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Abstract

As increasing amounts of data are generated, real-time processing of high-volume

data is becoming a necessity. To address that need, several stream processing en-

gines (SPEs) were developed. These SPEs are primarily used for SQL-style relational

operations on grouped streams. Applications in fields such as the Internet of Things

often require array-based operations on streams, which are not supported by traditional

SPEs. To bridge the gap between grouped stream processing and array-based opera-

tions, SPEs are often loosely coupled with numerical frameworks such as MATLAB

or R. Such loose coupling of system, however, incurs large communication costs and

increases implementation complexity.

In this project, we create and evaluate an array-based processing framework exten-

sion to the Apache Flink SPE. This allows for complex workflows involving relational

queries, as well as array-based algorithms to be performed in a single system, using

a unified query language. We build upon the Flink framework, retaining the base re-

lational query functionalities while providing an array-function interface where users

can define custom array-based operations without worrying about the underlying data

structure. We achieve significantly better performance as compared to using a loosely-

coupled Matlab integration in Flink and achieve competitive performance compared to

native Flink operators.
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Chapter 1

Introduction

Real-time data processing has become an emerging topic in the world as increasingly

larger amounts of data are being generated. Internet of Things (IoT) devices, sensor

networks, location-tracking, as well as many other fields have made real-time, high-

volume data processing a necessity. To address that need, stream processing engines

(SPEs) provide infrastructures supporting analysis and operations on potentially un-

bounded streams of real-time data [10, 11, 31, 12, 1]. These SPEs are primarily devel-

oped for relational operations on streams, such as grouping by stream source, filtering

and joining streams based on a set of conditions.

While SPEs often support custom operations on stream data subsets in the form

of “windows”, where streams are split into finite buckets, they provide no guarantees

of data uniformity and consistency and do not check for missing data. Data driven

processing often requires complex workflows including various domain-specific al-

gorithms, such as the Fast Fourier Transform (FFT). For efficiency purposes, these

algorithms assume that data is in an array format and achieve sub-par performance oth-

erwise. Furthermore, they often require uniform arrays of a specific size with equally

spaced data as inputs, which cannot be reliably created through conventional SPEs.

As such, numeric computation environments such as R or MATLAB, which offer

efficient computation methods of said domain-specific operations, are used to process

streaming data. However, these environments lack the support for relational stream

operations supported by SPEs. The need for both functionalities in fields such as

machine learning, IoT sensor data processing, or digital signal processing (DSP) led

to loose coupling of computation environments within stream processing engines, or

vice-versa. Such coupling of systems, however, often requires a deep understanding

of SPE frameworks, making implementation very difficult. Furthermore, while com-
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Chapter 1. Introduction 2

putation in the aforementioned numerical environments is efficient, the efficiency is

overshadowed by high communication costs incurred when transferring data between

them and SPEs, leading to poor performance.

Implementations such as TrillDSP [23] or WaveScope [19] are examples of sys-

tems with tight integration of DSP specific tasks within SPEs. Employing techniques

such as data resampling and interpolation, they expose input streaming data in the

form of arrays representing signals to users. TrillDSP and WaveScope provide query

languages consisting of operations familiar to DSP experts within SPEs, allowing for

deep integration of analysis and processing tasks in a single system.

Exposing streams in uniformly-sampled sets, however, is a requirement in many

areas other than DSP. Researchers in database management systems (DBMS) have

recognized the need for support of efficient array-based operations IoT, or image pro-

cessing [14], resulting in the creation of several array DBMS. Their findings showed

that simulating arrays on top of relational models was inefficient and proposed im-

plementation of array-based databases, as arrays were the most commonly used data

model in the aforementioned fields [25].

To address the low performance and complexity of loosely-coupled systems in

stream processing and the need for array-based operations on streams, we create a

tightly-coupled framework in the Apache Flink SPE [10] that allows for array-based

processing. Flink is a widespread open-source SPE, favoured by a large user-base and

has a large amount of contributors providing a wide array of custom plugins and li-

braries. For these reasons, as well as its competitive performance [13], we chose Flink

as the platform for our system.

The primary focus of our system is to assemble stream input events into arrays,

which are exposed to users within an array-function interface, abstracting the tempo-

relational component of data. This allows users to perform array-based operations on

streams without needing to worry about underlying data structure consistency and uni-

formity. To expose streams in array form, we build upon techniques used in TrillDSP

[23]. We use event timestamps to index into arrays, re-align timestamps to match index

intervals and interpolate missing data when array indices are not populated.

Exposing an array-function framework within Flink removes the need for coupling

with outside numerical environments, reducing the performance overhead and imple-

mentation complexity. It allows for complex workflows to be expressed within a single

system, using one query language for all workflow components. Our system supports

integration of its array module with other native Flink queries, combining the relational
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aspect of SPEs and the array-processing aspect of MATLAB/R in one package.

Furthermore, we provide support for incremental computation on streams, where

streams are partitioned into partially overlapping windows. Various analysis tech-

niques, such as overlap-add [16] used in DSP, require computation over overlapping

data partitions. When there is significant overlap between stream partitions, elements

can be evaluated several times, causing large amounts of redundant computations to be

performed. However, by allowing output forwarding between stream window evalua-

tions, we allow for incremental computation methods, such as the Sliding DFT [21],

thus alleviating the performance cost of overlapping data computation.

Within our system we provide two sample use-case implementations showcasing

the use of our system for DSP tasks and data encryption. Furthermore, we give users

access to an interface exposing data streams as arrays to users, allowing for creation of

any custom domain-specific operation that requires arrays as input.

1.1 Project Contribution

The contributions of this work are:

• The design and implementation of an Apache Flink framework supporting general-

purpose array transformations and operations on real-time streaming data with-

out the need for integration with external tools. We create the framework through

uniform array creation on top of non-uniform data streams through resampling

and interpolation.

• Full integration with native Flink operators for both grouped and non-grouped

stream processing.

• An array-based function interface implementation abstracting the notion of time

and any back-end operations. The interface provides support for use cases for

encryption and spectrum analysis, as well as allows for the implementation of

custom array functions.

• An interface for performing incremental computation on sliding windows where

users have full control over data forwarding and computation methods.

• The performance evaluation and benchmarking of our implementation compared

to loosely integrated systems and native Flink operations.
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1.2 Chapter Outline

Chapter 2: Background and Related Work first discusses the architecture and com-

ponents of the Apache Flink stream processing engine, detailing components used in

our system. It then presents background information on array-based processing and

work related to our system, outlining the similarities and differences.

Chapter 3: Design describes the requirements of our system and how its functional

parts relate to said requirements.

Chapter 4: Implementation describes how the design was implemented within the

Apache Flink framework. Furthermore, it details the challenges faced during imple-

mentation, as well as the limitations of our system.

Chapter 5: Evaluation presents the evaluation results of our system where it was

compared to loosely-coupled array function implementations using MATLAB and es-

timates the overhead of our system compared to native Flink stream operations.

Chapter 6: Conclusion contains the concluding thoughts, outlines future work and

summarizes the project results.



