaussian kernels with a Gaussian likelihood. Building the OAPF proposal would

take approximately 1003 computation steps. However, one can see that it seems highly

wasteful to adapt the mixture of Gaussian kernels proposal by evaluating at all blue

points: e.g., if the proposal matches the posterior at the rightmost red point, it will

probably go through the green point as well, so we don’t need to include that point in

the optimization. Moreover, it may also be wasteful to match proposal and target at

points where the target has little probability mass. From these considerations, one may

consider that trying to only match the three highlighted red points (and perhaps a couple

more), would likely result in a proposal that is closely as good as the one we would get

by using all blue points.

be very sparse by construction, and efficient matrix-vector operations can be employed

in the weighting step, as an alternative to N-body approximations used in [45].

The main question to be asked is how to select the K evaluation points. For simplicity,

consider only points that form a subset of the M evaluation points. Following the rea-

soning given in Figure 3.1, we could look at entries in π̃ππ and only keep the K highest

entries, then eliminating the corresponding rows and columns from FFF . This extremely

simple strategy works surprisingly well even with a very small K, as will be discussed

in Chapter 4. The potential for reduction of size in the optimization problem was ex-

perimentally noticed by solving instances using 1000 or more particles with OAPF:

these return extremely sparse solution vectors λλλ (about 90 percent sparsity), which

indeed suggests that most of them are unnecessary.



Chapter 4

Evaluation & Experiments

In this Chapter, the purpose is to evaluate the performance of OAPF compared to tra-

ditional algorithms (BPF,APF) but also the recent IAPF [23]. We design three sets of

experiments, each with its own Section. All experiments are coded in Python, making

use of the popular libraries NumPy [61], SciPy [37], Matplotlib [34] as well as Py-

Torch [63] for more efficient vectorization 1. For Kalman Filter implementation, we

use the open source library PyKalman 2. The latest version of project code is avail-

able at https://github.com/nicola144/auxiliary-particle-filters. Note that some Figures

may refer to OAPF as ”NPF”3 as when they were produced the algorithm was still

unnamed.

4.1 Matching a Mixture of Gaussians

In this first experiment, the main goal is to visually inspect how the proposal that re-

sults from the optimizatoin problem we have developed looks like. This is directly

based on the experiment in Elvira et al. (2019) [24].

Consider examining a single iteration of a PF algorithm; for the sake of this experi-

ment, suppose then we have M = 4 particles available from the previous iteration, for

which we will arbitrarily select importance weights and values of the particles. These

4 particles provide 4 transition kernels which we will select to be univariate Gaussians

with equal variance σ2
kern, and means {xxxt−1}M=4

m=1 . The likelihood will also be Gaussian

with variance σ2
lik. With these parameters, the mixture of 4 kernels multiplied by the

1we found that using PyTorch reduced computation times for building FFF from minutes to seconds
compared to vectorization in NumPy.

2https://pykalman.github.io/
3New Particle Filter

20
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likelihood can be obtained forming the true posterior, and it can be normalized with

high precision with numerical integration methods such as Simpson’s rule. We will

compare the mixture proposals given by BPF, APF, IAPF [23], and our novel OAPF.

This can be done visually, but also calculating the χ2 distance from each proposal to

the posterior4, since this measure is proportional to the asymptotic variance of the (nor-

malized) IS estimator of the normalizing constant 5.

Results from two experiments with the above setting are shown in Figure 4.2. For

all experiments we are reporting, simulation weights are optimized via NNLS; in one-

dimensional settings considered in this Section, we did not find meaningful differences

between the solutions given by the two different optimization strategies proposed in

3.2. Moreover, we select transition kernel means as evaluation points
{

zzz(m)
}M

m=1
. In

Figure 4.1a , the same parameters are used as in Elvira et al. [24]: in this example, the

original paper demonstrated the features of IAPF, which improves over BPF and APF

in a scenario with informative likelihood and overlapping transition kernels. In this

scenario we found, testing additional similar settings, that our novel PF is always at

least as good as IAPF, and very often at least slightly better. In Figure 4.1b we comple-

ment 4.1a with a setting where there is still an informative likelihood (thus favourable

for APF) , but now kernels have little overlap. As one would expect, the APF performs

greatly in this scenario, and in fact all algorithms except BPF perform practically the

same. Indeed, the proposals from APF, IAPF anad OAPF in this case are indistin-

guishable from the Figure given how close they are. We found this behaviour to be

consistent across similar examples.

