
Experiments with Information
Maximizing Generative
Adversarial Networks

Cian Eastwood

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2017

Abstract
Despite recent successes, state-of-the-art artificial intelligence models still struggle on

certain tasks where humans excel, particularly when a conceptual understanding of the

underlying structure in data is required in order to generalise to unseen data. Recent re-

search suggests that this can only be achieved by learning disentangled representations

of the underlying explanatory factors behind the data. Information-maximizing gen-

erative adversarial networks (InfoGANs) are a recent and promising approach to learn

such representations. However, the degree disentanglement achieved by this model is

only assessed qualitatively, making it difficult to truly evaluate the quality of the latent

variables discovered. In this work, we conduct a number of qualitative and quantitative

experiments in order to elucidate the quality of the latent variables discovered by In-

foGAN. We also combine the mutual information cost of InfoGAN with a recent and

more stable value function. Experiments show that this combination, along with an

updated gradient penalty, leads to stable and reliable disentanglement.

iii

Acknowledgements
Firstly, I would like to thank my supervisor, Prof. Chris Williams, for his valuable

advice, guidance and insight. I would also like to thank Pol Moreno for generating the

data and numerous helpful conversations. Finally, I would like to thank Andrew Brock

and Akash Srivastava for helpful conversations.

iv

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Cian Eastwood)

v

Contents

1 Introduction 1
1.1 Motivation and objective . 1

1.2 Contributions . 3

1.3 Dissertation structure . 3

2 Background 5
2.1 Convolutional Neural Networks . 5

2.2 Residual Networks . 6

2.3 Generative Adversarial Networks . 8

2.4 Wasserstein GANs . 9

2.5 Information Maximizing GANs . 10

3 Related Work 13
3.1 Unsupervised disentangling . 13

3.2 Evaluating disentangled representations 14

4 Resources, Tools and Data 17
4.1 Resources and tools . 17

4.1.1 Software . 17

4.1.2 Hardware . 17

4.2 Data . 18

5 Learning Disentangled Representations 21
5.1 Initial InfoGAN training . 22

5.1.1 Seeking Nash equilibria . 22

5.1.2 Simplifying the problem . 22

5.2 Stable GANs . 23

5.3 Stable InfoGANs . 24

vii

5.3.1 WGAN-GP to InfoWGAN-GP 25

5.3.2 Optimization and exploration 26

5.3.3 Further improving stability 28

6 Evaluating the Quality of Learnt Representations 35

6.1 Quantifying the degree of disentanglement 36

6.1.1 Metric . 36

6.1.2 Retrieving the latent codes 39

6.1.3 Baselines . 39

6.1.4 Preparing the data . 40

6.1.5 Fitting the regression models 41

6.1.6 Results . 46

6.2 Further evaluation . 56

6.2.1 Creating ‘gaps’ in the data 57

6.2.2 Zero-shot inference . 58

6.2.3 Zero-shot reconstruction . 60

7 Conclusion 65

7.1 Contributions and discussion . 65

7.2 Possible shortfalls . 66

7.2.1 Use of deep ResNets . 66

7.2.2 Fixed number of latent codes 67

7.2.3 Redundant calculation . 67

7.3 Suggestions for future research . 67

7.3.1 Excessive latent codes with a redundancy pressure 68

7.3.2 Unseen objects . 68

7.3.3 Richer data . 69

A GAN instability 71

A.1 Initial InfoGAN architecture . 71

A.2 Samples from the original dataset. 72

A.3 Samples from the simplified dataset. 72

B Additional Samples 73

B.1 Disentangled representations. 73

B.2 Large mutual information coefficient 73

viii

Bibliography 79

ix

Chapter 1

Introduction

In this introductory chapter, we present the main objectives of this dissertation and the

motivation behind them. We also outline the contributions of this dissertation and its

overall structure.

1.1 Motivation and objective

Artificial intelligence (AI) has enjoyed many remarkable successes in recent years, in-

cluding reaching human-level performance on some object recognition benchmarks [1,

2, 3] and superhuman-level performance on complex strategic games like Go [4]. How-

ever, state-of-the-art AI models still struggle on certain tasks where humans excel [5].

A prime example is zero-shot inference [6], where models must use their knowledge

about individual factors of variation in the data to reason about new data with unseen

factor combinations. Another example is transfer learning [7], where representations

learned for one task are reused for several other tasks. While Lake et al. [5] suggest in-

corporating domain-specific knowledge into models such as the basic laws of physics,

the quest for AI demands more powerful algorithms which learn with generic priors.

An intelligent agent must fundamentally understand the world around us, and Bengio

et al. [8] argue that this can only be accomplished if it learns to disentangle the un-

derlying explanatory factors hidden in the observed data. Higgins et al. [6] support

this argument, demonstrating that models may obtain a basic conceptual understand-

ing of the visual world by learning disentangled representations of the factors behind

low-level sensory input. A disentangled representation is one that separates the factors

1

2 Chapter 1. Introduction

of variation, explicitly representing the important attributes of the data. For instance,

given an image dataset of human faces, a disentangled representation may consist of

separate dimensions (or features) for the face width, face height, hairstyle, eye colour,

facial expression, etc. Such representations would allow useful information to be eas-

ily extracted and hence would likely be useful for downstream discriminative tasks,

transfer learning and zero-shot inference.

Unsupervised learning aims to extract value from unlabelled data that is available in

large quantities. Utilizing this wealth of unlabelled data to learn disentangled rep-

resentations is critical to developing intelligent algorithms that learn and think like

humans [8, 6, 5]. Ultimately, we would like to learn features that are invariant to ir-

relevant changes in the data. However, this unsupervised problem is ill-posed. The

relevant downstream tasks are generally unknown at training time and hence it is dif-

ficult to deduce a priori which set of variations will ultimately be relevant. Thus, the

most robust method is to disentangle as many factors of variation as possible, discard-

ing as little information as possible [8, 9].

Deep generative models are a powerful class of probabilistic models, providing tools

for the unsupervised learning of complex probability distributions [10]. Driven by

the idea that some form of understanding is required in order to be able to synthe-

size the observed examples, deep generative modelling has become one of the leading

approaches to unsupervised representation learning. It is hoped that meaningful disen-

tangled representations will be learned automatically by a sensible generative model.

However, a generative model that perfectly reproduces the data distribution can have

arbitrarily bad representations[11]. More specifically, the individual dimensions may

not correspond to semantic features of the data if the generator uses the latent repre-

sentations in a highly-entangled way.

The generative adversarial network (GAN) [12] is currently one of the most promi-

nent generative models, with several recent successes of note [13, 14, 15]. Informa-

tion Maximizing Generative Adversarial Network (InfoGAN) is a recent extension to

the GAN that encourages the generative model to learn more interpretable and mean-

ingful representations in an completely unsupervised manner [11]. This extension is

remarkably effective, with the model appearing to learn highly semantic disentangled

representations on several image datasets. Unlike previous unsupervised approaches

to learning disentangled representations [16, 17, 18, 9], InfoGAN requires no prior

knowledge about the underlying factors of variation in the data and scales to compli-

1.2. Contributions 3

cated datasets. However, the degree disentanglement is only assessed qualitatively in

[11], visually assessing the generated image for different types of semantic variation

after varying a single latent variable. As a result, it is difficult to truly evaluate the

quality of the latent variables discovered by InfoGAN. This leads to the main objective

of this work—to experiment with InfoGAN on image data with known latent causes in

order to quantitatively evaluate its ability to disentangle the factors of variation in data.

1.2 Contributions

Our contributions are as follows:

1. We combine the mutual information objective of InfoGAN with a recent and

more stable GAN value function, the Wassterstein GAN [19, 20].

2. We show that this novel combination leads to stable and reliable disentangle-

ment, removing InfoGAN’s sensitivity to random initialization and requirement

to re-tune network hyperparameters for each individual factor of variation in the

data.

3. We propose new metrics to quantitatively compare the degree of disentanglement

achieved by different models. These metrics extend previous attempts ([6]) and

generalize to high-dimensional factors of variation.

4. We quantify the degree of disentanglement achieved by InfoGAN, providing

empirical evidence that InfoGAN understands the factorial structure of the data,

enabling it to successfully perform zero-shot inference.

1.3 Dissertation structure

Chapter one serves as an introduction to the dissertation topic, motivating our work

and explaining our main contributions. Chapter 2 reviews GANs and their recent ex-

tensions, including InfoGAN. Chapter 3 details related material on disentangled repre-

sentations, highlighting the factors that distinguish it from our work. Chapter 4 gives a

brief overview of the resources, tools and data used throughout this project. Chapter 5

details how the data was generated and how the two GAN extensions were combined in

a novel way to achieve reliable disentanglement. Chapter 6 describes our new metrics

4 Chapter 1. Introduction

for quantifying the degree of disentanglement in models before evaluating the qual-

ity of the latent variables discovered by InfoGAN using these new metrics. Finally,

chapter 7 presents a conclusion of the dissertation and suggestions for future work.

Chapter 2

Background

Chapter 1 motivated our research, stated the objectives of this dissertation, outlined

our main contributions and provided an overview of the dissertation structure. In this

chapter, we review the relevant background material in order to facilitate a deeper

understanding of the topics introduced in later chapters. Note that a familiarity with

basic concepts in machine learning is assumed throughout this dissertation, particularly

neural networks.

2.1 Convolutional Neural Networks

Traditional neural networks consist of ‘fully-connected’ layers in which every input

feature is connected to every hidden unit. Intuitively, treating all of the input features

equally does not seem like the best approach for images given their inherent spatial

structure. Pixels that are close together are likely to be related, perhaps even part of

the same object. This motivates the use of a neural network architecture that can ex-

ploit this spatial structure, namely convolutional neural networks (CNNs) [21]. CNNs

slide a kernel or feature map across the input to detect a particular abstract pattern or

feature, where the slide ‘distance’ is known as the stride. Each feature map uses a

single set of weights to map every F × F region in the input to a single hidden unit

in the convolutional (conv) layer, where F is the desired field size. As a result, each

feature map learns to detect the same feature at any location in the input, leading to

a natural invariance to object translation. Furthermore, using a single set of weights

reduces the number of trainable parameters in the model, thus improving generaliza-

5

6 Chapter 2. Background

Figure 2.1: Convolutional neural network for image processing. Adopted

from [21]. Figure shows alternating convolutional and subsampling layers, with each

F × F region in the input ‘image’ being mapped to a single hidden unit in each of the

feature maps, where F is the desired field size.

tion performance. As it is desirable to detect more than one feature, numerous feature

maps are used in each conv layer (see figure 2.1). Finally, pooling layers are usually

employed after conv layers in order to summarise the information in a given region

for each feature map. This reduces the volume of the input to the layers that follow

and hence reduces the required computation. However, it is worth noting that recent

implementations generally replace deterministic pooling layers with increased stride

convolutions. This allows the networks to learn appropriate spatial downsampling and

is particularly important for the GANs discussed in section 2.3, with the generator and

discriminator learning their own ‘reversible’ spatial upsampling and downsampling

respectively [13]. CNNs are widely used in the field of image recognition, with most

state-of-the-art networks, such as the popular VGG Net [22], using some variant of

CNNs.

2.2 Residual Networks

Theoretically, increasing the number of layers in a neural network should not result

in a higher training error as the models are nested. However, He et al. [3] provide

empirical evidence that this is not the case beyond a certain depth, where conventional

deeper networks begin to demonstrate serious signs of underfitting due to optimization

difficulties. As a result, these deeper networks are significantly outperformed by their

shallower counterparts. While clever weight initialization techniques [23, 24] and in-

2.2. Residual Networks 7

(a) Plain network. (b) Residual network.

Figure 2.2: Residual network reformulation. Figures adopted from [3], with (a)

depicting conventional networks and (b) depicting the proposed residual networks.

termediate normalization layers [25] have largely addressed the problem of vanishing

gradients, increasing depth still increases the size of the solution space and hence the

difficulty of the optimization objective. Note that if the added layers can be formulated

as identity functions, a deeper model should have at most the same training error as its

shallower counterpart. As this is not the case, He et al. [3] infer that optimizers may

have trouble approximating identity functions with several nonlinear layers.

To address this issue, He et al. [3] propose Residual Networks (ResNets). Contrary to

conventional networks which attempt to learn an underlying function with a nonlinear

function H(x), residual networks use a nonlinear function F (x) = H(x) − x (see

figure 2.2). As shown in figure 2.2b, this is achieved by adding the input x to the func-

tion output F (x) before applying the final ReLU nonlinearity. With this reformulation,

if the underlying function is the identity function, the optimizer can simply push the

weights to zero. Furthermore, if the underlying function is closer to an identity func-

tion than to a zero function, it should be easier for the optimizer to find the weights

with reference to an identity function than to learn the function ‘as a new one’. Al-

though it is unlikely that the identity function will be optimal is real cases, He et al. [3]

show that the responses of learned residual functions are usually small, suggesting that

identity functions provide more sensible preconditioning than zero functions.

Compared to conventional networks, ResNets converge faster and can gain accuracy

improvements from significantly increased depth. He et al. [3] achieve state-of-the-art

performance on ImageNet using a 152-layer ResNet. This network is 8 times deeper

than the previous state-of-the-art, VGG nets [22], despite having lower time complex-

ity1. More recently, promising results have been achieved with 1001-layer residual

1See [26] for more details on the time complexity of convolutions.

8 Chapter 2. Background

networks [27].

2.3 Generative Adversarial Networks

GANs [12] are a powerful framework for training deep generative models through

an adversarial process in which two models are trained simultaneously; a genera-

tive model G - which generates samples by transforming a multivariate noise variable

z ∼ Pnoise into sampleG(z), and a discriminative modelD - which tries to distinguish

between samples from the training data x ∼ Pdata and those generated by G. D(x)

represents the probability that x came from the training data rather than G. The model

is trained by simultaneously adjusting the parameters of G to maximize the proba-

bility of D making a mistake and the parameters of D to maximize the probability

of correctly distinguishing samples from the training data (true distribution) and G.