Chapter 2

Background and Related Work

In this chapter, we start by covering the basic concepts and components of Apache

Flink [10] relevant to our system. We continue to address what array-based process-

ing is and how the concept translates to our work. We also highlight some systems

and fields such as Array Database Management Systems where arrays are used as the

primary data structure. In the last section, we describe related work on the topic of

stream processing and signal stream processing which incorporates similar techniques

for stream-to-signal conversion as our system for array creation. Finally, we contrast

some relevant incremental computation techniques on sliding windows to our frame-

work for incremental computation.

2.1 Apache Flink

Apache Flink [10] is an open-source project that provides an interface for implement-

ing and executing operations on bounded or unbounded data streams. Flink provides

two core APIs, the DataSet API for bounded data set processing and the DataStream

API for unbounded streams, which enables stream processing within Flink. For this

project, we focus on extending the DataStream API with our system.

The core Flink architecture is comprised of three process types: client, job manager

and task manager. Clients transform program code into dataflow graphs described in

Section 2.1.1, while the job manager coordinates the dataflow execution. Lastly, the

task managers execute Flink operators (Section 2.1.2), which produce output streams.

In our project, we make use of the underlying architecture for dataflow coordination,

state management and scheduling, and create custom operators which enable array-

based processing in Flink.

5



Chapter 2. Background and Related Work 6

Figure 2.1: Operator chain in Flink showing groupings of operators into tasks.

2.1.1 Dataflow Graphs

The Dataflow Graphs in Flink correspond to the flow of streams between operators.

The graph in Figure 2.1 shows how operators are grouped into tasks each associated

with their input and output data stream. Data is pipelined from one task to another,

with each task executed by one thread. Operators are grouped into tasks to reduce the

overhead caused by thread communication [6]. At the end of a dataflow sequence, a

sink can be specified which collects and outputs the processed stream data using the

user’s choice of output method.

2.1.2 Operators

Operators are used to transform data streams. They apply native or user-defined func-

tions to the input data and output a transformed data stream. Operators represent nodes

of a Flink dataflow graph and can be chained together to create advanced execution

graphs. Flink defines a large amount of native operators, providing various modes of

aggregations, joins between streams and other methods, as well as providing operators

that allow user-defined functions to be executed.

Operators are the Flink construct where streams are modified and exposed to users.

Our system implementation is based on creating operators that modify the streams and

allow for array creation and modification.

2.1.3 Time Model

Flink mainly associates stream events with two different measures of time: processing-

time and event-time [6]. Processing-time denotes the current system time of a machine

running the Flink operator when an event is being processed, while event-time refers

to the time at which the event was created at the source. Within our system we make
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use of event-time timestamps, using them to measure the distance between elements to

facilitate the creation of a uniformly sampled stream.

Many core principles described by the Google Dataflow Model [4] are adopted

by the Flink framework, including the use of watermarks to measure global progress.

Watermarks are used to track pending events in the Flink distributed system, allowing

for distinction between missing and late events [3]. They tell the system that there are

no more events with a time lower than the watermark time waiting to enter an operator.

Watermarks are mostly created at the origin stream and propagated through the sys-

tem by operators, however, the Flink framework provides a TimestampedCollector

class which can be used to emit events with new timestamps onto the output stream. As

our system relies on realignment and interpolation of missing values to create uniform

streams, event watermarks must be modified and emitted in correct order to maintain

a watermarking procedure consistent with that of the Flink runtime engine.

2.1.3.1 Windowing

To perform computation on unbounded streams, said streams are most often split into

Windows, which partition a stream into finite segments. Windows have stream events

assigned to them by Window Assigners, which determine the rules on what event is

slotted into what window. Flink provides different window assigners [6]:

• Tumbling Window - Creates fixed-sized windows that do not overlap

• Sliding Window - Creates fixed-sized windows that include an additional slid-

ing parameter, which determines a time-window after which a window is evalu-

ated. This can lead to potential overlap between windows if the sliding parameter

is smaller than the window size.

• Session Window - Groups elements by sessions of activity where nearby el-

ements are slotted into the same window, and windows close after a specified

period of inactivity.

• Global Window - Assigns all elements to a single window. Most often used in

conjunction with a certain trigger which specifies when the window should be

evaluated, at which point elements are likely evicted from the global window.

Within our system’s workflow, we use global windows with a counting trigger,

which evaluates the window contents when a specified amount of elements has been
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received. As our system achieves a unique property where events are sampled uni-

formly, counting events is equivalent to specifying a window time-frame, where the

time-frame is defined by windowElementCount ∗ samplingInterval.

2.1.4 Stateful Processing

Flink supports “stateful stream processing” through managed states. While Flink op-

erators that apply functions to input streams mostly process each event and produce

a corresponding output, some operations, such as aggregation or updating machine

learning models require operators to keep track of past results and data [6]. Therefore,

each operator can create and manage its state, maintaining and updating it with data

persisting across multiple function invocations over input events.

There are two different varieties of managed state within Flink - Keyed State and

Operator State. The Operator State is a state associated with a single operator,

and is declared separately for each parallel task instance [9]. It is mostly used when a

stream cannot be partitioned into groups via a “key”. For the operator implementations

within our system, only the Keyed State is needed.

2.1.4.1 Keyed State

Input streams within Flink can be partitioned by an user-specified key, resulting in a

Keyed Stream. When operating on a Keyed Stream, Flink manages state separately

for every key instance within the stream, providing each operator with an appropriate

Keyed State on execution. Several types of Keyed State are present within Flink,

all exposing a different API [9]. Within our system we make use two state types:

• ListState - an append-only state which maintains a list of values per key and

supports an add operation.

• ValueState - a single-value state which supports an update operation allowing

mutations to the value stored within the state.

2.2 Array-Based Processing

The array data structure lies at the core of many algorithms used in fields such as IoT or

DSP. Array Database Management Systems (DBMS) are an example where the need

for an underlying array structure was identified, following study results showing that
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layering arrays over table structures results in poor performance [25]. SciDB [8] and

MonetDB [20] are examples of DBMS that provide column-oriented databases, mak-

ing use of arrays as the underlying structure to facilitate efficient array computation.

Within this project we define array-based processing as operations on arrays, pro-

ducing transformed arrays as output. Arrays are used to represent uniformly sampled

data, consisting of events at set time intervals. We use the Apache Flink event-time

metric to ensure equal distancing between adjacent events, and partition data streams

into time-bounded arrays.

In fields such as IoT, when collecting sensor data, loss of stream events and non-

uniform event transmission is the norm, rather than an exception, especially in regions

with lossy networks, or when networks are congested [18]. Missing data, irregular set

sizes, or non-uniform streams can often cause instability in systems, or prevent the ap-

plication of algorithms that rely on the uniformity of data. The data is often forwarded

to numerical computation environments such as MATLAB, R or Octave to address data

inconsistencies, store them in matrices and perform necessary computations. These

methods, however, do not support grouped processing and relational operations, thus

requiring coupling with other stream processing systems. SparkR [30], or SciDB-R

[24] are examples of systems capable of processing groups in parallel but only offer

computation on offline datasets. Most streaming applications require ad-hoc integra-

tion of computation environments, which is inefficient and difficult to implement.