4this can also be calculated using efficient numerical integration
5In SMC we use Self-Normalized estimators so this is not exactly optimal, but it is still a good

indicator



Chapter 4. Evaluation & Experiments 22

2 0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5 Kernel 1
Kernel 2
Kernel 3
Kernel 4
Likelihood

2 0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
BPF Proposal
APF Proposal
IAPF Proposal
New Proposal
True

(a) This example is reproduced exactly from Elvira et al. [24]. Here, transition kernels are scaled

by their importance weight wt−1. In the second plot, proposals and true posterior integrate to

1. OAPF (slightly) improves on IAPF by putting more probability mass on the highest region

of posterior probability. In this example, σlik = 0.8,σkern = 0.5, {xxxt−1}M=4
m=1 = {3,4,5,6}, with

corresponding weights {0.03,0.16,0.16,0.65}
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(b) In this example, we take well separated transition kernels, as well as an informative likeli-

hood. This is the regime where Elvira et al. [24] found that the APF operates on best. Indeed

one can see that APF, IAPF and OAPF all recover the same solution in this case. In this ex-

ample, σlik = 0.7,σkern = 0.2, {xxxt−1}M=4
m=1 = {3.25,4.57,5.75,6.5}, with corresponding weights

{0.316,0.158,0.210,0.316}

Figure 4.1: Mixture of Gaussians posterior reconstruction examples. OAPF posteriors

obtained by NNLS or Simplex have negligible differences (the ones plotted are obtained

by NNLS).
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Proposal χ2

BPF 13.639

APF 0.130

IAPF 0.060

OAPF 0.030

Table 4.1: χ2 from proposals to

true posterior from Figure 4.1a

Proposal χ2

BPF 1.064

APF 0.085

IAPF 0.085

OAPF 0.085

Table 4.2: χ2 from proposals to

true posterior from Figure 4.1b

4.2 Sequential estimation

In this Section we move onto more concrete PF experiments. Here, we explain settings

that will be common to all subsequent experiments. It is worth keeping in mind that we

focus on a setting where resampling is performed at each iteration, therefore estimates

are quickly affected by path degeneracy. Moreover, the optimization for OAPF is

always done using NNLS; more exploration is needed to investigate the differences

between the solutions given by NNLS and Simplex in general. The matrix of transition

kernel evaluations FFF used by OAPF has been conditioned by adding 0.1 · III in all runs.

Moreover, the set of evaluation points
{

zzz(m)
}M

m=1
is always chosen to be equal to the

set of transition kernel means
{

µµµ(m)
}M

m=1
, with µµµ(m) def

= E
f (xxxt |xxx

(m)
t−1)

[xxxt ]. All sequences

will be of length T = 100 timesteps. Experiments are reproducible with global random

seed 5.

4.2.1 Linear Gaussian state space model

We start evaluations by considering Linear Gaussian state space models. These are

appealing for evaluation purposes, because we can directly compare approximate pos-

teriors from PFs to the true posterior as calculated by the Kalman Filter (KF). More

precisely, consider a state space model with the following prior, transition and obser-

vation densities:

p(xxx1) = Nxxx1 (000, III) (4.1)

f (xxxt | xxxt−1) = Nxxxt (AAAxxxt−1 + ccc,RRR) (4.2)

g(yyyt | xxxt) = Nyyyt (CCCxxxt +ggg,QQQ) (4.3)
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Algorithm BPF APF IAPF OAPF OAPF (Reduced FFF , π̃ππ)

MSE with KF mean : M = 5 5.368 3.306 2.401 2.145 −
M = 10 1.852 1.012 0.689 0.603 −

M = 100 0.094 0.101 0.020 0.021 0.018 (2 kernels)
M = 1000 0.0063 0.0871 0.0075 0.0078 0.0065 (20 kernels)

Table 4.3: MSE between the estimated means of a 2 dimensional Linear Gaussian

system from PFs and the mean given by KF. The fourth column shows the MSE given

by OAPF when reducing the size of the optimization problem, by only selecting certain

rows and columns of FFF based on entries in π̃ππ. When reducing the system, the number

of kernels retained is M/50. For 5 and 10 particles this is not done, as the size is

already small enough.

