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Abstract

Prognosis of a brain tumour is often poor, and the prediction of survival is one of

the most challenging tasks physicians face. An accurate prognosis is essential for pa-

tient support and has a decisive impact on potential treatment regimens. This project

uses a hand-curated brain tumour dataset to compare interpretable rule list models to

a number of popular machine learning approaches for survival prediction. The per-

formance of the interpretable models will be evaluated against “black box” machine

learning models and the cost of transparency will be assessed. We investigate two rule

list algorithms, Bayesian rule lists and falling rule lists, and qualitatively assess their

interpretabiliy and clinical utility with the help of domain experts. We show that in-

terpretable rule list models are able to predict survival on par with opaque machine

learning models and have the added benefit of interpretability.
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Chapter 1

Introduction

1.1 Brain Cancer

Every year, approximately 12,000 people are diagnosed with a primary brain tumour

in the United Kingdom (UK), which is equivalent to nearly 33 people a day [1]. A

primary brain tumour originates in the brain itself, and the chance of developing this

type of tumour is less than 1% [2]. Often malignant (cancerous) and benign (non-

cancerous) tumours present with the same general symptoms. Symptoms may vary

depending on the type, location and size of the tumour, and compounded by the rar-

ity of the condition, brain tumours are one of the most difficult cancers to diagnose.

Although the exact cause of a primary brain tumour is unknown, certain factors such

as age or medical history may increase a person’s risk [2]. Despite advancements in

treatment, prognosis of a brain tumour is poor, with only 11% of adults surviving five

years after diagnosis [1].

The decision to further investigate for a potential brain tumour is difficult. By the

time a patient is referred to a specialist, the tumour may already be in an advanced

state thereby limiting treatment options. The first course of treatment if often surgery,

where the aim is to remove as much abnormal tissue as possible. This may be followed

by radiotherapy or chemotherapy to treat any abnormal cells left behind. However

even following treatment, a patient’s outlook varies greatly. Brain tumours kill more

children and adults under 40 than any other cancer in the UK [1]. Although survival

rates are slowly improving [3], overall survival remains poor compared to most other

cancers. Moreover, due to the rarity of brain tumours and range of brain tumour types,

survival rates are difficult to predict. By identifying factors that influence survival,

clinicians can tailor treatment regimens in an attempt to optimise patient outcome.
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Chapter 1. Introduction 2

Recently, with the increased availability of clinical data, data-driven approaches

such as machine learning (ML), have increasingly been applied to the medical domain.

Such models may be developed to assist clinicians in symptom assessment, referral

decisions and treatment plans. However, the implementation of ML models for high-

stake medical problems first requires a user’s understanding and trust in the model.

1.2 Objectives

The creation of a tool to assist clinicians in brain tumour diagnostic and treatment

decisions has the potential to improve the current rate of patient survival. A physician’s

judgement is the final say, but ML models may provide novel insight that augments

clinical expertise or gives support to a physician’s decision.

This project will explore the benefits of interpretable ML approach’s applied to the

medical domain. Specifically, rule lists will be investigated as a type of interpretable

ML model (introduced in Section 2.2). The purpose of this project is twofold. First,

existing ML techniques will be applied to a novel brain tumour dataset, with the goal

of implementing an accurate and interpretable ML model to predict patient survival.

Second, the results about survival will be compared against other “black box” models,

and the cost of transparency will be assessed. We also briefly explored the use of rule

lists to predict a glioblastoma diagnosis, the most lethal type of brain cancer [4].

This project uses a hand-curated dataset collected by Dr. Paul Brennan, a Senior

Clinical Lecturer and Honorary Consultant Neurosurgeon at the University of Edin-

burgh. Dr. Brennan also served as a clinical expert and was regularly consulted for

guidance throughout this project.

1.3 Thesis Structure

The remainder of this thesis is organised in the following way. Chapter 2 will provide

an overview of interpretability in ML, and introduce rule lists and other popular ML

algorithms. This is followed by a discussion on discretisation and an overview of pre-

vious work on brain tumour survival prediction. Chapter 3 will introduce the dataset,

including details of preprocessing, data imputation and discretisation. Chapter 4 will

outline the methods and evaluation criteria used to assess the models. Finally, Chapter

5 will discuss the results and Chapter 6 closes with a discussion of final conclusions

and future work.



Chapter 2

Background

This chapter will first discuss the importance of interpretable ML in high-stake deci-

sion making. This is followed by an introduction to rule list models and other ML

algorithms, an overview of discretisation techniques, and a survey of related work on

brain tumour survival prediction.

2.1 Interpretable Machine Learning

In the past, ML was employed for low-stake applications, such as online advertising,

with arguably no significant impact on human life. Recently, with advancements in

ML, algorithms are being used in high-stake ethical decisions such as criminal justice

[5], finance [6] and heath care [7]. Notably in the medical domain, models are be-

ing developed to predict the risk of an event such as hospital re-admission [8], stroke

outcome [9], or the development of cancer [10]. However, the employability of such

models in a clinical setting comes with many legal and ethical considerations. Specif-

ically, the model’s lack of interpretability in its decision making process is a major

limitation as end users (e.g. clinicians) will not act on a model’s output in blind-faith.

There is no all-purpose definition of interpretability, as this is a subjective concept

that is often domain-specific [11, 12]. Depending on the audience and application of

the algorithm, different types of explanations may be warranted. A popular definition

of interpretability by Miller is “the degree to which a human can understand the cause

of a decision” [13]. Thus a model may be considered more interpretable than another

model, if the prior’s decisions are easier to comprehend than the latter’s [14].

Most ML models are not originally designed to be interpretable, and advancement

in ML performance has led to the belief in a model’s accuracy-interpretability trade-off

3



Chapter 2. Background 4

[11]. Often complicated black box models produce highly accurate predictions at the

expense of human understanding. The idea that interpretability must be sacrificed for

accuracy is flawed, and interpretability may even be used as a tool to improve accu-

racy [14]. For example, interpretable models by design provide insight into variable

relationships and how final predictions are made. Unusual patterns in the data can be

recognised, addressed appropriately, and thereby improve the model’s accuracy. More-

over, the use of models with interpretability constraints have already shown to perform

on par with unconstrained models across several health care domains [15, 16, 17].

2.1.1 Types of Interpretability

Interpretability methods can roughly be divided into two main techniques: intrinsic and

post-hoc interpretability. Intrinsic interpretability refers to a model that by design is in-

nately interpretable. The model is restricted to a simple structure allowing end-users to

understand feature relationships and how final results are generated. Commonly used

interpretable models include rule lists, decision trees and regression algorithms. How-

ever, the level of interpretability in these models vary, with rule lists being the most

interpretable. Post-hoc interpretability refers to explanation techniques used to extract

information from a trained model. The latter method has the advantage of flexibility, as

these techniques can be applied to any model type, thus allowing developers the free-

dom to choose the model they desire. Post-hoc interpretability methods include feature

importance, partial dependence or the use of a surrogate model (e.g. a linear model).

For example, LIME (Local Interpretable Model-Agnostic Explanations) is popular sur-

rogate model which locally applies a linear model to a prediction to understand how

the prediction changes with data-point alterations [18]. When assessing multiple mod-

els, it may be advantageous to use post-hoc explanations, as the same technique can be

applied to all model types. Although, post-hoc interpretability methods have proven to

be powerful tools, they spawn the risk of generating explanations predicated on arte-

facts learned by the model rather than true patterns from the data [19]. Conversely, a

model that is interpretable by design may yield more faithful explanations based on

the model’s own computations. Considering the high-stakes application of a predic-

tive risk model, an algorithm which is inherently interpretable may be trusted more

in clinical practice. Thus the focus of this thesis is on intrinsically interpretable ML

methods, specifically rule-based models, however feature importance and LIME were

also briefly experimented with (see Section 5.2).



Chapter 2. Background 5

2.2 Rule Lists

Rule lists have shown great success for many decades as a type of intrinsically inter-

pretable model. This model produces a series of if-then rules, also known as decision

rules, which are used to generate predictions. If a rule (or set of rules) is satisfied, the

model outputs a certain classification. This general rule structure, if the conditions are

satisfied then make a prediction, is semantically similar to natural language and thus

appeals to human intuition. Although the concept of decision rules is well known, the

use of ML to learn a rule list is relatively novel.

MYCIN, developed in the early 1970s, was an early rule-based expert system that

used artificial intelligence (AI) to assist physicians in treatment decisions for infec-

tious diseases [20]. MYCIN consisted of over 450 hand-curated rules that were devel-

oped using the heuristic knowledge of specialized domain-experts. This expert system

would ask a series of questions designed to emulate the thinking of an expert, and

also contained an explanation system that justified its recommendations. MYCIN was

viewed as credible by professional users [21], and pioneered a new-stage of AI which

utilised domain expertise and heuristic knowledge to solve a problem. The success of

MYCIN spawned the development of many other medical expert systems [22, 23, 24].

Despite its success, MYCIN and other expert systems suffer from a number of lim-

itations. The knowledge base provided by human experts may be incomplete, subject

to bias and often lacks the common sense required for decision-making [25]. Expert

systems are also expensive to build and maintain, and errors in the knowledge base may

lead to wrong decisions. More recently, rule-based models are being constructed di-

rectly from datasets with the help of ML [26]. Instead of domain knowledge, the rules

are learned straight from the data. This data-driven approach reduces the potential for

human error, and is significantly more time and cost-effective.

There are many algorithms available to learn decision rules from data. This project

will explore the Bayesian Rule List (BRL) [27] and Falling Rule List (FRL) [28] algo-

rithms, described in Sections 2.3 and 2.4, respectively. Both BRL and FRL models are

a type of generative algorithm, which explicitly models the distribution of each class,

compared to a discriminative algorithm which models the decision boundary between

classes. Other decision rule algorithms such as OneR [29] and Sequential Covering

[30], will not be reviewed in this thesis and a discussion on the fundamentals of rule

learning can be found elsewhere [31].



Chapter 2. Background 6

2.3 Bayesian Rule Lists

BRLs combine pre-mined frequent patterns from the dataset into a decision list using

Bayesian statistics [27]. Bayes’ theorem is a simple formula for calculating conditional

probabilities. It can be used for the classification of data, referred to as a Naive Bayes

Classifier [32], such that:

P(C|X) =
P(X |C)P(C)

P(X)
(2.1)

where P(C|X) is the posterior probability of a class given some data, P(X |C) is the

likelihood of the data given the class, P(C) is the prior probability of the class, and

P(X) is the probability of the data. For classification, P(X) is effectively constant and

can be ignored. The model makes a ‘naive’ assumption of conditional independence

where it is assumed that the feature probabilities are independent given the class. Given

the training data and specified hyperparameters, BRL’s use this theorem to create a

probabilistic classifier that optimises the posterior over rule lists [27].