To address the need for consistent data for array formation in streaming, we abstract

the temporal relation of stream events present in the Flink data streams by processing

input data and aligning it to intervals, while filling in missing values through interpo-

lation. This allows us to guarantee users that the arrays provided by our system will al-

ways be of a set size, containing elements distributed over constant time intervals, thus

eliminating the need to worry about stream form irregularities. Furthermore, creating

an all-in-one package for array-based stream processing in Flink eases the implemen-

tation difficulty, as knowledge of only one framework is required for implementation,

while also not needing to worry about compatibility issues.

Our array framework has potential for use in a wide array of fields in tasks such

data pre-processing for machine learning applications. For IoT applications, we pro-

vide time-alignment for sensor arrays and allow for performing array queries over

groups of uniform sensor data. While we aim to provide an array function interface to

facilitate every field where operations on arrays are used, we implement two functions

to demonstrate use-cases of our system, as described in the following sections.
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2.2.1 Fast Fourier Transform (FFT) Operations

We provide a built-in function allowing users to perform FFT on a stream window

which was converted into array form. FFT is commonly used in fields such as Digital

Signal Processing (DSP), speech processing and other fields requiring computation in

the Fourier domain. Within our framework, users can specify a custom function to be

invoked on the transformed array and whether or not the inverse FFT function should

be invoked on the output of the user function.

When performing FFT on arrays with overlapping windows, our framework pro-

vides aggregators for overlapping values to facilitate commonly used techniques in

DSP, such as the overlap-add method [16], where overlapping result values of sliding

windows are summed. Users can define custom aggregators for overlapping data in

addition to the base ones supported by our system (sum, average, min, max).

2.2.2 Block cyphers

Data reformatting into array structures allows us to use block cyphers to encode parts

of streams, distributing potentially unbounded data into finite chunks which can be en-

crypted and stored. After formatting Flink data streams into arrays of user-specified

size, we provide an encryption function using the AES cypher transformation [17] in

cypher-block-chaining (CBC) mode. Users can specify a key that is used for encryp-

tion and decryption.

While other encryption methods and types are publicly available and in wide-

spread use, we choose to focus on implementing the AES cypher to showcase the

encryption functionality of our system. As users have access to the source code, our

implementation can easily be adapted to make use of other cyphers and passed as a

custom user function to the array function interface.

2.3 Related Work

2.3.1 Stream Processing

Stream processing refers to the real-time processing of data from various sources. With

many applications producing high-volume data streams requiring processing, several

infrastructures to address that need were developed [2, 7, 10, 11, 22]. SPEs are engines

specifically designed to work on streaming data, supporting relational operations on
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streams in the style of SQL [26]. Operations such as filtering, mapping and joining of

streams are commonly used in conjunction with techniques such as windowing which

divide unbounded streams into finite chunks.

SPEs employ a tempo-relational query model where events are associated with

a time measure, such as timestamps in Flink [10], or validity intervals in Trill [11].

Conventional SPEs offer support for general, as well as custom queries, processing

either individual events or stream slices in the form of stream windows. They, however,

provide no measures to ensure data uniformity and time-consistency, making array-

based processing very difficult.

Custom user-defined operations can be used to enable array operations, but require

complex logic to implement, often requiring workarounds specific to each SPE [23].

Such implementations need to be aware of event timestamps, mapping them to array

indices in corresponding windows and filling in all missing values once windows are

ready for evaluation. To ensure accurate interpolation of missing values, each window

must also be aware of edge events in adjacent windows, requiring maintenance of over-

lapping values. These techniques require a deep understanding of the SPE framework

and require modifications to its back-end operators.

We provide support for array-based operations and move the implementation logic

to the Flink back-end, hiding it from users. As such we can fully abstract the tempo-

ral data aspect of stream processing, only presenting users with uniform arrays. This

allows for the use of temporal queries in Flink, while also enabling array-based opera-

tions.

2.3.2 TrillDSP

TrillDSP [23] implements a stream processing model similar to ours focused on DSP

tasks like spectral analysis or digital filtering on top of the Trill SPE [11]. They provide

an alternative to loosely-coupled systems using numerical computation environments

like MATLAB or R, by supporting DSP operations within the Trill package. To achieve

that goal, they propose a deep integration of a DSP framework in Trill, operating with a

query language providing function abstractions to DSP experts, while integrating with

the Trill query language.

The TrillDSP framework provides users with basic signal operations, aggregation

and functional signal operations, as well as sampling, upsampling and downsampling

methods with interpolation. It also features an extendable “walled-garden” framework
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for digital filtering and user-defined window-based DSP operators. As with our sys-

tem, where streams are converted into arrays before any array-based operations can be

performed, TrillDSP first converts streams into signals - special stream types with no

overlapping events. To enable DSP tasks in Trill, they sample their signal streams at

uniform intervals, filling in missing values through interpolation.

While the underlying methodology of creating uniform data streams used in TrillDSP

and our system is similar, our system aims at providing a more general interface allow-

ing DSP tasks in addition to enabling other array-based processing tasks. As mentioned

in the previous section, we provide interfaces for spectral analysis methods using FFT

and overlap-add techniques in addition to interfaces for tasks in other fields.

Furthermore, Trill and Flink differ in their dataflow implementation in various as-

pects. Trill associates ingested events with lifetimes, allowing for sampling at intervals

based on what elements are active at a given interval. Flink, however, only associates a

single timestamp with every event, making direct matching to intervals impossible, as

slight fluctuations in event-time would result in most events being misaligned. We thus

implement a resampling operator which moves and readjusts the event timestamps to

nearby intervals, while interpolating at intervals with no nearby events.

2.3.3 Incremental Sliding Window Computation

Computation of functions over sliding windows can present a large overhead in exe-

cution depending on the size of the sliding parameter. If the parameter is set to a low

sliding value, large overlaps between windows will be present and each stream event

may be evaluated several times. Several techniques for incremental sliding window ag-

gregation have been proposed [29, 27, 28]. One such technique is partitioning windows

into smaller “slices”, pre-aggregating the slices and forwarding the aggregated values

to the sliding windows each slice is a part of. This eliminates the need to aggregate

individual events at each operator, allowing for only slices to be aggregated.

However, such incremental techniques are suited mostly for aggregation of data

where data slices produce the same output in each window and the results are not re-

liant on the remaining window events. Transformations such as FFT cannot forward

the same data slices to every window for that reason. Thus, we provide an incre-

mental sliding window computation interface to users where they can forward data to

subsequent array window evaluations, containing selected output data of the previous

window. This allows for methods such as the Sliding DFT [21] to be implemented.



Chapter 3

Design

In this chapter, we present the requirements of our system and describe its overall

architecture and workflow. We give an overview of each system component and detail

how data passes through our system. Furthermore, we present the resampling and

interpolation algorithm that is used to align data and fill in missing events.