At the end (theoretically), the generator reproduces the true data distribution and the

discriminator is unable to distinguish between the samples. This training procedure

corresponds to a two-player minimax game with the following value function:

min
G

max
D

VGAN(D,G) = Ex∼Pdata
[logD(x)] + Ez∼Pnoise

[log(1−D(G(z)))]. (2.1)

A helpful analogy is given in [12] where G is viewed as a team of counterfeiters pro-

ducing fake currency and D as the police, with competition pushing both teams to en-

hance their mechanisms until the counterfeits are indistinguishable from the genuine

currency. By defining G and D as neural networks, the whole system can be trained

with backpropogation. This has both computational (no Markov chains, intractable

partition functions or inference during training) and flexibility (any differentiable func-

tion is allowed) advantages. GANs also generate much sharper images than competing

generative models such as the variational autoencoder (VAE) [28] due to their learn-

ing process and lack of a heuristic loss function. However, GANs can be difficult to

train due to unstable training dynamics and mode collapsing (where the generator only

learns to generate samples from a few modes of the training data distribution) [29, 30].

As a result, a delicate balance is required in the training of the discriminator and the

generator. Some helpful techniques were introduced by DC-GAN [13], although any

deviation from the suggested architecture and corresponding hyperparameters can de-

stroy this equilibrium, resulting in nonsensical outputs. Recently, there has been a

2.4. Wasserstein GANs 9

tremendous amount of interest in improving GANs. We will describe the most rele-

vant to our work in the sections that follow.

2.4 Wasserstein GANs

Recent research on GANs has focused on methods to stabilize training and prevent

mode collapse [31, 30, 19, 20, 32, 33]. In particular, Arjovsky et al. [30] present a

detailed analysis of the GAN value function and its convergence properties. They

also propose an alternative value function based on the Wasserstein distance, called

Wasserstein GAN (WGAN) [19], and demonstrate that its better theoretical properties

lead to improved training stability and increased resistance to mode collapse. WGAN

requires that the discriminator (or ‘critic’) D is in the set of 1-Lipschitz functions D,

which is achieved through weight clipping. The new value function is

min
G

max
D∈D

VWGAN(D,G) = Ez∼Pnoise
[D(G(z))]− Ex∼Pdata

[D(x)]. (2.2)

Although this alternate value function improves training stability, the authors acknowl-

edge that weight clipping is ‘a clearly terrible way to enforce a Lipschitz constraint’,

encouraging researchers to improve on their method. Gulrajani et al. [20] subsequently

obliged, showing that this weight clipping can lead to pathological behaviour before

proposing an alternative, commonly called WGAN-GP, which does not suffer from

these issues. More specifically, they note that ‘a differentiable function is 1-Lipschitz

if and only if it has gradients with norm at most 1 everywhere’ and thus are able to en-

force the Lipschitz constraint on the discriminator by constraining the gradient norm

of its output with respect to its input using a gradient penalty (GP). Thus, the updated

value function is

min
G

max
D

VWGANGP
(D,G) = VWGAN(D,G) + λEx̂∼P (x̂)[(

∥∥∇x̂D(x̂)
∥∥
2
− 1)2],

(2.3)

where the sampling distribution P (x̂) is implicitly defined by the following equation:

x̂ = εx+ (1− ε)G(z), ε ∼ U [0, 1]. (2.4)

Gulrajani et al. [20] provide empirical evidence that this alternative constraint signif-

icantly improves training speed and architecture robustness. This robustness allows

the authors to improve sample quality by exploring a wider range of architectures, in-

cluding a 101-layer Residual Network ([3]) that produces samples competitive with

10 Chapter 2. Background

the state-of-the-art on the LSUN bedrooms dataset. Bellemare et al. [34] provide the-

oretical evidence of bias in the sample gradient estimates of the Wasserstein distance

and propose an alternative probability metric, the Cramér distance. However, although

they conjecture that these issues remain for the WGAN-GP with a fixed number of

samples, their proposed solution, the Cramér GAN, only achieves performance im-

provements over the WGAN-GP when both networks are trained using a single critic

update per generator update (ncritic = 1). They observe no performance improvements

when ncritic = 5, as suggested in the original work [20].

2.5 Information Maximizing GANs

GANs place no restriction on the manner in which the generator may use the input

noise vector z. As a result, individual dimensions of z may not correspond to seman-

tic features of the data if the generator uses z in a highly-entangled way. InfoGAN [11]

splits the noise vector into two parts; z, which targets ‘incompressible noise’, and c,

‘latent codes’ which target salient semantic features of the data. The manner in which

the generator may use the latent codes is then constrained by adding a regularisation

term I(c;G(z, c)) to the GAN objective, representing the mutual information between

the latent codes c and generated imagesG(z, c). Intuitively, we want this mutual infor-

mation to be high so that the information in the latent codes reveals as much as possible

about the image, rather than being lost in the generation process. As this term is dif-

ficult to directly maximize without access to the posterior P (c|x), it is approximated

by the following variational lower bound LI(G,Q):

LI(G,Q) = Ec∼P (c),x∼G(z,c)[logQ(c|x)] +H(c), (2.5)

where the auxiliary distribution Q(c|x) approximates P (c|x) and H(c) denotes the

entropy of the latent codes c. The auxiliary distribution Q(c|x) is parametrized as

a neural network, outputting the parameters of the posterior distribution over latent

codes. For discrete codes, Q(c|x) is represented by a softmax non-linearity. For con-

tinuous codes,Q(c|x) is treated as a factorized Gaussian. AsQ shares all layers except

the final fully-connected layer with D, maximizing the added mutual information term

essentially comes at no extra computational cost. The extended framework is illus-

trated in figure 2.3 and defined by the following value function:

min
G,Q

max
D

VInfoGAN(D,G,Q) = VGAN(D,G)− λLI(G,Q), (2.6)

2.5. Information Maximizing GANs 11

Figure 2.3: A: GAN framework. B: InfoGAN framework. y = D(x) represents the

probability that x came from the training data and not G.

where λ, the mutual information coefficient, is an additional hyperparameter.

Experiments on several image datasets suggest that InfoGAN discovers meaningful

and highly semantic latent representations. On MNIST, a discrete code appears to cap-

ture the digit type while two continuous codes appear to capture the rotation and width.

On a dataset of 3D faces, the latent codes appear to successfully capture azimuth, ele-

vation, lighting and width. Chen et al. [11] evaluate the disentanglement of the latent

representations by varying one code at a time, visually assessing the different types

of semantic variation in the resulting image. A single type of semantic variation sug-

gested that InfoGAN had successfully learned to disentangle the factors of variation in

the dataset. While these qualitative results are impressive, the critical importance of

disentangled representations to achieving true AI motivates further investigation into

the quality of the latent variables discovered by InfoGAN.

Chapter 3

Related Work

Chapter 1 introduced the idea of disentangled representations and illustrated the crucial

role that they play in achieving AI. Chapter 2 provided a review of the background ma-

terial which is most relevant to our work, preparing the reader for subsequent chapters.

This chapter explains related research on disentangled representations, highlighting the

factors that distinguish it from our work.

3.1 Unsupervised disentangling

Most previous ‘unsupervised’ attempts to separate the factors of variation have re-

quired prior knowledge about the nature/number of underlying factors of variation in

the data [16, 17, 18]. Others have simply not scaled well [9, 35]. However, the recent

approach of Higgins et al. [6] does not suffer from these issues and hence is the most

closely-related work. As Chen et al. [11] demonstrate with InfoGAN, Higgins et al. [6]

demonstrate that deep unsupervised generative models are capable of learning disen-

tangled representations if the correct learning constraints are imposed. Their proposed

learning constraint is inspired by those that have been suggested to act in the human

brain, encouraging the model to reduce redundancy and note statistical independencies

in the data in order to learn disentangled representations. However, they do so using

the VAE [28] framework. While popular, the VAE has some significant disadvantages

compared to the GAN. In particular, the difficulty of specifying a good heuristic loss

over complex image distributions generally leads to blurry images.

In addition, several recent works have successfully separated a class label from other

13

14 Chapter 3. Related Work

factors of variation with no supervision by combining adversarial methods and autoen-

coders [36, 37]. However, they rely on the autoencoder to capture the data distribution.

This is a significant disadvantage for the reasons outlined in the previous paragraph.

3.2 Evaluating disentangled representations

Higgins et al. [6] also propose a method to quantify the degree of disentanglement in

learnt representations. They suggest training a linear classifier to predict which gener-

ating factor caused the change between two images, where the images are exactly the

same except for a change in a single generative factor. The low capacity of the linear

classifier ensures that high classification accuracy can only be accomplished when the

generative factors have already been disentangled in the latent space. The classifier

essentially learns a mapping f(cchange) : RD → RK , where D is the dimensionality

of the latent codes, K is the total dimensionality of all the factors of variation in the

dataset and cchange is the ‘change in latent space corresponding to a change in a single

generative factor in pixel space’. Despite its success for simple 1D factors of variation,

this metric may struggle to generalize to high-dimensional factors of variation where

absolute difference along each individual dimension is not the most appropriate way to

capture the factor’s total change. Hence, we aim to explore alternative quantification

metrics, including those that generalize to high-dimensional factors of variation.

Using the VAE framework, Higgins et al. [6] also demonstrate how learning disentan-

gled representations can enable models to: a) perform zero-shot inference (see figure

3.1a); b) obtain a ‘basic conceptual understanding of the visual world, such as “ob-

jectness”’. A VAE that learned disentangled representations achieved relatively high

classification accuracy on the test data containing unseen combinations of factors. By

contrast, a VAE that learned entangled representations (trained without the learning

constraint) performed significantly worse on the test data. In order to visualize what

the model understands about novel objects and hence demonstrate an understanding of

basic visual concepts, the authors train one VAE on the original dataset of different 2D

objects (heart, oval and square) and another on a new dataset of 2D objects (mushroom,

rectangle and triangle), which were generated using the same factors of variation. A

linear regressor H then joins the encoder trained on the original dataset (Encorig) with

the decoder trained on the new dataset (Decnew) by aligning the latent spaces zorig and

znew (see figure 3.1b). The reconstructions x̂new = Decnew(G(Encorig(xnew)) gener-

3.2. Evaluating disentangled representations 15

(a) Zero-shot inference. (b) Learning basic visual concepts.

Figure 3.1: Figures and captions adopted from [6]. (a) ‘Models are unable to gen-

eralise to data outside of the convex hull of the training distribution (light blue line)

unless they learn about the data generative factors and recombine them in novel ways’.

(b) ‘Model architecture used to visualise whether VAEs trained on the original dataset

of 2D objects can reason about new object identities’.

ated by a VAE that had learned disentangled representations were far better than those

generated by a VAE that had learned entangled representations, suggesting that the

former had learned basic visual concepts that allowed it to reason about the properties

of unseen objects. As disentangled representations should enable zero-shot inference

and the emergence of basic visual concepts, tests for these properties serve as intuitive

methods of evaluating the quality of latent representations. This idea will be further

explored in chapters 3 and 5.

Chapter 4

Resources, Tools and Data

In chapter 2 we presented background material on the deep neural networks that were

used in this project. Section 4.1 outlines both the software and hardware resources that

were required to train such networks. Section 4.2 then presents the synthetic data that

later facilitates a quantitative analysis of the latent variables discovered by InfoGAN.

4.1 Resources and tools

4.1.1 Software

This project was implemented using Python 2.7.5 and Tensorflow 1.0.0. Scientific

computing libraries numpy and scipy were used throughout. The GANs in chapter

5 were based on code published by the authors of InfoGAN [38] and the improved

WGAN [39]. Scikit-learn was used for most of the regression models in Chapter 6,

along with Jupyter notebooks and Matplotlib for convenient prototyping and data vi-

sualization.

4.1.2 Hardware

Deep CNNs and ResNets are quite computationally expensive to train. It is simply

not feasible to carry out adaptive experiments with such networks on CPUs. To en-

able GPU-accelerated functionality with Tensorflow, we used Nvidia’s CUDA API

and cuDNN deep learning library. This allowed us to train on several Nvidia Titan X

17

18 Chapter 4. Resources, Tools and Data

GPUs, which were available on university servers. Even with 4 such GPUs running in

parallel, some ResNets took over 24 hours to train.

4.2 Data

One of the main objectives of this dissertation is to quantify the degree of disentan-

glement achieved by InfoGAN. In order to do so, we need the ground-truth values for

each factor of variation. Using computer-graphics generated images of an object class

(teapots) gives us direct access to these underlying scene parameters. The scene gen-

erator from [40] is used to generate the data, randomly instantiating a teapot object in

one of 80 indoor scenes. The camera is at a fixed distance and centered on the object.

Originally, 100000 images with dimensions 48 × 48 × 3 were generated with vary-

ing scene backgrounds (see samples in figure 4.1) . However, as detailed in section

5.1.2, the dataset was later simplified by removing the backgrounds. The images are

generated using the following generative factors, where each factor is independently

sampled from its respective uniform distribution:

• Pose (2D)
– Azimuth ∼ U [0, 2π]

– Elevation ∼ U [0, π/2]

• Appearance (3D)
– Red ∼ U [0, 1]

– Green ∼ U [0, 1]

– Blue ∼ U [0, 1]

Note that the scene generator from [40] used two additional generative factors, shape

and lighting, which were held constant for our experiments. These high-dimensional

generative factors could be varied in future work to create richer data.

4.2. Data 19

Figure 4.1: Original dataset samples.

Chapter 5

Learning Disentangled
Representations

In chapter 1, we discussed the importance of learning disentangled representations

from unlabelled data. Specifically, we highlighted its central role in building intelligent

systems that understand the world around us. In chapter 2, we presented InfoGAN, a

deep unsupervised generative model that appears to disentangle the underlying factors

of variation in data to learn meaningful and highly semantic representations. However,

the disentanglement was only evaluated qualitatively (by visual inspection) in [11]. In

order to quantitatively assess the quality of latent variables discovered by InfoGAN,

we must first train the InfoGAN on the synthetic dataset described in chapter 4. This

will be the focus of chapter 5. In section 5.1, we describe the unsuccessful search for

a GAN architecture (and corresponding hyperparameters) that allows the generator to

learn the initial data distribution. Next, we illustrate the subsequent simplifications that

were made to the dataset before exploring alternate GAN value functions in search of

stability. In section 5.2, we present the stable GAN value function that was able to

learn the data distribution and produce sharp images of teapots. Finally, in section 5.3

we detail the process of combining this new value function with that of InfoGAN in

order to learn disentangled representations in a stable manner.