BRL’s are used for classification problems where the goal is to learn P(Y = 1 | X).

Y is binary, and in the case of predicting a brain tumour, Y = 1 would indicate the

presence of a brain tumour and X would represent a patient’s features. The condi-

tional probability distribution is represented as a decision list consisting of a series of

if...then... rules. Figure 2.1 shows an example of a BRL constructed from our dataset

which predicts the probability a patient will survive more than one year following a

brain tumour diagnosis. The creation of a BRL roughly follows the subsequent steps:

first, antecedents are extracted from the data using a rule mining technique and sec-

ond, a set of rules and their order are learned using Bayesian statistics. The steps are

discussed in detail below.

Figure 2.1: An example BRL created from our dataset to predict one year survival. The

95% credible interval of the survival probability is shown in parenthesis.
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2.3.1 Frequent Itemset Mining

BRLs are constructed from pre-mined association rules extracted from the dataset.

Each rule is composed of two different sets of items, a and b, also known as itemsets.

An association rule is an implication of the form a→ b (or if...then...), where a is an

antecedent that is followed by a consequent b. As an example, for the first rule in

Figure 2.1, the antecedant a is “Diagnosis: meningioma AND Treatment: Excision

surgery”, and the consequent b is “Survival > 1 Year”. Thus if a is true, then the

probability of b, or probability of survival greater than one year, is 96%.

Frequent itemset mining [33] is used to find common patterns from the data. Item-

sets, consisting of these frequent patterns, are used to construct the association rules.

Most rule-mining approaches make the restrictive assumption that all features are bi-

nary or categorical. During preprocessing, continuous data (e.g. Age) must be dis-

cretised into categorical features using interpretable thresholds (e.g. ages 50-59, 60-

69, etc.) or other discretisation methods (see Section 2.6). The BRL model uses the

FP-Growth algorithm [34] for frequent itemset mining. For binary and categorical

features, the chosen rule mining algorithm does not matter [27]. The rule mining al-

gorithms all perform breadth-first search thus alternative algorithms, such as Eclat or

Apriori [35, 36], would generate an identical list of itemsets given the same constraints.

FP-Growth takes a discrete dataset and returns a data subset as itemsets that satisfy

constraints on minimum support and confidence. Support, defined in Equation 2.2,

refers to how frequently the itemsets appear in the data, where f req(a,b) is the fre-

quency of the itemsets containing items a and b, and N is the number of observations

in the dataset. Confidence, defined in Equation 2.3, is the frequency of itemsets that

contain a which also contain b, or how often a rule is found to be true [34]. Conse-

quently, performance of these rule mining algorithms is dependent on user-specified

thresholds. If the minimum support is too large, the algorithm may fail at finding the

true patterns in the dataset, whereas a small minimum support may generate an excess

amount of association rules that is not feasible for effective use. Note that these equa-

tions are provided for completeness but they will not be used for rule evaluation and

this thesis will focus on standard metrics for machine learning (see Section 4.5).

Support =
f req(a,b)

N
(2.2)

Confidence =
f req(a,b)
f req(a)

(2.3)



Chapter 2. Background 8

2.3.2 Learning Bayesian Rule Lists

The previous section described how frequent patterns, or association rules, are mined

from the dataset. The BRL algorithm optimises over these pre-mined rules, rather than

the entire feature space, which greatly reduces computation time [27].

The Bayesian approach to building a rule list takes into account user specified pri-

ors, which are often used to favor concise rule lists with small rule cardinalities. BRLs

create a posterior distribution over rule lists, given the observed data and prior assump-

tions. Using the generative model outlined in Algorithm 1, the model samples an initial

decision list from the posterior distribution that maximises the posterior probability.

The generative BRL model creates a decision list d, for the target labels y, from the

features x and antecedents A. The predicted label y, follows a multinomial distribution

over labels (rather than a single label). The multinomial probability is given a prior α

which represents the prior pseudo-count for the target classes. The generative model

(see Algorithm 1), defines a< j as the antecedents before j in the rule list (if any), c j as

the cardinality of a j and c< j as the cardinalities before j in the rule list.

Algorithm 1: Generative BRL Model [27]
Result: Sample an initial rule list from the posterior distribution over antecedent lists.

1 Sample a decision list length m∼ p(m|λ);
2 Sample the default rule parameter θ0 ∼ Dirichlet(α);

3 for decision list rule j = 1, ..., m do

4 Sample the cardinality of antecedent a j in d as c j ∼p(c j|c< j,A,η);

5 Sample a j of cardinality c j from p(a j|a< j,c j,A);

6 Sample rule consequent parameter θ0 ∼ Dirichlet(α);

7 end

8 for observation i = 1,..., n do

9 Find the antecedent a j in d that is the first that applies to xi;

10 If no antecedents in d apply, set j = 0;

11 Sample yi ∼Multinomial(θ j);

12 end

We will now discuss the posterior, prior and likelihood of the BRL model followed

by descriptions of posterior sampling and rule list selection.

Posterior: The goal is to optimise the posterior distribution to obtain the best rule

list, where the posterior is proportional to the product of the likelihood and the prior.

The full posterior model is defined as:
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p(d|x, y, A,α,λ,η) ∝ p(y|x,d,α)p(d|A,λ,η) (2.4)

where λ denotes the prior expected length of the decision list and η denotes the prior

expected cardinality of a rule. The user must specify the prior hyperparameters: α,λ,η.

Prior: The prior describes the probability of the decision list given the antecedents

and specified hyperparameters. The prior is defined as:

p(d|A,λ,η) (2.5)

where λ is a hyperparameter for p(m|A,λ), and the number of rules m follows a Pois-

son distribution, truncated at the total number of pre-mined antecedents. The second

term η, also follows a truncated Poisson distribution, where values are removed when

no rules are available with the specified cardinality. The truncated Poisson distribu-

tion is a proper prior and was chosen for its simple parameterisation [27]. The prior

multiplicatively combines the distributions from which a decision list d is sampled.

Likelihood: The likelihood of the model describes the probability of the target y,

given the features x, decision list d and prior α:

p(y|x,d,α) (2.6)

The likelihood increases when the decision list d better describes the data. α, the prior

class pseudo-count, is often set to 1 for both classes resulting in a uniform prior.

Markov chain Monte Carlo (MCMC) sampling: The optimal decision list d∗

cannot be directly calculated from the posterior distribution. An initial decision list is

selected (using Algorithm 1), and iteratively modified using MCMC sampling [37] to

generate many samples of decision lists from the posterior distribution. The initial de-

cision list is modified through the swapping, addition, and removal of rules where the

modified rules and their new positions are chosen uniformly at random. At each mod-

ification, the posterior probability of the decision list is evaluated. For every MCMC

iteration, 3 chains are run until convergence (diagnostic R̂ < 1.05), and each chain was

initialised independently from a random sample from the prior. This procedure ensured

a variety of lists were produced that are not dependent on one initial decision list.

Rule list selection: Given the posterior distribution, new observations ỹ are classi-

fied using a point estimate (a single decision list) or the posterior predictive distribution

(multiple decision lists). The point estimate is chosen as the list with the highest poste-

rior probability from all the samples with posterior mean list length and posterior mean
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average rule cardinality. This estimate is called BRL-point [27]. Alternatively, the en-

tire posterior can be used to estimate a prediction. Thus the full collection of posterior

samples is used to classify ỹ. This method is called BRL-post. By using the entire

posterior prediction the classifier is no longer interpretable. One solution is to provide

several point estimates from the posterior as example explanations [27]. However, due

to its interpretability limitations, we chose not to explore this method.

2.4 Falling Rule Lists

An extension of the BRL algorithm is the FRL model. A FRL is an ordered decision

list whereby the estimated probability of success, or P(Y = 1 | X), decreases down

the list [28]. Similar to BRL, pre-mined itemsets are first extracted from the data, then

Bayesian modelling is used to produce a decision list. FRL’s use Monte Carlo sampling

[37] and simulated annealing [38] to approximate the FRL.

The parameters of the FRL model are as follows: the size of the rule list L, the

if clauses (or antedecents A), and the risk scores rl associated with each rule. The

risk scores are passed through a logistic function to produce a risk probability be-

tween 0 and 1 (i.e. P(Y = 1 | X)). The rule at the top of the list will have the highest

risk score, which will monotonically decrease down the list. These monotonicity con-

straints are enforced through reparametrization so that rl ≥ rl−1for l = 0, ...,L. After

reparametrization, the rule list prior is:

p(d|A,λ,η,γ,K) (2.7)

where γ is used to determine the risk score and K determines the risk score associated

with the default rule rL (see Wang and Rudin [28] for mathematical details). γ fol-

lows a truncated Gamma distribution [39], which allows for posterior sampling while

enforcing monotonicity constraints. K is also Gamma distributed.

Similar to BRL, to obtain the optimal decision list d∗, Monte Carlo sampling from

the posterior distribution is required to generate an initial sample of d. A combination

of Gibbs and Metropolis-Hastings sampling [40] is used over the prior parameters in

Equation 2.7. Unlike BRL, following the production of an initial rule list, instead of

yielding many sample lists, a point estimate of d∗ is found using simulated annealing.

Simulated annealing is a global optimization technique that begins with a random

initial solution and incrementally improves an objective function [38]. An initial de-

cision list (state st) is selected using Monte Carlo sampling and the next state st+1 is
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obtained by choosing uniformly at random an operation (swap, replace, add, remove)

that alters the current rule list. This new rule list st+1 is accepted if based on an objec-

tive function it is better than the current state st . If the new state st+1 is not superior, it

may still be accepted with a probability specified by a temperature schedule. This tem-

perature parameter slowly decreases thus accepting less bad moves as the algorithm

progresses. In the original paper, stimulated annealing was run for 5000 steps then a

final rule list, which is an approximate of the global optimum, or maximum posterior

probability, was returned [28].