3.1 System Requirements

To enable array-based stream processing operations within Flink, our system needed

to meet the following requirements:

Requirement 1 - Uniformly Distributed Stream Events: Flink provides no guaran-

tees of ingested events appearing at regular intervals, with no missing data. To create

arrays abstracting the event-time with data sampled at consistent intervals, our system

must ensure that events on the input data stream are uniformly distributed at a desired

interval rate.

Requirement 2 - Array Function Interface: Providing Flink users with a familiar

interface following the style of the Flink query language is crucial to creating a usable

framework. Our system needs to provide an interface abstracting the notion of time

from events, exposing only arrays of data to users, while seamlessly integrating with

the Flink coding model.

Requirement 3 - Performance: With one of the goals of our system being the re-

moval of the overhead in communication when integrating Flink with other computing

environments such as MATLAB or R, our system should perform better than imple-

mentations making use loose coupling of said environments for array-processing. Fur-

13
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Figure 3.1: Model of the system workflow for array-based processing in Flink.

thermore, the array-based processing model should exhibit performance comparable

to standard Flink operations on streaming data.

3.2 System Workflow

To develop a system meeting the aforementioned requirements, the model depicted in

Figure 3.1 was adopted. The system is comprised of three main components:

• A sampling module, which through data re-alignment and interpolation ensure

that the input data is distributed uniformly,

• Array operator modules for sliding and tumbling windows, which emit arrays

used in array functions, as well as handle data forwarding and overlapping data

aggregation on sliding windows,

• An extendable function module, which provides an overridable method used to

implement user-defined array functions.

As shown in Figure 3.1, the input stream first passes through the resampling mod-

ule, which is associated with a select interpolator instance. It emits an ordered list of

events where timestamps are adjusted to meet the sampling interval of the user while

making use of the interpolator to fill in intervals with no data. The uniform and aligned

data are then windowed making use of tumbling or sliding windows in Flink.
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Depending on the type of window, an appropriate operator is invoked, making

use of a user-defined function to operate on the data in each window. The operator

transforms the window data into array form, passes it to the array function and emits

the result onto the output stream. In the case of sliding windows, the operator also

maintains a list of overlapping values emitted by the array function and aggregates

them if an aggregator is provided by users. Furthermore, it enables data forwarding

where the user function can optionally return an array containing data to be forwarded

to the next function call, enabling incremental computation.

The output stream can then be forwarded into a sink, storing the results through

a user-specified method. Our system also allows for additional computation on the

output stream if further processing is be needed and is compatible with other Flink

queries.

3.2.1 Sampling

To meet Requirement 1 described in Section 3.1, the procedure shown in Algorithm

1 was employed. The sampling module uses the algorithm to create uniformly dis-

tributed streams to enable array creation. It first moves input events to the closest array

slot (interval) based on the time-gap between array elements specified by users (lines

7-10). Intervals are used to index into arrays, where an increment of one time interval

corresponds to an array-index increment.

When the interval closest to the event currently being processed changes, the clos-

est event is either emitted onto the output stream or added to an emission buffer (lines

11-15). The emission buffer is used to maintain event order, as it buffers ready-to-emit

events until all missing events have been interpolated. The current interval is then ad-

justed to the interval closest to the current event and every interval that was skipped

due to having no nearby events is scheduled for interpolation (lines 16-19).

Lines 20-28 process all intervals waiting to have their events interpolated or emit-

ted, interpolating only if the current event is further than the first event of the interpo-

lation buffer. The interpolation buffer maintains N events closest to the array interval

requiring interpolation. Lastly, the interpolation buffer is updated with the most recent

event (line 29).

We design the sampling module to work with keyed and non-keyed streams, while

also allowing users to specify their own interpolation functions, or choose from a set

of pre-defined methods.
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Algorithm 1: Resampling and Interpolation algorithm.
Input: N← buffer size

1 begin

// Buffer of N nearest events for interpolation

2 interpolationBuffer← empty list of size N;

// Buffer of elements waiting to be emmited

3 emissionBuffer← empty list;

// Align the starting timestamp to the first stream element.

4 currentInterval← timestamp of first event;

5 closestEvent← first event of stream;

6 foreach ingested event x do

7 eventInterval← closest interval to x.timestamp;

8 if eventInterval == currentInterval then

9 if x closer to eventInterval than closestEvent then

10 closestEvent← x;

11 else

12 if emissionBuffer is empty then

13 emitWithWatermark(closestEvent);

14 else

15 emissionBuffer.add(closestEvent);

16 closestEvent← x;

17 currentInterval← eventInterval;

18 foreach skippedInterval do

19 emissionBuffer.add(new EmptyEvent at skippedInterval);

20 foreach intervalEvent in emissionBuffer do

21 if intervalEvent is EmptyEvent and interpolationBuffer.at(0) is closer

than x then

22 emitWithWatermark(interpolate(intervalEvent));

23 interpolationBuffer.remove(intervalEvent);

24 else if intervalEvent is not EmptyEvent then

25 emitWithWatermark(intervalEvent);

26 interpolationBuffer.remove(intervalEvent);

27 else

28 break;

// Update buffer to maintain the last N ingested events

29 interpolationBuffer.update(x);
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3.2.2 Array Processing

To create arrays, the input stream is first windowed and then passed to user functions

in array form. Windowing is done by counting the number of input events, which,

due to the uniformly sampled stream, also means that the windows span over a static

time-frame. Both keyed and non-keyed streams can be converted into array streams,

on which array functions can be invoked.

To adhere to the standard Flink query language and meet Requirement 2, array

streams provide an “apply” method, which passes user-specified array functions to an

operator. The array function interface abstracts the notion of time and underlying array

creation logic and allows users to focus on creating functions that use arrays as input.

We provide support for tumbling and sliding windows in the form of separate op-

erators, providing a function interface that exposes the input stream in array form.

3.2.3 Sliding Windows Operations

To enable efficient and usable array operations on sliding windows, we employ a Slid-

ing Window Operator that allows for incremental computation, as well as aggregation

of overlapping output arrays.

Incremental computation is achieved by providing users with an interface where

their array function output can return partial results done on data overlapping with

future windows in addition to the full result array. This data is then forwarded to the

next user function call, where it can be used to avoid computation on already processed

array sections.

Furthermore, sliding windows result in overlapping events if the slide parameter

is lower than the window size. This results in duplicate elements being emitted to

the output stream if no aggregation is done within user functions. To address that

issue we provide a function interface allowing for an aggregator to be specified which

aggregates overlapping events in output arrays. This allows for techniques such as

overlap-add, or overlap-save to be applied.
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Implementation

In this chapter, we detail how all system components were implemented and provide

code samples showing example uses of all operators. We discuss the differences in

implementation for grouped and non-grouped stream processing. We then provide an

overview of how operations on sliding windows are performed, providing examples of

overlapping data aggregation and describe the framework for incremental computation.

In the subsequent section, we describe the implementation of the FFT and block cypher

use cases and highlight our array function interface. Lastly, we give an overview of

our system’s limitations and challenges faced during implementation.