The posterior SFD is calculated in closed form with the Kalman filter and is given by:

p(xxxt | yyy1:t) = Nxxxt (µµµt ,ΣΣΣt) (4.4)

µµµt = µµµt +KKK (yyyt−CCCµµµt) (4.5)

ΣΣΣt = (III−KKKCCC)ΣΣΣt (4.6)

µµµt = AAAµµµt−1 + ccc (4.7)

ΣΣΣt = AAAΣΣΣt−1AAA>+RRR (4.8)

KKK = ΣΣΣtCCC>
(

CCCΣΣΣtCCC>+QQQ
)−1

(4.9)

We start by applying BPF, APF, IAPF and OAPF to the task of tracking the dis-

tribution of a D = 2 dimensional hidden state. For this first example, the parameters

will be: AAA =CCC = III;ccc = ggg = 000;RRR = 5 · III,QQQ = 0.2 · III. In this example we choose uncor-

related dimensions for simplicity, as well as a larger transition covariance compared

to a small observation covariance. This is to resemble the situation explained in the

previous Section, where the APF has troubles because of the potentially overlapping

kernels. Table 4.3 shows the results of estimating the mean of the SFD over time: note

that the MSE is averaged across timesteps and across dimensions.

Finally, we track a 5 dimensional hidden state with the same parameters as previously:

MSE results can be found in Table 4.4.
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Algorithm BPF APF IAPF OAPF OAPF (Reduced FFF , π̃ππ)

M = 1000 0.4421 0.2364 0.0862 0.0917 0.0896 (20 kernels)

Table 4.4: MSE between the estimated means of a 5 dimensional Linear Gaussian

system.

4.2.2 Stochastic Volatility

We will also perform inference in a multivariate stochastic volatility model (SVM),

a type of stochastic process where the variance is a latent variable that follows itself

a stochastic process. These are extremely useful models to apply for many tasks in

mathematical finance and are often used to evaluate PFs [65, 45]. We employ the state

space model known as basic SVM [13] also used in related work by Guarniero et al.

[30, 29]. It is defined by the following prior, transition and observation densities:

p(xxx1) = Nxxx1 (mmm,UUU0) (4.10)

f (xxxt | xxxt−1) = Nxxxt (mmm+diag(φφφ)(xxxt−1−mmm),UUU) t = 2, . . . ,T (4.11)

g(yyyt | xxxt) = Nyyyt (000,exp(diag(xxxt))) t = 1, . . . ,T (4.12)

Unlike for Linear Gaussian systems, here there is no ground truth on the posterior

distribution: this makes evaluation signficantly more challenging. We follow partially

[45] and [65], showing the estimated ESS and the particle weight variance over time

for each of the PF algorithms.

We start by evaluating on a D = 2 dimensional hidden state. The parameters are set to

mmm = 000,UUU0 = III,UUU = 0.1 · III,φφφ = 111. We plot ESS and weight variance over time for 100

and 1000 particles in Figure 4.3. In two dimensions the best performing PFs appear

to be the APF (in terms of weight variance) and the OAPF (in terms of ESS). The

BPF clearly comes out as the worst, having extremely large variance of weights at

many iterations. Finally, we perform the same experiment, that is with the same exact

parameters, but in 5 dimensions (as we did for Linear Gaussian systems). As Figure

4.3c shows, the OAPF starts performing worse compared to lower dimensions, while

still being the top choice along with APF. Interestingly, IAPF seems to perform worse

than one would expect for this model. Indeed, in almost all one dimensional additional

examples tried for the experiments in Section 4.1, the IAPF proposal is always at least

as good as that of APF or BPF. Of course, one should remember that ESS and sample

weight variance are approximate measures of performance.
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(a) Evolution of the two-dimensional posteriors given by KF and OAPF over time (on the left

the first dimension of the state is plotted, on the right the second dimension). Notice visually

how the mean is already fairly well tracked, whereas the posterior uncertainty of OAPF often

overestimates that given by KF . This is likely due to the still relatively low number of particles

used.
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(b) The OAPF mean comes out to have the lowest MSE among the particle filters; however as

in timestep around 70 on the left, it can still happen that it makes large mistakes when other

filters won’t.