2.5 Baseline and Machine Learning Approaches

Statistical models are commonly used in clinical practice for survival analysis and

treatment decisions. The Cox proportional hazards model, introduced in 1972, is a

well-recognised statistical technique frequently used in clinical trials to identify dif-

ferences in survival due to treatment and prognostic factors [41]. Nowadays, with the

accumulation of clinical, genetic, and imaging data, these statistical models are often

outperformed by ML models. However, statistical methods have proven effective in

clinical practice and the Cox model is still wildly used in the medical field today [42].

This project will compare BRL and FRL algorithms to the baseline Cox model

and popular ML approaches. To represent the class of uninterpretable ML methods,

we chose random forest, logistic regression and support vector machine (SVM). We

briefly review the baseline Cox model and various ML approaches next.

2.5.1 Baseline Cox proportional hazards model

The Cox model is a regression method for survival data analysis [41]. The model

analyses the effect of several prognostic variables on survival using a hazard function

λ(t). The hazard function describes the probability a person will experience an event

(e.g. death) as a function of time. The model uses a semi-parametric approach whereby

the effect of the covariates on λ(t) is assumed parametric, but there is no assumption

regarding the shape of λ(t). Thus the form of λ(t) does not need to be specified. The

Cox model is defined as:

λ(t) = λ0(t)exp(β1x1 +β2x2 + ...+βkxk) (2.8)

where λ(t) is the hazard function for an observation, λ0(t) is the baseline hazard func-

tion, x1, ...xk are the covariates and β1, ...βk are the coefficients estimated from the
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data. The following assumptions are made by the model: each feature independently

affects the hazard, and each feature has a multiplicative effect on the hazard function

that remains constant over time (see Section 4.2 for a Cox model implementation).

2.5.2 Popular Machine Learning Models

Random Forest: Decision trees, which are the building blocks for random forests,

follow a flowchart-like structure that recursively partitions the feature space according

to cutoff feature values [43]. Each split results in different data subsets, and each data

point belongs to one subset. The final subsets are called terminal or leaf nodes, where

the average outcome of the data in that node is used to predict the model output.

A random forest consists of a large number of decision trees that work together

to make a prediction [44]. For classification, each decision tree returns a class pre-

diction and the majority response becomes the final prediction. Random forests are

interpretable to an extent, where the importance of each feature can be measured using

an impurity-based metric [45] (see Section 5.2.2).

Logistic Regression: Logistic regression is a supervised classification technique

that models the relationship between input variables and a binary target output [46].

The model fits a sigmoid function to the data and returns a probability of the target

output belonging to one of the two classes. Logistic regression is also a partially in-

terpretable model where the importance of each feature is determined using the odds

ratio [47] (see Section 5.2.2).

Support Vector Machine: A support vector machine (SVM) is a supervised clas-

sification model that separates two classes using a hyperplane [48]. If the classes can-

not be linearly separated, an external technique called the kernel trick is implemented

to transform the original data into a new feature space [49]. The transformed data

can now be linearly separated. The implementation of a kernel results in the complex

transformation of data thus rendering an SVM uninterpretable.

2.6 Discretisation

As discussed in Section 2.3.1, rule mining algorithms require features to be binary or

categorical, thus continuous features must first be discretised. The chosen discretisa-

tion method and splitting criteria can have a significant impact on the final algorithm

performance [50]. Ideally, discretisation should partition the feature in a way that
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reflects the original distribution. The remainder of the section will introduce discreti-

sation methods used in Section 3.3.5.

2.6.1 Unsupervised Discretisation

Unsupervised discretisation does not require class labels. Thus the discretised data

may be used for multiple purposes allowing for more versatility in the application of

the final algorithm. Unsupervised discretisation methods include:

Equal Width Binning: This method divides the continuous feature into k bins of

equal size. The width of each bin is defined as: w = (max−min)/k. For example, the

feature Age may be split into 10 bins (0-9, 10-19, 20-29, etc.).

Quantiles: Quantiles are a set of ‘cut points’ that divide a feature into equal-sized,

adjacent, subgroups (or divides a probability distribution into intervals with equal prob-

abilities). There is one fewer quantile than number of groups created.

2.6.2 Supervised Discretisation

Supervised discretisation uses information from class labels for optimisation. This

method tends to yield higher accuracy, but data is limited to a single application [50].

An extension of the BRL model employed the following method (see Section 3.3.5):

Entropy: Entropy-based discretisation partitions the dataset into intervals that

maximises the information from the data, measured using entropy. Entropy is a mea-

sure of uncertainty, thus the goal is to reduce the uncertainty in the data (or maximise

information gain). Entropy is also used by decision trees to decide which features

are used to partition the data. Mathematically, entropy can be written as: H(X) =

−∑
n
i=1 p(xi)log2 p(xi) where the possible outcomes of the variable X occur with prob-

ability p(x1),...,p(xn). Information gain (IG) can be written as: IG(X ,Y ) = H(X)−
H(X |Y ) where the conditional entropy of X given Y is subtracted from the entropy of

X. This returns the information gained about X given additional information about Y.

For discretisation, the feature split that results in the highest IG is selected. IG is used

to recursively define the best bins, until a stopping threshold is reached. A common

criterion is the Minimum Description Length (MDL) principle [51], whereby a feature

is recursively split until the IG is lower than the MDL of the split. However, if the

MDL method cannot find a way to initially bin the data, it assigns all data to a uniform

bin. According to the algorithm, the splitting of the feature did not provide enough

information relating to the target class, and the IG is below the MDL threshold.
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2.6.3 Heuristic Discretisation

User-specified boundary points are chosen based on an in-depth understanding of the

data. To make appropriate discretisation decisions, domain knowledge is often re-

quired to understand the feature’s behavior and distribution. For example, the feature

Age has a natural separation (e.g. ages 0-18, 19-30, etc.) but the feature Maximum

Tumour Size may require consultation with an expert to determine an organic split.

2.7 Existing Work on Brain Tumour Survival Prediction

Now that we have reviewed some of the algorithms employed in the project, let us turn

to a discussion of current work on brain tumour survival prediction.

Every day clinicians attempt to tailor medical treatment decisions to patients by

taking into account demographics, medical history, and socio-economic factors. More

recently, the integration of ML into patient care has re-shaped the way personalised

medicine is viewed. ML models have already shown great promise in precision medicine

for lung cancer [52], breast cancer [53, 54], and leukemia [55]. Such studies often use

genetic or magnetic resonance imaging (MRI) data, with complex black box models

to make medical decisions. However, these models are of little use when only clinical

data is available. In the interest of brevity, only studies using clinical data will be dis-

cussed as they are most applicable to this project. At present, the use of clinical data

alone for brain tumour survival prediction often employs statistical techniques and the

use of ML is minimal.

Commonly, clinical features are used by survival studies for the development of

a nomogram, a popular tool to estimate individualised cancer prognosis [56]. Based

on multiple variables, nomograms compute a cumulative point score that is used to

predict the probability of an event, such as survival. Barnholtz et al. [57], developed a

nomogram to predict the 6- and 12-month survival of patients with a brain metastases.

The authors compared three statistical models (Cox proportional hazards regression,

recursive partitioning analysis, random survival forests) and found that the Cox model

performed the best. This model was then used to build the nomogram. Many of the

features included in the nomogram were similar to the ones assessed in this project,

such as: age, Karnofsky Performance Scale (or KP score), surgery type and patient

self-reported symptoms. Interestingly, of all the variables used, KP score, which is

commonly used in oncology to assess the functional state of a patient (see Section
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3.3.3), had the smallest effect on the incremental improvement of accuracy [57].

Gittleman et al. [58], also created a nomogram to assess the 6-, 12-, and 24-month

survival probability of patients with a glioblastoma, the most common type of brain tu-

mour. The authors compared the same three statistical models and again found that the

Cox model outperformed the rest. An older age at diagnosis, male sex, lower KP score

and not undergoing a total tumour resection were found to decrease the probability of

a longer survival. The observation that men are more at risk than women is in-line

with current literature and our own dataset. The literature states that the incidence rate

of a glioblastoma in males is 1.6 times greater than in females [59]. In our dataset, of

the 519 male patients, almost 45% have a glioblastoma (227), compared to 30% of the

518 female patients. Nomograms have also been developed to predict survival proba-

bility for lower-grade gliomas (LGG) [60], and subsequent brain metastasis following

metastatic breast cancer [61].

Although nomograms are useful tools for optimising treatment approaches, these

models are built using simple multivariable regression techniques, such as the Cox

model. However, with the increased availability of clinical data, ML can be used to

build predictive models with superior performance and generalisability [62, 63].

2.7.1 Previous Masters Dissertation

This project built upon a previous Master’s dissertation that investigated influential

factors for brain tumour survival [64]. The previous dissertation used a subset of the

same dataset as this project, focussing only on patients with a glioblastoma (see Section

3.1 for dataset description). Survival was treated as continuous, and the limitations of

the Cox model were explored. The author compared different tree-based models to

the Cox model, and using the average mean square error found that random forest

performed the best. To understand what influences survival, the importance of each

feature in the random forest model was analysed. The author found that the amount of

temozolomide, a type of chemotherapy drug, and the total dose of radiotherapy were

most influential (these variables were not readily available in our dataset). This was

followed by the extent of tumour resection and age. The author also explored different

methods of data imputation and whether current treatment protocols were optimal for

patient survival. This project will utilise these imputation techniques and compare

additional ML models (logistic regression, SVM) as well as interpretable ML models

(BRL, FRL) to the Cox and random forest model (see Chapter 5 for model results).
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Data Preprocessing

Data analysis for this project was carried out in Jupyter Notebooks [65] and code was

written in Python 2.7.18 and Python 3.6.10. Standard data analysis libraries were used

(Pandas [66], Numpy [67], Matplotlib [68], Scikit-learn [69]). Code for both the BRL

and FRL methods were adapted from the original authors’ code [27, 28]1.

3.1 REDCap Dataset

This project used the anonymised REDCap Dataset collected by Dr. Paul Brennan.

This contains 1391 patient records and 225 feature types for each patient. An ear-

lier version of this dataset was used by the previous Masters dissertation described in

Section 2.7.1 [64]. The dataset has since been updated and now includes additional

patient cases, more detailed records and updated survival times. Features in the dataset

include patient demographics (e.g. sex, age), medical history (e.g. history of cancer,

comorbidity), symptom features (e.g. symptom types, duration), radiological tumour

analysis (e.g. type, size, location) and treatment details (e.g. type of surgery, extent

of resection). Survival time for each patient is recorded up to April 2020. A prelimi-

nary analysis of the dataset was carried out to assess feature distributions, relationships

between features, and the extent of missing data.