4.1 Data Alignment and Interpolation

To facilitate the creation of arrays with uniformly-sampled data, we create a resampling

operator that selects data closest to each sampling interval and uses a user-specified

interpolator to fill in missing data.

4.1.1 Resampling Operator

The resampling operator processes a Flink DataStream and outputs a new uniform

DataStream with events at regular intervals without missing data. When an event

is ingested by Flink, it passes through a resampler, which extracts its event-time

timestamp and aligns it to the nearest interval point. When multiple events would be

assigned to the same time interval, only the nearest one is emitted onto the resulting

data stream. Figure 4.1 illustrates the data alignment procedure. The resampling op-

erator can be instantiated by calling resample on a data stream with the sampling

18
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Figure 4.1: Resampling of misaligned input data and dropping events that are not clos-

est to an interval. Blue bars represent input events, while orange ones show how they

are realigned. Redundant events are crossed out and labeled as “dropped”.

Figure 4.2: Linear interpolation at intervals with missing data. Blue bars represent input

events, while orange ones show interpolated events at intervals with missing data. The

two nearest input events are used for linear interpolation.

interval in milliseconds and an interpolator as parameters. An optional parame-

ter samplingWindow in milliseconds can be specified, which drops any events with

an event-time further than samplingWindow apart from the closest sampling interval.

Timestamps and watermarks of output events are set to match the sampling intervals.

4.1.2 Interpolation

As the formation of arrays requires all intervals to contain data, an interpolator is

used to fill in any missing events in the data stream. Whenever the resampler detects

a gap within the data where no events were assigned to an interval, the interpolate

function is used to create an interpolated event. Our implementation provides three

native interpolators, as well as an interface where users can define their own.

Each interpolator maintains a buffer containing a user-specified number of time-

wise nearest events. When an event further than the first event in the buffer is ingested,

the interpolateAndCollect function is called, which creates and emits a new event

onto the resulting data stream. To maintain event order, all ingested events are buffered
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until the interpolation is done and emitted only after its completion. All events are

emitted to the output stream with a timestamp and watermark corresponding to the

interval at which they have been interpolated to facilitate the usage of time-reliant

operators later in the dataflow graph of a Flink program.

In our system we provide the following in-built interpolators:

• Linear interpolator - uses two values nearest to the sampling interval to deter-

mine the interpolated value through a linear function that passes through the two

nearest events (shown in Figure 4.2).

• Averaging interpolator - uses a user-specified number of nearest elements and

averages them to fill in the missing data point.

• Default interpolator - fills in every missing data point with a default value.

The following code sample shows an application of the resampling operator in

conjunction with an averaging interpolator. We specify the sampling interval as 10ms,

a sampling window of 3ms and an interpolation buffer size of 4 events.

1 DataStream<Double> source = ...

2

3 AveragingInterpolator<Double> interpolator = new AveragingInterpolator<>(4);

4 DataStream<Double> output = source

5 .resample(10L, interpolator, 3L);

4.1.3 Keyed Resampling

When dealing with streams of multiple sources, or in cases where different data types

are being captured and sent as separate events, the stream can be partitioned into groups

based on a specified key-field present in each event. To facilitate the use of the resam-

pling operator and interpolators, our system provides keyed versions, supporting usage

on keyed streams.

The keyed resampling operator maintains a Flink value state for every key, con-

taining relevant buffers and variables. The data present in the state is passed to the

resampler and interpolator on every call. The value state maintains a DataStorage

object which holds the state variables needed for resampling and interpolation. Flink’s

keyed state interface handles state management per key, removing the need to man-

ually buffer all resampling data and match input events to relevant keys. Furthermore,
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making use of the Flink native support for keyed state allows the resampling to be par-

allelised by the job manager with several keyed resampling operator instances being

invoked, each handling input data for a different subset of keys.

The sample code below shows the usage of the keyed resampling operator. It takes

an additional parameter dataField that tells the operator which data field to use for

interpolation to differentiate data values from keys.

1 DataStream<Tuple2<Double, Long>> source = ...

2

3 KeyedAveragingInterpolator<Tuple2<Double, Long>> interpolator = new

KeyedAveragingInterpolator<>(4);

4 KeyedStream<Tuple2<Double, Long>, Long> out = source

5 .keyBy(t -> t.f1)

6 .keyedResample(10L, interpolator, 0);

4.2 Array Operator

We provide an operator allowing users to implement functions taking ArrayLists as

parameters, which produce transformed ArrayList outputs. The operator turns Flink

stream windows into ArrayLists and passes them to the user function whenever a

window is full. The code below shows a standard use pattern of the array operator,

making use of the resampler.

1 DataStream<Double> source = ...

2

3 AveragingInterpolator<Double> interpolator = new AveragingInterpolator<>(4);

4 DataStream<Double> output = source

5 .resample(10L, interpolator)

6 .countWindowAll(256L)

7 .toArrayStream()

8 .applyToArray(new UserArrayFunction());

After resampling, the stream is windowed by using a counting window of size 256

events. As the events are sampled at a 10ms interval, the windows will span events

across 2560 milliseconds. To gain access to the array operator, toArrayStream is

called. applyToArray takes as parameters a user-defined class which extends the

ArrayWindowFunction abstract class and overrides its userFunction method. The

same use pattern can be applied to keyed streams.
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The operator uses a ListState to collect windowed values and transform them

into arrays. As ListState is a keyed state, when instantiating the operator on a non-

keyed stream, the countWindowAll function transforms the stream into a native Flink

AllWindowedStream type object, mapping every input event to the same key. This

allows both Keyed and Non-Keyed streams to make use of the Flink Keyed State for

array formation.

4.3 Sliding Windows

As described in Section 2.1.3.1, Flink supports sliding windows, which are evaluated

every time a period specified by the slide parameter passes. Depending on the con-

figuration, an event can be assigned to multiple windows, causing the same events to

be processed several times. To enable incremental computation on sliding windows,

sliding array functions provide an additional input parameter containing partial results

of the previous window evaluation. To make use of the incremental computation inter-

face, user functions on sliding windows must return a tuple containing both the full, as

well as the partial array output which is then passed to the next user function call and

can be used for incremental computation.

4.3.1 Overlapping Data Aggregation

If the user function does not aggregate its output when sliding windows overlap the

resulting data stream may contain multiple processed instances of an event. To enable

methods such as overlap-add, the overlapping output events can be aggregated by using

an SlidingAggregator. The aggregator is passed to the SlidingArrayOperator by

calling applyToSlidingArray with an extra parameter containing an aggregator class

that extends the SlidingAggregator abstract class.

In our initial implementation of overlapping data aggregation, when profiling the

operator’s performance, a large overhead was identified due to the underlying Ar-

rayList structure. Overlapping values which were already aggregated and emitted were

being removed from the aggregation buffer, due to the ArrayList.remove() opera-

tion having a time complexity of O(n). Thus, the aggregation operation increased the

sliding window operator processing time by a significant margin. To address the issue,

we instead opted to implement an aggregation algorithm implementing a variation of

a circular array by overwriting previous data instead of evicting it from the list. Figure
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4.3 shows how overlapping values are aggregated with a sum aggregator.