21

22 Chapter 5. Learning Disentangled Representations

5.1 Initial InfoGAN training

5.1.1 Seeking Nash equilibria

As discussed in section 2.5, training InfoGANs is equivalent to optimizing the minimax

game in equation 2.6, whereD,G andQ are all neural networks. As discussed in [29],

this requires finding a Nash equilibrium of a two-player ‘non-cooperative’ game in

which both players want to minimize their own cost function. Salimans et al.[29] also

note that gradient descent algorithms often fail to converge for such games as they are

designed to seek a low value for the cost function rather than a Nash equilibrium.

To train an InfoGAN on our dataset, we needed to find an architecture and hyper-

parameter ‘pair’ that allowed the minimax game to converge. However, finding Nash

equilibria is a very difficult problem [29]. Starting with the architectures given in [11],

we tried every sensible architecture and hyperparameter combination using the ‘guide-

lines’ of DC-GAN [13]. We also tried removing the mutual information regularization

term completely (setting λ = 0 in eq. 2.6). However, the instability stemmed purely

from the GAN value function in eq. 2.1. As a result, the balance between the generator

and the discriminator was always lost after a few iterations, with the losses diverging

once the generator was no longer able to ‘fool’ the discriminator. As a result, the gen-

erator was unable learn the data distribution. This frustrating experience reiterated the

fickle nature of the GAN training procedure and prompted a simplification of the prob-

lem. The best samples produced with this ‘vanilla’ GAN were very close to random

noise and are depicted in Appendix A.2, while relevant architecture details are given

in Appendix A.1.

5.1.2 Simplifying the problem

As discussed in the previous section, the difficulty of finding a GAN architecture that

allowed the generator to ‘keep up’ with the discriminator prompted several simplifica-

tions in the hope of generating reasonable samples. A simpler distribution should be

easier to learn. Thus, we aimed to simplify the problem for the generator by simplify-

ing the data distribution, removing the background scene. The dimensions were also

changed to 64× 64× 3, in line with popular architectures [13]. Samples from this new

dataset are shown in figure 5.1a.

5.2. Stable GANs 23

(a) Groundtruth samples. (b) WGAN-GP samples.

Figure 5.1: Samples from the new dataset. (a) ‘Real’ samples from the new dataset.

(b) ‘Fake’ samples generated by WGAN-GP.

Despite a prolonged learning period, the losses once again diverged. The best samples

from the generator were produced when training was prematurely halted at the first sign

of divergence. However, the generator was unable to learn the data distribution in such

a small number of iterations (typically around 5). The best samples generated with this

simplified dataset are given in Appendix A.3, while relevant architecture details are

given in Appendix A.1.

5.2 Stable GANs

Unable to find an architecture and hyperparameter ‘pair’ that allowed the GAN to learn

the distribution of our data, we turned to recent literature on improving the stability of

GANs [31, 32, 30, 19, 20, 33]. As described in section 2.4, this led us to the improved

WGAN (WGAN-GP) [20] which replaces the weight clipping of WGAN [19] with

a gradient penalty to improve stability. This in turn leads to improved architecture

robustness, allowing the authors to generate high-quality samples through the use of

deep ResNets. By adapting the open-source implementation of WGAN-GP [39] to

our dataset, we were able to generate very sharp samples without any hyperparameter

tuning. In fact, it is not obvious which samples are ‘real’ and which are ‘fake’ when

comparing samples from the dataset to those generated by WGAN-GP (see figure 5.1).

24 Chapter 5. Learning Disentangled Representations

Figure 5.2: WGAN discriminator cost over iterations. Train disc cost indicates

discriminator cost on the training set.

As shown in figure 5.2, the stability of WGAN-GP allows the minimiax game to con-

verge. Furthermore, unlike GANs value function, WGANs unbounded value function

correlates with sample quality. Thus, as the discriminator loss peaks, so too does the

sample quality. We used the exact experimental setup in [20]. Details are provided in

their open-source implementation [39].

5.3 Stable InfoGANs

WGAN-GP enables stable training and the use of a wide variety of architectures, in-

cluding deep ResNets which can generate extremely sharp samples. However, just

like the original GAN, WGAN-GP places no constraint on how the generator may use

the input noise vector z. As a result, individual dimensions of z may not correspond

to semantic features of the data if the generator uses z in a highly-entangled way.

Section 5.3.1 outlines the transition from WGAN-GP to InfoGAN-GP. Section 5.3.2

details the subsequent hyperparameter searches which were carried out. Finally, sec-

tion 5.3.3 details further stability improvements.

5.3. Stable InfoGANs 25

5.3.1 WGAN-GP to InfoWGAN-GP

In order to learn disentangled representations with WGAN-GP, we needed to apply the

same modifications that took GANs to InfoGANs in [11]. As discussed in section 2.5,

these modifications allow a mutual information regularization term to be added to the

value function, encouraging the network to learn more interpretable and meaningful

representations.

The first step was to split the noise vector into ‘incompressible’ noise z and latent

codes c, subsequently ensuring that the latent codes were sampled from the correct

discrete/continuous prior distributions. The concatenated noise vector is then used

to generate samples G(z, c). The next step was to implement the auxiliary network

Q(c|x) which approximates P (c|x). Like InfoGAN, we ensure that the discriminator

D shares all convolutional layers with Q, with both networks having their own fully-

connected output layer. The final step was to add the mutual information term to the

WGAN-GP value function. As detailed in section 2.5, this term is approximated by the

variational lower bound given in eq. 2.5. Algorithm 1 illustrates the practical steps re-

quired to approximate this lower bound for continuous latent codes with Monte Carlo

simulation. [Worked only with continuous latent codes]. Note that a similar procedure

can be applied for discrete codes, withQ(x) instead returning the parameters of a cate-

gorical distribution which can be passed to a CATEGORICAL function analogous to the

GAUSSIAN function. Adding this variational lower bound of the mutual information to

the WGAN-GP value function, we arrive at the new value function:

min
G,Q

max
D

VInfoWGANGP
(D,G,Q) = VWGANGP

(D,G)− λmiLI(G,Q). (5.1)

Initial experiments indicated that the unbounded loss of the WGAN required a larger

value for mutual information coefficient λmi (λgp now refers to the gradient penalty co-

efficient) in order to ensure that the mutual information cost was on the same scale as

the WGAN objectives. Setting λmi = 10 was sufficient, with the network appearing to

successfully disentangle the factors of variation in the data with all other hyperparam-

eters set to their respective default values (see Appendix B.1 for further details on the

experimental setup). The disentanglement was visually assessed in a similar manner

to [11], individually varying each latent code from−1 to 1 and inspecting the resulting

images for different types of semantic variation. These images are given in figure 5.3.

Note that the factors do not appear to be completely disentangled, with c2 and c4 both

26 Chapter 5. Learning Disentangled Representations

capturing a combination of azimuth and the red colour channel. The effect of λmi and

other hyperparameters is further investigated in the next section.

Algorithm 1 Approximating the variational lower bound on mutual information

(eq. 2.5) for continuous latent codes with Monte Carlo simulation. Based on the pro-

cedure in [11].
Require:

Batch of N continuous latent codes c, batch of N images x, neural network

Q which parametrizes the auxiliary distribution Q(c|x) and function GAUS-

SIAN(x,µ,σ) which returns N (x;µ,
∑∑∑

), where
∑∑∑

ij = δijσi, N denotes the

PDF of a multivariate Gaussian. Note that δij is the Kronecker delta which is zero

unless i = j.

1: procedure APPROXIMATE MI(c,x, Q)

2: µ,σ ← Q(x)

3: q c given x← GAUSSIAN(c,µ,σ)

4: prior c← GAUSSIAN(c,0,1)

5: cross entropy ← 1
N

∑N
i=1(− log(q c given xi))

6: entropy ← 1
N

∑N
i=1(− log(prior ci))

7: mi← −cross entropy + entropy . ≈ Ec∼P (c),x∼G(z,c)[logQ(c|x)] +H(c)

8: return mi
9: end procedure

5.3.2 Optimization and exploration

• Mutual information coefficient λmi. To discover the effect of λmi on disentan-

glement, we compared the value of mutual information lower bound (eq. 2.5) over

iterations, the sample quality and the visual disentanglement for different settings of

λmi. Intuitively, an underestimate would result in tangled representations while an

overestimate would prevent the networks from learning the data distribution. Exper-

imental results supported these intuitions, with λmi = 1 resulting in lower mutual

information than λmi = 10 (see figure 5.4) and λmi = 25 resulting in blurry samples

(see Appendix B.4). Further hyperparameter searches were carried out in an attempt

to find a value for λmi that completely disentangled the factors of variation. How-

ever, we found that the (visual) degree of disentanglement was more dependent on

the random initialization than the value of λmi, as discussed in the final point below.

5.3. Stable InfoGANs 27

(a) Azimuth/Red(c2) (b) Elevation(c0)

(c) Red/Azimuth(c4) (d) Green(c1) (e) Blue/Azimuth(c3)

Figure 5.3: Manipulating the latent codes. Each column in the subfigures illustrates

how the learnt code affects different random samples. Learned continuous latent codes

are varied from -1 (bottom) to 1 (top) to show the effect on generated images. The

model appears to have successfully disentangled (b) elevation and (d) green. However,

azimuth and red are clearly tangled in (a) and (c). Although less obvious, azimuth and

blue are also tangled in (e). The colour captured by a given latent code is determined

by examining the colour channel which needs to be changed to produce each teapot in

a column.

28 Chapter 5. Learning Disentangled Representations

• Architecture of the output layer(s) for Q(c|x). D and Q share all convolution

layers, but some experiments in [11] used multiple (nonlinear) FC output layers for

Q. However, we found that additional FC layers in the output layer of Q did not

improve the networks ability to disentangle the factors of variation. Details of the

architectures experimented with are provided in Appendix B.2.

• Unfixing the standard deviation of continuous latent codes. For continuous la-

tent codes, Q(c|x) outputs the parameters of a Gaussian distribution, i.e. the mean

and standard deviation. Although it is not explicit in [11], their published code [38]

indicates that the standard deviations of continuous latent codes were fixed to 1.

We unfixed these standard deviations to determine its effect on the models ability

to disentangle the generative factors. Experiments indicated that this allowed the

network to ‘cheat’, driving the standard deviations up to extremely large values to

achieve high mutual information. However, the constantly increasing mutual infor-

mation prevented the model from learning the data distribution. Perhaps first training

the network with a fixed standard deviation and later freeing the standard deviation

would be a more appropriate approach. We leave this investigation to future work.

• Random initializations. Chen et al. [11] only presented the representations which

most resembled prior supervised results after training the InfoGAN five times with

different random initializations. This perhaps indicates a sensitivity to random ini-

tialization when using the original GAN value function. We found that a similar

sensitivity exists with the WGAN-GP value function, with different random initial-

izations achieving varying levels of disentanglement (samples for multiple runs are

provided in Appendix B.1). Furthermore, we found that the degree of disentangle-

ment was more dependent on the random initialization than specific hyperparameter

values. However, choosing one of many random runs by visually inspecting the

degree of disentanglement requires human supervision. This prompted an investiga-

tion into ways of reducing this severe sensitivity in the next section, where we aimed

to take another step towards black-box disentanglement.

5.3.3 Further improving stability

• Correlation penalty. As depicted in Appendix B.1, most random runs did not result

in completely disentangled latent codes, with some generative factors captured by

a combination of latent codes. Intuitively, if several latent codes capture the same

5.3. Stable InfoGANs 29

0 1000 2000 3000 4000 5000 6000 7000 8000
Iteration

0.0

0.2

0.4

0.6

0.8

M
u
tu
a
l
In
fo
rm
a
ti
on

λ= 1

λ= 10

Figure 5.4: Effect of mutual information coefficient λmi.

generative factors they may be correlated. Furthermore, maximizing the mutual in-

formation does not explicitly penalize correlated representations, although such rep-

resentations would ultimately be able to capture less information about the image.

Hence, we aimed to encourage the model to learn more disentangled latent codes by

discouraging correlated representations with a correlation penalty. The penalty was

calculated using the standardized covariance matrix, summing the absolute values

of the off-diagonal elements in a similar manner to the Pearson correlation coeffi-

cient [41]. Although this penalty reduced the correlation between the latent codes

(see figure 5.5), the degree of disentanglement achieved by the model was still pri-

marily dependent on the random initialization.

• Updated gradient penalty. The WGAN-GP improved the stability of the WGAN

by replacing the weight clipping with a gradient penalty. This penalty ensured that

the discriminator had ‘gradients with norm at most 1 everywhere’, thus enforcing

the necessary Lipschitz constraint on the discriminator. We hypothesize that subse-

quently adding a mutual information cost to the discriminator adversely affects this

required constraint, allowing the discriminator to lie outside of the set of 1-Lipschitz

functions. Furthermore, we hypothesize that this is the source of the observed in-

stability and unreliable disentanglement which culminates in a sensitivity to random

initialization. Thus, to place the discriminator back in the space of 1-Lipschitz func-

tions, we add the per-image mutual information LÎ(Q) to the per-image discrimina-

30 Chapter 5. Learning Disentangled Representations

tor cost D(x̂) before calculating the gradient norm with respect to its input. LÎ(Q)

is defined as:

LÎ(Q) = logQ(c|x̂)− logP (c), (5.2)

where x̂ ∼ P (x̂) and c ∼ P (c) as before, with the sampling distribution P (x̂)

implicitly defined by equation 2.4. Thus, the updated gradient penalty is

GPupdated = Ex̂∼P (x̂)[(
∥∥∇x̂[D(x̂)− λmiLÎ(Q)]

∥∥
2
− 1)2]. (5.3)

This updated gradient penalty ensures that the gradients take the added mutual infor-

mation ‘into account’, correctly enforcing the required Lipschitz constraint on the

discriminator. Putting all of these equations together, we can define the new value

function:

min
G,Q

max
D

VInfoWGANGP
(D,G,Q) = VWGAN(D,G)−λmiLI(G,Q)+λgpGPupdated.