3.2 Exploratory Data Analysis and Missing Data

An initial review of the dataset revealed that a large selection of features relating to

symptoms and signs were duplicated (see Section 3.3.1 for handling of duplication).

1https://users.cs.duke.edu/∼cynthia/papers.html
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Additionally, a significant number of features related to blood test results (pre- and

post-chemotherapy) and other in-depth treatment details. For the purposes of this

project, these features were ignored and a subset of 21 features were selected for fur-

ther investigation (see the Glossary in the Appendix for features descriptions).

Our preliminary investigation found that the dataset contained 111 records of pa-

tients who either did not have a brain tumour or did not receive a diagnosis. Alter-

native diagnoses included stroke, hematoma and atrophy (cell degeneration). These

111 patients were removed from the dataset. Additionally, a large section of patients

(243) were missing a significant number of diagnostic features, including presenting

symptoms and signs. Dr. Brennan advised that the dataset was compiled by differ-

ent authors at different time points thus some authors did not record certain features.

These patients were removed from analysis to improve the richness of the dataset. The

following statistics are based on the remaining 1037 patients.

The dataset contains significant heterogeneity with more than 20 different brain tu-

mour types. The most common types are glioblastoma (381), metastasis (189), menin-

gioma (170) and glioma (109). The minimum age of a patient is 16 years while the

oldest is 97 years. The majority of patients are aged 50-70 with a median age of 61

years. There are an equal number of male and female patients (519 and 518, respec-

tively). 18% (189) of patients had a previous history of cancer and 47% (491) of

patients presented with a co-morbidity, the most common being cardiovascular (18%

of all patients). The most common location for a tumour was in the frontal lobe (35%)

followed by the temporal lobe (23%). More than half of the patients (64%) had some

type of surgery, 25% of patients underwent chemotherapy, and 20% received radio-

therapy. This is inline with current treatment protocols where surgery is often the first

line of treatment, followed by radiotherapy and concurrent chemotherapy for more

advanced tumours [70]. Finally, 22% of patients received no treatment.

A large portion of the dataset pertained to symptom and sign features. The main

difference between symptoms and signs is who observes the effect. A symptom is

observed by the patient themselves (subjective) while a sign is observed by the physi-

cian (objective). Symptoms are often what drive a patient to consult a physician. The

three most common symptoms patients presented with were headache (295), unilateral

weakness/change (89) and seizures (85). The three most common signs patients pre-

sented with were unilateral weakness (125), cognitive/non-specific confusion (99) and

problems walking/ataxia (84). Although all patients in the reduced dataset presented

with at least one symptom, 41% of patients did not present with any signs.
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Patient survival was measured in days and 35% of patients were still alive (361)

(last updated April 2020). This is known as censored data, which is common in sur-

vival analysis, whereby the value of an observation, in this case survival, is only par-

tially known [71]. The mean survival time is 383 days, while the median is 245 days.

Overall survival time follows a decreasing exponential distribution (see Figure 3.1).

Currently, the largest survival time is 3964 days, or about 10 years, however only three

patients have a survival time greater than 2000 days (for sake of visualisation they were

not included in Figure 3.1). The high variance in survival may relate to a variety of

factors including age, tumour type, and treatment outcomes.

Figure 3.1: Histogram of survival in days. The graph follows a rough exponential shape.

3.2.1 Missing Data

The majority of patients in the reduced dataset have incomplete records. The bulk

of features are 70-80% complete, with a mean completeness of 81% and median of

88% (see Figure 3.2). An important consideration is the handling of these missing

values. Treating all missing values the same would be a strong oversimplification as

missing data can come from a variety of sources. An entry for a feature may be absent,

but this does not imply that the entry is truly missing. For example, a patient may

only present with one symptom thus leaving the remaining symptom features empty.

This creates the appearance of missing data but in fact the empty entries are correctly

missing. Imputing this missing data would introduce bias into the dataset, and a patient

presenting with only one symptom may in itself be informative. Given the amount of

missing symptom and sign data, only symptom 1 (i.e. the first symptom a patient

presents with), symptom 2 and sign 1 were used as features.
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Figure 3.2: Percentage of records complete for each feature. The following features are

100% complete: Survival, Symptom 1, Sex, Age. See Glossary for feature definitions.

3.3 Preprocessing

Due to the amount of incomplete data, the initial dataset was not suitable for survival

prediction. A number of data cleaning steps, including imputation and discretisation

were first required.

3.3.1 Symptom and Sign Features

The original dataset contained almost 90 features relating to symptoms and signs,

which was partially due to feature duplication. First, the symptoms and signs a patient

presented with at their general practitioner (GP) were recorded, as well as the symp-

toms and signs a patient had upon referral to a clinician. The majority of these pre-

senting features were repeated and thus were concatenated into a single feature. The

number of presenting symptoms (i.e. symptom 1, symptom 2, etc.) were kept separate.

The symptom and sign data also had a high cardinality. The dataset contained

37 different symptom types and 26 different sign types. Many of these feature types

pertained to a small number of patients. This large diversity in patient features may

result in an uneven distribution of feature types between the training and test data.

After consultation with Dr. Brennan, a decision to group symptom and sign data into

larger overarching domains was made. In particular, symptom types were grouped into

six domains based on the paper by Ozama et al. (an outline of the symptom groupings

are summarised in Table 3.1) [72]. Sign data was grouped into six larger domains based

off of groupings directly provided by Dr. Brennan (see Table 6.1 in the Appendix).
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Group Symptom Domain Symptom Examples

1 Headache Headache

2 Behavioral/Cognitive Confusion, memory loss, strange behaviour

3 Focal Neurology Ataxia, vertigo, vision problems,

4 Fits, faints or falls Seizure, collapse, convulsion

5 Non-specific neurological Poor balance, dizziness, gait abnormality

6 Other/non-specific Vomiting, lethargy, sweating

Table 3.1: Symptom domain classifications based on Ozawa et al. [72], with examples

of symptom types in REDCap dataset.

The categorisation of both symptom and sign data created a more homogeneous set of

feature types that would prove more informative.

3.3.2 Radiological Diagnosis

Brain tumours have over 130 types that are often named based on the type of cell they

develop from or by the location in the brain they originate [73]. As expected, in our

dataset the tumour types had a high cardinality (more than 80 types). However, many

of these types referred to the same type of tumour (e.g. meningioma suprasellar and

meningioma at CP angle). The dataset also contained multiple records of patients who

did not have a brain tumour, hence some types referred to alternative diagnoses. The

brain tumour types were reorganised and reduced to a cardinality of 10, and types that

appeared in less than 10 patients were grouped into a “Rare Tumour” category. See

Figure 6.1 in the Appendix for the distribution of brain tumour types in our dataset.

3.3.3 Karnofsky Performance Status

The KP scale is a standard way of assessing a cancer patients ability to perform every-

day tasks [74]. The score ranges from 0 to 100 and is commonly scored in deciles. A

score of 0 equates to death, while a score of 100 represents an asymptomatic individual

with normal function (see Table 6.2 in the Appendix for the original definition of KP

scores). The scale is a ‘gold standard’ in clinical oncology and is commonly used as

to determine a patient’s ability to tolerate treatments, such as chemotherapy. However,

the values of the KP scale are ordinal. This means that a value assigned to a patient is

based on a ranking but the numerical value associated with this rank is meaningless.



Chapter 3. Data Preprocessing 21

Thus the difference between the values 70 and 90 is not equivalent to the difference

between the values 40 and 60. Furthermore, the KP scale may be subject to bias. A pa-

tient’s KP score is often assessed by clinicians, and when compiling a dataset this can

result in interobserver subjectivity [75, 76]. Both the ordinal nature and subjectivity of

the KP scale is a major limitation.

The previous Master’s dissertation treated the KP score as continuous [64]. After a

review of the literature and consultation with Dr. Brennan, we decided to treat the KP

score as categorical. To reduce the bias associated with the KP score, the values were

grouped into three overarching states which describe different levels of performance.

The groupings are as followed: A (Score 80-100): normal work and self-care, B (Score

50-70): unable to work but can care for most personal needs, C (Score 0-40): unable

to care for self. However, due to the large number of patients in group A (70%), we

decided to further break down the KP scores into the following groups: < 50, 50-70,

80, 90, 100. This would allow for a more fine-grained analysis of the data.

3.3.4 Data Imputation

As described in Section 3.2.1, a significant number of patients have incomplete records.

Some of these features are correctly missing while others are not. Commonly, missing

data is managed by either the deletion or imputation of values. The deletion of data

may lead to bias or loss of statistical power, but the imputation of missing values retains

all the data which is preferred due to our small dataset size. However, imputation

may introduce a different kind of bias, and the chosen method may influence the final

results. Imputation techniques developed in the previous Masters dissertation were

employed in this project and compared on a model-by-model basis [64].

For categorical variables, the simplest method for imputation is to use the mode,

and for continuous variables, the analogous approach is the mean. For cases where

outliers may affect the mean, the median may be used. However, the continuous vari-

ables in our dataset are constrained thus outliers are not a concern (e.g. the feature

Symptom 1 Duration must fall between 0 and 52 weeks).

A more complex imputation approach is k-nearest neighbours (k-NN) [77]. This

approach finds the k nearest neighbours (based on a distance metric) for a missing

observation from all complete observations in the data. The missing observation is

replaced with the most frequent value (for categorical variables) or mean value (for

continuous variables) from the neighbouring observations. The use of normalised and
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unnormalised features were both explored [64]. The purpose of normalisation is to

change the numerical feature values in a dataset to a common scale [78]. The distance

metric for k-NN uses feature values, thus if one distance is larger than the other, that

feature will dominate the k-NN outcome.

A final method of imputation is to fill in the missing values using information from

other variables by means of a regression model [79]. A regression model is estimated

using the observed data and the fitted regression weights are used to predict the missing

values. This approach assumes that the variables are not independent, hence other vari-

ables can be used for imputation. For continuous variables, a linear regression model

was used, and for binary variables, a logistic regression model. Logistic regression

was extended to multi-class variables by using a ‘one-vs-rest’ scheme [80].

The goal of each model was to individually predict the missing values. The mode-

and mean-fill was used as baseline methods for categorical and continuous imputation.