Figure 4.2: This Figure complements the results from Table 4.3 (second line): Part 4.2a

shows the full posterior by KF and OAPF (mean ± 1 standard deviation), whereas part

4.2b shows means only, but for BPF,APF,IAPF and OAPF. Recall that 10 particles are

used in this experiment.
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(a) Weight variance (left) and ESS (right) over time using 1000 particles. Importantly, to produce

this plot, we reduced the size of FFF , π̃ππ 50-fold to improve performance, obtaining a 20×20 matrix

and 20×1 vector for the optimization of OAPF
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(b) Same as above, with 100 particles. FFF , π̃ππ are respectively reduced to 2×2 and 2×1.
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(c) These are results for a 5 dimensional SVM exactly equal to the 2 dimensional above. Here

1000 particles where used, with the same reduction as Figure 4.3a

Figure 4.3: Evaluation of the basic SVM with a 2-dimensional hidden state (Figure 4.3a

and 4.3b) and 5 dimensional (4.3c). Legend is valid for both left and right plots. Note

that weight variance is plotted up to a range so that curves are visible for algorithms

other than BPF, since this has extremely high variance for some iterations.
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Conclusions

5.1 Summary & Discussion

In this thesis, we reviewed basic relevant concepts behind Particle Filters such as

Monte Carlo methods, Importance Sampling, and state space models. Then, we re-

viewed relevant past work that tries to improve the accuracy of estimates of traditional

PF algorithms, most notably: Marginal Particle Filters by Klaas et al. [45], Improved

Auxiliary Particle Filters by Elvira et al. [23, 24], and Iterated Auxiliary Particle Fil-

ters by Guarniero et al. [29, 30]. Inspired by ideas from all these works, we proposed

a novel class of PF algorithms named OAPF (Optimized Auxiliary Particle Filters).

To design this algorithm, we exploited the use of a proposal which takes the form of a

linear combination of the APF’s simulation weights, so that they can be optimized with

respect to the target posterior evaluated at a set of points. Effectively, OAPF matches

pointwise proposal and target at locations that incorporate knowledge from the particle

approximation at t−1. We also have seen that naively using as many transition kernels

as there are particles can be extremely wasteful of computational resources, as well as

harmful for accuracy of estimates, since OAPF optimization involves dealing with a

matrix of size K×K with K being the number of transition kernels one decides to deal

with.

We executed 3 sets of experiments to evaluate the performance of OAPF:

• Firstly, we simulated a single iteration by providing an artificial set of weights

and particles to represent the filtering distribution at t − 1. This setting allows

for a clear analysis of when transition kernels have significant/negligible overlap,

and the proposal can be visually compared to the posterior. The OAPF essen-

tially performs as a better version of the IAPF: its estimation benefits appear

28
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larger in the large overlap situation, whereas it performs similarly to APF as the

kernels overlap decreases.

• Then we proceded to track the SFD given by a Linear Gaussian state space

model. The OAPF generally tracks the mean of the KF more accurately than

other algorithms for both the 2 dimensional and 5 dimensional examples; how-

ever, larger number of particles seem to require the reduction in size of the opti-

mization problem to achieve competitive performance with IAPF. This is espe-

cially true as the dimensionality increases, since the number of particles needed

to estimate the state increases exponentially with its dimension. We showed

visually (for the 2 dimensional state) that after ≈ 10 particles, the posterior un-

certainty is also converging to that given by the KF.

• Finally, we evaluated on a version of the multivariate basic Stochastic Volatil-

ity model, also using 2 and 5 dimensional hidden states. This is a challenging

nonlinear state space model so that a closed form solution for the SFD is not

available: to evaluate performance, we analysed ESS and weight variance over

timesteps.

5.2 Scope

The practical application of OAPF can present some numerical optimization issues,

which seem to become worse as the dimensionality of the hidden state increases.