(5.4)

Algorithm 2 describes the the new training procedure. The updated penalty can

be viewed as transitioning from Info(WGAN-GP) to (InfoWGAN)-GP. This simple

update is remarkably effective, allowing the model to achieve stable and reliable

disentanglement. Several random runs produced comparable results, with each run

appearing to successfully disentangle all of the factors of variation in the data. The

latent representations for one such run are given in figure 5.6, where a clear improve-

ment can be seen over the degree of disentanglement achieved with the old penalty

(see figure =5.3). In addition, figure 5.5 shows that the correlation between the latent

representations is significantly reduced with this updated penalty. Together, these re-

sults support the hypothesis that the previously-illustrated instability stemmed from

an inaccurate gradient penalty. This improvement in stability will be quantitatively

evaluated in Chapter 6.

5.3. Stable InfoGANs 31

0 2000 4000 6000 8000 10000 12000
Iteration

10-3

10-2

10-1

C
or
re
la
ti
on

Original GP

Updated GP

Corr penalty

Figure 5.5: Batch correlation between latent codes over iterations. Correlation

value is equal to the sum the off-diagonal elements of the standardized covariance

matrix.

32 Chapter 5. Learning Disentangled Representations

(a) Azimuth(c3) (b) Elevation(c1)

(c) Red(c2) (d) Green(c0) (e) Blue(c4)

Figure 5.6: Manipulating the latent codes. Each column in the subfigures illustrates

how the learnt code affects different random samples. Learned continuous latent codes

are varied from -1 (bottom) to 1 (top) to show the effect on generated images. The

model appears to have successfully disentangled all the factors of variation in the data

and learned to smoothly interpolate between them. The colour captured by a given

latent code is determined by examining the colour channel which needs to be changed

to produce each teapot in a column.

5.3. Stable InfoGANs 33

Algorithm 2 InfoWGAN with updated gradient penalty. Based on [20] and [11].

Default values of λgp = 10, λmi = 10, ncritic = 5, α = 0.0001, β1 = 0,

β2 = 0.9, PER IMAGE APPROXIMATE MI is analogous to APPROXIMATE MI in algo-

rithm 1 without the summations in steps 5 and 6, thus returning a vector [mi, . . . ,mN],

where mi denotes the approximate mutual information between latent codes ci and

image xi.
Require:

The gradient penalty coefficient λgp, the mutual information coefficient λmi,

the number of critic iterations per generator iteration ncritic, the batch

size N , Adam hyperparameters α, β1, β2, functions APPROXIMATE MI and

PER IMAGE APPROXIMATE MI.

Require:
Initial critic parameters w0, initial generator parameters θ0, initial auxiliary net-

work parameters q0.

1: while θ has not converged do
2: for t = 1, . . . , ncritic do
3: for i = 1, . . . , N do
4: Sample real data x ∼ Pdata, noise variables z ∼ p(z) and c ∼ p(c), a

random number ε ∼ U [0, 1].

5: x̃← Gθ(z, c)

6: x̂← εx+ (1− ε)x̃
7: mix̃ ← APPROXIMATE MI(c, x̃, Qq)

8: mix̂ ← PER IMAGE APPROXIMATE MI(c, x̂, Qq)

9: gp← (
∥∥∇x̂[Dw(x̂)− λmi(mix̂)]

∥∥
2
− 1)2

10: L(i) ← Dw(x̃)−Dw(x)− λmimix̃ + λgpgp

11: end for
12: w ← Adam(∇w 1

N

∑N
i=1 L

(i),w, α, β1, β2)

13: q ← Adam(∇q 1
N

∑N
i=1 L

(i), q, α, β1, β2)

14: end for
15: Sample batch of noise variables {z(i)}Ni=1 ∼ p(z) and {c(i)}Ni=1 ∼ p(c).

16: x̃← Gθ(z, c)

17: mix̃ ← APPROXIMATE MI(c, x̃, Qq)

18: θ ← Adam(∇θ 1
N

∑N
i=1−(Dw(x̃(i))) + λmimix̃, θ, α, β1, β2)

19: end while

Chapter 6

Evaluating the Quality of Learnt
Representations

In chapter 2, we presented InfoGAN, a deep unsupervised generative model that ap-

pears to disentangle the underlying factors of variation in data to learn meaningful

and highly semantic representations. Unfortunately, the degree of disentanglement

achieved by this promising model was only evaluated qualitatively (by visual inspec-

tion) in [11].

In chapter 3, we reviewed some related works that seek to learn disentangled repre-

sentations in an unsupervised manner, along with some approaches to quantifying the

degree of disentangled achieved by different models.

In chapter 4, we detailed the software and hardware that would later facilitate the

training and quantitative analysis of InfoGAN. Chapter 4 also presented the computer-

graphics generated dataset, highlighting the five independent generative factors for

which we have access to the underlying ground-truth values.

In chapter 5, we illustrated the instability of the ‘vanilla’ GAN learning objective,

before simplifying the dataset and employing more stable GANs based on the Wasser-

stein distance. In particular, we detailed the process of adding the mutual information

cost of InfoGAN to the stable value function of the improved WGAN (WGAN-GP).

With the help of an updated gradient penalty, this new combined generative model ap-

peared to achieve stable and reliable disentanglement. However, this only brought us

to the same level of qualitative analysis carried out in [11].

35

36 Chapter 6. Evaluating the Quality of Learnt Representations

To gain a conceptual understanding of our world, models must first learn to understand

the factorial structure of low-level sensory input without supervision. As argued by

several notable works [8, 9, 6], this can only be accomplished if the model learns

to disentangle the underlying explanatory factors hidden in the observed data. As

discussed in chapter 1, this motivates a deeper quantitative analysis of InfoGAN and

ultimately leads to the main objective of this dissertation—to truly elucidate the quality

of the latent variables discovered by InfoGAN. This will be the focus of chapter 6.

In section 6.1, we propose a new metric to quantify the degree of disentanglement

achieved by different models, using it to quantify the degree of disentanglement achieved

by InfoGAN on our teapot dataset. Section 6.2 further evaluates the quality of the la-

tent variables discovered by InfoGAN, quantifying the models ability to reason about

new data with unseen factor combinations by recombining previously-learnt factors.

6.1 Quantifying the degree of disentanglement

In this section, we propose a new metric to quantify the degree of disentanglement

in learnt latent representations and employ it to quantify the degree of disentangle-

ment achieved by InfoGAN. To verify the propriety of our proposed metric, we also

present several alternative metrics, including those based on higher-capacity models

and those which have built-in methods to quantify the degree of separation within the

learnt latent representations. A detailed description and comparison of these metrics in

provided in sections 6.1.1- 6.1.5, before analysing their results and respective strengths

in section 6.1.6.

6.1.1 Metric

As discussed in chapter 1, a disentangled representation is one that separates the fac-

tors of variation, explicitly representing the important attributes of the data. We can

decompose this definition into two characteristics of disentangled representations:

• Separation: ability to separate the factors of variation, with learnt latent variables

capturing at most one statistically independent generative factor.

• Explicit representation: ability to explicitly represent the important attributes of

the data, allowing information to be easily extracted.

6.1. Quantifying the degree of disentanglement 37

Armed with these two defining characteristics, we devise a metric to quantitatively

approximate the degree of disentanglement within learnt latent representations. Our

metric uses K linear regressors to predict the ground-truth value of K generative fac-

tors given the latent representation. In essence, each regressor learns the mapping

f(c) : RD → R1, where c is the latent representation and D is its dimensionality. The

model’s low expressive power ensures that low prediction error can only be achieved

if the generative factors have already been disentangled in latent space. More specifi-

cally, low prediction error can only be achieved if the information is easily extractable,

thus quantifying the models ability to capture and explicitly represent the important at-

tributes of the data (explicit representation). To ensure our metric also evaluates a mod-

els ability to separate the factors of variation, we apply an l1 regularization penalty.

If D 6 K, as in our case, this regularization encourages a sparse one-to-one mapping

between the learnt factors and the generative factors. If D > K, a sparse many-to-one

mapping is encouraged, where multiple learnt factors may contribute to a given pre-

diction. Either way, the magnitude of the resulting regression weights should rank the

latent variables in order of relative importance to the prediction. Note, this is assuming

that the inputs and targets have been normalized to have zero mean and unit variance

(see section 6.1.4). The degree of separation can then be qualitatively evaluated by

visualizing the magnitude of the weights with a Hinton diagram (see section 6.1.6).

To quantitatively evaluate the degree of separation, we devise a new ‘separation score’

based on the principle that each latent factor should be important for predicting at most

one generative factor if the factors have been successfully disentangled. The average

separation score (ASS) across all D latent variables is defined as:

1

D

D∑
i=0

(
max(|Wi|)−min(|Wi|)∑K

j=0

∣∣Wij

∣∣), (6.1)

where |Wij| denotes the magnitude of the weight used to scale latent factor i when

predicting generative factor j andWi denotes the regression inputs, i.e. the latent vari-

ables for a given prediction. If the latent factor is important for predicting a single

generative factor, the score will be 1. If the latent factor is equally important for pre-

dicting all generative factors, the score will be 0. If multiple latent variables capture

overlapping or similar information about a given generative factor, the score may be

similar to the correlation coefficient. The ASS could also be used in a different manner

in order to reveal the ‘purity’ of each prediction, measuring the number of latent vari-

ables which capture a generative factor rather than the number of generative factors

captured by a latent variable. Although this alternative interpretation may seem more

38 Chapter 6. Evaluating the Quality of Learnt Representations

natural when dealing with an equal number of latent variables and generative factors,

purity is not desirable in learnt representations where a generative factor is captured

by more than one latent variable. With Higgins at al. [6] demonstrating the tenancy

of unsupervised generative models to learn such representations, we believe that it is

more useful to quantify separation than purity.

To summarise our metric:

• The prediction error of the linear regressor quantifies the amount of easily-

extractable information captured by the latent representation.

• The magnitude of the weights allow the degree of separation to be quantified

using the separation score.

• Together, the prediction error and weight magnitudes allow our metric to quan-

tify the degree of disentanglement achieved by a given model.

It should be noted that Higgins et al. also use linear regression in [6]. However, in

contrast to their ‘factor change classification’ approach, our metric:

• Is simple and intuitive. The is no subtraction of rather arbitrary ‘start’ and ‘end’

latent representations. There is no need for multiple random runs or to discard the

worst results (bottom 50% discarded in [6]).

• Requires no additional data. There is no need to generate new ‘factor change’

data. Only the regression inputs (learnt latent representations) and targets (ground-

truth factor values) are needed.

• Naturally generalizes to high-dimensional factors of variation. Taking the abso-

lute change along each dimension may not be the best way to capture the total change

for a high-dimensional factor of variation. For example, if a factor is sampled from

a 10D Gaussian, spherical distance from the origin may be a more appropriate mea-

sure of total change. We don’t subtract any values, so don’t have to worry about

such issues.

• Quantifies the amount of information captured. Disentangled representations are

likely to be useful for downstream tasks if they disentangle as many factors of vari-

ation as possible, discarding as little information as possible [9]. Good regression

performance is not possible without capturing a significant amount of information

about the generative factors, with the predicition error quantifying this amount. In

6.1. Quantifying the degree of disentanglement 39

contrast, much less information about the generative factors is required to identify

which generative factor has been altered. Furthermore, classification accuracy is

more difficult to interpret as a measure of information captured by the latent repre-

sentation.

• Quantifies the degree of separation. The magnitude of the regression weights rank

the latent variables in order of relative importance to the prediction. Each latent

factor should be important for predicting at most one generative factor. Thus, the

degree of separation can be quantified using equation 6.1.

6.1.2 Retrieving the latent codes

In order to use our new metric and quantify the degree of disentanglement achieved by

InfoGAN, we first needed to retrieve the most likely latent representations for each im-

age x in our dataset. As a reminder, Q parametrizes the auxiliary distribution Q(c|x),

with Q(x) returning the parameters of the posterior distribution over latent codes (the

mean and standard deviation of a Gaussian for our continuous latent codes). This mean

represents the most likely latent representation for a given image under the learned

auxiliary distribution Q(c|x). Thus, to retrieve the most likely latent codes for all im-

ages in the dataset, we propagated them through the trained network Q, discarding the

standard deviation.

6.1.3 Baselines

As with any new metric, baselines are need to put the performance of a given model

into context or perspective. We chose to use the popular matrix decompositions out-

lined below as simple but intuitive baselines. Both methods seek a set of feature vec-

tors (i.e. a basis) which can be linearly-combined to reach any point in the dataset.

Intuitively, these pixel-level decompositions should not be able to reasonably estimate

abstract generative factors such as the pose of the teapot. However, as illustrated in

section 6.1.6, they turn out to be surprisingly competitive baselines, explaining a large

amount of the variance in our dataset. This is likely due to the centring and lack of

background scene which allow pixel-wise variations to reveal a great deal about these

abstract factors. Note, we chose to use the same number of features vectors (or com-

ponents) as latent codes (5). Both methods were implemented using sci-kit learn.

40 Chapter 6. Evaluating the Quality of Learnt Representations

• Principal Components Analysis (PCA). PCA seeks a basis that best explains the

variability in the dataset. To do so, it decomposes the dataset into a set of linearly

uncorrelated features (principal components), ordered by the amount of variance

that they explain. PCA is often used as a dimensionality reduction method, taking

the top N features which explain most of the variance in the data. Hence, it serves

as an intuitive ‘disentanglement baseline’, seeking to capture 5 linearly uncorrelated

features which best explain the variance of data generated by 5 independent factors.