For a given feature, the k-NN and regression models were trained using data points

with features that were at least 40% filled (this value was determined by the previous

dissertation) [64]. For each feature with missing values, the imputation techniques

were evaluated on the entire dataset using 10-fold cross-validation. The imputation

of categorical and continuous variables was assessed using accuracy and the standard

mean square error, respectively, and the results are shown in Table 6.3 and 6.4 in the

Appendix. The optimal imputation method for each feature was then implemented on

the full dataset, and the missing variables were replaced with the model’s predicted

output.

Our results are similar to that of the previous Masters dissertation [64]. For cat-

egorical variables, logistic regression often performed the best. Compared to k-NN,

logistic regression learns the weighting (or importance) of variables in the data, hence

it is more likely to make accurate predictions. k-NN does not learn patterns from the

data but assumes that similar variables exist in close proximity. As expected, k-NN

with normalised features often outperforms regular k-NN. As k-NN uses distance to

learn, this highlights the need for feature values to be on the same scale for optimal

performance. For continuous features the results were similar, whereby all methods

performed better than baseline and normalised k-NN outperformed regular k-NN.
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3.3.5 Discretisation

As discussed in Section 2.3.1, association rule-mining requires categorical features.

Discretisation can be used to improve the clarity of classification models by extracting

useful intervals that occur at discontinuous regions of a feature’s distribution.

We compared three discretisation methods: binning, quantiles and heuristic dis-

cretisation. These methods were assessed using the classification accuracy, F1 score

and area under the receiver operating characteristic (AUROC) curve, of the discretised

features compared to the continuous features, using the BRL model (see Section 4.5.1

for description of metrics). The BRL default hyperparameters were used, and patient

survival greater than one year was evaluated on the entire dataset using 10-fold-cross

validation. Other methods for discretisation, including k-NN and decision trees, were

also attempted, but due to time constraints they were not investigated further. Addi-

tionally, an extension of the BRL algorithm, which employed a discretiser to handle

continuous data, was explored2. The algorithm used the MDL principle criterion (in-

trodcued in Section 2.6). However, the discretiser was unable to adequately partition

the feature space, and the variables were assigned to a uniform bin. Thus a decision

was made to discretise all continuous data before model training.

The features that underwent discretisation were ‘Age’, ‘Symptom 1 Duration’ and

‘Maximum Tumour Size’. Each feature was divided into bins (and quantiles) ranging

from size 2 to 12, increasing by increments of two. We chose the maximum to be

12 as it was a natural divider for the feature Maximum Tumour Size, which contained

the largest range in values (0 - 120) (see Figure 6.2 in Appendix for each feature’s

distributions). Note that the feature Symptom 1 Duration followed a strong bimodal

distribution resulting in errors for quantiles above 4. A natural (heuristic) discretisa-

tion of the data was also investigated. For example, the feature Age has an inherent

separation (e.g. children, youth, adults, seniors). Dr. Brennan was also consulted for

advice on the heuristic discretisation of these features.

The prediction accuracy and AUROC as a function of the number of bins and quan-

tiles is illustrated in Figure 6.3 in the Appendix. The discretisation results are shown in

Table 6.5 in the Appendix. Based on these findings, Age and Maximum Tumour Size

were discretised manually, and Symptom 1 Duration was discretised using 6 bins.

2https://github.com/csinva/interpretability-implementations-demos/tree/master/imodels/bayesianrulelist
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Methods

As stated in the introduction, our main objective was to compare the performance of

interpretable rule list models to popular ML algorithms for the prediction of brain tu-

mour survival. Random forests, logistic regression and SVM classifiers were chosen

as alternative ML models for both their popularity and relative lack of interpretabil-

ity (see Section 2.5 for model descriptions). Random forests and logistic regression

provide means by which the model’s feature importance can be ranked and thus are in-

terpretable to an extent. Due to the non-linearity of SVMs, feature importance cannot

be directly determined, hence they are classified as black box models. Artificial neural

networks are often viewed as the quintessential black box ML model due to their mul-

tilayer nonlinear structure [81]. However, neural networks require large datasets for

training, thus due to the small size of our dataset neural networks were not explored as

a type of black box ML model.

Recall that one of the original goals of this project was to develop a rule list clas-

sifier for brain tumour diagnosis. We expected to acquire an additional dataset, called

Clinical Practice Research Datalink (CPRD), that would augment the REDCap dataset.

The CPRD dataset contained over 30,000 primary care medical records from both

healthy controls and brain tumour cases. However, this dataset could not be secured

in time (see Section 6.1 for discussion on future work). Nevertheless, we did briefly

look at the implementation of rule lists for the classification of a glioblastoma versus

other cancer types using the (relatively limited) information that was available in the

REDCap dataset. Glioblastomas were chosen as it was the most common tumour type

in the dataset and is also the most fatal [4]. See Section 5.3 for a discussion.

24
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4.1 Data Preparation

The initial cleaning and preprocessing of the dataset is described in Chapter 3. The

final dataset contained 1037 patients with 21 clinical features. Missing variables were

handled in one of two ways. For categorical variables that were truly missing (missing

on purpose), the values were assigned to a single null group. For example, if a patient

was missing a value for the feature Sign 1, the null value was assigned to the group ‘no

signs’. For categorical and continuous variables that were not truly missing (missing

by accident), imputation was performed (as described in Section 3.3.4). To support the

rule list models, all features types were categorical. One-hot-encoding was used for

models that were unable to handle categorical features. One-hot-encoding, also called

dummy coding, creates a separate binary feature that takes the value 0 or 1 to indicate

the absence or presence of a categorical value.

The final dataset was separated into a training set (80% of the data) and test set

(20% of the data). The hyperparameters for each model were fine-tuned using grid

search with 5-fold-cross validation across the training set. Based on the optimal hy-

perparameters, the model was re-trained on the entire training set and evaluated using

the held-out test set. All models performed binary classification and one year survival

labels were created from the survival data. This resulted in a relatively even split of

the dataset: 440 patients (42%) survived less than a year and 597 patients (58%) sur-

vived greater than a year. Patients who were alive at the time of data collection were

included in the survival greater than a year group. Glioblastoma labels were created

from the diagnosis data resulting in the following data split: 381 (37%) patients had a

glioblastoma and 656 (63%) patients did not have a glioblastoma. Model performance

was assessed using the metrics described in Section 4.5.1.

4.2 Cox Model

The Cox model was implemented using the lifelines python package1 and served as

an alternative baseline for the ML models. The Cox model requires numerical fea-

tures and due to the one-hot encoding of the categorical variables, the resulting dataset

incurred problems with high collinearity. That is, some of the independent variables

were highly correlated which tends to inflate the estimated regression coefficients. A

penalizer was added to the model which reduces the size of the coefficients during

1https://lifelines.readthedocs.io/
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regression thus controlling for high correlation and improving the stability of the esti-

mates [82]. A search for the optimal penalty parameter between values of 0.01 and 0.3

was performed using 5-fold-cross validation and a value of 0.2 was selected.

The purpose of the Cox model is to predict survival time thus the model was trained

using the continuous survival data. The predicted survival time was then converted to

binary one year survival labels and these labels were used to calculate the model’s per-

formance. The feature importance was calculated directly from the Cox model using

the variable’s coefficient and standard error value. The p-values can be calculated for

the null hypotheses that the coefficient value is 0 (i.e. the feature has no importance).

4.3 Rule Lists

The rule list models are dependent on hyperparameters for both the FP-Growth al-

gorithm and the decision list priors. For both models, α, the prior pseudo-count for

the classes (see Section 2.3.2), was set to [1,1] for simplicity, resulting in a uniform

prior. An exhaustive grid search over the following hyperparameters was performed:

the minimum support threshold for the rules, minimum and maximum rule cardinality,

and length of the rule list.

Typically minimum support threshold is set to 10% [33], thus the range of values

searched was 5%, 10% and 15%. Rule cardinality was selected on the basis of Dr.

Brennan’s council that interpretations are more difficult with high cardinality rules be-

cause it is “harder to reconcile the combinations of features as being clinically logical”.

Thus a minimum rule cardinality of 1 and 2, and maximum rule cardinality of 2 and 3

were explored. Finally, the rule list expected length values was selected based on the

original papers’ parameters [27, 28]. The values searched were: 5, 8, 10, 12, 15.

Bayesian Rule Lists: Based on the hyperparameter tuning with grid search, the

optimal BRL hyperparameters included rules with a minimum support of 5%, a mini-

mum rule cardinality of 2 and a maximum cardinality of 3, and a rule list with a prior

expected length of 8. The number of antecedents used ranged from 2817 to 2923 across

the training folds. The number of MCMC chains was set to a default value of 3, and the

algorithm was run for a maximum of 10,000 iterations. Using these hyperparameters,

the BRL model was fitted on the full training dataset and the BRL point estimate was

used to evaluate model performance on the test set.

Falling Rule Lists: For the FRL model, rules with a minimum support of 5%

were mined, and a minimum and maximum cardinality of 2 conditions per rule was
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chosen. The prior expected rule list length was set to 10. Additional hyperparameters

for the simulated annealing algorithm were selected based on the FRL paper’s original

parameters [28]. A default temperature of 1 was chosen for simulated annealing and

the algorithm was run for 5000 steps. With these hyperparameters, the FRL model

was retrained on the entire training set, and the optimal rule list returned by simulated

annealing was used on the test set to evaluate model performance.

4.4 Machine Learning Models

Random forest, logistic regression and SVM models were all implemented using the

scikit-learn package [69]. The three models cannot directly handle categorical vari-

ables thus one-hot encoding was implemented for all features. As with the rule list

models, a grid search for the model’s hyperparameters was carried out using 5-fold-

cross-validation across the training dataset.

Random Forests: Random forest performance is conditioned on multiple hyper-

parameters including the number of trees, the maximum depth of a single tree, the

minimum number of observations required at a leaf node and the number of features

to consider when looking for the best split. Due to the range of hyperparameters, a set

of candidate hyperparameters were chosen based on the previous Masters dissertation

[64]. The optimal hyperparameters were found to be the training of at least 400 trees

with a maximum depth of 10 and a minimum number of 3 observations at each leaf

node. A maximum of 8 features were considered at each split.

Logistic Regression: Logistic regression required the fine-tuning of two hyper-

parameters, the type of solver for optimization and the regularization parameter C.