Figure 4.3: Example of overlapping value aggregation of three sliding windows. The

aggregation buffer in the red rectangle shows what values are stored for overlap aggre-

gation after window evaluation.

4.4 Array Functions

Our framework provides two built-in methods for array processing in addition to an

extendable abstract array function allowing for user-defined functions.

4.4.1 Fast Fourier Transform

The computation of the frequency domain of a signal through FFT is a common use

case in DSP tasks. Our FFT function allows for a common work pattern in DSP to

be applied, where a signal is converted into its frequency domain, a function modifies

the computed FFT results and the result is passed through an inverse FFT function.

For the function implementation, the Apache Commons [5] FFT function using the

Cooley-Tukey [15] algorithm was used.

To define the custom function applied in the frequency domain, users need to over-

ride the userFunction method within the FFT class with their implementation. The

default userFunction is an identity function.
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1 // Input stream of Double type values and String type keys

2 DataStream<Double,String> source = ...

3

4 LinearInterpolator<Double> interpolator = new LinearInterpolator<>();

5 DataStream<Complex> output = source

6 .keyBy(t -> t.f1)

7 .keyedResample(25L, interpolator, 0)

8 .countWindow(1028L)

9 .toArrayStream()

10 .applyToArray(new DoFFT());

When computing FFT on sliding windows, if a method requiring aggregation of

overlapping events is needed, the sliding window array interface can be used. For the

overlap-add method, users must simply specify an adder which aggregates all overlap-

ping values.

1 DataStream<Double> source = ...

2

3 LinearInterpolator<Double> interpolator = new LinearInterpolator<>();

4 DataStream<Complex> output = source

5 .countWindowAllSlide(1028L, 128L)

6 .toArrayStreamSliding()

7 .applyToArraySliding(new DoFFT(), new Adder());

8

9 ...

10

11 public static class Adder implements SlidingAggregator<Complex>{

12 @Override

13 public Complex aggregate(Complex val1, Complex val2){

14 return val1.add(val2);

15 }

16 }

4.4.2 Block cyphers

Block cypher encryption is implemented through the use of the Java cypher class. The

stream arrays are passed to the function, producing an encrypted output array. The

cypher used for encryption is AES in CBC mode. By manipulating the event-time at

the stream source, the resampling operator can be used to add padding to output data
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to create encrypted blocks of uniform size, while maintaining segregation of stream

data into separate blocks. By emitting a part of an array block with timestamps in

incrementing intervals, and then skipping the remaining timestamps that fall into that

array, the DefaultInterpolator can be used to pad the missing array segments. The

following code segment shows an example usage of our block cypher function.

1 DataStream<Byte> source = ...

2

3 DefaultInterpolator<Byte> interpolator = new DefaultInterpolator<>(0);

4 DataStream<Byte> output = source

5 .resample(1L, interpolator)

6 .countWindowAll(1000L)

7 .toArrayStream()

8 .applyToArray(new EncryptArray());

4.4.3 User-Defined Functions

In addition to providing support for the above use-cases, the array function interface

can be used to implement any custom array function on both tumbling and sliding array

windows. The already shown applyToArray and applyToArraySliding methods of

ArrayStreams can be used to invoke custom array functions.

We provide abstract classes ArrayWindowFunction and SlidingArrayWindow

Function which must be extended by user classes that override the userFunction

method. The userFunction is given the array data of each window as input in the form

of an ArrayList, expecting an ArrayList output. In the case of sliding windows, the

user function can return a tuple of both the full array output, as well as the array part

to be passed to the next function call for incremental computation.

4.5 Challenges

During implementation and integration of our framework with Flink, we faced several

challenges.

4.5.1 Generic Types and Type Erasure

The Flink back-end operates entirely using Java generic types, only inferring input

and output types based on user-defined functions and input stream sources. As such,
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extraction of data types when performing arithmetic for interpolation, or providing

default values was often very difficult. Type reference objects and type information

needed to be passed along the entire operator call chain to ensure safe casting and

prevent errors caused by operations on incorrect data types.

Furthermore, additional care had to be taken to ensure that type information was

preserved after every operator. Type erasure caused significant problems when at-

tempting to merge our operators into the existing Flink engine implementation. Thus,

testing was done to ensure that all explicit type casts used to preserve type information

were valid.

4.5.2 Operator Output Retrieval

As the functional interfaces present in Flink do not allow for retention of results of

stream functions in the operator invoking the function, the implementation of result

forwarding and aggregation of overlapping events in sliding windows presented a chal-

lenge. To circumvent the restrictions imposed by Flink, we implemented a new func-

tion structure allowing us to retrieve results of functions applied to sliding window

arrays. We created new wrappers and interfaces specifically aimed at sliding window

functions which pass the output data back to the operator to forward and aggregate

overlapping data before emitting it onto the resulting stream.

4.6 Limitations

With some of our implementations not necessarily following the Flink suggested work-

flow, some limitations of our system arose during integration with other Flink compo-

nents.

4.6.1 Sliding Window Overlap Computation

In our current implementation, overlapping data computation is done by computing

overlapping array indices of arrays emitted by user functions. This, however, imposes

a limitation on the system, where output arrays must be of the same length as input

arrays. This presents no issues when implementing DSP processing tasks with FFT,

making use of the overlap-add method. However, were a user function to output larger

or smaller arrays than the input ones, the overlapping data computation would fail
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and users would need to resort to alternative aggregation techniques in their function.

Doing so, however, is often very difficult within the original Flink framework.

4.6.2 Type Conversion to ArrayList and ListState Updating

Apache Flink maintains lists of window contents in the Java Iterable structure. As

such, conversion to either an ArrayList or Array structure requires O(n) computation

time. This causes an overhead in computation when creating arrays, which is most

apparent on sliding window computation with small sliding parameter sizes, as several

arrays need to be created consisting of many overlapping events.

Furthermore, when computing on sliding windows created through global win-

dows, we have to maintain a list of elements through the Flink ListState and remove

elements which are not part of the next sliding window. This presents an issue as the

ListState in Flink does not support a remove operation. Therefore, we must clear

the state and re-add every element that must remain in the window on every evalua-

tion. This issue is also present in the native Flink window operators when evictors,

are used to remove elements from a window according to user-specified parameters.

The native Flink count window implementation uses evictors to maintain the global

window state, incurring a similar, or greater performance overhead than our implemen-

tation.

4.6.3 Parallelism

As all input events must first pass through the same resampling operator instance to

create a single, uniformly sampled stream, the resampling operation is inherently non-

parallel. This limits the performance of the system, as it prevents operations from

being scaled through distributed computation.

However, parallel execution can be used to improve performance when computing

on keyed streams. As resampling is done separately for every stream key, the operator

and all operators applied subsequently can be parallelised.
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Evaluation

In this chapter, we describe how we evaluated our system on whether it meets Re-

quirement 3 - performance described in Section 3.1. We compared it against loosely-

coupled array-based processing within Flink, integrating calls to the MATLAB com-

putation environment for array processing, as well as against native Flink operators to

estimate the overhead of our operators.