Given the size of the data (100000× 64× 64× 3), the sci-kit learn method for PCA

uses the efficient randomized method of Halko et al. [42] to compute the the singular

value decomposition (SVD).

• Independent Components Analysis (ICA). ICA seeks a basis in which each fea-

ture vector is an independent component of the dataset. Hence, ICA is often used to

separate a mixed signal into independent source components. This serves as an in-

tuitive baseline given that the images were generated by 5 independent components.

The sci-kit learn implementation used, FastICA, is based on [43].

6.1.4 Preparing the data

For regression inputs, we have the five latent codes (LC), the five principal components

(PC) and the five independent components (IC). Each set of inputs is paired with a set

of targets, i.e. the ground-truth values of the generative factors. These ground-truths

(GT) were loaded from a file which was created during the generation process. To

calculate the absolute azimuth of the teapot, we subtracted the camera azimuth from

the object azimuth.

The regression inputs were all normalized by subtracting the mean and dividing by

the standard deviation. This is a standard pre-processing technique which improves

the efficiency of learning in most models by ensuring that all features are in the same

range and on the same scale. This also allows default model (hyper)parameters to be

used, but more importantly for our metric, it ensures that the magnitude of the learned

weights are comparable.

The regression targets were also normalized in the same manner, except for the az-

imuth. The azimuth is not normalized as it is later interpreted as an angle to deal with

wraparound, that is, the fact that there is just a 1 degree difference between 359 degrees

6.1. Quantifying the degree of disentanglement 41

and 0 degrees. Finally, the data was divided into training (60000), validation (20000)

and test sets (20000).

6.1.5 Fitting the regression models

With the data prepared, the next step was the fit the regression models. Along with

the proposed linear regressor, we fit several high-capacity regressors and those which

have built-in methods to quantify the relative importance of each feature. This later

allows us to verify the appropriateness of our method by comparing the results of each

regressor. To evaluate the models, we use the mean squared error (MSE):

LMSE =
1

N

N∑
i=0

(y(i) − f(X(i)))2, (6.2)

where y(i) is the target for test example i,X(i) is the vector of input data for test exam-

ple i and f is the regression model that takes an input vector and outputs a prediction.

We use the MSE as it is a standard measure for regression problems. As the targets

(except azimuth) have been normalized to have unit variance, the MSE is naturally

standardized relative to the constant regressor, which guesses the expected value of

the targets. Hence, this measurement is actually the standardized mean squared error

(SMSE). To standardize the azimuth results, we simply divide by the MSE of the con-

stant regressor, i.e., the variance of the azimuth ground-truths. This standardization

makes it easy to interpret the results. For example, if the SMSE of a model is 0.6, then

the model has a MSE that is 60% of the constant model (40% lower).

For azimuth, the GT angle cannot be directly used as the regression target due to

the previously-mentioned wraparound issue. Instead, we use sin(targetangle) and

cos(targetangle) as regression targets and calculate the residuals as follows:

predangle = arctan 2(predsin, predcos), (6.3)

residualsangle = (targetangle − predangle + π) mod (2π)− π, (6.4)

where predsin is the predicted sin(targetangle), predcos is the predicted cos(targetangle)

and targetangle is the ground-truth azimuth angle in radians.

We will now describe all of the regression models which are employed, including our

proposed metric and alternatives which serve as suitable comparisons.

42 Chapter 6. Evaluating the Quality of Learnt Representations

• Linear Regression (LR): Our proposed metric uses linear regression with an l1

penalty. Note that this is sometimes called Lasso regression. For linear regression,

f(X) = Xw in equation 6.2, with w denoting the regression weights and X de-

noting the input matrix augmented a with column of ones (i.e. a constant feature) to

represent the bias. Also note that the bias is only strictly necessary for the azimuth

predictions, whose regression targets are not normalized to have zero mean. How-

ever, it is included when predicting all generative factors for uniformity, facilitating

dynamic factor prediction. The objective function is thus:

min
w

1

N

N∑
i=0

(y(i) −X(i)w(i)))2 + α|w| , (6.5)

where α is the l1 regularization coefficient. This model was first implemented in

Tensorflow with a single FC layer, adding α|w| to the (squared-error) objective

function before passing it to the optimizer. However, we later used the Lasso re-

gressor module of sci-kit learn for two reasons. Firstly, its simplified syntax enabled

dynamic hyperparameter searches. Secondly, its uniformity with all other sci-kit

learn models allowed dynamic model selection. As with all regression models, the

hyperparameters (α) are fitted to the validation set.

• K Nearest Neighbours (KNN): Given an input x, KNN predicts the value of a tar-

get variable y by averaging the values of its closest k neighbours. KNN is not ‘fitted’

to the data, but rather needs access to all the training data at test time. Despite its sim-

plicity, KNN has been successful in a large number of regression (and classification)

problems. As KNN is a non-parametric model, it has been most successful in cases

where the underlying function is highly non-linear. Thus, we wished to compare the

SMSE of this model to that of linear regression in order to reveal how much infor-

mation has been captured but not completed disentangled (explicitly-represented).

We implement KNN using the KNeighborsRegressor module of sci-kit learn. We

found that the default Euclidean distance was sufficient to determine the nearest k

neighbours. We also found that the default uniform averaging was sufficient, allow-

ing each of the k nearest neighbours to contribute uniformly to the prediction (rather

than weighted by distance, for example). As is usually the case with KNN, we

found that the performance was a monotonic function of k below k ≈ 200. Hence,

for computational reasons and simplicity, we fix k = 50 for all inputs rather than fit

it to the validation set.

• Decision Tree (DT): DTs [44] predict the value of a target variable y by learning

6.1. Quantifying the degree of disentanglement 43

simple decision rules (splits) inferred from the input x. These splits can be com-

pared to if-then-else decision rules, partitioning the input space to determine the

terminal ‘cell’ in which the input lies. The prediction is then the average of the tar-

get variables in this terminal cell, making DTs a piece-wise constant model. The

next best split is determined by how much it reduces the impurity of the cell it splits,

where impurity is generally measured by the SMSE for regression. The number of

times the model chooses to split on a particular input variable indicates its impor-

tance to the prediction. Hence, the importance of each feature can be calculated as

the number of cases split on that variable over the total number of splits. This natu-

ral mechanism for determining feature importances is our main motivation for using

DTs, allowing us to determine the degree of disentanglement achieved by InfoGAN

as well as the suitability of our proposed metric to do just that. We implement DTs

using the DecisionTreeRegressor module of sci-kit learn, fitting the max depth pa-

rameter to the validation set. Note that max depth controls the maximum number

of splits allowed and hence the complexity of the fit.

• Random Forest (RF): DTs are prone to overfitting as slight variations in the data

distribution can result in completely different trees. This problem is alleviated by

using decision trees within an ensemble, i.e., a forest. RFs [45] are an ensemble

method which average the predictions of several DTs in order to improve generaliza-

tion. However, simply training many DTs on the same data would result in strongly

correlated DTs (perhaps even several identical DTs). Instead, RFs select random

samples (with replacement) and fit the DTS to these samples. This ‘bootstrapping’

method builds independent estimators by showing them different datasets. The av-

erage of these independent estimators is generally better than any single estimator as

its variance is reduced. RFs can also determine the relative importance of each fea-

ture by averaging the features importances from each DT. We implement RFs using

the RandomForestRegressor module of sci-kit learn, again fitting the max depth

parameter to the validation set. As the performance generally increases with the

number of estimators n, we fix n = 20 for simplicity and computational efficiency.

• Gaussian Process (GP): GPs [46] are distributions over functions which can be

used to analytically model complex functions, accurately representing the uncer-

tainty. We use GPs as another flexible regression model, comparing the results to

our linear model in order to determine how much information about the generative

factors has been captured but not sufficiently disentangled. Viewing the GP as a

44 Chapter 6. Evaluating the Quality of Learnt Representations

distribution over function values f , we have:

f ∼ GP, (6.6)

p(f) = N (f ; 0, K), (6.7)

where Kij = k(xi,xj) is the kernel and xi, xj are the inputs at index i and j

respectively. For regression, we would like to predict the function values at our

test points x∗ given some noisy observations of the underlying function (i.e. the

regression targets). To do so, we analytically calculate the posterior distribution over

function values at our test points f∗. As we are only interested in the most likely

function values at these test points (rather than the uncertainty of the predictions),

we simply take the mean of this posterior distribution f̄∗. To implement the GP

regressor, we use sci-kit learn’s GaussianProcessRegressor module, which is based

on Algorithm 2.1 in [46]. The default kernel for this module is a squared-exponential

(SE) kernel:

kSE(xi,xj) = σ2
sexp(−

1

2l2
∥∥(xi − xj)

∥∥2), (6.8)

where l is the length-scale and σ2
s is the signal variance. To estimate the noise level

of the data, we use this kernel as part of a sum-kernel defined as follows:

k(xi,xj) = kSE(xi,xj) + δijσ
2
n, (6.9)

where σ2
n is the noise variance, δijσ2

n is a white noise kernel and δij is the Kronecker

delta which is zero unless i = j. With this sum-kernel, fitting the parameter of

the white noise kernel corresponds to estimating the noise level of the data. This

allowed us to fit all three kernel parameters (l, σ2
s , σ2

n) with maximum likelihood

estimation (MLE). An illustration of the log-marginal-likelihood (LML) landscape

is provided in figure 6.1. As the complexity of a GP scales cubically with the number

of data points, we trained the regressor on a random subset of the data containing

5000 samples.

• Neural Networks (NN): Neural networks are a powerful model that can theoreti-

cally approximate any function by stacking multiple non-linear layers. Hence, they

serve as another good comparison to our metric, providing an estimate of how much

information has been captured but not disentangled. All neural networks were im-

plemented with Tensorflow. For uniformity, we fix the architecture (and hence the

expressive power) of the network. We found that 3 hidden layers, each containing

50 units, had more than enough expressive power for our purposes. As this flexible

6.1. Quantifying the degree of disentanglement 45

10-2 10-1 100 101 102 103

Length−scale

10-2

10-1

100

N
oi
se
−
le
ve
l

Log−marginal−likelihood

101

Figure 6.1: Illustration of local minima in the LML landscape. Based on Figure

5.5 in [46]. Depicted is the relationship between the LML, length-scale l and noise-

level σ2
n (for fixed signal variance σ2

s = 1). There exists two local minima. The top

right (shallow) minimum corresponds to a model with a large length-scale and high

noise-level, where all variations in the data are explained as noise. The bottom left

minimum corresponds to a model with a shorter length-scale and smaller noise-level,

explaining most of the variation with a functional relationship.

46 Chapter 6. Evaluating the Quality of Learnt Representations

model was intended to serve as an upper bound on regression performance, the fo-

cus was on optimal performance rather than sparsity. Hence, we used an l2 penalty,

fitting the coefficient β to the validation set.

6.1.6 Results

Table 6.1 presents the test set SMSE for all regression models and inputs. The latent

codes learnt by the InfoGAN clearly outperform the baselines, achieving lower SMSE

on all regression models when predicting all generative factors. The performance gap

between the latent codes and the baselines is most obvious with the low-capacity lin-

ear regressor, where generative factors must already be disentangled in latent space in

order to achieve good performance. This performance gap decreases on more flexi-

ble models like neural networks, where the added flexibility allows the regressor to

perform further disentangling, extracting the ‘hidden’ information. This is clear when

comparing the SMSE of the elevation predictions for different inputs. With principal

component inputs, the SMSE decreases from 0.54 to 0.15 with the added flexibility of

the neural network. In comparison, with latent code inputs, the SMSE decreases from

0.02 to 0.01. A similar comparison exists when comparing the prediction SMSEs for

each colour channel, demonstrating that the InfoGAN successfully disentangles these

generative factors. The same cannot be said for azimuth, with every regressor having

a much higher SMSE when predicting this factor from the latent code inputs. In fact,

the error in predicting the azimuth significantly decreases in the higher-capacity mod-

els, with the SMSE decreasing from 0.52 to 0.29 between the linear regression and

neural network models. This implies that the InfoGAN has struggled to disentangle

the azimuth of the teapot, with the added flexibility allowing the azimuth to be further

disentangled.

It may be surprising that the baselines, which extract features from the image by ex-

amining the pixel-level variations, manage to predict abstract factors like azimuth and

elevation so well. For example, the neural network regressor is able to explain 85%

of the elevation variance with principal component inputs, and 81% of the elevation

variance with independent component inputs. However, this can be attributed to the

centring and lack of background scene.

6.1. Quantifying the degree of disentanglement 47

Model Input Az. Elev. R G B

LR PC 0.74 0.54 0.21 0.21 0.21

IC 0.74 0.54 0.21 0.21 0.21

LC 0.52 0.02 0.05 0.02 0.05

KNN PC 0.62 0.22 0.09 0.09 0.09

IC 0.62 0.22 0.09 0.09 0.09

LC 0.36 0.02 0.03 0.02 0.02

DT PC 0.67 0.26 0.13 0.12 0.12

IC 0.78 0.32 0.14 0.14 0.14

LC 0.36 0.01 0.02 0.01 0.02

RF PC 0.55 0.19 0.09 0.09 0.09

IC 0.67 0.22 0.09 0.09 0.09

LC 0.31 0.01 0.02 0.01 0.01

GP PC 0.66 0.22 0.09 0.09 0.09

IC 0.66 0.22 0.09 0.09 0.09

LC 0.36 0.01 0.02 0.01 0.01

NN PC 0.46 0.15 0.07 0.07 0.07

IC 0.56 0.19 0.08 0.08 0.08

LC 0.29 0.01 0.02 0.01 0.01

Table 6.1: Regression results: InfoGAN vs. baselines. Table shows SMSE on the

test set. PC denotes principal components, IC denotes independent components and

LC denotes latent codes.

As a reminder, each regressor uses all five latent codes / principal components / inde-

pendent components to predict the ground-truth value of each generative factor. Hence,

a learnt factor or feature may capture information about multiple generative factors.