Regularisation is used to discourage the learning of complex models to prevent overfit-

ting. The strength of regularization is determined by C, where the default value is one

and a smaller C value represents stronger regularization. The final logistic regression

model used the lbgfs solver which supports L2 regularisation [83]. L2 regularisation

determines the loss function penalty by using the squared value of the model’s weights

(coefficients). The regularization strength parameter C was set to 0.1 (see Figure 6.4A

in the Appendix for the effect of C on model performance).

Support Vector Machine: For SVM, the type of kernel, regularization parameter

C and gamma were tuned. Gamma is a kernel parameter which determines the curva-

ture of the decision boundary. A smaller gamma value signifies less curvature thus the

complexity or “shape” of the data is captured less. The final SVM model implemented
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the radial basis function (rbf) kernel [84] with a regularization strength of 2 and gamma

value of 1
k where k is the number of features. Figure 6.4B in the Appendix shows the

effect of C on training and validation set performance for the SVM model.

4.5 Evaluation Criteria

Multiple methods of evaluation were used to compare the performance of the clas-

sification models. First, standard evaluation metrics were used to assess the models

predictive ability and second, the model was evaluated for its level of interpretability.

4.5.1 Standard Evaluation Metrics

The predictive ability of each model was assessed using the following metrics:

Accuracy: Accuracy is a simple metric that measures how often a data point is

correctly classified. Accuracy works well when there are an equal number of samples

in each class. For highly imbalanced classes, a model may achieve a high accuracy

without actually leaning anything from the data [85]. The classes in our dataset are

relatively balanced (42% and 58%) thus this is not a major concern.

F1 Score: The F1 score is also a measure of a model’s accuracy with values

between 0 and 1 [86]. The F1 score is the harmonic mean of the model’s precision

and recall where a score of 1 represents perfect precision and recall. Precision is the

number of correct positive results divided by the total positive results returned by the

classifier. Recall is the number of correct positive results divided by the number of

samples that should have been identified as positive. A model with high precision but

lower recall would be extremely accurate but often misses instances that are difficult

to classify. The F1 score is the preferred metric when classes are imbalanced because

it gives a better measure of the incorrectly classified cases (unlike accuracy).

Receiver operating characteristic (ROC) curve: The ROC curve plots the true

positive rate (TPR) against the false positive rate (FPR) at various threshold settings

for a binary classifier [87]. The area under the ROC curve (AUROC) measures the

probability that a classifier will rank a randomly chosen positive instance higher than

a randomly chosen negative instance. AUROC values range from 0 to 1, where a value

of 0.5 represents a classifier that performs no better than chance and a value of 1.0

represents a perfect classifier.
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4.5.2 Interpretability Metrics

Measuring the interpretability of a model is often difficult due to the subjective na-

ture of the task. Unlike classification performance, there is no standard metric for

interpretability that can be used across all models. This makes comparison of model

interpretability more challenging. In this project, a model’s interpretability will be

assessed in one of following ways.

Feature Importance: Unlike rule lists, most ML models do not output a clear

set of decision guidelines. Instead, their interpretability can sometimes be assessed by

examining the relationships between features that contribute to classification. This is a

type of post-hoc interpretability analysis whereby feature importance is analysed after

model construction. This analysis will provide an overview of what features the model

favors when making predictions, but unlike rule lists, it does not provide fine-grained

details on how individual instances are classified.

Local Surrogate Models: Black box models can be assessed for interpretabil-

ity by using local surrogate models (introduced in Section 2.1.1). This project briefly

explores the use of LIME [18] to examine individual predictions from the ML al-

gorithms. The features used to make an individual prediction can be compared to the

features used by the rules lists and features found important for global approximations.

Qualitative Evaluation: Empirical evidence of interpretability can be obtained

by letting domain experts judge the understandability of a model’s output. In this

project, Dr. Brennan and his colleague Michael Poon were consulted for their clinical

expertise in the field of neurology and brain cancer. Mr. Poon is a neurosurgical trainee

in Edinburgh and is undertaking a Cancer Research clinical PhD fellowship with the

Brain Tumour Centre of Excellence initiative funded by Cancer Research UK.

The experts were given multiple BRL and FRL point-estimates for analysis. Using

the final rule list models, several point-estimates were generated by running 10-fold

cross validation on the reduced dataset. The decision lists with the highest AUROC

values were selected. A total of three BRLs and one FRL for survival prediction, and

one BRL and one FRL for glioblastoma prediction were provided (see Appendix B

for all the rule lists). Dr. Brennan and Mr. Poon were asked to consider if the rules

produced were sensible, if any rules were surprising or unrealistic, and the potential

employability of such a model in a clinical setting.
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Results and Discussion

5.1 Model Performance

This project compared six different approaches for the prediction of brain tumour sur-

vival one year after diagnosis. The two rule lists were compared to the baseline Cox

model and three ML models that varied in their interpretability level. Each model

was evaluated using the metrics outlined in Section 4.5.1. The model’s performance is

summarised in Table 5.1 and the ROC curve for each model is visualised in Figure 6.5

in the Appendix. Note the ROC curve requires the probability estimates for each class,

which could not be directly computed for the Cox model.

Cox BRL FRL RF LR SVM

Accuracy 0.8077 0.8212 0.7927 0.8413 0.8462 0.8365

F1 Score 0.8075 0.8143 0.7918 0.8460 0.8450 0.8350

AUROC 0.8044 0.8105 0.7814 0.8365 0.8440 0.8338

Table 5.1: Performance metrics were assessed on the test set. For each metric, the

best model is highlighted in bold. (RF = random forest, LR = logistic regression)

Surprisingly, the Cox model performed on-par with most models and outperformed

the FRL model. The FRL algorithm performed the worse of all models. This is not

surprising as the model’s strong monotonicity constraints may sacrifice performance

[28]. However the loss in model performance is minimal, and the level of interpretabil-

ity associated with this model may be favored amongst medical experts. The BRL

algorithm outperformed the baseline Cox model and FRL model, and was comparable

to the three ML model’s performance. Our results are similar to that of the original

30
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BRL paper, which found the BRL point estimate to perform on par with random for-

est, logistic regression and SVM [27]. The authors found that BRL-post (introduced in

Section 2.3.2) matched random forest for the best performing model. Future work may

be undertaken to establish whether BRL-post is a strong competitor for ML models.

Figure 5.1 and 5.2 shows a point-estimate obtained from training the BRL and FRL

models. For both rule lists, once a patient has satisfied a rule they will not be taken into

account by the rules further down the list. The final rule will only consider a subset of

patients that were not classified by the previous rules.

Figure 5.1: BRL-point estimate. The 95% credible interval is given in parantheses.

Figure 5.2: FRL-point estimate. The support indicates the number of patients classified

by that rule.

An initial glance at the rule lists shows that BRL is much longer than FRL. The

prior expected list length of each model was 8 and 10, respectively. The BRL algorithm

produced a list with 10 rules while the FRL algorithm produced a list with only 5 rules.

Although this prior is taken into consideration, ultimately the rule list that best supports

the data is returned. The shorter length of the FRL is likely due to the monotonicity

constraints. The goal of our FRL is to predict the probability of survival greater than
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a year, thus all rules that favor survival less than a year are summarised into one final

rule. The BRL model does not follow any monotonicity constraints, thus rules that

favor both survival less than and greater than a year are included. The more fine-

grained approach of the BRL is likely why this model outperforms the FRL algorithm.

5.2 Model Interpretability

The interpretability of each model was assessed using the metrics outlined in Section

4.5.2. Although the algorithms do not provide the same level of interpretability, the

weighting of features at a global model level and local prediction level can be reason-

ably compared. Sequential feature selection was first performed on the reduced dataset

to assess feature significance. The final models interpretability was then evaluated us-

ing feature importance (Cox model, random forest, logistic regression), LIME (SVM,

random forest, logistic regression) and qualitative assessment (BRL, FRL).

5.2.1 Feature Selection

Typically, the purpose of feature selection is to remove irrelevant features or noise

from the data and improve computational efficiency. We used feature selection to

assess which features were most pertinent to the data and to compare these results to

the feature importance of the individual models.

Sequential feature selection from mlxtend1 was implemented. This method adds

or removes one feature at a time based on a classifier performance until a subset of k

desired features is reached. The method allows for a range of k-features to be specified

and the feature combination that scores the best during cross validation is returned.

Due to comatability issues, the rule lists could not be run in conjunction with the

feature selector thus random forest was chosen as the classification model. The model

was run using its default parameters and features were assessed using AURUC and

5-fold cross validation. Due to one-hot encoding, a total of 110 feature types were

evaluated. The selector was given a range of 3 to 50 features, and 16 features were

returned (see Table 6.7 in Appendix for the list of features). The selected features

included KP score, symptom 1, age and first treatment. Notably, these features were all

used by the nomograms introduced in Section 2.7. Additionally, all of the 16 features

selected were used by at least one of the trained models.

1http://rasbt.github.io/mlxtend/useguide/featureselection/SequentialFeatureSelector/
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5.2.2 Feature Importance

The Cox, random forest and logistic regression models all provide means for an anal-

ysis of feature importance. An examination of the feature weightings can give rise to

simple interpretations of how the model made its classifications. Although not fully

transparent, this allows moderate insight into how the model works and may assist

clinicians in understanding causal factors for patient survival.

The Cox model feature importance was estimated using the reduced dataset and is

illustrated in Figure 5.3. A feature value above 0 indicates increased risk, thus reduced

survival time, whereas a value less than 0 suggests reduced risk, or increased survival

time. The results are as expected with a worse post-operative status (see Table 6.6 in

Appendix for post-operative scale), no treatment, older age and a KP Score below 70

signifying poorer survival. Comparatively, chemotherapy, a younger age, and lower

post-operative status signifies better survival. A number of tumour types also appeared

important for survival time. As expected, due to the severity of glioblastomas and brain

metastases, both tumour types indicated poorer survival. On the other hand, low grade

gliomas (LGG) and pituitary tumours signify increased survival time. Both tumours

are highly treatable, with a 76% [88] and 82% [89] five-year survival rate, respectively

(compared to 5% for glioblastoma [4]). Additionally, tumour morphology type was

found to be an important indicator of survival. A heterogenous tumour likely signifies

reduced survival time as the tumour contains diverse cell types with distinct molecular

structure that may have different levels of sensitivity to treatment [90]. Surprisingly,

symptom and sign data was not found to be important. These findings are in contradic-

tion with the previous Masters dissertation which found a number of sign and symptom

features to be important predictors for the Cox model. However, the previous disser-

tation did not re-group the symptom and sign data into larger domains, thus the large

cardinality may have had an effect on the Cox model performance.