We focus on evaluating each operator separately, estimating the computation costs

associated with them. The evaluation is done for keyed and non-keyed streams, using

both tumbling and sliding window allocators.

Experimental Setup: The experiments were run on an Ubuntu 20.04 instance

consisting of an Intel i7-8700K CPU @ 4.80GHz and 32GB of RAM @ 3.2GHz

5.1 Loosely-Coupled Systems in Flink

In our work, we state that integration of an outside numerical computation environment

such as MATLAB in Flink is not a usable solution due to the communication overhead

presented when invoking MATLAB functions. To confirm that hypothesis we used

the MATLAB Java engine to construct an experiment in which we called MATLAB

functions from within a Flink operator.

As our primary interest lied in determining the communication cost, we constructed

a uniformly sampled stream of 15 million input events, requiring no pre-processing be-

fore array construction. The randomly generated double type events were windowed

into tumbling windows and passed to MATLAB where they were processed by the FFT

and inverse FFT functions. The resulting data was emitted back to the stream without

any aggregation.

28
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Figure 5.1: FFT over tumbling count window comparison between Flink array-

processing and integration with MATLAB.

The results were compared to the same FFT transformations using our system, first

performing resampling to verify the uniformity of the input stream, creating an array

and using our FFT array function to compute the Fourier transform, as well as its

inverse. The timestamps for the input stream were generated incremented by 1ms for

every event on the stream. We express our query in Flink as follows:

1 LinearInterpolator<Double> interpolator = new LinearInterpolator<>();

2 DataStream<Double> output = source

3 .resample(1L, interpolator)

4 .countWindowAll(windowSize)

5 .toArrayStream()

6 .applyToArray(new DoFFT());

Figure 5.1 shows the execution time on differently sized windows. As shown, our

system performs significantly better than the loosely-coupled integration of MATLAB

in Flink. The communication overhead is reduced when performing computation over

larger window sizes, as data is passed to MATLAB less often. However, our system

still performs better even at larger window sizes. We thus meet the requirement of our

system outperforming loosely-coupled systems and confirm our hypothesis that such

systems incur a large communication overhead, rendering them ineffective.
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5.2 Performance Comparison to Native Flink Operations

To measure the overhead of our system on the Flink engine we compare its perfor-

mance to native Flink aggregate operations, focusing on individual operators. Our

system runs a resampling operator before other query operators are invoked, as well as

requires data processing to expose arrays to users. The additional steps in execution

add a processing-time overhead to Flink which we aim to minimize. In this section we

evaluate the costs of our system and how it performs in comparison to native operators

in Flink, focusing on aggregation.

5.2.1 Resampling Operator Performance

To estimate the cost of aligning input events and interpolating missing values, we run

the resampling operator on three different input stream varieties for different amounts

of inputs. The following stream types were used as experiment inputs:

• uniformly sampled stream, no missing values

• non-uniformly sampled stream, no missing values, requires only data alignment

• uniformly sampled stream, 1/3 missing values requiring interpolation

A resampler was invoked on every stream, using a linear interpolator. We express

our query as follows:

1 LinearInterpolator<Integer> interpolator = new LinearInterpolator<>();

2 DataStream<Integer> output = source

3 .resample(10L, interpolator);

As shown in Figure 5.2, the cost of resampling does not change with stream char-

acteristics and the cost increases linearly with the number of events processed. This

shows that the majority of the performance cost of resampling comes not from align-

ment and interpolation, but from reading all input data and determining whether inter-

polation is needed.

Moreover, as shown in Figure 5.3, we observe an approximately 30% increase

in runtime when invoking a windowed aggregation query with the resampling opera-

tor, compared to invoking the same query without it. Subtracting the runtime of both

queries and comparing it to the input event counts shows that the resampling operator

cost in the aggregation query was approximately 40-60 ms per million input events,
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Figure 5.2: Resampling operator runtime comparison on an uniform stream, stream

with misaligned data and a stream with missing data.

Figure 5.3: Sum aggregation query performance with and without event resampling.
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Figure 5.4: Performance comparison between array operators FFT, array sum, as well

as a Flink default sum aggregator and a on non-keyed streams of tumbling count win-

dows.

which is slightly lower than the results in Figure 5.2 suggest. This is likely due to

computation optimization in Flink when performing computations and working with

multiple operators. These results show that the resampling operator offers competitive

performance and does not present a significant bottleneck in the Flink dataflow.

5.2.2 Tumbling Window Evaluation

We evaluate the performance of our system on tumbling windows with keyed and

non-keyed streams. We again make use of the aggregate sum operator as a native Flink

function benchmark and compare it against an array function sum, which computes the

same aggregate, but instead using arrays as inputs. We also compare the performance

to FFT array functions to observe the difference in performance when performing more

complex calculations on array streams. Input streams of 15 million uniformly sampled

events were used for evaluation.

5.2.2.1 Non-Keyed Streams

As stated, we compared two array functions, as well as a native Flink aggregate func-

tion. Figure 5.4 presents the running time of each function on windows of different

sizes. We note that window size has no impact on performance, with all functions

achieving similar running times independent of window size.
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Figure 5.5: Performance comparison between array operators FFT and array sum, as

well as a Flink default sum aggregator on keyed streams of tumbling count windows.

The average increase in computation time of the array-sum function was roughly

10%, while the FFT operator was 20% slower. The difference in the sum operator

mostly stems from the overhead in type conversion from the Java Iterable construct

used by Flink into the ArrayList format passed to the user function. FFT runtime is

higher due to the increased function complexity but still achieves competitive runtimes.

5.2.2.2 Keyed-Streams

The experiments on keyed streams were executed on input streams partitioned into

100 groups where input events were evenly split amongst all groups. Similar to our

non-keyed stream evaluation, the same three function operators were executed on the

input streams. Results are shown in Figure 5.5. As with non-keyed results, the window

size did not impact the runtimes. We do however observe an 10% average increase on

array-based operations when compared to their non-keyed variants, while the native

Flink sum retained the same performance. This overhead is likely caused due to the

need to maintain internal list data structures that scale with the number of groups.

As noted in Section 4.6.3, keyed array stream operations can be parallelised with

each operator instance handling a subset of keys/groups. We evaluate our system for

different parallelism settings in Flink, which dictate how many instances of each op-

erator are created. Figure 5.6 shows the runtime results of invoking the FFT array

function with different parallelism settings with window size 1024. Interestingly we

observe that once set to create more than 2 instances of each operator, the performance
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Figure 5.6: Graph showing running time of the array FFT operator with different degrees

of parallelism set through the Flink function env.setParallelism(n), with window

size 1024.

starts degrading. This could be a result of component limitations of our experimental

setup, or the overhead of managing internal data structures exceeds the gain of paral-

lelising execution. Furthermore, all events were ingested into the system from a single

input stream and then partitioned into groups. If multiple stream sources were used,

higher parallelism would likely yield better results.