However, as discussed in section 6.1.1, each latent factor in a completely disentangled

representation should capture at most one statistically independent generative factor.

As a result, we would like to determine the number of generative factor predictions that

48 Chapter 6. Evaluating the Quality of Learnt Representations

a given latent code contributes to (is important for). That is, we would like to deter-

mine the degree of separation in the learnt representations. Qualitatively, the degree of

separation can be visualized using a Hinton diagram. Hinton diagrams represent posi-

tive weights with a white square and negative weights with a black square. The size of

the square indicates the magnitude of the weight. For our purposes, we are primarily

interested in the magnitude of the weights to determine if there exists a single dominant

weight for each learnt factor across all predictions. We visualize the linear regression

weights in figure 6.2a and the random forest feature importances in figure 6.2b. Note

that the features importances for the decision tree were almost identical to those of

the random forest and thus are omitted for brevity. Both diagrams in figure 6.2 show

similar patterns, confirming the validity of our proposed metric and the quality of the

latent variables discovered by InfoGAN. These Hinton diagrams also indicate that the

impressive regression results in table 6.1 were achieved when primarily using a single

latent code to predict each generative factor. Although this is also desirable in our

case (with an equal number of latent codes and generative factors), this is not to be

confused with the degree of separation. The slight discrepancies between figure 6.2a

and figure 6.2b are likely due to the flexibility differences of the models. For example,

comparing the important principal components for the azimuth prediction across dia-

grams, one can see that more ‘tangled’ principal components are able to contribute to

the prediction with the increased flexibility of the random forest regressor. Thus, ran-

dom forest regressors may complement our proposed metric when additional flexibility

is required to determine the relative importance of ‘tangled’ features.

The degree of separation within the learnt representations can also be evaluated quan-

titatively using the separation score proposed in equation 6.1. Note that this score can

be used with both regression weights and feature importances. Table 6.2 presents the

separation scores for the latent codes, principal components and independent compo-

nents, using both the linear regression weights and random forest feature importances.

For both linear regressor and random forest, each latent code primarily contributes to

the prediction of a single generative factor, as illustrated by the high separation scores.

The degree of separation within the latent codes is clearly higher than the baselines.

6.1. Quantifying the degree of disentanglement 49

0 1 2 3 4

Factor of Variation

0

1

2

3

4

L
a
te
n
t
C
od
e

InfoGAN

0 1 2 3 4

Factor of Variation

0

1

2

3

4

P
ri
n
ci
p
a
l
C
om

p
on
en
t

PCA

0 1 2 3 4

Factor of Variation

0

1

2

3

4

In
d
ep
en
d
en
t
C
om

p
on
en
t

ICA

(a) Linear regression weights.

0 1 2 3 4

Factor of Variation

0

1

2

3

4

L
a
te
n
t
C
od
e

InfoGAN

0 1 2 3 4

Factor of Variation

0

1

2

3

4

P
ri
n
ci
p
a
l
C
om

p
on
en
t

PCA

0 1 2 3 4

Factor of Variation

0

1

2

3

4

In
d
ep
en
d
en
t
C
om

p
on
en
t

ICA

(b) Random forest feature importances.

Figure 6.2: Visualizing the degree of separation within learnt representations.
Positive weights are represented by a white square and negative by a black square.

The size of the square indicates the magnitude of the weight. Each row illustrates the

importance of a given learnt factor to each prediction. Each column represents the

importance of each learnt factor to a given prediction. Hence, a single large weight

in each row indicates a high degree of separation. Factors of variation: 0=azimuth,

1=elevation, 2=red, 3=green and 4=blue.

50 Chapter 6. Evaluating the Quality of Learnt Representations

Input Model f0 f1 f2 f3 f4 Average

PC LR 0.35 0.48 0.50 0.19 0.75 0.46

RF 0.47 0.42 0.48 0.32 0.62 0.46

IC LR 0.35 0.31 0.38 0.33 0.20 0.32

RF 0.30 0.38 0.31 0.36 0.32 0.34

LC LR 0.81 0.75 0.85 0.81 0.90 0.82

RF 0.85 0.86 0.89 0.88 0.98 0.89

Table 6.2: Separation scores: InfoGAN vs. baselines. The average separation score

is given for each input, along with the separation scores for each learnt factor (f0 -

f4). The learnt factors are the latent codes, principal components and independent

components for InfoGAN, PCA and ICA respectively.

With the ‘most important’ latent codes for each prediction now obvious, we investi-

gate the underlying relationship between these important codes and the corresponding

generative factor value. To do so, we re-fit each regressor to predict the ground-truth

value of a generative factor given the single ‘most important’ latent code. The resulting

fits for each regressor are illustrated in figure 6.3 and figure 6.4. Figure 6.3 illustrates

a clear bi-modality between the latent code important for predicting the azimuth and

the cos(azimuth). This bi-modality is also noticeable for the sin(azimuth), although

much less pronounced. This bi-modality may occur for a number of reasons. One such

reason is the 180 degree ambiguity that exists with our object. That is, the difficulty in

distinguishing the spout of the teapot from the handle. Another possibility is that the

learnt latent code doesn’t actually represent the azimuth angle, but a rather a function

of the angle such as sin or cos. Higgins et al. [6] demonstrated a similar idea, with

their VAE learning a disentangled representation in which the rotation is captured by

two separate latent variables, one resembling the sin(rotation), the other resembling

the cos(rotation). It is entirely possible that this is also the most natural way for the

InfoGAN to disentangle the azimuth. However, due to the limited number of latent

codes used (5 codes for 5 generative factors), the InfoGAN may be forced to settle for

a function somewhere in between sin and cos in order to maximise the mutual infor-

mation. This idea is further discussed in section 7.2. Despite the plausibility of these

potential sources, further investigation is required to determine the true source of the

6.1. Quantifying the degree of disentanglement 51

bi-modality.

Figures 6.3 and 6.4 also illustrate the linear relationship that exists between the most

important latent code and corresponding generative factor, for each generative factor

that was successfully disentangled (elevation, red, green and blue). As a result, the fits

of the low-capacity linear regressor are almost indistinguishable from the fits of more

flexible regressors on these generative factors. The closeness of these fits validates

our proposed (linear regression) metric for quantifying the degree of disentanglement

achieved by different models. Furthermore, it provides empirical evidence in support

of the core idea on which it is based, that is, that good regression performance can only

be achieved with this low-capacity model if the generative factors have already been

sufficiently disentangled in latent space.

In section 5.3.3 we provided evidence that the updated gradient penalty improved the

stability of the InfoGAN, leading to stable and reliable disentanglement. We now fur-

ther investigate this stability improvement with a quantitative analysis. To do so, we

quantify and compare the disentanglement achieved by both penalties. To illustrate

the instability or sensitivity of the InfoGAN with the original penalty, we compare the

results achieved by a model trained with the updated penalty to those achieved by 4 dif-

ferent random runs with the original penalty. The degree of disentanglement achieved

by runs 1, 2, 3 and 4 is visually assessed in figures 5.3, B.1, B.2 and B.3 respectively.

Note that two additional runs were carried out with the updated penalty, achieving

almost identical results. These runs are omitted to facilitate a clear, uncluttered com-

parison. Also note that the computational expense of training these deep ResNets

prevented the analysis of a sufficient number of random runs to provide a reliable error

bar. Thus, all 4 random runs are compared. Table 6.3 presents the linear regression

results for these random runs and the updated gradient penalty. Similar trends are ob-

served in the results of all other regressors. These additional results are omitted for

clarity, with the linear regression results sufficiently illustrating the difference in sta-

bility. The fluctuating SMSEs for InfoGANs trained with the original penalty provides

further (quantitative) evidence of the stability introduced by the updated penalty.

52 Chapter 6. Evaluating the Quality of Learnt Representations

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
a
rg
et

sinAzimuth

LR

KNN

DT

RF

GP

NN

Data

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
a
rg
et

cosAzimuth

LR

KNN

DT

RF

GP

NN

Data

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

T
a
rg
et

Elevation

LR

KNN

DT

RF

GP

NN

Data

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

T
a
rg
et

Red

LR

KNN

DT

RF

GP

NN

Data

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

T
a
rg
et

Green

LR

KNN

DT

RF

GP

NN

Data

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

T
a
rg
et

Blue

LR

KNN

DT

RF

GP

NN

Data

Figure 6.3: Regression fits: azimuth and elevation. A clear bi-modality is visible in

the azimuth plots, particularly the cosAzimuth. A clear (negative) linear relationship

is illustrated between the elevation and corresponding most important latent code.

6.1. Quantifying the degree of disentanglement 53

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
a
rg
et

sinAzimuth

LR

KNN

DT

RF

GP

NN

Data

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
a
rg
et

cosAzimuth

LR

KNN

DT

RF

GP

NN

Data

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

T
a
rg
et

Elevation

LR

KNN

DT

RF

GP

NN

Data

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

T
a
rg
et

Red

LR

KNN

DT

RF

GP

NN

Data

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

T
a
rg
et

Green

LR

KNN

DT

RF

GP

NN

Data

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Input

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

T
a
rg
et

Blue

LR

KNN

DT

RF

GP

NN

Data

Figure 6.4: Regression fits: red, green and blue. A clear linear relationship is il-

lustrated between all 3 colour channels and their corresponding most important latent

codes.

54 Chapter 6. Evaluating the Quality of Learnt Representations

Gradient Penalty Az. Elev. R G B

Original - 1 0.64 0.02 0.06 0.81 0.05

Original - 2 0.75 0.02 0.07 0.87 0.10

Original - 3 0.89 0.04 0.05 0.04 0.06

Original - 4 0.49 0.03 0.14 0.08 0.16

Updated 0.52 0.02 0.05 0.02 0.05

Table 6.3: Linear regression results: original penalty vs. updated penalty. Table

shows SMSE on the test set. PC denotes principal components, IC denotes independent

components and LC denotes latent codes. The number in the gradient penalty column

indicates the random run number.

To further evaluate this improved stability, we assess the degree of separation achieved

by each model. To avoid a clutter of diagrams, we compare the separation achieved by

a single random run (run 1) to that which is achieved by the updated gradient penalty.

As before, the degree of separation is assessed qualitatively using Hinton diagrams (see

figure 6.5). In these diagrams, latent codes 2, 3 and 4 are clearly more separated for the

InfoGAN trained with an updated gradient penalty (note the single dominant weight

in each row). The degree of separation achieved by each penalty is evaluated quanti-

tatively using the separation scores in table 6.4. Latent codes 2, 3 and 4 have a much

higher separation score for the InfoGAN trained with an updated gradient penalty. The

significantly higher average separation score provides quantitative evidence in support

of improved stability. Taking all the qualitative and quantitative evidence into account,

it is clear that the updated penalty results in more stable and reliable disentanglement.

Gradient Penalty f0 f1 f2 f3 f4 Average

Original 0.85 0.70 0.28 0.61 0.36 0.56

Updated 0.81 0.75 0.85 0.81 0.90 0.82

Table 6.4: Separation scores: original penalty vs. updated penalty. The average

separation score is given for each input, along with the separation scores for each learnt

factor (f0 - f4), i.e. latent code.

6.1. Quantifying the degree of disentanglement 55

0 1 2 3 4

Factor of Variation

0

1

2

3

4

L
a
te
n
t
C
od
e

InfoGAN

0 1 2 3 4

Factor of Variation

0

1

2

3

4

P
ri
n
ci
p
a
l
C
om

p
on
en
t

PCA

0 1 2 3 4

Factor of Variation

0

1

2

3

4

In
d
ep
en
d
en
t
C
om

p
on
en
t

ICA

(a) Original GP

0 1 2 3 4

Factor of Variation

0

1

2

3

4

L
a
te
n
t
C
od
e

InfoGAN

0 1 2 3 4

Factor of Variation

0

1

2

3

4

P
ri
n
ci
p
a
l
C
om

p
on
en
t

PCA

0 1 2 3 4

Factor of Variation

0

1

2

3

4

In
d
ep
en
d
en
t
C
om

p
on
en
t

ICA

(b) Updated GP

Figure 6.5: Visualizing the degree of separation within learnt representations for
different gradient penalties. Both diagrams illustrate linear regression weights. Pos-

itive weights are represented by a white square and negative by a black square. The

size of the square indicates the magnitude of the weight. Each row illustrates the

importance of a given learnt factor to each prediction. Each column represents the

importance of each learnt factor to a given prediction. Hence, a single large weight

in each row indicates a high degree of separation. Factors of variation: 0=azimuth,

1=elevation, 2=red, 3=green and 4=blue.

56 Chapter 6. Evaluating the Quality of Learnt Representations

Finally, we investigated the effect of data size on the InfoGANs ability to disentangle

the factors of variation, comparing the SMSEs achieved with 100000 samples to the

SMSEs achieved with 200000 samples. Table 6.5 presents these results, illustrating

that more data only aids the models ability to disentangle azimuth, which was only the

factor that was not not sufficiently disentangled with 100000 training examples. De-

spite explaining over 80% of the azimuth variance with 200000 samples, the InfoGAN

clearly struggles to disentangle the azimuth more than any other factor. We discuss

possible reasons for this in section 7.2.

Model Dataset size (K) Az. Elev. R G B

LR 100 0.52 0.02 0.05 0.02 0.05

200 0.41 0.04 0.05 0.03 0.05

KNN 100 0.36 0.02 0.03 0.02 0.02

200 0.22 0.03 0.02 0.01 0.03

DT 100 0.36 0.01 0.02 0.01 0.02

200 0.22 0.03 0.02 0.02 0.03

RF 100 0.31 0.01 0.02 0.01 0.01

200 0.19 0.03 0.01 0.01 0.02

GP 100 0.36 0.01 0.02 0.01 0.01

200 0.22 0.03 0.01 0.01 0.02

NN 100 0.29 0.01 0.02 0.01 0.01

200 0.17 0.02 0.01 0.01 0.01

Table 6.5: Regression results for different dataset sizes. Table shows SMSE on the

test set. PC denotes principal components, IC denotes independent components and

LC denotes latent codes.