Firstly, since NNLS involves the inversion of large matrices, these could be ill-conditioned,

thus we added a diagonal term to alleviate this problem. However, for a dimensionality

of state space D > 5 approximately, the algorithm’s estimates seem to become worse

than its competitors. It is worth keeping in mind that SMC methods provide poor esti-

mates of the posterior distributions in high dimensions in general, as they suffer from

the curse of dimensionality. Furthermore, one may notice that the same approach of

optimizing the weights of a mixture proposal could be used in plain IS as well. How-

ever, here is where the selection of evaluation points comes into play: in SMC, we can

choose (e.g.) the centers of the transition kernels, or any set of representative points

linked to the particles at the previous iteration. These points already provide a reason-

able location where the posterior should be evaluated. This advantage is not generally

present in plain IS: knowing where there is significant probability mass in the posterior

is intractable. Finally, note that we have ignored runtime complexity that comes from



Chapter 5. Conclusions 30

the dimensionality of the state space. This is reasonable since we work in relatively

low dimensions; however, it needs to be stated that, due to the building of the matrix

of transition kernels evaluations FFF , our algorithm performs significantly more proba-

bility density evaluations than its competitors, and this could be prohibitive for some

applications.

Despite the presented issues, our novel algorithm presents several advantages:

• Simplicity of implementation: The algorithm requires only modifying a func-

tion that computes the simulation weights. For the optimization strategies we

have proposed, there are convenient subroutines from the SciPy and Numpy li-

braries that perform the optimization efficiently e.g. scipy.optimize.nnls

and scipy.optimize.linprog. Our code shows that once one has imple-

mented a modular framework for PF algorithms, it only requires a few lines

of code to change from IAPF to OAPF.

• For low dimensional problems (1 to 5 approximately), our results suggest it can

provide the most accurate posterior estimates, although a wider range of nonlin-

ear non-Gaussian models could be tested.

• When using large number of particles in order to seek high accuracy, the algo-

rithm benefits both in accuracy and runtime by reducing the size of the opti-

mization problem. Several strategies can be thought of in order to achieve this:

we presented an extremely simple one that requires a couple of lines of code,

but still improves results in our experiments and greatly reduces the computa-

tional cost. Furthermore, even without addressing the specific setting of our

optimization, NNLS can be performed very efficiently and accurately with Iter-

ative Hessian Sketching as explained in Section 3.2.2, which reduce the runtime

to O(log1/ε) ·O(KM2) where K and ε are user chosen (see that Section for more

details).

• Finally, empirically we found that for large number of particles (≥ 1000) the

solutions returned by NNLS in particular are extremely sparse (≥ 90%): this

fact, combined with the above findings, further suggest the potential computa-

tional savings both in the optimization stage of Algorithm 2 as well as in the

computation of IS weights. It has been suggested in the literature that enforcing

nonnegativity in least squares problems naturally promotes sparsity.
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5.3 Further work

There are several promising directions for future work. In particular, more techniques

could be developed in order to reduce the size of the optimization problem of OAPF in

a principled way, exploiting the structure of the SMC problem. For example, one could

try to reduce kernels by merging those that share a common ancestor in the PF ancestry

tree. There could also be smarter ways to select evaluation points, rather than simply

select the means of the transition kernels. Indeed, if the likelihood is ”far away” from

the BPF proposal 1, then it may be difficult to adapt the mixture of weighted kernels so

that it matches the posterior well, since the latter would be highly skewed towards the

likelihood. In this case, selecting at least some evaluation points that are in regions of

high likelihood could help the proposal match the posterior more closely.

Finally, since OAPF iteratively adapts a parameterized proposal to the posterior, one

could perform Variational Inference (VI). As mentioned at the beginning of Chapter 3,

performing VI online with the inclusive KL divergence is likely a bad idea: it would be

interesting to adapt recent work on VI with the χ2 divergence on general probabilistic

models [18] to the PF setting, perhaps deriving specific Variational Bounds by using a

mixture of kernels Variational distribution.

Moreover, there is room for work to adapt OAPF to make use of future observations

when these are available. In this case, having access to L further observations, one

could use kernels such as p(xxxt | xxxt−1,yyyt:t+L) and modified simulation weights p(xxxt−1 |
yyy1:t+L).

1which is a proxy for where the kernels sit in input space.
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