5.2.3 Sliding Window Evaluation

To evaluate the performance of our system on sliding windows, we implemented an

incremental sum operator which used data forwarding to forward already computed

parts of the aggregate to subsequent windows. Figure 5.7 shows the results of running

functions on a stream of 15 million events, window size 256 and various slide sizes.

We notice that the incremental computation of aggregates had little to no effect on

the runtime. Upon further inspection of the results using a CPU profiler, we find that

the aggregate computation only comprises a very small part of the running time, with

most of the time being the result of array formation and window list state management.

The runtime increases as we decrease the slide size, causing arrays to be formed more

often. However, our aggregate implementation still outperforms the Flink native sum

using the standard window operator on sliding count windows. This is mainly due to

the limitation mentioned in Section 4.6.2 as an evictor is used to manage the window

state, incurring large overheads. Our system achieves better performance by integrat-
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Figure 5.7: Performance comparison between the array functions FFT with overlap-

add, Sum and Incremental Sum against the native Flink Sum operator on sliding count

windows.

ing state updating into the sliding window array operator without using an evictor.

While array creation presents a major part of the runtime of a simple array aggre-

gate, when observing the performance of a higher complexity procedure such as FFT

overlap-add, the execution of said procedure starts to be the bottleneck in execution

as the full array needs to be re-evaluated on every slide. Thus, the execution of more

complex functions could benefit significantly from the usage of our incremental com-

putation framework. In the case of FFT techniques such as the Sliding DFT [21] can

be used to increase performance.

5.3 Summary of Results

We evaluated our system on its performance in comparison to a loosely-coupled in-

tegration of Flink and MATLAB, as well as conducted per-operator experiments to

determine the performance cost of our operators compared to ones supported natively

by Flink.

Loosely-coupled Systems: As shown in Figure 5.1, our system outperformed the

coupling of Flink and MATLAB significantly at lower window sizes where more com-

munication was needed. At higher window sizes, our system still performed better, but

the difference in performance narrowed. We conclude that our system meets the initial
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performance goals aiming to perform better loosely-coupled systems in Flink.

Resampling Operator: We show that the cost of resampling does not change given

different types of input streams, where none or many events need to be interpolated, or

realigned (Figure 5.2). We estimate the runtime cost of resampling at around 40-60ms

per 1 million input events, yielding an approximately 30% performance overhead on a

simple Flink aggregate function, as shown in Figure 5.3.

Tumbling Windows: Our array-based processing operator incurs a 10% cost in run-

time when performing an array aggregate over tumbling windows as compared to the

native Flink sum (Figure 5.4). This overhead is attributed to back-end data type conver-

sions. When performing keyed computations, the runtime is increased by an additional

10% (Figure 5.5), but can be improved by increasing the parallelism of Flink operators.

Due to our experimental setup, as shown in Figure 5.6, the performance improved only

at a parallelism setting of 2 and started degrading afterwards. This result would likely

change in a more highly distributed processing setup.

Sliding Windows: We show that our sliding window operator improves on the na-

tive Flink aggregation operator on sliding count windows by modifying the window

back-end implementation. However, as shown in Figure 5.7 by the array sums, per-

formance still suffers due to type conversion to arrays at lower slide sizes. We do not

see a difference in runtime compared to incremental and non-incremental aggregation

methods, as the runtime is dominated by type conversions. A more complex algorithm,

such as Sliding DFT [21], would need to be used to show the benefits of incremental

computation.
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Conclusion

This project was undertaken to bridge the gap between relational stream processing

in stream processing engines (SPEs) and array-based operations performed in numer-

ical computation environments such as MATLAB and R. Loose coupling of SPEs and

MATLAB/R is often used to gain access to functionalities of both systems, but that

incurs large processing costs due to the communication overhead when passing data

from one environment to the other. Thus, we present a solution in the form of an ex-

tension to the Apache Flink [10] SPE, enabling array-based operations such as the Fast

Fourier Transform (FFT) to be performed on streams, eliminating the communication

overhead. We build on top of the Flink framework, retaining the ability to execute all

relational queries supported by the native Flink implementation while providing our

extensions for array-based processing.

To enable array-based processing in Flink, we implemented several operator mod-

ules responsible for creating uniform streams through data resampling and missing

value interpolation. The implementation provides users with an interface allowing for

custom array function creation, adhering to the Flink coding style by using an apply

function, through which user functions can be invoked. As proof of concept, we pro-

vide two built-in array functions: FFT for use in signal processing and a block cypher

implementation for encryption. Furthermore, we provide interfaces enabling incre-

mental computation on sliding windows, as well as aggregation of overlapping data.

Our performance analysis showed that our system achieves significantly better per-

formance than loosely-coupled systems which make use of the MATLAB Java engine.

The experiments confirmed that data transfer to MATLAB presents a significant per-

formance bottleneck. Furthermore, our results showed that our system manages to

achieve competitive running times in comparison to native Flink operations. Our tests

37
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for incremental computation performance did not produce definitive results, likely due

to the low complexity of our chosen incremental function. The implementation of a

more advanced incremental operation on sliding windows such as the Sliding DFT [21]

in future work is required to show the impact of incremental computation on sliding

windows in our system.

While our system achieved the goals of creating a functional framework with com-

petitive performance in Flink, we faced many challenges and limitations during imple-

mentation. The main obstacle was working around the Flink dataflow and underlying

data structures. Flink operates on a forward-only dataflow model, where an operator

processes a single window and adds results to either the output stream or a separate

managed state. When the operator moves onto the next window, it has no awareness

of past windows inputs or results. This made the implementation of data forwarding,

overlapping aggregate computations, as well as resampling difficult, as all those opera-

tions required knowledge of timestamps and contents of already processed events/win-

dows. To address this framework compatibility issue, significant modifications and

workarounds in the Flink engine, as well as the implementation of several custom data

buffers was required, which were detrimental to the system’s performance. Further-

more, as we worked with the Flink list state, we needed to convert all states from the

Iterable object type used by Flink to ArrayLists which are passed to user func-

tions. This incurred significant type conversion overheads that were visible in our

sliding window evaluation.

Despite the limitations, we believe that our system provides an important feature

within the Flink SPE while maintaining competitive performance. Array-based pro-

cessing on streams is a topic relevant in many areas such as IoT, machine learning or

digital signal processing. We have shown that integration of array-based processing at

high performance is possible in Flink. With further modifications to the Flink back-

end, addressing the aforementioned limitations, our system could be improved even

further.
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6.1 Future Work

To address the limitations of our system and further verify the performance impact of

our incremental computation system, the following work is to be undertaken in the

future:

• Implement a custom Flink state, making use of either Arrays or ArrayLists as

the underlying structure to eliminate the need for type conversion in our opera-

tors.

• Provide an additional built-in array function for Sliding DFT [21] to showcase

and evaluate the performance of our incremental computation features.

• Parallelise the execution of resampling on non-keyed streams by maintaining a

synchronized buffer which maintains data order and the output stream uniformity

property.

• Refactor, restructure as an importable package and further test our system on

larger stream processing implementations to prepare for making our project open-

source.
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