6.2 Further evaluation

Disentangled representations should enable a model to perform zero-shot inference,

that is, generalize its knowledge beyond the training distribution by recombining previously-

6.2. Further evaluation 57

learnt factors. While the previous section quantified the impressive degree of disen-

tanglement achieved by InfoGAN, this section looks to further evaluate the quality of

the learnt representations by testing their ability to perform zero-shot inference and

zero-shot reconstruction. Zero-shot inference performance is measured by regression

SMSE on unseen factor combinations, while zero-shot reconstruction quality is evalu-

ated by visually examining the models ability to generate unseen samples. By testing

for these desirable characteristics of disentangled representations, we further evaluate

the quality of the latent representations discovered by InfoGAN.

6.2.1 Creating ‘gaps’ in the data

Rather than re-generate two new datasets, each containing different factor combina-

tions, we use the ground-truth values of the generative factors to create two different

data distributions. More specifically, we create a ‘gap’ in the original dataset which

will then serve as our test distribution containing unseen factor combinations.

To create this gap, we isolate all images whose generative factors have ground-truth

values in a particular range. Informally, the images in this gap can be described as

all ‘red’ teapots from ‘above’. Formally, the generative factors of these images have

ground-truth values that satisfying all of the following conditions:

• Red > Green + 0.15 and

• Red > Blue + 0.15 and

• Elevation > π
4

Figure 6.6 depicts samples at the extreme end of this gap for illustrative purposes,

i.e. the most ‘red’ teapots with the highest angle of elevation. We will now refer to

the images in this gap as the test set and the remaining images as the training set.

However, it is important to note that this new training set is further divided into its own

training, validation and test sets in order to fit the subsequent regression models. In

other words, the SMSEs reported in subsequent tables were not calculated on the same

data on which the regressor was trained. To give some indication of the difference in

factor distributions between the new training and test sets, table 6.6 reports the SMSE

of a constant regressor which guesses the expected value of the training set. In other

words, this table indicates how much the (squared) expected value of a given factor

has shifted, with a SMSE of 1 indicating no shift. Note that the SMSEs reported in

58 Chapter 6. Evaluating the Quality of Learnt Representations

Figure 6.6: Samples from the test distribution.

subsequent tables are still relative to the same constant regressor as before, i.e. one

that guesses the expected value of the test set. In order to facilitate a larger test set

(≈ 20000 samples), we used the dataset containing 200000 samples.

Input Az. Elev. R G B

Constant 1.0 4.25 4.85 1.96 1.96

Table 6.6: Zero-shot inference: Constant regressor. Table shows SMSE on the test

distribution, i.e. the gaps. Indicates how much the factor combinations vary between

training and test distributions, with the constant regressor trained on the former. The

SMSE indicates how much the (squared) expected value of a given factor has shifted.

6.2.2 Zero-shot inference

Table 6.7 presents the zero-shot inference results, comparing the SMSE on the training

and test sets. Again, it is important to note that the training set is further divided into

training, validation and test sets in order to fit the regression models, reporting the

relevant SMSE on the test set. Only the highest and lowest capacity regressors are

included for clarity, with all regressors illustrating similar trends.

With the linear regressor, the representations learned by the InfoGAN significantly out-

6.2. Further evaluation 59

perform those learned by PCA and ICA. This can be seen by the very slight increases

in SMSE when predicting the ground-truth values of unseen generative factors. For

example, both PCA and ICA achieved a SMSE that was almost 4000% higher than

that of the latent codes when predicting the elevation of teapots in the (unseen) test

set. In fact, the SMSE of the baselines (2.95) is significantly higher than the constant

regressor (1.0) which guesses the expected value of the test set. Once again, the Info-

GAN struggles to disentangle the azimuth. In fact, the SMSE in predicting the azimuth

is significantly higher on this new training distribution, with the linear model only able

to explain 25% of azimuth variance. This may indicate that the InfoGAN found it

more difficult to determine the azimuth of teapots at lower angles of elevation where

the spout/handle ambiguity is heightened. For example, consider a teapot from above

(elevation=π
2
, teapots in figure 6.6). In this case, it is relatively clear which protrusion

is the spout and which is the handle. The same cannot be said if the elevation=0 and

the spout/handle is facing the camera (most teapots in figure 6.8). These discriminative

characteristics likely help the InfoGAN to extract the value of the azimuth. Hence, the

InfoGAN is likely to perform worse on a dataset with lower angles of elevation, such as

the new training set. For the latent codes, the only SMSE which is significantly higher

on the unseen data is that of the red channel. However, the generalization performance

is still much better than the baselines.

With the neural network regressor, much of the same trends are observed. One differ-

ence is observed for the baselines, such as the increased SMSE on the test set when

predicting the red colour channel. As before, the increased flexibility is more use-

ful for the generative factors which have not been sufficiently disentangled in latent

space, such as azimuth. Unsurprisingly, the more flexible fit to the training set does

not generalize as well to the test set of unseen factor combinations.

60 Chapter 6. Evaluating the Quality of Learnt Representations

Model Input Az.(train,test) Elev.(train,test) R(train,test) G(train,test) B(train,test)

LR PCs 0.71, 0.89 0.54, 2.94 0.22, 0.72 0.21, 0.68 0.20, 0.69

ICs 0.71, 0.90 0.54, 2.95 0.22, 0.73 0.21, 0.67 0.20, 0.68

LCs 0.76, 0.73 0.02, 0.08 0.04, 0.30 0.09, 0.13 0.03, 0.06

NN PCs 0.47, 0.78 0.22, 1.25 0.15, 1.15 0.16, 0.32 0.15, 0.30

ICs 0.49, 0.82 0.23, 1.60 0.15, 1.09 0.16, 0.30 0.15, 0.29

LCs 0.55, 0.75 0.01, 0.05 0.01, 0.19 0.01, 0.04 0.01, 0.02

Table 6.7: Zero-shot inference: InfoGAN vs. baselines. Table shows SMSE on

the training and test sets. The test SMSE indicates performance on samples in the

‘gap’ that was created, while the train SMSE indicates performance on the remaining

images. Again, note that the ‘train’ SMSE does not represent the SMSE on the same

data that the regressor was trained on. The SMSE indicates each models ability to

generalize to unseen factor combinations by recombining previously-learnt factors. PC

denotes principal components, IC denotes independent components and LC denotes

latent codes.

6.2.3 Zero-shot reconstruction

The promising zero-shot inference results in the previous section suggest that In-

foGANs are indeed able to reason about unseen factor combinations by combining

previously-learnt factors. More specifically, the results suggest that the neural network

Q, which parametrizes the auxilary distribution Q(c|x), was able to reason about un-

seen factor combinations to produce latent codes which accurately captured the values

of the underlying generative factors. In other words, given unseen combinations of fac-

tors in image space, Q produced latent codes which accurately represented the ground-

truth values of these underlying factors. To test the other ‘half’ of the InfoGAN, the

generator G, we wish to investigate if it can produce images which accurately repre-

sent the values of the underlying generative factors, as described by the (unseen) latent

codes. In addition, we evaluate the sample quality of these images which are generated

using unseen combinations of latent codes.

To do so, we selected a batch of images at the very edge of the test (gaps) distribution

6.2. Further evaluation 61

Figure 6.7: Zero-shot reconstruction quality. ‘No Gaps’ denotes an InfoGAN

trained on the full data distribution. ‘Gaps’ denotes an InfoGAN trained on the data

distribution with gaps. The image at the top depicts the ground-truth samples which

were passed through Q to retrieve the parameters of Q(c|x). cµ denotes the mean of

Q(c|x), i.e. the most likely latent codes given the ground-truth images x.

62 Chapter 6. Evaluating the Quality of Learnt Representations

(a) No gaps (b) Gaps

Figure 6.8: Sharp random samples generated by the InfoGAN. (a) Random sam-

ples generated by the InfoGAN trained on the full dataset (no gaps). (b) Random

samples generated by the InfoGAN trained on the dataset with gaps.

(i.e. the most ‘red’ teapots with the highest angle of elevation) and propagated them

through both networks of the InfoGAN (see figure 6.7). As illustrated in this figure,

the ‘redness’ of the teapots in the reconstructed images is clearly reduced for the model

that has never seen such factor combinations, but also for the model which has. Both

models also generate some blurry samples, which makes it difficult to conclude that

the unseen combination of latent codes is the source of this blurriness. Perhaps the

reduced sample quality is a result of generating images with codes that are at the edges

of latent space. This would explain why both models produce blurry samples when

asked to reconstruct these extreme or unseen images, but not when generating random

samples (see figure 6.8).

Despite the relatively equal level of blurriness observed with both models, the ‘redness’

and elevation is clearly better-preserved by the InfoGAN which was seen such combi-

nations before. For example, take the third teapot in the first column. The model which

was trained on the full dataset (i.e. with no gaps) manages to preserve the ground-truth

values of the generative factors for the most part, with the reconstructed image clearly

still a red teapot from above. The same cannot be said for the image reconstructed

by the model trained on the dataset with gaps. Similar trends can be seen for the sec-

ond and third teapots in the first row. These results indicate that the generator is not

able to perform zero-shot reconstruction to a high degree of accuracy, where accuracy

refers to the extent to which the ground-truth values (described by the latent codes) are

6.2. Further evaluation 63

preserved in the generated image.

Note that the primary source of these inaccurate reconstructions is not clear. Although

the impressive zero-shot inference results of the previous section suggest that the latent

codes produced by Q accurately represent the values of the generative factors in the

input image, the SMSE increased from 0.04 on the training set to 0.30 on the test

set when predicting the value of the red generative factor. Hence, these inaccurate

reconstructions may stem from both inaccurate latent codes and a generation process

which does not sufficiently preserve the information in ‘extreme’ latent codes (those

on the edges of latent space or with previously-unseen combinations).

Finally, to determine whether or not G is in fact the primary cause of these inaccurate

reconstructions, we create the ‘gaps’ in latent space rather than image space. In other

words, we directly select values for the latent codes which correspond to ground-truth

values which lie in original gap in image space. This direct selection was facilitated

by figure 6.3 and figure 6.4, which reveal the positive and negative correlations that

exist between the generative factors and important latent codes. By removing Q from

the process, we are left with a controlled investigation. Hence, a single network, G,

can be held accountable for poor zero-shot reconstructions. Figure 6.9 depicts the

images generated with these selected latent codes. The InfoGAN trained on the full

distribution (no gaps) manages to produce several red and ‘almost red’ teapots from

above. The same cannot be said for the InfoGAN which was trained on the dataset

with gaps, indicating that the generator is unable to reason about unseen combinations

of latent codes to perform zero-shot reconstruction.

64 Chapter 6. Evaluating the Quality of Learnt Representations

(a) No gaps (b) Gaps

Figure 6.9: Zero-shot reconstruction: latent space gaps. The generators of both In-

foGANs received latent codes that were selected in the same manner. These codes were

not identical as the latent variables of each model corresponded to different generative

factors. (a) Images generated by the InfoGAN trained on the full dataset (no gaps), i.e.

this models generator has seen similar factor combinations before. (b) Images gener-

ated by the InfoGAN trained on the dataset with gaps, i.e. this models generator has

never seen such factor combinations.

Chapter 7

Conclusion

In chapter 5, we detailed the process of adding the mutual information cost of InfoGAN

to the stable value function of the improved WGAN. We also demonstrated that the

stability can be further improved with an updated gradient penalty. In chapter 6, we

quantified this stability, providing empirical evidence that the updated penalty leads

to stable and reliable disentanglement. We also thoroughly evaluated the quality of

the latent variables discovered by InfoGAN, using our proposed metric to quantify

the degree of disentanglement within the learnt representations before evaluating the

models ability to reason about new factor combinations.

In this final chapter, we place our overall findings into context, discussing the main

findings of our work along with their contributions to the field of unsupervised repre-

sentation learning. In section 7.1, we summarize our findings and main contributions,

outlining the relative strengths and weaknesses of our work in comparison to related

research on learning disentangled representations. In section 7.2, we detail some pos-

sible shortcomings of our work, including the limitations of our findings and chosen

methods. Finally, suggestions for further research are provided in section 7.3.

7.1 Contributions and discussion

Within this dissertation, the mutual information objective of InfoGAN has been com-

bined with a recent and more stable value function to achieve stable and reliable dis-

entanglement. Empirical evidence then suggested that this combination, along with

an updated gradient penalty, takes another step towards truly unsupervised disentan-

65

66 Chapter 7. Conclusion

gled factor learning by removing InfoGANs hyper-sensitivity to random initialization,

network architecture and exact hyperparameter values. A new metric to quantify the

degree of disentanglement achieved by different models is also proposed, with exper-

imental results indicating that it accurately quantifies the two defining characteristics

of disentangled representations. Although this new metric alone is sufficient to quan-

tify the degree of disentanglement within learnt representations, visualizing the degree

of separation through Hinton diagrams may still be useful for certain problems. In

contrast to the recent ‘factor change classification’ metric of Higgins et al. in [6],

this metric is simple and intuitive, requires no additional data, naturally generalizes to

high-dimensional factors of variation, quantifies the amount of information captured

and quantifies the degree of separation.

Additionally, the quality of the latent variables discovered by InfoGAN is elucidated

through a number of qualitative and quantitative analyses, providing strong evidence in

support of the model’s ability to learn meaningful and interpretable disentangled rep-

resentations. In stark contrast to the original work [11], the degree of disentanglement

is evaluated quantitatively and evidence is provided that this disentanglement allows

InfoGAN to understand the factorial structure of the data and thus reason about unseen

factor combinations. In short, the evidence strongly suggests that extending generative

models with a mutual information cost is a promising approach to disentangled factor

learning.

7.2 Possible shortfalls

In this section, we detail some possible shortcomings of our work, including the limi-

tations of our findings and chosen methods.