Random forest feature importance is often measured using mean decrease in impu-

rity (MDI) [45]. This metric determines which variables are split during training, and

the decrease in impurity of each feature is averaged over all trees in the forest. The

higher the value, the more important the feature (i.e. the better the feature is at split-

ting the data). However, this metric is biased towards features with high cardinality

[91]. As an alternative, the permutation importance of the random forest model was

computed as shown in Figure 5.4. The permutation importance measures the decrease

in a model’s performance when a feature value is randomly shuffled [44]. However,
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Figure 5.3: Cox model feature importance fitted to the final dataset. All features have a

p-value less than 0.05 and the 95% confidence interval are shown with black error bars.

the variable importance does not indicate whether the feature is positively or nega-

tively correlated with survival. The three most influential features were younger age,

homogeneous morphology and a glioblastoma tumour (similar to the Cox model).

Figure 5.4: The 15 most influential features from the random forest model fitted to the

final dataset. Note that the importance does not specify positive or negative correlation.

For the logistic regression model, feature importance was assessed using the odds

ratio [47]. The coefficient (or weight) of each feature is equivalent to the natural loga-

rithm of the odds ratio. A feature with an odds ratio closer to one has the least impact,

while a higher or lower ratio is more influential. An odds ratio greater than one de-

scribes a positive relationship (i.e. increases the odds of survival greater than a year)

and an odds ratio smaller than one describes a negative relationship. Figure 5.5 shows

the top 8 features with the highest and lowest odds ratio. The features found most

influential were similar to the Cox and random forest models. Again, glioblastomas
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and brain metastases, heterogenous morphology and older age were strong negative

predictors of survival, and meningioma, younger age and lower post-operative score

were positive predictors for survival.

Figure 5.5: The 8 features from the logistic regression model (fitted to the final dataset)

with the highest and lowest odds ratio.

5.2.3 LIME

Feature importance could not be directly computed from the SVM model, thus LIME

was used as a type of post-hoc interpretability method (described in Section 2.1.1).

Compared to feature importance, LIME assesses interpretability at the local level for

individual predictions, rather than at the global modular level. LIME was also applied

to random forest and logistic regression, and the same prediction instance was com-

pared across the three models. Figure 5.6 shows an explanation of an observation in

the test set generated using LIME on the SVM model (see Figure 6.6 and 6.7 in the

Appendix for random forest and logistic regression LIME output).

Figure 5.6: SVM feature importance determined by LIME. Negative (blue) features in-

dicate survival less than a year, and positive (orange) features indicate survival greater

than a year. The top 5 influential features for a specific test instance are shown. The

weight of each feature (centre image) is used to calculate the prediction probability.
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As we can see, the model classified the instance with 92% confidence. According

to LIME, homogeneous morphology, younger age and a high KP Score were the most

influential features for predicting survival less than a year. However, the features post-

operative status and resection favored survival less than a year. One interpretation of

this result is as follows: the patient may have a low grade, slow growing tumour which

is unlikely to spread thus the condition is monitored rather than immediately treated

[92]. With this type of approach, the patient is likely not at immediate risk of death,

thus the model’s prediction is logical. According to LIME, the random forest and lo-

gistic regression models had the same prediction probabilities, however the weighting

of each feature varied slightly. The different feature weighting between models may

explain their variation in performance (see Table 5.1).

5.2.4 Qualitative Analysis

The rule list models interpretability was assessed by Dr. Brennan and Mr. Poon. They

were provided with multiple point-estimates from both BRL and FRL models (see

Appendix B for all rule lists provided). To mitigate any potential bias, the models

were constructed without the expert’s input and only the final models were presented

for evaluation. Note this was not an extensive evaluation, rather it was an informal

evaluation where experts were asked to provide relatively high-level feedback about

the rule lists.

In general, they both agreed that the rules produced were logical. The features

used in the FRL, such as homogeneous morphology, high KP score, and meningioma,

all favoured longer survival. Features such as glioblastoma, heterogenous morphology

and older age, which favor survival less than a year, are not used by the FRL model.

Instead, these features are summarised by the final rule, which predicts the probability

of survival greater than a year to be 32%. On the other hand, the BRL contains features

that favor both survival less than and greater than a year. As we can see, the BRL uses

KP score less than 70, heterogenous morphology and brain metastases which indicates

survival less than a year. Both Dr. Brennan and Mr. Poon agreed that the splitting of

these feature types were in agreement with clinical knowledge.

5.2.5 Model Comparison

The features found important by the models for survival prediction are summarised

visually by a Venn diagram in the Appendix (see Figure 6.8). Interestingly, all the
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features used by the baseline Cox model were also found important by the rule list

and ML models. The features identified as influential by all models included age, KP

score, morphology, diagnosis, post-op status and first treatment. Both the rule lists and

ML models found referral, resection and midline shift to be influential. Furthermore,

only the rule lists found history of cancer, symptom 1, comorbidity and side signif-

icant, while only the ML models found the Scottish Index of Multiple Deprivation

(SIMD) score, max tumour size and lobe important. Surprisingly, none of the models

(including the sequential feature selector) found sex, symptom 1 duration or sign 1 to

be influential for classification. Of these, the duration of the first symptom is most

surprising. However, this feature is reported by patients and may prove unreliable as

it is likely difficult to remember having a headache for 10 weeks versus 12 weeks, for

example. The irrelevance of sex is in line with the literature which finds that although

men are more likely to develop a brain tumour [60], that at least for glioblastomas, the

likelihood of survival is relatively similar (6.8% for males and 8.3% for females) [93].

5.3 Rule Lists for Glioblastoma Prediction

The BRL and FRL algorithms were briefly investigated for the prediction of a glioblas-

toma. Note that all patients in the dataset have a brain tumour, hence the purpose of this

classifier was to predict a glioblastoma against other tumour types. A point-estimate of

the FRL is shown in Figure 5.7 (see Figure 6.13 in Appendix for BRL). Only patient

demographics, medical history and symptom features were used for classification. The

model had an accuracy of 0.692, an F1 score of 0.685 and an AUROC of 0.702.

Figure 5.7: FRL example 1 for prediction of glioblastoma.

This was the first rule list to use a patients sex for classification. This supports cur-

rent literature which finds that males are more at risk for glioblastomas than females

[59]. Additionally, this was the first rule list to use symptom 1 duration as an informa-

tive feature. This may be due to the reduced number of features available to the model.

Surprisingly, the first rule of the FRL, which classifies the most at-risk patients, finds

the risk of a glioblastoma to be 59%. This is not a strong prediction and highlights the
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difficulty of predicting brain tumour type based on presenting features alone.

Nonetheless, Dr. Brennan advised that this type of rule list may have significant

clinical benefit but is limited by the current dataset. For example, a patient may present

in primary care with non-specific symptoms. By the time the patient receives an of-

ficial brain tumour diagnosis, often through a biopsy, the tumour may already be in

an advanced state. This is a lengthy process. Thus the development of a non-invasive

tool to predict the type of brain tumour may be of great utility. By reducing the time

between diagnosis and start of treatment, a patient may have a better chance at survival.

5.4 Clinical Utility of Rule Lists

In terms of clinical utility, Dr. Brennan mentioned that the combination of features for

both survival and glioblastoma prediction were informative and in-line with domain

knowledge. However, although interesting on its own, he noted that the rules may not

be of significant help given the current dataset. Dr. Brennan suggested that if this

type of model was combined with other clinical information, such as blood tests, this

may prove more powerful. Blood tests are now being investigated as a means for brain

tumour diagnosis [94], and combined with the clinical information outlined by a rule

list, the two may make a useful diagnostic tool.

Some of the advantages of rule lists in clinical practice are as follows: its innate

interpretability, the simple if...then... structure of the rules is easy for clinicians to

understand and predictions with rules are fast (only a few binary statements need to be

assessed). However, these advantages are mitigated by the requirement of categorical

features and the current use of rule lists for classification only instead of regression. Dr.

Brennan also commented on the choice of the rules. For example, the first rule in the

FRL for survival prediction is: If Morphology: Homogeneous and KP Score: 100 then

probability of Survival > 1 year is 97.37% (see Figure 5.2). Dr. Brennan mentioned

that he would expect the second rule to be homogeneous tumour and KP score of

90. He regarded that the switching of different features “would not help with clinical

decision making”. The association rules are combined in a way that maximises the

posterior (as discussed in Section 2.3.1). Thus the user does not have direct influence

over the rule choice or order. One solution may be the incorporation of fewer features

in the model. For example, we briefly explored the creation of a rule list to predict a

glioblastoma for males only (and females only). The rule lists produced were similar,

but given a larger dataset this approach may produce a more fine-grained set of rules.
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Conclusion

This project investigated the performance and interpretability of multiple algorithms

for the prediction of brain tumour survival. We argued that interpretability is crucial

for the implementation of ML algorithms in healthcare, and that a model’s ability to

explain its predictions is important for establishing a user’s trust in the model. This was

the first time classification algorithms were applied to the REDCap dataset to predict 1-

year survival and glioblastoma diagnosis. Our results demonstrated that interpretable

models, such as rule-lists, can perform on par with popular ML algorithms, while

having the added benefit of interpretability.

The interpretability of multiple algorithms was assessed by evaluating the impor-

tance of dataset features for making predictions. We found that all six models used

similar features, however the evaluation methods for feature importance varied be-

tween models. The three ML models were assessed using post-hoc interpretability

methods which may be less reliable than intrinsically interpretable models. Post-hoc

methods assess interpretability after model construction, thus explanations may be mis-

leading or unreliable [11]. As we saw with random forests, depending on the evalu-

ation method (e.g. MDI versus permutation importance), feature significance may be

weighted differently thus producing inconsistent results. Additionally, there is a grow-

ing body of literature that has questioned the reliability of LIME and other post-hoc

methods [11, 19, 95, 96, 97]. A model which is interpretable by design may provide

more faithful explanations, however this approach is not without its own challenges.

Innate interpretability is model-specific, which makes the comparison of interpretabil-

ity between algorithms more difficult. In this project, the rule lists were also assessed

qualitatively by domain experts. They provided high-level feedback on the rules pro-

duced and provided their opinion on the potential clinical utility of such a model. How-
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ever access to experts is often limited and their time is precious, thus the significance

of these results are typically restricted to a small number of observations. Nonetheless,

there is a large toolbox of methods [98] to assess interpretability and this project has

only scratched the surface.

The interpretable models introduced in this work attempt to bridge the gap between

ML research and integration into clinical practice. Rule lists are not meant to be a direct

competitor for black box classifiers, but rather a useful tool that can assist humans with

high-stake decisions by proving trustworthy data-driven support. Interpretable models

are a natural choice for the domain of predictive medicine, and integration of such

models into clinical practice is an important first step in maximising patient survival.

6.1 Future Work

The design, development and integration of accurate interpretable ML models in health-

care serves as an important avenue for future research. Although our results are en-

couraging, a larger sample size is required for validation. The REDCap dataset is

continuing to grow, and the addition of new data may allow the use of deep learning

algorithms. An extension of this work could be the use of neural networks for sur-

vival prediction, assuming enough data becomes available. As neural networks are the

quintessential black box algorithm, a comparative study of model-agnostic methods

applied to neural networks or other ML algorithms would be an interesting next step.

As discussed in Section 4.1, the original goal of this project was to develop a rule

list classifier for brain tumour diagnosis, but the CPRD dataset could not be secured in

time. As such, in the future it would be beneficial to combine the CPRD and REDCap

dataset to predict the presence of a brain tumour based on a patients presenting fea-

tures. Dr. Brennan mentioned that this type of model may have greater clinical utility,

especially for GPs, compared to a model predicting survival.

Rule lists have proven to be a powerful interpretable ML algorithm, however BRL

and FRL are currently limited to binary classification. However, research into mul-

ticlass rule list algorithms is already underway [99]. The authors provided code was

briefly explored in this project, but due to problems with hard-coding it was not inves-

tigated further. The prospect of multi-class predictions is an important area for future

work. The creation of a rule list to predict the type of brain tumour based on a patients

presenting features may be useful for triaging the urgency of patient referrals.
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Glossary of Dataset Features

Age the age of a patient

Sex the sex of a patient

History of Cancer whether the patient has a past medical history of cancer

Comorbidity 1 the presence of another illness or disease occuring in a patient

Scottich Index of Multiple Deprivation (SIMD) a measure of deprivation of the area

a patient lives

Karnofsky performance score (KP Score) a common measure in oncology to assess

the functional state of a patient

Symptom 1 the first symptom type a patient presented with (reported by the patient)

Symptom 1 Duration the length of time of a patient’s first symptom (minimum 0

weeks, maximum 52 weeks)

Symptom 2 the second symptom type a patient presented with (reported by the pa-

tient)

Sign 1 the first sign type a patient presented with (observed by the physician)

Urgency the patient’s urgency of referral from primary care (emergency, suspicion of

cancer, soon, routine)

Radiological Diagnosis (or Tumour Type) the type of brain tumour a patient was

diagnosed with

Maximum Tumour Size a measure of the tumour size

Side the side of the brain the tumour is located (left, right, both, or midline)

Lobe the lobe where the tumour is located

Morphology the histological classification of the tumour based on the cell types

present (homogenous, heterogenous)

Midline shift a measure of the brain’s horizontal shift from the mid (centre) line
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First Treatment the type of first cancer treatment (surgery, radiotherapy, chemother-

apy)

Extent of Resection the amount of cancerous cells removed during surgery (measured

in percentage)

Post-operative Performance Status a measure of a patient’s level of functioning fol-

lowing surgery in terms of their ability for self-care, daily activity, and physical ability

(see Table 6.6)
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Supplementary Data Analysis

Group Sign Domain Sign Examples

1 No signs No signs

2 Behavioral

Behaviour signs anxiety (e.g. fast speech, tremor, voices anxiety, crying)

Behaviour signs depression (e.g. voices low mood, crying)

Behaviour (withdrawn/apathetic) - not depressed

Behaviour (aggressive/paranoid) - not anxious

3 Cognitive

Cognitive - problems performing tasks (e.g. calculation, planning, VF)

Cognitive - problems with memory (forgetfulness)

Cognitive - reduced conscious level/drowsiness (reduced GCS)

Cognitive - other non-specific confusion

4 Neurological

Dysphasia - Receptive

Dysphasia - Expressive

Dysarthria - slurred or slow or staccato

Unilateral weakness (UMN type >=2 of arm/leg/face)

Unilateral numbness (>=2 of arm/leg/face, or spinothalamic type)

Problems with dexterity/fine manipulation

Problems walking/unsteadiness (weakness/numbness)

Problems walking/ataxia

Problems with visual acuity (unilateral or bilateral)

Problems with visual field (unilateral or bilateral)

5 Cranial Nerve

Papilloedema

Diplopia CN problems 3, 4 or 6

Nystagmus (unilateral or bilateral)

Facial numbness/tongue numbness (CN 5)

Facial weakness (CN 7)

Reduced smell/taste (CN 1 or 7)

Deafness (unilateral/bilateral) (CN 8)

Problems swallowing (dysphagia) (CN 9, 10)

Problems with volume of speech (dysphonia) (CN 10)

6 Other Other

Table 6.1: Sign domain classifications based on Dr. Brennan’s recommendation. All

examples are from the REDCap dataset.
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Figure 6.1: Proportion of patients with each type of cancer. The number of patients in

each group is depicted beside the bar.

Condition Percentage Comments

A: Able to carry on normal activity and

to work. No special care is needed.
100 Normal, no complaints, no evidence of disease.

90 Able to carry on normal activity, minor signs or symptoms of disease.

80 Normal activity with effort, some signs or symptoms of disease.

B: Unable to work. Able to live at home,

care for most personal needs. A varying

degree of assistance is needed.

70 Cares for self, unable to carry on normal activity or to do active work.

60 Requires occasional assistance, but is able to care for most of his needs.

50 Requires considerable assistance and frequent medical care.

C: Unable to care for self. Requires

equivalent of institutional or hospital

care. Disease may be progressing rapidly.

40 Disabled, requires special care and assistance.

30 Severely disabled, hospitalization is indicated although death not imminent.

20 Hospitalization necessary, very sick, active supportive treatment necessary.

10 Moribund, fatal processes progressing rapidly.

0 Dead.

Table 6.2: The original description of the Karnofsky performance status given by Karnof-

sky and Burchenal [74].
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Target Variable Mode-fill Logistic Regression KNN KNN (norm)

SIMD Score 0.234 0.229 0.246 0.209

KP Score 0.383 0.528 0.456 0.517

Urgency of Referral 0.667 0.672 0.659 0.683
Side 0.424 0.436 0.422 0.406

Lobe 0.334 0.360 0.316 0.338

Morphology 0.676 0.876 0.769 0.826

Midline Shift 0.422 0.434 0.375 0.410

Extent of Resection 0.417 0.482 0.434 0.472

Post-op Status 0.473 0.618 0.568 0.573

Table 6.3: Accuracy results for categorical variable imputation.

Target Variable Mean-fill Linear Regression KNN KNN (norm)

Symptom 1 Duration 280.0 237.9 263.8 238.7

Max Tumour Size 311.7 258.6 294.6 243.7

Table 6.4: Mean square error results for continuous variable imputation.
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Figure 6.2: Distribution of features for discretisation.

Figure 6.3: Average accuracy and area under ROC curve as a function of bins (A,

B) and quantiles (C, D). Quantile discretisation for Symptom 1 Duration was only per-

formed up to four quantiles due to the distribution of the feature.
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Feature Discretisation Method Accuracy F1 Score ROC

Bins: 6 0.768 0.765 0.776
Age Quantile: 2 0.763 0.758 0.764

Manual 0.789 0.793 0.796

Bins: 6 0.760 0.754 0.759
Symptom 1

Duration
Quantile: 4 0.754 0.740 0.741

Manual 0.759 0.746 0.747

Bins: 4 0.771 0.763 0.766

Maximum

Tumour Size
Quantile: 10 0.775 0.768 0.773

Manual 0.777 0.772 0.778

Table 6.5: Results of continuous feature discretisation. The number of bins and quan-

tiles that performed best was selected for each feature and compared to manual dis-

cretisation. The discretisation method that performed the best is highlighted in bold.

Figure 6.4: The affect of the regularisation parameter C on logistic regression (A) and

SVM (B) performance. A value of 0.1 was selected for logistic regression and a value

of 2 for SVM.
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Figure 6.5: ROC curves for baseline, rule list and ML models evaluated on the test set.

The area under the ROC curve was calculated using binary predictions.

Grade Description

0 Fully active, able to carry on all pre-disease performance without restriction.

1
Restricted in physically strenuous activity but ambulatory and able to carry

out work of a light or sedentary nature, e.g., light house work, office work.

2
Ambulatory and capable of all self-care but unable to carry out any work

activities; up and about more than 50% of waking hours.

3
Capable of only limited self-care; confined to bed or chair more than 50% of

waking hours.

4
Completely disabled; cannot carry on any self-care; totally confined to bed

or chair.

5 Dead.

Table 6.6: Description of a patient’s performance status (or functional state) developed

by the Eastern Cooperative Oncology Group [100].
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Rank Feature

1 KP Score: 100

2 Symptom 1: Behavioral/Cognitive

3 Diagnosis: Glioblastoma

4 Diagnosis: Lymphoma

5 Diagnosis: Metastasis

6 Midline Shift: 0

7 Morphology: Heterogenous

8 Maximum Tumour Size: 0-18

9 Age: 50-65

10 Age: 65+

11 First Treatment: None

12 First Treatment: Radiotherapy

13 Post-op Status: 4

14 Post-op Status: No Surgery

15 Resection: 100%

16 Resection: No Resection

Table 6.7: Top 16 features returned using sequential feature selector.

Figure 6.6: Feature importance of random forest model using LIME.

Figure 6.7: Feature importance of logsitic regression model using LIME.
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Figure 6.8: Venn diagram of features used by the three main groups of models for

survival prediction. Features used by all model types are found in the centre.



Appendix B

Figure 6.9: BRL example 1. Accuracy: 0.890. F1 Score: 0.883. AUROC: 0.876.

Figure 6.10: BRL example 2. Accuracy: 0.783. F1 Score: 0.783. AUROC: 0.802.
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Figure 6.11: BRL example 3. Accuracy: 0.770. F1 Score: 0.769. AUROC: 0.777.

Figure 6.12: FRL example 1. Accuracy: 0.780. F1 Score: 0.778. AUROC: 0.784.

Figure 6.13: BRL example 1 for prediction of glioblastoma. Accuracy: 0.692. F1 Score:

0.685. AUROC: 0.702.
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