7.2.1 Use of deep ResNets

In retrospect, deep ResNets may not have been the best choice for our purposes. The

added computational expense far outweighed the benefit of generating sharper sam-

ples and limited the breadth and depth of the hyperparameter searches. Furthermore, it

limited the number of random runs that could feasibly be carried out in the given time

frame, thus preventing a conclusive analysis on the stability improvement of the up-

7.3. Suggestions for future research 67

dated gradient penalty. Although many hyperparameter searches were carried out with

the initial InfoGAN model and the initial InfoWGAN-GP model (original gradient

penalty), their respective instabilities may have masked the effect of certain hyperpa-

rameters. Thus, it would be interesting to re-run these experiments with the final model

to discover the optimum number of latent codes, the precise effect of λmi, the optimum

number of FC layers in Q, etc. We leave this to future work.

7.2.2 Fixed number of latent codes

As mentioned in the previous section, the computational expense of deep ResNets

limited the number of experiments which could be carried out with the final model

(updated gradient penalty). Perhaps the most important InfoGAN parameter which

was not sufficiently explored was the number of latent codes. By using a fixed number

of latent codes with this final model, we failed to conclusively show the models ability

to learn meaningful and interpretable representations in a truly unsupervised manner,

that is, without prior knowledge about the number of underlying factors of variation in

the data. As further discussed in section 7.3.1, this is perhaps the largest unanswered

question about the InfoGAN’s ability to learn such meaningful and interpretable rep-

resentations without supervision.

7.2.3 Redundant calculation

Finally, there is a small redundancy in the calculation of the updated gradient penalty.

The update involves adding the per-image mutual information term LÎ in equation 5.2

to the discriminator cost before calculating the gradient norm with respect to its input

(x̂). However, the term logP (c) in equation 5.2 is independent of x̂, thus it does not

need to be calculated.

7.3 Suggestions for future research

In this section, we propose some ideas for improving the InfoGAN and further evalu-

ating the quality of latent variables discovered.

68 Chapter 7. Conclusion

7.3.1 Excessive latent codes with a redundancy pressure

Training the InfoGAN with an excessive number of latent codes would determine its

ability to learn highly semantic representations with no prior knowledge about the

underlying factors of variation. This may also reveal whether or not the InfoGAN

captures certain generative factors with multiple latent variables in order to maximize

the mutual information. For example, the InfoGAN may have learned to represent the

azimuth with two variables, representing the sin and cos of the azimuth (akin to the

VAE in [6]), if there had been an additional latent code.

However, we speculate that the mutual information cost alone may not be sufficient to

learn such meaningful and highly semantic representations with an excessive number

of latent codes (D >> K). More specifically, we conjecture that this cost would not

be sufficient to force individual dimensions of the learnt representation to correspond

to salient semantic features of the data if there are many more latent variables than

factors of variation. For example, if we retrained the InfoGAN on our dataset with 100

latent codes, maximum mutual information may still be achieved if generative factors

such as elevation are captured by a combination of many latent variables.

Thus, to ensure that individual dimensions of the representation correspond to semantic

features of the data and thus take another step towards black-box disentanglement, we

propose adding a ‘redundancy pressure’ to the objective function as was done in [6].

The mutual information objective already reduces the redundancy between the latent

codes and generated image, however, with excessive latent codes, there is likely to be

redundancy within the latent codes themselves. Adding a redundancy pressure may en-

courage the network to capture the generative factors with the lowest possible number

of latent variables, thus preventing; i) multiple factors capturing the same information,

ii) a generative factor being captured across an excessive number of latent variables.

We conjecture that this would allow the InfoGAN to learn meaningful and highly se-

mantic representations without any prior knowledge about the number of underlying

factors of variation.

7.3.2 Unseen objects

As illustrated by Higgins et al. in [6], models that understand the factorial structure of

data should be able to reason about the properties of unseen objects. To further evaluate

7.3. Suggestions for future research 69

the latent variables discovered by InfoGAN, one could test their ability reason about

unseen objects such as mugs, which can be rendered using the same process employed

in this dissertation [40].

7.3.3 Richer data

The render from [40] also has the ability to generate richer data, including teapots with

varying shape, lighting and background scenes. In theory, the CNNs of the InfoGAN

would allow it to be invariant to such background noise. However, evaluating the

InfoGAN on such a dataset would further provide further evidence of its capabilities.

Appendix A

GAN instability

A.1 Initial InfoGAN architecture

D/Q G

Input 64x64x3 image Input ∈ R133

conv4x4. 64. IReLU. s=2. FC (4x4x1024). BN

conv4x4. 128. IReLU. s=2. BN upconv4x4. 512. ReLU. s=2. BN

conv4x4. 256. IReLU. s=2. BN upconv4x4. 256. ReLU. s=2. BN

conv4x4. 512. IReLU. s=2. BN upconv4x4. 128. ReLU. s=2. BN

FC output D/Q upconv4x4. 64. ReLU. s=2. BN

upconv4x4. 3. tanh

Table A.1: Architecture of the initial InfoGAN. ‘conv4x4. 128. IReLU. s=2. BN’

indicates a convolutional layers with a stride of 2 and 128 feature maps, followed by a

batch normalization layer, followed by an ‘inverse’ ReLU activation function.

71

72 Appendix A. GAN instability

A.2 Samples from the original dataset.

Figure A.1: Best samples generated with the initial InfoGAN and original dataset.

A.3 Samples from the simplified dataset.

Figure A.2: Best samples generated with the initial InfoGAN and simplified
dataset.

Appendix B

Additional Samples

B.1 Disentangled representations.

B.2 Large mutual information coefficient

73

74 Appendix B. Additional Samples

(a) Azimuth(c2) (b) Elevation(c1)

(c) Red(c3) (d) Blue/Azimuth(c0) (e) Blue/Azimuth(c4)

Figure B.1: Manipulating the latent codes of run 2. The model appears to have

successfully disentangled (b) elevation, (d) green and (e) blue. However, azimuth and

red are clearly tangled in (a) and (c).

B.2. Large mutual information coefficient 75

(a) Azimuth(c0) (b) Elevation(c2)

(c) Red(c3) (d) Green(c4) (e) Blue(c1)

Figure B.2: Manipulating the latent codes of run 3. The model appears to have

successfully disentangled (b) elevation, (d) green and (e) blue. However, azimuth and

red are clearly tangled in (a) and (c).

76 Appendix B. Additional Samples

(a) Azimuth(c2) (b) Elevation(c4)

Figure B.3: Manipulating the latent codes of run 4. The model appears to have

successfully disentangled (a) azimuth and (b) elevation.

B.2. Large mutual information coefficient 77

(c) Red/Green(c1) (d) Green/Azimuth(c3) (e) Blue(c0)

Figure B.3: Manipulating the latent codes of run 3. The model appears to have

successfully disentangled appearance from pose. However, the colour channels are

tangled. c1 increases the red channel and decreases the green channel as it ranges from

-1 to 1. c0 increases the blue channel and decreases the red channel. c3 decreases the

green channel.

78 Appendix B. Additional Samples

Figure B.4: Samples generated with λ = 25.

Bibliography

[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., “ImageNet large scale visual recog-

nition challenge,” International Journal of Computer Vision, vol. 115, no. 3,

pp. 211–252, 2015.

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9,

2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 770–778, 2016.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Master-

ing the game of go with deep neural networks and tree search,” Nature, vol. 529,

no. 7587, pp. 484–489, 2016.

[5] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building

machines that learn and think like people,” Behavioral and Brain Sciences, pp. 1–

101, 2016.

[6] I. Higgins, L. Matthey, X. Glorot, A. Pal, B. Uria, C. Blundell, S. Mohamed, and

A. Lerchner, “Early visual concept learning with unsupervised deep learning,”

arXiv preprint arXiv:1606.05579, 2016.

[7] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning: trans-

fer learning from unlabeled data,” in Proceedings of the 24th International Con-

ference on Machine learning, pp. 759–766, ACM, 2007.

79

80 Bibliography

[8] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and

new perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 35, no. 8, pp. 1798–1828, 2013.

[9] G. Desjardins, A. Courville, and Y. Bengio, “Disentangling factors of variation

via generative entangling,” arXiv preprint arXiv:1210.5474, 2012.

[10] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropaga-

tion and approximate inference in deep generative models,” arXiv preprint

arXiv:1401.4082, 2014.

[11] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “In-

foGAN: Interpretable representation learning by information maximizing gener-

ative adversarial nets,” in Advances in Neural Information Processing Systems,

pp. 2172–2180, 2016.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural

Information Processing Systems, pp. 2672–2680, 2014.

[13] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks,” arXiv preprint

arXiv:1511.06434, 2015.

[14] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,

A. Aitken, A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic single im-

age super-resolution using a generative adversarial network,” arXiv preprint

arXiv:1609.04802, 2016.

[15] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-

image translation using cycle-consistent adversarial networks,” arXiv preprint

arXiv:1703.10593, 2017.

[16] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-encoders,”

in International Conference on Artificial Neural Networks, pp. 44–51, Springer,

2011.

[17] S. Reed, K. Sohn, Y. Zhang, and H. Lee, “Learning to disentangle factors of vari-

ation with manifold interaction,” in International Conference on Machine Learn-

ing, pp. 1431–1439, 2014.

Bibliography 81

[18] Z. Zhu, P. Luo, X. Wang, and X. Tang, “Multi-view perceptron: a deep model for

learning face identity and view representations,” in Advances in Neural Informa-

tion Processing Systems, pp. 217–225, 2014.

[19] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv preprint

arXiv:1701.07875, 2017.

[20] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved

training of Wasserstein GANs,” arXiv preprint arXiv:1704.00028, 2017.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–

2324, 1998.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[23] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in

Neural Networks: Tricks of the Trade, pp. 9–50, Springer, 1998.

[24] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-

ward neural networks,” in Proceedings of the Thirteenth International Confer-

ence on Artificial Intelligence and Statistics, pp. 249–256, 2010.

[25] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” in International Conference on Machine

Learning, pp. 448–456, 2015.

[26] K. He and J. Sun, “Convolutional neural networks at constrained time cost,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 5353–5360, 2015.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual net-

works,” in European Conference on Computer Vision, pp. 630–645, Springer,

2016.

[28] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[29] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,

“Improved techniques for training GANs,” in Advances in Neural Information

Processing Systems, pp. 2234–2242, 2016.

82 Bibliography

[30] M. Arjovsky and L. Bottou, “Towards principled methods for training generative

adversarial networks,” arXiv preprint arXiv:1701.04862, 2017.

[31] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adversarial net-

work,” arXiv preprint arXiv:1609.03126, 2016.

[32] D. Berthelot, T. Schumm, and L. Metz, “BEGAN: Boundary equilibrium gener-

ative adversarial networks,” arXiv preprint arXiv:1703.10717, 2017.

[33] A. Srivastava, L. Valkov, C. Russell, M. Gutmann, and C. Sutton, “VEEGAN:

Reducing mode collapse in GANs using implicit variational learning,” arXiv

preprint arXiv:1705.07761, 2017.

[34] M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan,

S. Hoyer, and R. Munos, “The Cramer distance as a solution to biased Wasser-

stein gradients,” arXiv preprint arXiv:1705.10743, 2017.

[35] T. S. Cohen and M. Welling, “Transformation properties of learned visual repre-

sentations,” arXiv preprint arXiv:1412.7659, 2014.

[36] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Au-

toencoding beyond pixels using a learned similarity metric,” arXiv preprint

arXiv:1512.09300, 2015.

[37] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial au-

toencoders,” arXiv preprint arXiv:1511.05644, 2015.

[38] OpenAI, “InfoGAN code.” https://github.com/openai/InfoGAN.

Accessed: 2017-04-05.

[39] “Improved WGAN training code.” https://github.com/igul222/

improved_wgan_training. Accessed: 2017-01-07.

[40] P. Moreno, C. K. I. Williams, C. Nash, and P. Kohli, “Overcoming occlusion

with inverse graphics,” in ECCV Geometry Meets Deep Learning Workshop 2016,

pp. 170–185, Springer, 2016.

[41] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in space,”

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-

ence, vol. 2, no. 11, pp. 559–572, 1901.

[42] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with randomness:

https://github.com/openai/InfoGAN
https://github.com/igul222/improved_wgan_training
https://github.com/igul222/improved_wgan_training

Bibliography 83

Probabilistic algorithms for constructing approximate matrix decompositions,”

SIAM Review, vol. 53, no. 2, pp. 217–288, 2011.

[43] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and ap-

plications,” Neural networks, vol. 13, no. 4, pp. 411–430, 2000.

[44] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and re-

gression trees. CRC press, 1984.

[45] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[46] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning,

vol. 1. MIT press Cambridge, 2006.

	Introduction
	Motivation and objective
	Contributions
	Dissertation structure

	Background
	Convolutional Neural Networks
	Residual Networks
	Generative Adversarial Networks
	Wasserstein GANs
	Information Maximizing GANs

	Related Work
	Unsupervised disentangling
	Evaluating disentangled representations

	Resources, Tools and Data
	Resources and tools
	Software
	Hardware

	Data

	Learning Disentangled Representations
	Initial InfoGAN training
	Seeking Nash equilibria
	Simplifying the problem

	Stable GANs
	Stable InfoGANs
	WGAN-GP to InfoWGAN-GP
	Optimization and exploration
	Further improving stability

	Evaluating the Quality of Learnt Representations
	Quantifying the degree of disentanglement
	Metric
	Retrieving the latent codes
	Baselines
	Preparing the data
	Fitting the regression models
	Results

	Further evaluation
	Creating `gaps' in the data
	Zero-shot inference
	Zero-shot reconstruction

	Conclusion
	Contributions and discussion
	Possible shortfalls
	Use of deep ResNets
	Fixed number of latent codes
	Redundant calculation

	Suggestions for future research
	Excessive latent codes with a redundancy pressure
	Unseen objects
	Richer data

	GAN instability
	Initial InfoGAN architecture
	Samples from the original dataset.
	Samples from the simplified dataset.

	Additional Samples
	Disentangled representations.
	Large mutual information coefficient

	Bibliography

